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a b s t r a c t

In this article we consider a semigroup ring R = K [[Γ ]] of a numerical semigroup Γ

and study the Cohen–Macaulayness of the associated graded ring G(Γ ) := grm(R) :=

⊕n∈N mn/mn+1 and the behaviour of theHilbert functionHR of R.We define a certain (finite)
subset B(Γ ) ⊆ Γ and prove that G(Γ ) is Cohen–Macaulay if and only if B(Γ ) = ∅.
Therefore the subset B(Γ ) is called the Cohen–Macaulay defect of G(Γ ). Further, we prove
that if the degree sequence of elements of the standard basis of Γ is non-decreasing,
then B(Γ ) = ∅ and hence G(Γ ) is Cohen–Macaulay. We consider a class of numerical
semigroups Γ =

∑3
i=0 Nmi generated by 4 elementsm0,m1,m2,m3 such thatm1 +m2 =

m0 +m3—so called ‘‘balanced semigroups’’. We study the structure of the Cohen–Macaulay
defect B(Γ ) of Γ and particularly we give an estimate on the cardinality |B(Γ , r)| for
every r ∈ N. We use these estimates to prove that the Hilbert function of R is non-
decreasing. Further, we prove that every balanced ‘‘unitary’’ semigroup Γ is ‘‘2-good’’ and
is not ‘‘1-good’’, in particular, in this case, G(Γ ) is not Cohen–Macaulay. We consider a
certain special subclass of balanced semigroups Γ . For this subclass we try to determine
the Cohen–Macaulay defect B(Γ ) using the explicit description of the standard basis of Γ ;
in particular, we prove that these balanced semigroups are 2-good and determine when
exactly G(Γ ) is Cohen–Macaulay.

© 2011 Published by Elsevier B.V.

0. Introduction

In this article we study the Cohen–Macaulayness of the tangent cone and the behaviour of the Hilbert function of
monomial curves. These problems are studied by several authors and many results are obtained for 1-dimensional local
Cohen–Macaulay rings. More precisely, let (R, m) be a 1-dimensional Cohen–Macaulay local ring of multiplicity e and
embedding dimension ν ≥ 2. If either ν ≤ 3 or ν ≤ e ≤ ν + 2, then (see [4,5]) the Hilbert function HR of R is non-
decreasing. However, if either ν ≥ 4 or e ≥ ν + 3, then HR can be locally decreasing (see for example, [16,22,6,13]).
Moreover, if R is the semigroup ring K [[Γ ]] of a numerical semigroup Γ ⊆ N generated by an arithmetic sequence, then the
associated graded ring G(Γ ) := grm(R) := ⊕n∈N mn/mn+1 is always Cohen–Macaulay and hence the Hilbert function of R
is non-decreasing (see [13]). Furthermore, if Γ is generated by an almost arithmetic sequence, then a characterization (in
most cases) for the Cohen–Macaulayness of G(Γ ) is given in [12] and the Hilbert function of R is non-decreasing (see [26]).
More recently, Arslan and Mete in [1] and Shibuta in [25] have proved that G(Γ ) is Cohen–Macaulay for a particular class
of semigroups generated by 4 elements.

In Section 1, for the semigroup ring R = K [[Γ ]] of a numerical semigroup Γ , we study the Cohen–Macaulayness of G(Γ ).
In this case we define a certain (finite) subset B(Γ ) ⊆ Γ (see 1.4 and 1.5) and prove that (see Theorem 1.6) G(Γ ) is Cohen–
Macaulay if and only if B(Γ ) = ∅. Therefore the subset B(Γ ) is called the Cohen–Macaulay defect of G(Γ ). Finally, we prove
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that (see Theorem 1.12) if the degree sequence of elements of the standard basis of Γ is non-decreasing, then B(Γ ) = ∅

and hence G(Γ ) is Cohen–Macaulay. This theorem allows us to check whether G(Γ ) is Cohen–Macaulay rather easily if one
knows the description of standard basis of Γ explicitly, for example, if Γ is generated by an arithmetic progression.

In Section 2, we consider a class of numerical semigroups Γ =
∑3

i=0 Nmi generated by 4 elements m0,m1,m2,m3 such
that m1 + m2 = m0 + m3; these semigroups are called balanced semigroups. For this class we study the structure of the
Cohen–Macaulay defect B(Γ ) and particularly we give (see Corollary 2.10) an estimate on the cardinality |B(Γ , r)| for every
r ∈ N.We use these estimates to prove that (see Theorem2.11) theHilbert function of R = K [[Γ ]] is non-decreasing. Further,
we prove that (see Example 2.12) every balanced ‘‘unitary’’ semigroupΓ is ‘‘2-good’’ and is not ‘‘1-good’’ (see the definitions
in 2.3), in particular, in this case, G(Γ ) is not Cohen–Macaulay.

In Section 3 we consider a certain special subclass of balanced semigroups Γ . For this subclass we try to determine
(see Proposition 3.3) the Cohen–Macaulay defect B(Γ ) using the explicit description (see Proposition 3.2) of the standard
basis of Γ ; in particular, we prove that these balanced semigroups are 2-good and determine (see Theorem 3.4) when
exactly G(Γ ) is Cohen–Macaulay. It is interesting to note that our subclass contains the special classes of semigroups
considered by Kraft (see [8], [9]); Bresinsky considered a similar class of examples in [2]. Bresinsky and Kraft constructed
these special classes to show that the defining ideals P(m0,m1,m2,m3) of the monomial curves C(m0,m1,m2,m3) ⊆ A4

K
with parametrization X0 = Tm0 , X1 = Tm1 , X2 = Tm2 , X3 = Tm3 and the type of R can be arbitrarily large, respectively
(unless the semigroup is symmetric, see [3]). A more general class of examples was considered by the first author in [17]
and he gave a systematic method using the explicit description of the standard basis of Γ to construct a minimal set of
generators for P(m0,m1,m2,m3) and the derivation module DerK (R) of R. This method of construction explains to some
extentwhy both the numbersµ(P(m0,m1,m2,m3)) andµ(DerK (R)) can be arbitrary large. Therefore this class of examples
contains many counterexamples. However, our result (Theorem 2.11) supports an informal conjecturemade by Rossi which
says that: The Hilbert function of a 1-dimensional Gorenstein local ring is always non-decreasing.

1. Cohen–Macaulay defect

Let (R, m) be a d-dimensional noetherian local ring of multiplicity e and embedding dimension ν := DimR/m(m/m2) =

ℓ(m/m2) = µ(m) := the minimal number of generators of m. Let grm(R) := ⊕n∈N mn/mn+1 denote the associated graded
ring of R with respect to the maximal ideal m of R. The numerical function HR : N → N defined by n → DimR/m(mn/mn+1)
is called the Hilbert function of grm(R) or just that of R. The generating function of the numerical function HR is the Poincaré
series PR(Z) :=

∑
n∈N HR(n) · Zn. It is well known that there exists a polynomial hR(Z) ∈ Z[Z] such that PR(Z) =

hR(Z)

(1−Z)d
. The

polynomial hR(Z) = h0 + h1Z + · · · + hn0Z
n0 is called the h-polynomial of R; h0 = HR(0) = 1, h1 = HR(1) − d = ν − d.

For convenience, some definitions and some well-known results for 1-dimensional noetherian local rings are collected
in 1.1 and 1.2:

Some Results 1.1. Let (R, m) be a 1-dimensional Cohen–Macaulay local ring of multiplicity e and embedding dimension
ν ≥ 2. Further, let hR := hR(Z) = h0 + h1Z + · · · + hn0Z

n0 , n0 := deg hR denote the h-polynomial of R. Then h0 = 1,
hi = HR(i) − HR(i − 1) for every i ≥ 1 and n0 = min{n ∈ N | HR(i) = e for all i ≥ n} = min{n ∈ N | HR(n) = e}. Further,
we note the following results:

(1) We may assume that (if necessary replace the ring R by R[X]m[X] and assume that the residue field R/m of R is infinite)
there exists a superficial element x ∈ m of degree 1, i.e. (mn+1

: x) = mn for large n >> 0; or equivalently,
xmn

= mn+1 for large n >> 0, i.e. the principal ideal Rx is a minimal reduction of m (see [15, Theorem 1] and
[10]). Let x ∈ m be a superficial element of degree 1 and R := R/Rx. Then x is a non-zero divisor in R, x ∉ m2 and
PR(Z) =

∑
n≥0 DimR/m


mn/mn+1

· Zn
= hR(Z), where m := m/Rx is the maximal ideal of R.

(2) (See [23] and [27, Theorems (6.1), (1.5) and (1.3)]) Let x ∈ m be a superficial element of degree 1 and let G := grm(R) be
the associated graded ring of R with respect to the maximal ideal m. Then: G is Cohen–Macaulay ⇐⇒ the image x∗ of
x in G is a non-zero divisor in G ⇐⇒ hR = hR. In particular, if G is Cohen–Macaulay, then hr ≥ 0 for every r ≥ 0, i.e. the
Hilbert function HR : N → N of R is non-decreasing.

(3) (See [10, Prop. 8 and Prop. 9]) n0 = deg(hR) = min{n ∈ N | HR(n) = e} = min{n ∈ N | x · mn
= mn+1

} =: r0. The
natural number r0 is called the reduction exponent of the minimal reduction Rx of m. This equality also shows that r0 is
independent of the choice of x, i.e. if Ry is another minimal reduction of m, then r0 = min{n ∈ N | y · mn

= mn+1
}.

Therefore r0 is called the reduction exponent of the local ring R.

Notation and Definitions 1.2. Throughout this article we make the following assumptions and fix the following notation:

Let N, Z, N+
= Z+ and Z− denote the sets of natural numbers, integers, positive integers and negative integers,

respectively.

Let R := K [[Γ ]] = K [[T g
| g ∈ Γ ]](⊆ K [[T ]]) be the semigroup ring of a numerical semigroup Γ ⊆ N over a field K .

The integral closure of R is the formal power series ring K [[T ]] over K . Let v := ordT : K((T )) → Z ∪ {∞} be the discrete
valuation of K [[T ]]. Let G(Γ ) denote the associated graded ring grm(R) of R with respect to the maximal ideal m.
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(1) Let m0, . . . ,mν−1 be a minimal generating set for Γ with m0 < m1 < · · · < mν−1. Then m0 = e is the multiplicity of R
and the element x = Tm0 ∈ R is a superficial element of degree 1 (see for example [21, Lemma (1.3)]). Further, since R
is a semigroup ring of Γ = v(R), we have T v(F)

∈ R for every F ∈ R.
(2) (Standard basis) Let Sm0 := {z ∈ Γ | z − m0 ∉ Γ } be the standard basis (or Apéry set) of Γ with respect to

m0. It is clear that Sm0 depends on Γ and m0, but for simplicity we put S := Sm0 . Further it is easy to see that
S = {s0 = 0, s1, . . . , sm0−1} ⊆ Γ , where 0 = s0 < s1 < · · · < sm0−1 ∈ Γ are non-negative integers with the
following properties:
(i) si ≢ sj (modm0) for all i, j ∈ [0,m0 − 1], i ≠ j.
(ii) If z ∈ Γ , then z = am0 + si for unique i ∈ [0,m0 − 1] and a ∈ N.

(3) (Maximum degree) For each g ∈ Γ , we put

max-deg(g) := max


ν−1−
i=0

ai | g =

ν−1−
i=0

aimi with a0, . . . , aν−1 ∈ N


.

The natural number max-deg(g) is called the maximum degree of g . For g ∈ Γ , let [T g
] denote the natural image of T g

in G(Γ ). Then it is easy to see that max-deg(g) = deg([T g
]) = max{r ∈ N | T g

∈ mr
}.

(4) For r ∈ N+, we put:
Γ (r) := {g ∈ Γ | max-deg(g) = r} and S(r) := Γ (r) ∩ S.

For completeness we collect some observations on HR and HR in the following lemma.

Lemma 1.3. Let Γ and R be as in 1.2. Then for every r ∈ N+, we have:
(1) HR(r) = |Γ (r)|.
(2) Let g ∈ Γ (r). Then g ∈ S(r) if and only if T g

∉ Rx.
(3) For s ∈ S(r), let T s denote the image of T s in m r/m r+1. Then {T s | s ∈ S(r)} is a basis of the R/m-vector space mr/mr+1. In

particular, HR(r) = |S(r)|.
Proof. (1) HR(r) = DimK (mr/mr+1) = ℓ(mr/mr+1) = |v(mr) \ v(mr+1)| by [11, Section 2], where v = ordT (see 1.2).

Therefore by 1.2 (parts (1), (3) and (4)) we have the equalities v(mr) \ v(mr+1) = {v(f ) | f ∈ mr
\ mr+1

} = {g ∈ Γ |

T g
∈ mr

\ mr+1
} = {g ∈ Γ | max-deg(g) = r} = Γ (r).

(2) If g ∉ S(r), then g = m0 + g ′ for some g ′
∈ Γ and so T g

= Tm0T g ′

∈ Rx. Conversely, if T g
∈ Rx, then T g

= Fxwith F ∈ R
and so T g

= T v(F)Tm0 = T v(F)+m0 , i.e. g = v(T g) = v(F) + m0 ∉ S, since v(F) ∈ v(R) = Γ .
(3) Since T s

∈ mr
\mr+1 for every s ∈ S(r), it follows that {T s | s ∈ S(r)} generates the R/m-vector space mr/mr+1. If there is

a non-trivial linear dependence relation T s1 =
∑k

i=2 ciT si with distinct s1, s2, . . . , sk ∈ S(r) and c2, . . . , ck ∈ R/m, then
T s1 =

∑k
i=2 ciT

si +FTm0 +F ′ with F , F ′
∈ R and F ′

∈ mr+1. Therefore, since s1 ≠ si for all i = 2, . . . , k and s1 ∉ Γ (r+1),
by 1.2 (parts (3) and (1)) we must have T s1 = T v(F)Tm0 ∈ Rx, i.e. s1 = v(F) + m0 ∉ S(r), a contradiction. �

Definition 1.4. Let Γ be as in 1.2. For r ∈ N, we put

B(Γ , r) := {g ∈ Γ (r) | max-deg(g + m0) ≥ r + 2} and B(Γ ) =


r∈N

B(Γ , r).

It is clear that B(Γ , 0) = ∅ and each B(Γ , r) is a finite set. We shall call the set B(Γ ) Cohen–Macaulay defect of G(Γ ), since
we shall prove below in Theorem 1.6 that B(Γ ) = ∅ if and only if G(Γ ) is Cohen–Macaulay. First we prove that B(Γ ) is a
finite set.

Lemma 1.5. Let Γ and R be as in 1.2 and let r0 be the reduction exponent of R. Then:
(1) S(r) = ∅ for every r ≥ r0 + 1.
(2) B(Γ , r) = ∅ for every r ≥ r0 − 1. In particular, B(Γ ) is a finite set.

Proof. Since r0 = min{n ∈ N | x · mn
= mn+1

} (see 1.1(3)), we have mr0+t
= xt · mr0 for every t ∈ N. Therefore (1) is

immediate from 1.3(2).
(2) If r = r0 + t with t ≥ −1 and if g ∈ B(Γ , r), then g ′

= g + m0 ∈ Γ (r ′) with r ′
≥ r + 2 = r0 + t + 2 and so

T g
· x = T g+m0 = T g ′

∈ mr0+t+2
= xt+2

· mr0 . Therefore T g
∈ xt+1

· mr0 = mr0+t+1, since x is a non-zero divisor in R. This
contradicts that fact that g ∈ Γ (r0 + t) (see 1.3(3)). �

Theorem 1.6. Let Γ be a numerical semigroup, R = K [[Γ ]] be a semigroup ring of Γ over a field K and let G(Γ ) = grm(R) be
the associated graded ring of R. Then G(Γ ) is Cohen–Macaulay if and only if B(Γ ) = ∅.

Proof. For t ∈ N+, let (∗t) be the assertion:

(∗t ) The equality max-deg(g + tm0) = max-deg(g) + t holds for every g ∈ Γ .

In view of [12, Proposition 2.2(3)] and the definition of B(Γ ), it is enough to prove the implication: (∗1) ⇒ (∗t). We prove
this by induction on t . Let t ≥ 2, g ∈ Γ and g ′

:= g + (t − 1)m0. Then max-deg(g + tm0) = max-deg(g ′
+ m0) =

max-deg(g ′) + 1 = (max-deg(g) + (t − 1)) + 1 = max-deg(g) + t by (∗1) and by induction on t . �

For the computation of the coefficients hi of the h-polynomial of R, we introduce the following subsets:
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Definition 1.7. Let Γ be as in 1.2. For r ∈ N, we define

C(Γ , r) := {g + m0 ∈ Γ (r) | g ∈ B(Γ , r ′) for some r ′
≤ r − 2}.

Clearly, for r ≤ 2, C(Γ , r) = ∅. Further, if B(Γ ) = ∅, then C(Γ , r) = ∅ for every r ∈ N. Moreover, we have:

Lemma 1.8. Let Γ and R be as in 1.2 and let r0 be the reduction exponent of R. Then:

(1) C(Γ , r) = ∅ for every r ≥ r0 + 1.
(2) S(r0) ∪ C(Γ , r0) ≠ ∅.

Proof. If r = r0 + t with t ∈ N+ and if g + m0 ∈ C(Γ , r), then g ∈ B(Γ ) and T g
· x = T g+m0 ∈ mr

= xt · mr0 . Therefore
T g

∈ xt−1
· mr0 ⊆ mr0 , since x is a non-zero divisor in R and so g ∈ Γ (r ′) ∩ B(Γ ) = B(Γ , r ′) with r ′

≥ r0 which is absurd by
Lemma 1.5(2). This proves (1).

(2) Suppose that S(r0) = ∅. Since mr0+1
= x · mr0 ⊆ x · mr0−1 ( mr0 by definition of r0, there exists T g

∈ mr0 \ x · mr0−1. Then
g ∈ Γ (r0) and g = m0 + g ′ for some g ′

∈ Γ (r ′) with r ′
≤ r0 − 2, since S(r0) = ∅. Therefore g = g ′

+ m0 ∈ C(Γ , r0). �

Proposition 1.9. Let Γ and R be as in 1.2 and let r ∈ N. Then:

(1) The sets S(r), B(Γ , r − 1) and C(Γ , r) are pairwise disjoint.
(2) The subsets S(r), D(Γ , r) := {g + m0 ∈ Γ (r) | g ∈ Γ (r − 1) \ B(Γ , r − 1)}, C(Γ , r) form a partition of Γ (r).
(3) hr = |S(r)| + |C(Γ , r)| − |B(Γ , r − 1)|.

Proof. (1) Clearly S(r) ∩ C(Γ , r) = ∅ by definition of the standard basis S of Γ . Further, since Γ (r) ∩ Γ (r − 1) = ∅,
S(r) ⊆ Γ (r), B(Γ , r − 1) ⊆ Γ (r − 1) and C(Γ , r) ⊆ Γ (r) by definitions, it follows that S(r) ∩ B(Γ , r − 1) = ∅ and
B(Γ , r − 1) ∩ C(Γ , r) = ∅.

(2) In view of the definition of the standard basis S of Γ and (1) it is enough to prove that D(Γ , r) ∩ C(Γ , r) = ∅. For this it
is enough to note that: if g ∈ Γ , then g +m0 ∈ Γ (r) if and only if either g +m0 ∈ C(Γ , r), or g ∈ Γ (r −1)\B(Γ , r −1).

(3) Since |D(Γ , r)| = |Γ (r − 1) \ B(Γ , r − 1)|, we have hr = HR(r) − HR(r − 1) = |Γ (r)| − |Γ (r − 1)| =

|S(r)| + |C(Γ , r)| − |B(Γ , r − 1)| by 1.3(1) and (2). �

Remark 1.10. From Lemmas 1.9(3), 1.8 and 1.5 it follows that hr = 0 for every r > r0 and hr0 > 0 (see also [14,
Corollary 1.11]). This proves once again 1.1(3) for a semigroup ringR: The degree deg(hR) of the h-polynomial is the reduction
exponent r0, of R. Further, if G(Γ ) is Cohen–Macaulay, then hR(Z) =

∑r0
r=0 |S(r)| · Z r by Theorem 1.6 and 1.9(3). If Γ

is generated by an arithmetic progression, then G(Γ ) is always Cohen–Macaulay and the explicit computation of the h-
polynomial is done in [13]. If Γ is generated by an almost arithmetic progression, then a characterization for the Cohen–
Macaulayness of G(Γ ) is given (in most cases) in [12] and the explicit computation of the h-polynomial is done in [20].

The following general lemma will be used in the proof of Theorem 1.12 and many other propositions in Section 2.

Lemma 1.11. Let Γ be as in 1.2, r ∈ N and let g ∈ Γ (r). Then

(1) If g =
∑ν−1

i=0 aimi with
∑ν−1

i=0 ai = r, then
∑ν−1

i=0 a′

imi ∈ Γ (
∑ν−1

i=0 a′

i) for every (a′

0, . . . , a
′

ν−1) ∈ Nν with a′

i ≤ ai,
i = 0, . . . , ν − 1.

(2) If g + m0 =
∑ν−1

i=0 bimi with r̃ =
∑ν−1

i=0 bi = max-deg(g + m0) ≥ r + 2, then
∑ν−1

i=0 b′

imi ∈ S(r ′) ⊎ C(Γ , r ′) for every
(b′

0, . . . , b
′

ν−1) ∈ Nν with b′

i ≤ bi, i = 0, . . . , ν − 1 and r ′
=

∑ν−1
i=0 b′

i .

Proof. (1) Since g =
∑ν−1

i=0 a′

imi +
∑ν−1

i=0 (ai − a′

i)mi, the assertion is immediate from the inequality r =
∑ν−1

i=0 ai =

max-deg(g) ≥ max-deg(
∑ν−1

i=0 a′

imi) +
∑ν−1

i=0 (ai − a′

i).
(2) First note that g ∈ B(Γ , r). Put g ′

:=
∑ν−1

i=0 b′

imi. Then g ′
∈ Γ (r ′) with r ′

:=
∑ν−1

i=0 b′

i ≤ r̃ by (1). If r ′
= r̃ , then b′

i = bi
for every 0 ≤ i ≤ ν −1, i.e. g ′

= g +m0 and so g ′
∈ C(Γ , r ′), since g ∈ B(Γ , r)with r ≤ r̃ −2 = r ′

−2. If r ′
≤ r̃ −1 and

if g ′
∉ S(r ′), then g ′

= m0 +hwith h ∈ Γ and so g = h+
∑ν−1

i=0 (bi −b′

i)mi and r = max-deg(g) ≥ max-deg(h)+ r̃ − r ′.
Therefore, since r̃ ≥ r+2,wehavemax-deg(h) ≤ r ′

+r−r̃ ≤ r ′
−2. This proves thatmax-deg(m0+h) = max-deg(g ′) =

r ′
≥ max-deg(h) + 2, i.e. h ∈ B(Γ ,max-deg(h)) and hence g ′

= m0 + h ∈ C(Γ , r ′). �

Finally we give an application of Theorem 1.6 and Lemma 1.11.

Theorem 1.12. Let Γ be a numerical semigroup generated by m0,m1, . . . ,mν−1 with 0 < m0 < m1 < · · · < mν−1 and let
S = {0 = s0, s1, . . . , sm0−1} with 0 = s0 < s1 < · · · < sm0−1 be the standard basis of Γ with respect to m0. If the sequence
di := max-deg(si) i = 0, . . . ,m0 − 1 of maximal degrees of elements of S is not decreasing, then B(Γ ) = ∅. In particular, the
associated graded ring G(Γ ) of R = K [[Γ ]] with respect to the maximal ideal m is Cohen–Macaulay.
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Proof. Suppose that B(Γ ) ≠ ∅. Let r := min{s ∈ N | B(Γ , s) ≠ ∅} and let g ∈ B(Γ , r). Then by definition r ≥ 1,
C(Γ , r ′) = ∅ for every r ′

≤ r + 1 and k := max-deg(g + m0) ≥ r + 2, i.e. g + m0 ∈ Γ (k). Further, by the definition of
the standard basis g = si + am0 for some 1 ≤ i ≤ m0 − 1 and a ∈ N+. On the other hand choose a maximal expression for
g + m0, i.e.

g + m0 =

−
j∈J

bjmj with J ⊆ {0, 1, . . . , ν − 1}, bj ∈ N+ for all j ∈ J and k = max-deg(g + m0) =

−
j∈J

bj.

Note that since max-deg(g) = r ≤ k − 2, by the minimality of r we have 0 ∉ J . Furthermore, since g = si + am0, we have
r = max-deg(g) ≥ max-deg(si) + a = di + a, i.e.

k ≥ r + 2 ≥ di + a + 2 ≥ di + 2. (1.12.1)

Now, for every J-tuple (b′

j)j∈J with 0 ≤ b′

j ≤ bj for all j ∈ J and
∑

j∈J b
′

j = di + 1, by Lemma 1.11(2) (with r̃ = k
and r ′

= di + 1) we have g ′
:=

∑
j∈J b

′

jmj ∈ S(di + 1) ∪ C(di + 1). But, since di ≤ r , we have C(Γ , di + 1) = ∅

as noted above. Therefore g ′
∈ S(di + 1) and hence g ′

= sℓ ∈ S for exactly one ℓ ∈ {1, . . . ,m0 − 1}. Now, from
g + m0 = si + (a + 1)m0 = sℓ +

∑
j∈J(bj − b′

j)mj and
∑

j∈J(bj − b′

j) = k − (di + 1) ≥ a + 1 (by (1.12.1) and since
0 ∉ J), we get

si + (a + 1)m0 > sℓ +

−
j∈J

(bj − b′

j)m0 ≥ sℓ + (a + 1)m0.

Therefore sℓ < si. This contradicts the assumption, since dℓ = max-deg(sℓ) = di + 1 > di. �

Remark 1.13. Note that since the explicit description of the standard basis of the numerical semigroup Γ generated by an
almost arithmetic progression in known (for example, see [17,18]), one can use the above theorem to obtain the proofs of
the results proved in [13,12] much easily than their original proofs.

Examples 1.14. The converse of Theorem 1.12 is not true in general, even if R is Gorenstein or if G(Γ ) is Gorenstein. For
example:

(a) If Γ is generated by 7, 9, 17, 19, then R = K [[Γ ]] is Gorenstein, G(Γ ) is Cohen–Macaulay (see [24]) and
{0, 9, 17, 18, 19, 27, 36} is the standard basis of Γ with respect to 7, but the sequence d0, d1, . . . , d6 is 0, 1, 1, 2, 1, 3, 4
is not non-decreasing.

(b) If Γ is generated by 15, 18, 70, then R = K [[Γ ]] and G(Γ ) are Gorenstein (see [19, 4.2 and 4.4]) and
{0, 18, 36, 54, 70, 72, 88, 106, 124, 140, 142, 158, 176, 194, 212} is the standard basis of Γ with respect to 15, but the
sequence d0, d1, . . . , d15 is 0, 1, 2, 3, 1, 4, 2, 3, 4, 2, 5, 3, 4, 5, 6 is not non-decreasing.

2. Balanced semigroups

In this section we consider a class of ‘‘balanced semigroups’’ and study their Cohen–Macaulay defect. Let us first recall:

Balanced semigroups 2.1 (See also [7]). Let Γ ⊆ N be a numerical semigroup
∑3

i=0 Nmi with m0 < m1 < m2 < m3,
gcd(m0,m1,m2,m3) = 1 and mi ̸ |mj for all i ≠ j. We say that Γ is balanced if m1 + m2 = m0 + m3. In this section we
assume that R = K [[Γ ]] is the semigroup ring of a balanced semigroup Γ . We put D := gcd(m0,m3) and E := gcd(m1,m2).
Then the following equations are easy to verify:

(a) gcd(D, E) = 1,m0 = q0 ·D,m3 = q3 ·D andm1 = q1 ·E,m2 = q2 ·E with 1 < q0 < q3, gcd(q0, q3) = 1 and 1 < q1 < q2,
gcd(q1, q2) = 1.

(b) q0 · m3 = q3 · m0 and q1 · m2 = q2 · m1.
(c) q1 + q2 = u · D and q0 + q3 = u · E for some u ∈ N+.
(d) (q2 + 1) · m1 = m0 + (q1 − 1) · m2 + m3 and (q1 + 1) · m2 = m0 + (q2 − 1) · m1 + m3.

Throughout this section let Γ denote a balanced semigroup. We use the notation introduced in 2.1 without any reference
to it.

Lemma 2.2. Let r ∈ N, g ∈ B(Γ , r) and let λ0, λ1, λ2, λ3 ∈ N be such that g + m0 =
∑3

i=0 λimi and max-deg(g + m0) =

λ0 + λ1 + λ2 + λ3 ≥ r + 2. Then:

(1) λ0 = 0.
(2) λ1 = 0 or λ2 = 0.
(3) λ3 ≤ r. Moreover, if λ3 ≠ 0, then exactly one of λ1 or λ2 is non-zero.

Proof. If either λ0 > 0, or both λ1 > 0 and λ2 > 0, then usingm1 +m2 = m0 +m3 it follows that r = max-deg(g) ≥ r + 1
which is absurd. This proves (1) and (2). Since max-deg(g) = r , g ≤ rm3, we have g + m0 < (r + 1)m3 and so λ3 ≤ r . If
both λ1 = λ2 = 0, then r ≥ λ3 ≥ r + 2 which is absurd. This proves (3). �

For convenience, by using Lemma 2.2, we divide the set B(Γ , r) into the following 4 subsets and make the following
assumptions:
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Definitions 2.3. Let Γ be a balanced semigroup. For r ∈ N, we define subsets

B1,0(Γ , r) :=

g ∈ B(Γ , r) | g + m0 = λ1m1 with λ1 ∈ N+ and λ1 = max-deg(g + m0)


,

B1,3(Γ , r) :=

g ∈ B(Γ , r) | g + m0 = λ1m1 + λ3m3 with λ1, λ3 ∈ N+ and λ1 + λ3 = max-deg(g + m0)


,

B2,0(Γ , r) :=

g ∈ B(Γ , r) | g + m0 = λ2m2 with λ2 ∈ N+ and λ2 = max-deg(g + m0)


,

B2,3(Γ , r) :=

g ∈ B(Γ , r) | g + m0 = λ2m2 + λ3m3 with λ2, λ3 ∈ N+ and λ2 + λ3 = max-deg(g + m0)


.

First note that Bi,0(Γ , r) ∩ Bi,3(Γ , r) = ∅ for both i = 1, 2 and B1,0(Γ , r) ∩ B2,0(Γ , r) = ∅. We put B1(Γ , r) :=

B1,0(Γ , r) ∪ B1,3(Γ , r), B2(Γ , r) := B2,0(Γ , r) ∪ B2,3(Γ , r) and B1(Γ ) :=


r∈N B1(Γ , r), B2(Γ ) :=


r∈N B2(Γ , r).
With this notation by Lemma 2.2 we have: B(Γ , r) = B1(Γ , r) ∪ B2(Γ , r) for every r ∈ N. In particular, B(Γ ) =

B1(Γ ) ∪ B2(Γ ).
For the proof of Theorem 2.11, in view of Proposition 1.9(3) we need to compare the cardinalities |B(Γ , r)| and

|S(r + 1) ∪ C(Γ , r + 1)| for every r ∈ N. For this we study different representations (inm0,m1,m2,m3 with coefficients in
N) of elements of the subsets Bi,0(Γ , r), Bi,3(Γ , r) for every i = 1, 2 and every r ∈ N, and estimate the cardinalities of these
subsets. This will be done in Propositions 2.4 and 2.7–2.9. With this view in mind it therefore useful to make the following
definitions:

A balanced semigroup Γ is called 1-good (respectively, 2-good) if B1(Γ ) = ∅ (respectively, B2(Γ ) = ∅). We further
say that Γ is good if it is both 1-good and 2-good, i.e. if the Cohen–Macaulay defect of Γ is empty, see Theorem 1.6. In this
section and in the next section we give examples of good (see Proposition 3.3(1), (2) and also Examples 3.2(1), 3.2(2), 3.2(3)
(with p ≤ 2) and 3.2(4) (with p = −1)) and not good (see Proposition 3.3(3) and also Examples 3.2(3) (with p ≥ 3), 3.2(4)
(with p ≤ −2), 3.2(5) and 2.12) balanced semigroups.

For a better arrangement of the proofs of Propositions 2.4 and 2.7, we further make the following definitions:

(1) If B1,3(Γ ) =


r∈N B1,3(Γ , r) ≠ ∅, then we put r1 := min{r ∈ N | B1,3(Γ , r) ≠ ∅}. An element g ∈ B1,3(Γ , r1) is called
(1, 3)-good if there exist a0, a2 ∈ N, a3 ∈ N+ such that g = a0m0 + a2m2 + a3m3 and max-deg(g) = a0 + a2 + a3. The
set of (1, 3)-good elements of Γ is denoted by B′

1,3(Γ ). Note that B′

1,3(Γ ) ⊆ B1,3(Γ , r1) ⊆ B1(Γ ).
(2) If B2,3(Γ ) =


r∈N B2,3(Γ , r) ≠ ∅, then we put r2 := min{r ∈ N | B2,3(Γ , r) ≠ ∅}. An element g ∈ B2,3(Γ , r2) is called

(2, 3)-good if there exist a0, a1 ∈ N, a3 ∈ N+ such that g = a0m0 + a1m1 + a3m3 and max-deg(g) = a0 + a1 + a3. The
set of (2, 3)-good elements of Γ is denoted by B′

2,3(Γ ). Note that B′

2,3(Γ ) ⊆ B2,3(Γ , r2) ⊆ B2(Γ ).

Proposition 2.4. Let Γ be a balanced semigroup. Then

(1) B′

2,3(Γ ) = B2,3(Γ , r2).
(2) If g ∈ B2,3(Γ , r2), then g − m3 ∈ B2,0(Γ , r2 − 1).
(3) Γ is 2-good if and only if B2,0(Γ , r) = ∅ for every r ∈ N.
(4) Suppose that B2,0(Γ ) :=


r∈N B2,0(Γ , r) ≠ ∅ and s2 := min{s ∈ N | B2,0(Γ , s) ≠ ∅}. Then:

(a) If B2,3(Γ ) ≠ ∅, i.e. if r2 is defined, then r2 ≥ s2 + 1.
(b) If g = a0m0 + a1m1 + a2m2 + a3m3 ∈ B2,0(Γ , s2), a0, a1, a2, a3 ∈ N and if s2 = max-deg(g) = a0 + a1 + a2 + a3,

then a2 = 0, 3 ≤ a3 < q0 and g + m0 = λ2m2 with 1 ≤ λ2 ≤ q1 − 1. In particular, (q1 − 1)m2 ∉ S.
(5) If (q1 − 1)m2 ∈ S, then B2(Γ ) = ∅.

Proof. (1) Let g ∈ B2,3(Γ , r2). Then by definition g + m0 = λ2m2 + λ3m3 with λ2, λ3 ∈ N+ and λ2 + λ3 = max-deg(g +

m0) ≥ r2+2. Let a0, a1, a2, a3 ∈ N be such that g = a0m0+a1m1+a2m2+a3m3 and r2 = max-deg(g) = a0+a1+a2+a3.
First note that a2 = 0, otherwise g ′

= g − m2 = a0m0 + a1m1 + (a2 − 1)m2 + a3m3, max-deg(g ′) = r2 − 1 by
Lemma 1.11(1) and g ′

+ m0 = (λ2 − 1)m2 + λ3m3 (note that λ2 ≠ 1 by 2.2(3)) and hence g ′
∈ B2,3(Γ , r2 − 1) = ∅

which is absurd. Next, a3 > 0, otherwise (r2 + 2)m2 ≤ (λ2 +λ3)m2 ≤ λ2m2 +λ3m3 = g +m0 = (a0 + 1)m0 + a1m1 <
m0 + (a0 + a1)m1 = m0 + r2m1 < (r2 + 1)m2 which is absurd. Therefore g ∈ B′

2,3(Γ ) by Definition 2.3(2). This proves
the inclusion B2,3(Γ , r2) ⊆ B′

2,3(Γ ) and hence the equality.
(2) Suppose that g ∈ B2,3(Γ , r2). Then g ∈ B′

2,3(Γ ) by (1) and so by Definition 2.3(2) there exist a0, a1 ∈ N, a3 ∈ N+ such
that g = a0m0 + a1m1 + a3m3, r2 = max-deg(g) = a0 + a1 + a3 and g + m0 = λ2m2 + λ3m3 with λ2, λ3 ∈ N+,
λ2 + λ3 ≥ r2 + 2. But then

g − m3 + m0 = (a0 + 1)m0 + a1m1 + (a3 − 1)m3 =


λ2m2, if λ3 = 1,
λ2m2 + (λ3 − 1)m3, if λ3 ≥ 2,

and max-deg(g − m3 + m0) = λ2 + λ3 − 1 ≥ (r2 − 1) + 2 by Lemma 1.11(1). Therefore

g − m3 ∈


B2,0(Γ , r2 − 1), if λ3 = 1,
B2,3(Γ , r2 − 1), if λ3 ≥ 2.

Therefore λ3 = 1, since B2,3(Γ , r2 − 1) = ∅ by the definition of r2. This proves that g − m3 ∈ B2,0(Γ , r2 − 1).
(3) Since B2(Γ , r) = B2,0(Γ , r) ∪ B2,3(Γ , r) for every r ∈ N, the assertion follows from (2) and the definition of 2-good.
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(4) Part (a) is immediate from (2). To prove part (b), let g = a0m0 + a1m1 + a2m2 + a3m3 ∈ B2,0(Γ , s2), a0, a1, a2, a3 ∈ N
with s2 = max-deg(g) = a0+a1+a2+a3. Then g+m0 = λ2m2 with λ2 ∈ N+, λ2 = max-deg(g+m0) ≥ s2+2. Clearly
a2 = 0 by the definition of s2 and hence s2 = a0 + a1 + a3. Further, a3 ≥ 3, since otherwise (usingm1 +m2 = m0 +m3
it is easy to verify the inequalities)

g + m0 = λ2m2 ≥ (s2 + 2)m2 = (a0 + a1)m2 + (a3 + 2)m2 >


g + 2m0 if a3 = 0,
g + m2 if a3 = 1,
g + 2m0 if a3 = 2.

In each case this is absurd. Furthermore, wemust have a3 < q0, otherwise wewill get g = a0m0 + a1m1 + q0m3 + (a3 −

q0)m3 = (a0+q3)m0+a1m1+(a3−q0)m3, since q0m3 = q3m0 by2.1(b) and so s2 = max-deg(g) ≥ a0+a1+a3+q3−q0 ≥

a0 + a1 + a3 + 1 = s2 + 1 which is absurd. Finally, if λ2 ≥ q1, then by 2.1(d) and (b), we have

g + m0 = λ2m2 =


(λ2 − q1 − 1)m2 + m0 + (q2 − 1)m1 + m3, if λ2 > q1,
q2m1, if λ2 = q1,

and hence (since q2 ≥ q1 + 1)
g = (λ2 − q1 − 1)m2 + (q2 − 1)m1 + m3 and λ2 − 2 ≥ max-deg(g) ≥ λ2, if λ2 > q1,
λ2 = max-deg(g + m0) ≥ q2 ≥ q1 + 1 = λ2 + 1, if λ2 = q1,

which is impossible in both cases. Therefore λ2 ≤ q1 − 1.
(5) If B2(Γ ) ≠ ∅, then by part (3) above B2,0(Γ ) ≠ ∅ and so (q1 − 1)m2 ∉ S by part (4). �

Example 2.5. Let Γ =
∑3

i=0 Nmi be a balanced numerical semigroup. Then in general it is not true that (q1 − 1)m2 ∈ S. For
example, if Γ is generated by 12, 35, 55 and 78, then D := gcd(12, 78) = 6, E := gcd(35, 55) = 5 and hence Γ is balanced
with q0 = 2, q1 = 7, q2 = 11, q3 = 13 and (q1 − 1)m2 = 6m2 = 330 = 10m0 + 6m1 ∉ S. However, in this case we have
B2,0 = ∅ trivially, since the set {a3 | 3 ≤ a3 < q0} = ∅ (see 2.4(4)(b)) and hence B2(Γ ) = ∅ by 2.4(3).

Remark 2.6. Wehave no examples of balanced semigroupsΓ with B2(Γ ) ≠ ∅. It is likely that B2(Γ ) = ∅ for every balanced
semigroup Γ but we are not able to prove this in general.

The following analogous proposition to that of Proposition 2.4 will be used in the proof of Proposition 3.3.

Proposition 2.7. Let Γ be a balanced semigroup.

(1) If g ∈ B′

1,3(Γ ), then g ′
= g − m3 ∈ B1,0(Γ , r1 − 1).

(2) Suppose that B′

1,3(Γ ) = B1,3(Γ , r1). Then Γ is 1-good if and only if B1,0(Γ , r) = ∅ for every r ∈ N.

Proof. (1) Since g ∈ B′

1,3(Γ ) ⊆ B1,3(Γ , r1), by Definition 2.3(1) there exists a0, a2 ∈ N, a3 ∈ N+ such that g =

a0m0 + a2m2 + a3m3, r1 = max-deg(g) = a0 + a2 + a3, g + m0 = λ1m1 + λ3m3 with λ1, λ3 ∈ N+ and
max-deg(g + m0) = λ1 + λ3 ≥ r1 + 2. Then

g − m3 + m0 = (a0 + 1)m0 + a2m2 + (a3 − 1)m3 =


λ1m1, if λ3 = 1,
λ1m1 + (λ3 − 1)m3, if λ3 ≥ 2,

and max-deg(g − m3 + m0) = λ1 + λ3 − 1 ≥ (r1 − 1) + 2 by Lemma 1.11(1). Therefore

g − m3 ∈


B1,0(Γ , r1 − 1), if λ3 = 1,
B1,3(Γ , r1 − 1), if λ3 ≥ 2.

This shows that λ3 = 1, since B1,3(Γ , r1 − 1) = ∅. Then g − m3 ∈ B1,0(Γ , r1 − 1).
(2) Suppose that B1,0(Γ , r) = ∅ for every r ∈ N. If g ∈ B1,3(Γ , r1), then g ∈ B′

1,3(Γ ) by assumption and hence
g − m3 ∈ B1,0(Γ , r1 − 1) by (1). This is absurd, since B1,0(Γ , r1 − 1) = ∅. This proves that B1,3(Γ , r) = ∅ for every
r ∈ N and hence B1(Γ ) = ∅, i.e. Γ is 1-good. The converse is clear from definitions. �

Finally, for the proof of Theorem 2.11 we need the following two propositions and Corollary 2.10.

Proposition 2.8. Let Γ be a balanced semigroup, i ∈ {1, 2} and let r ∈ N. Then:

(1) |Bi,0(Γ , r)| ≤ 1. Moreover, if Bi,0(Γ , r) ≠ ∅, then (r + 1)mi ∈ S(r + 1) ∪ C(Γ , r + 1).
(2) For every g ∈ Bi,3(Γ , r) with g + m0 = λimi + λ3m3 and λi + λ3 ≥ r + 2, we have (r + 1 − λ3)mi + λ3m3 ∈

S(r + 1) ∪ C(Γ , r + 1).

Proof. First note that the sets S(r + 1) and C(Γ , r + 1) are disjoint by their definitions and their (disjoint) union is denoted
by S(r + 1) ⊎ C(Γ , r + 1).
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(1) Suppose that g, h ∈ Bi,0(Γ , r) with g ≥ h, then by definition g + m0 = λimi and h + m0 = µimi with λi ≥ µi ≥ r + 2
and so g = h+ (λi −µi)mi. But then r = max-deg(g) ≥ max-deg(h)+ (λi −µi) = r + (λi −µi) and hence λi = µi and
g = h. This proves the first part. For the last part, let g ∈ Bi,0(Γ , r). Then by definition g + m0 = λimi with λi ≥ r + 2
and so (r + 1)mi ∈ S(r + 1) ⊎ C(Γ , r + 1) by Lemma 1.11(2) (applied to ν = 4, b0 = 0 = b3, bi = λi = r̃, b′

0 = b′

3 =

0, b′

i = r + 1 = r ′).
(2) First note that λ3 ≤ r by Lemma 2.2(3). The element (r + 1−λ3)mi +λ3m3 ∈ S(r + 1)⊎ C(Γ , r + 1) by Lemma 1.11(2)

(applied to ν = 4, b0 = 0 = b2, bi = λi, b3 = λ3, r̃ = λi + λ3, b′

0 = b′

2 = 0, b′

i = r + 1 − λ3(≥1), b′

3 = λ3 and
r + 1 = r ′). �

Proposition 2.9. Let Γ be a balanced semigroup and let r ∈ N. Suppose that B1,3(Γ , r) = {g1, . . . , gk} with gi + m0 =

λ1im1 + λ3im3 and λ1i + λ3i ≥ r + 2 for every i = 1, . . . , k; B2,3(Γ , r) = {g ′

1, . . . , g
′

k′} with g ′

j + m0 = λ′

2jm2 + λ′

3jm3

and λ′

2j + λ′

3j ≥ r + 2 for every j = 1, . . . , k′. Further, suppose that g0 ∈ B1,0(Γ , r) with g0 + m0 = λm1 and λ ≥ r + 2;
g ′

0 ∈ B2,0(Γ , r) with g ′

0 + m0 = λ′m2 and λ′
≥ r + 2. Then:

(1) (r+1−λ3i)m1+λ3im3 ≠ (r+1−λ3ℓ)m1+λ3ℓm3 for all 1 ≤ i, ℓ ≤ k, i ≠ ℓ. Further, (r+1)m1 ≠ (r+1−λ3i)m1+λ3im3
for every i = 1, . . . , k.

(2) (r+1−λ′

3j)m2+λ′

3jm3 ≠ (r+1−λ′

3ℓ)m2+λ′

3ℓm3 for all 1 ≤ j, ℓ ≤ k′, j ≠ ℓ. Further, (r+1)m2 ≠ (r+1−λ′

3j)m2+λ′

3jm3

for every j = 1, . . . , k′.
(3) (r + 1 − λ3i)m1 + λ3im3 ≠ (r + 1 − λ′

3j)m2 + λ′

3jm3 for all 1 ≤ i ≤ k and for all 1 ≤ j ≤ k′.
(4) (r + 1)m1 ≠ (r + 1 − λ′

3j)m2 + λ′

3jm3 for every j = 1, . . . , k′.
(5) (r + 1)m2 ≠ (r + 1 − λ3i)m1 + λ3im3 for every i = 1, . . . , k.

Proof. Note that by Lemma 2.2(3) we have r ≥ λ3i for every i = 1, . . . , k and r ≥ λ′

3j for every j = 1, . . . , k′.

(1) For 1 ≤ i, ℓ ≤ k, we have (r+1−λ3i)m1+λ3im3 = (r+1−λ3ℓ)m1+λ3ℓm3 ⇐⇒ (λ3ℓ−λ3i)m3 = (λ3ℓ−λ3i)m1 ⇐⇒

λ3i = λ3ℓ (and hence λ1i = λ1ℓ. If λ1i ≠ λ1ℓ, then without loss of generality we may assume that λ1i > λ1ℓ. Now,
subtracting the equation gℓ +m0 = λ1ℓ m1 +λ3ℓ m3 from the equation gi +m0 = λ1i m1 +λ3i m3 and using the equality
λ3i = λ3ℓ, it follows that gi = gℓ + (λ1i − λ1ℓ)m1. In particular, r = max-deg(gi) ≥ max-deg(gℓ) + (λ1i − λ1ℓ) >
max-deg(gℓ) = r which is absurd.) ⇐⇒ gi = gℓ ⇐⇒ i = ℓ. The last assertion is immediate, since λ3im1 ≠ λ3im3
for every i = 1, . . . , k.

(2) For 1 ≤ j, ℓ ≤ k′, we have (r+1−λ′

3j)m2+λ′

3jm3 = (r+1−λ′

3ℓ)m2+λ′

3ℓm3 ⇐⇒ (λ′

3ℓ−λ′

3j)m3 = (λ′

3ℓ−λ′

3j)m2 ⇐⇒

λ′

3j = λ′

3ℓ (and hence λ′

2j = λ′

2ℓ. If λ′

2j ≠ λ′

2ℓ, then without loss of generality we may assume that λ′

2j > λ′

2ℓ. Now,
subtracting the equation g ′

ℓ +m0 = λ′

2ℓ m2 +λ′

3ℓ m3 from the equation g ′

j +m0 = λ′

2j m2 +λ′

3j m3 and using the equality
λ′

3j = λ′

3ℓ, it follows that g ′

j = g ′

ℓ + (λ′

2j − λ′

2ℓ)m2. In particular, r = max-deg(g ′

j ) ≥ max-deg(g ′

ℓ) + (λ′

2j − λ′

2ℓ) >

max-deg(g ′

ℓ) = r which is absurd.) ⇐⇒ g ′

j = g ′

ℓ ⇐⇒ j = ℓ. The last assertion is immediate, since λ′

3jm2 ≠ λ′

3jm3

for every j = 1, . . . , k′.
(3) Let i ∈ {1, . . . , k} and let j ∈ {1, . . . , k′

}. Therefore, if (r + 1 − λ3i)m1 + λ3im3 = (r + 1 − λ′

3j)m2 + λ′

3jm3, then (since
m1 + m2 = m0 + m3), we get

gi + m0 = λ1im1 + λ3im3 = (r + 1 − λ3i)m1 + (λ1i + λ3i − r − 1)m1 + λ3im3

= (r + 1 − λ′

3j)m2 + λ′

3jm3 + (λ1i + λ3i − r − 1)m1

= (r − λ′

3j)m2 + m2 + λ′

3jm3 + (λ1i + λ3i − r − 2)m1 + m1

= (r − λ′

3j)m2 + λ′

3jm3 + (λ1i + λ3i − r − 2)m1 + m0 + m3.

This shows that gi = (r − λ′

3j)m2 + λ′

3jm3 + (λ1i + λ3i − r − 2)m1 + m3, in particular, r = max-deg(gi) ≥

(r − λ′

3j) + λ′

3j + (λ1i + λ3i − r − 2) + 1 = (λ1i + λ3i − 1) ≥ r + 2 − 1 = r + 1 which is absurd.
(4) For j ∈ {1, 2, . . . , k′

}, we have (r + 1 − λ′

3j)m2 + λ′

3jm3 > (r + 1 − λ′

3j)m2 + λ′

3jm2 = (r + 1)m2 > (r + 1)m1 (since
λ′

3j ∈ N+ by Definition 2.3).
(5) Let i ∈ {1, . . . , k}. Therefore, if (r + 1)m2 = (r + 1 − λ3i)m1 + λ3im3, then (sincem1 + m2 = m0 + m3), we get

g ′

0 + m0 = λ′m2 = (r + 1)m2 + (λ′
− r − 1)m2

= (r + 1 − λ3i)m1 + λ3im3 + (λ′
− r − 1)m2

= (r − λ3i)m1 + m1 + λ3im3 + (λ′
− r − 2)m2 + m2

= (r − λ3i)m1 + λ3im3 + (λ′
− r − 2)m1 + m0 + m3.

This shows that g ′

0 = (r − λ3i)m1 + (λ3i + 1)m3 + (λ′
− r − 2)m2, in particular, r = max-deg(g ′

0) ≥ (r − λ3i) + (λ3i +

1) + (λ′
− r − 2) = λ′

− 1 ≥ r + 2 − 1 = r + 1 which is absurd. �

Corollary 2.10. Let Γ be a balanced semigroup and let r ∈ N. Then:

|B(Γ , r)| ≤ |S(r + 1)| + |C(Γ , r + 1)|.



D.P. Patil, G. Tamone / Journal of Pure and Applied Algebra 215 (2011) 1539–1551 1547

Proof. Use Proposition 2.8 to define maps ϕi,0 : Bi,0(Γ , r) → S(r + 1) ∪ C(Γ , r + 1) and the maps ϕi,3 : Bi,3(Γ , r) →

S(r + 1) ∪ C(Γ , r + 1), for i = 1, 2. Moreover, by Proposition 2.9 these maps are injective and their images Im(ϕi,0)

and Im(ϕi,3), i = 1, 2 are pairwise disjoint subsets in S(r + 1) ∪ C(Γ , r + 1) and hence |B(Γ , r)| = |
2

i=1 Bi,0(Γ , r) ∪2
i=1 Bi,3(Γ , r)| ≤

∑2
i=1 |Bi,0(Γ , r)| +

∑2
i=1 |Bi,3(Γ , r)| =

∑2
i=1 |Im(ϕi,0)| +

∑2
i=1 |Im(ϕi,3)| ≤ |S(r + 1) ∪ C(Γ , r + 1)| ≤

|S(r + 1)| + |C(Γ , r + 1)|. �

Theorem 2.11. Let Γ be a balanced semigroup and let R = K [[Γ ]] be a semigroup ring over a field K . Then the Hilbert function
HR : N → N of R is non-decreasing.

Proof. By Corollary 2.10 and the formula in 1.9(3), we have hr ≥ 0 for every r ∈ N. �

Example 2.12 (Balanced Unitary Semigroups—See [7]). Let Γ =
∑3

i=0 Nmi with m0 < m1 < m2 < m3 with
gcd(m0,m1,m2,m3) = 1 and mi ̸ |mj for all i ≠ j be a balanced semigroup. Let D = gcd(m0,m3) and E = gcd(m1,m2) be
as in 2.1. We now use the notation as in 2.1 and the equations (a), (b), (c) and (d) in 2.1, first note that by 2.1(c) there exists
u ∈ N+ such that q1+q2 = u·D and q0+q3 = u·E. The semigroupΓ is called unitary if the common summ0+m3 = m1+m2
is the product of gcd(m0,m3) · gcd(m1,m2) (see [7, Definition (1.3)]), or equivalently, u = 1. For example, the numerical
semigroup generated bym0 = 14,m1 = 15,m2 = 20,m3 = 21 is balanced and unitary.

Now, let Γ =
∑3

i=0 Nmi be a balanced unitary semigroup. Then:
(1) Standard basis of Γ is: S = S(1, 3) ⊎ S(2, 3) ⊎ S(0, 3), where

S(1, 3) := {(a1 · m1 + a3 · m3 | (a1, a3) ∈ [1, q2] × [0, q0 − 1]},
S(2, 3) := {b2 · m2 + b3 · m3 | (b2, b3) ∈ [1, q1 − 1] × [0, q0 − 1]} and
S(0, 3) := {c · m3 | c ∈ [0, q0 − 1]}.

Proof (See also [7, Proposition (1.9)]). From the definition of S and the right-hand sides of the equations in 2.1(b) and
2.1(d) it follows that S ⊆ S(1, 3) ⊎ S(2, 3) ⊎ S(0, 3). Further, since |S| = m0 = q0 · q2 + q0 · (q1 − 1) + q0 =

|S(1, 3)| + |S(2, 3)| + |S(0, 3)| by equations 2.1(a), 2.1(c), the equality holds. �

(2) It is proved in [7, 2.6] that Γ is symmetric (this can also be checked easily from the description of the standard basis of
Γ given in part (1)).

(3) For k = 1, . . . , q0 − 1, let gk := (q1 − 1) · m2 + k · m3. Then max-deg(gk) = q1 + k − 1 for every k = 1, . . . , q0 − 1.
Proof. Since gk ∈ S for every k ∈ [1, q0 − 1], the assertion easily follows from part (1) and the equations in 2.1. �

(4) g1 ∈ B1,0(q1) and gk ∈ B1,3(q1 + k − 1) for every k ∈ [2, q0 − 1]. In particular, Γ is not 1-good by Definition 2.3 and so
Γ is not good.
Proof. gk + m0 = (q1 − 1) · m2 + k · m3 + m0 = (q2 + 1) · m1 + (k − 1) · m3 and so max-deg(gk + m0) ≥ q2 + k ≥

q1 + k + 1 = max-deg(gk) + 2 by 2.1(d) and part (3). Therefore the assertion is immediate from the definitions. �

(5) The semigroup Γ = N15 + N22 + N33 + N40 generated by 15, 22, 33, 40 is balanced with D = gcd(m0,m3) =

gcd(15, 40) = 5, E = gcd(m1,m2) = gcd(22, 33) = 11, q0 = 3, q1 = 2, q2 = 3, q3 = 8 and u = 1. Therefore it is
unitary and by part (4) B1,3(Γ ) ≠ ∅, since q0 > 2.

(6) Since (q − 1)m2 ∈ S by part (1), Γ is 2-good by Proposition 2.4(5).
(7) The associated graded ring G(Γ ) is not Cohen–Macaulay.

Proof. Immediate from 1.6 and (4). �

(8) LetP and A := K [X0, X1, X2, X3]/P be the defining ideal and the coordinate ring of themonomial curve in K 4 defined by
X0 = tm0 , X1 = tm1 , X2 = tm2 , X3 = tm3 . Then P is generated by the three binomials F := X0X3 − X1X2, F0 := Xq3

0 − Xq0
3

and F1 := Xq2
1 − Xq1

2 . In particular, P is a complete intersection and hence A is Gorenstein.

3. A class of balanced semigroups

In this section we study a certain special class of balanced numerical semigroups and study the structure of their Cohen–
Macaulay defects. First let us fix the following notation.

Notation 3.1. Let p, q be fixed integers, n be a variable positive integer with n ≫ p (e.g. n ≥ 4|p| + 1). Let m := m0 =

n2
+ pn + q,m1 = m0 + n,m2 = m0 + 2n + 1,m3 = m0 + 3n + 1 and let Γ (n; p, q) =

∑3
i=0 Nmi. Then Γ (n; p, q) is a

balanced semigroup. Further, let R(n; p, q) := K [[Γ (n; p, q)]], where K is an arbitrary field and let P(n; p, q) be the defining
ideal of the (algebroid) monomial curve in K 4 with parametrization X0 = tm0 , X1 = tm1 , X2 = tm2 , X3 = tm3 . Finally, let
G(n; p, q) denote the associated graded ring of the local ring R(n; p, q).

For (p, q) ∈ (Z−
× {0}) ∪ (Z+

× {0}) ∪ ∆Z, where ∆Z := {(m,m) | m ∈ Z} in Z × Z, we use the results of Sections 1 and
2 to give a characterization for the Cohen–Macaulayness of G(n; p, q) (see Theorem 3.4).

The examples (p, q) = (−2, 0) and (p, q) = (−1, −1)} were considered by Kraft in [8,9] to prove that the minimal
numberµ(DerK (R(n; p, q))) of generators of the derivationmodulesDerK (R(n; p, q)) can be arbitrarily large. In [2] Bresinsky
considered a similar class of examples to prove that the minimal number µ(P(n; p, q)) of P(n; p, q) can be arbitrary large.
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Now our aim is to study the structure of the Cohen–Macaulay defect using the explicit description of the standard bases
of the numerical semigroups Γ (n; p, q) which is given in Proposition 3.2. For this study we use similar arguments as in
[17, Chapter 3, Section 4].

Proposition 3.2. With the assumptions and notation as in 3.1 we have:

(1) Suppose that (p, q) = (0, 0).
(i) Equations for Γ (n; 0, 0): The following equations are easy to verify.

(a) m1 + m2 = m0 + m3.
(b) i · m1 + (n − i) · m3 = (i + 1) · m0 + (n − i) · m2 for all i = 0, . . . , n.
(c) j · m2 + (n − j) · m3 = (j + 1) · m0 + (n − j + 1) · m1 for all j = 0, . . . , n.

(ii) The standard basis of Γ (n; 0, 0) is:
S = S(1, 3) ⊎ S(2, 3) ⊎ S(0, 3), where
S(1, 3) := {a1 · m1 + a3 · m3 | a1 ∈ [1, n − 1], a3 ∈ [0, n − 2], a1 + a3 ≤ n − 1},
S(2, 3) := {b2·m2+b3·m3 | b2 ∈ [1, n−1], b3 ∈ [0, n−2], b2+b3 ≤ n−1} and S(0, 3) := {c·m3 | c ∈ [0, n−1]}.

(2) Suppose that p < 0 and q = 0 and n ≥ −2p.
(i) Equations for Γ (n; p < 0, 0): The following equations are easy to verify.

(a) m1 + m2 = m0 + m3.
(b) i · m1 + (n + p − i) · m3 = (i + 1) · m0 + (n + p − i) · m2 for all i = 0, . . . , n + p.
(c) j · m2 + (n − j) · m3 = (j + 2p + 1) · m0 + (n − j − 2p + 1) · m1 for all j = −2p, . . . , n.
(d) ℓ · m2 + (n − ℓ) · m3 = (n + 3p + 2 + ℓ) · m0 + (1 − 3p − ℓ) · m1 for all ℓ = −p + 1, . . . ,−2p − 1.

(ii) The standard basis of Γ (n; p < 0, 0) is:
S = S(1, 3) ⊎ S(2, 3) ⊎ S(0, 3), where
S(1, 3) := {a1 · m1 + a3 · m3 | a1 ∈ [1, n + p − 1], a3 ∈ [0, n + p − 2], a1 + a3 ≤ n + p − 1},
S(2, 3) := {b2 · m2 + b3 · m3 | b2 ∈ [1, n − 1], b3 ∈ [0, n + p − 1], b2 + b3 ≤ n − 1} and
S(0, 3) := {c · m3 | c ∈ [0, n + p − 1]}.

(3) Suppose that p > 0 and q = 0 and n ≥ 2p − 1.
(i) Equations for Γ (n; p > 0, 0): The following equations are easy to verify.

(a) m1 + m2 = m0 + m3.
(b) (n + 2) · m1 = m0 + (n − p − 1) · m2 + (p + 1)m3.
(c) i · m1 + (n + p − i) · m3 = (i + 1) · m0 + (n + p − i) · m2 for all i = 0, . . . , n + p.
(d) j · m2 + (n − j) · m3 = (j + 2p + 1) · m0 + (n − j − 2p + 1) · m1 for all j = 0, . . . , n − 2p + 1.
(e) j · m2 + (n − j) · m3 = (j + p − n) · m0 + (2n − p − j + 1)m1 for all j = n − p + 1, . . . , n.
(f) (n − p) · m2 + (p + ℓ) · m3 = (n + 1) · m1 + ℓ · m3 for all ℓ = 0, . . . , p − 1.

(ii) The standard basis of Γ (n; p > 0, 0) is:
S = S(1, 3) ⊎ S(2, 3) ⊎S(2, 3) ⊎ S(0, 3), where
S(1, 3) := {(a1 · m1 + a3 · m3 | a1 ∈ [1, n + 1], a3 ∈ [0, n − 1], a1 + a3 ≤ n + p − 1},
S(2, 3) := {(b2 · m2 + b3 · m3 | b2 ∈ [1, n − 1], b3 ∈ [0, n − 1], b2 + b3 ≤ n − 1},S(2, 3) := {b2 · m2 + b3 · m3 | b2 ∈ [n − 2p + 2, n − p − 1], b3 ∈ [p + 1, 2p − 2], b2 + b3 ≥ n} and
S(0, 3) := {c · m3 | c ∈ [0, n − 1]}.

(4) Suppose that p = q < 0 and n ≥ −4p − 1.
(i) Equations for Γ (n; p < 0, p): The following equations are easy to verify.

(a) m1 + m2 = m0 + m3.
(b) i · m1 + (n − p − i) · m3 = (p + i + 1) · m0 + (n − 2p − i) · m2 for all i = −3p + 1, . . . , n − p.
(c) (n + p + k + 1) · m1 = k · m0 + (n + p − k) · m2 + k · m3 for all k = 0, . . . ,−2p − 1.
(d) j · m2 + (n + 2p − j) · m3 = (j − 2p + 1) · m0 + (n + 4p + 1 − j) · m1 for all j = 0, . . . , n + 4p + 1.
(e) (n + p + 1) · m2 + ℓ · m3 = m0 + (n + p) · m1 + (ℓ + 1) · m3 for all ℓ = 0, . . . ,−2p − 2.

(ii) The standard basis of Γ (n; p < 0, p) is:
S = S(1, 3) ⊎ S(2, 3) ⊎S(2, 3) ⊎ S(0, 3), where
S(1, 3) := {(a1 · m1 + a3 · m3 | a1 ∈ [1, n + p + 1], a3 ∈ [0, n + 2p − 1], a1 + a3 ≤ n − p − 1},
S(2, 3) := {(b2 · m2 + b3 · m3 | b2 ∈ [1, n + 2p − 1], b3 ∈ [0, n + 2p − 1], b2 + b3 ≤ n + 2p − 1},S(2, 3) := {b2 · m2 + b3 · m3 | b2 ∈ [n + 4p + 2, n + p − 1], b3 ∈ [0, −2p − 2], b2 + b3 ≥ n + 2p} and
S(0, 3) := {c · m3 | c ∈ [0, n + 2p − 1]}.

(5) Suppose that p = q > 0 and n ≥ 2p.
(i) Equations for Γ (n; p > 0, p): The following equations are easy to verify.

(a) m1 + m2 = m0 + m3.
(b) i · m1 + (n − p − i) · m3 = (p + i + 1) · m0 + (n − 2p − i) · m2 for all i = 0, . . . , n − 2p.
(c) (n + p + 2) · m1 = m0 + (n + p − 1) · m2 + m3.
(d) j · m2 + (n + 2p − j) · m3 = (j − 2p + 1) · m0 + (n + 4p + 1 − j) · m1 for all j = 3p, . . . , n + p.
(e) (n + p) · m2 = (n + p + 1) · m1.

(ii) The standard basis of Γ (n; p > 0, p) is:
S = S(1, 3) ⊎S(1, 3) ⊎ S(2, 3) ⊎ S(0, 3), where
S(1, 3) := {(a1 · m1 + a3 · m3 | a1 ∈ [1, n − p − 1], a3 ∈ [0, n − p − 1], a1 + a3 ≤ n − p − 1},
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S(1, 3) := {a1 · m1 + a3 · m3 | a1 ∈ [n − 2p + 1, n + p + 1], a3 ∈ [0, p − 1], a1 + a3 ≥ n − p}
S(2, 3) := {(b2 · m2 + b3 · m3 | b2 ∈ [1, n + p − 1], b3 ∈ [0, n − p − 1], b2 + b3 ≤ n + 2p − 1}, and
S(0, 3) := {c · m3 | c ∈ [0, n − p − 1]}.

Proof. In each case the equations in part (i) are easy to verify. For the proof of part (ii) use equations in part (i) to show that
S is contained in the required (disjoint) union of the subsets defined in each case in part (ii). Now, since the cardinality of S
is m0 which is also the cardinality of the required (disjoint) union, the equality is immediate. �

Now we use Proposition 3.2 to give a description of the Cohen–Macaulay defect B(Γ ).

Proposition 3.3. Suppose that (p, q) ∈ (Z−
× {0}) ∪ (Z+

× {0}) ∪ ∆Z. For a variable positive integer n with n ≫ p (e.g.
n ≥ 4|p| + 1), put Γ (n; p, q) = Γ . Then:

(1) B2,0(Γ , r) = ∅ for every r ∈ N and Γ is 2-good.
(2) Assume that (p, q) ∈ (Z−

× {0}) ∪ {(−1, −1), (0, 0), (1, 0), (2, 0)}. Let g = a0m0 + a2m2 ∈ Γ with r1 = max-deg(g) =

a0 + a2 be such that g +m0 = λ1m1 + λ3m3 with λ1, λ3 ∈ N+ andmax-deg(g +m0) = λ1 + λ3. Then r1 ≥ λ1 + λ3. (For
the definition of r1 see 2.3(1).) In particular, g ∉ B1,3(Γ , r1). Furthermore:
(a) B′

1,3(Γ ) = B1,3(Γ , r1).
(b) B1,0(Γ , r) = ∅ for every r ∈ N and Γ is 1-good. Moreover, Γ is good.

(3) Assume that (p, q) ∉ (Z−
× {0}) ∪ {(−1, −1), (0, 0), (1, 0), (2, 0)}. Then Γ is not 1-good. More precisely:

(a) If (p, q) ∈ Z+
× {0} with p ≥ 3, then (n − p − 1)m2 + (p + 1)m3 ∈ B1,0(Γ , n).

(b) If (p, q) ∈ ∆Z with p ≤ −2, then (n + p − 1)m2 + m3 ∈ B1,0(Γ , n + p).
(c) If (p, q) ∈ ∆Z with p ≥ 1, then (n + p − 1)m2 + m3 ∈ B1,0(Γ , n + p).

Proof. (1) Suppose that g ∈ B2,0(Γ , r) for some r ∈ N. Then by the definition g + m0 = λ2m2 with r = max-deg(g) and
λ2 = max-deg(g + m0) ≥ r + 2. Therefore λ2m2 ∉ S and hence by the explicit description of S given in each case (see
Proposition 3.2) we have

λ2 ≥



n, if (p, q) = (0, 0),
n, if (p, q) ∈ Z−

× {0},
n, if (p, q) ∈ Z+

× {0},
n + p + 1, if (p, q) ∈ ∆Z− , since (n + p)m2 = (n + p + 1)m1 ∈ S(1, 3) ⊆ S by 3.2(4)(ii),

and (n + p + 1)m2 = m0 + (n + p)m1 + m3 ∉ S,
n + p + 1, if (p, q) ∈ ∆Z+ , since (n + p)m2 = (n + p + 1)m1 ∈ S̃(1, 3) ⊆ S by 3.2(5)(ii),

and (n + p + 1)m2 = m0 + (n + p)m1 + m3 ∉ S

and hence from equations 3.2(1)(i)(c) (j = n), 3.2(2)(i)(c), 3.2(3)(i)(e), 3.2(4)(i)(e) (ℓ = 0) and 3.2(5)(i)(e) and 3.2(5)(i)(a),
respectively, we have

g + m0 = λ2m2 =


(n + 1)m0 + m1 + (λ2 − n)m2, if (p, q) = (0, 0),
(n + 2p + 1)m0 + (1 − 2p)m1 + (λ2 − n)m2, if (p, q) ∈ Z−

× {0},
pm0 + (n − p + 1)m1 + (λ2 − n)m2, if (p, q) ∈ Z+

× {0},
m0 + (n + p)m1 + (λ2 − n − p − 1)m2 + m3, if (p, q) ∈ ∆Z− ,

m0 + (n + p)m1 + (λ2 − n − p − 1)m2 + m3, if (p, q) ∈ ∆Z+ .

But then we get r = max-deg(g) ≥ λ2 ≥ r + 2, a contradiction. This proves that B2,0(Γ , r) = ∅ for every r ∈ N and hence
Γ is 2-good by Proposition 2.4.

(2) Since λ1m1 + λ3m3 = g + m0 ∉ S, by the explicit description of S given in each case (see Proposition 3.2) we have

(i)

λ1 + λ3 ≥ n, if (p, q) = (0, 0),
λ1 + λ3 ≥ n + p, if (p, q) ∈ N−

× {0}.
(ii) If (p, q) ∈ {(1, 0), (2, 0)}, then exactly one of the following cases holds:

(ii.a) λ1 ≥ n + 2.
(ii.b) p ≤ λ1 ≤ n + 1 and λ1 + λ3 ≥ n + p.
(ii.c) 0 < λ1 < p and λ3 ≥ n.

(iii) If (p, q) = (−1, −1), then exactly one of the following cases holds
(iii.a) λ1 ≥ n + p + 2 = n + 1.
(iii.b) 4 = −3p + 1 ≤ λ1 ≤ n + p + 1 = n and λ1 + λ3 ≥ n − p = n + 1.
(iii.c) 0 < λ1 < 4 and λ3 ≥ n + 2p = n − 2.

Now, conclude that r1 = max-deg(g) ≥ λ1 + λ3 by using the equations:

– if (p, q) = (0, 0), then use

3.2(1)(i)(b) (i = λ1), if λ1 < n,
3.2(1)(i)(b) (i = n), if λ1 ≥ n,
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– if (p, q) ∈ N−
× {0}, then use


3.2(2)(i)(b) (i = n + p), if λ1 ≥ n + p,
3.2(2)(i)(b) (i = λ1), if λ1 < n + p,

– if (p, q) ∈ {(1, 0), (2, 0)}, then use


3.2(3)(i)(c) (i = n + p), if (ii.a) holds,
3.2(3)(i)(c) (i = λ1), if (ii.b) holds,
3.2(3)(i)(d) (j = 0), if (ii.c) holds,

– if (p, q) = (−1, −1), then use


3.2(4)(i)(b) (i = n − p) if (iii.a) holds,
3.2(4)(i)(b) (i = λ1) if (iii.b) holds,
3.2(4)(i)(d) (j = 0) if (iii.c) holds.

Therefore in all the cases g ∉ B1,3(Γ , r1) by definition and the assertion (a) is immediate from Definition 2.3(1).

(b) Suppose that g ∈ B1,0(Γ , r) for some r ∈ N. Then by definition g + m0 = λ1m1 with λ1 ∈ N+ and λ1 =

max-deg(g + m0) ≥ r + 2. Therefore λ1m1 ∉ S and hence by the explicit description of S given in each case (see
Proposition 3.2) we have

λ1 ≥


n, if (p, q) = (0, 0),
n + p, if (p, q) ∈ N−

× {0},
n + p, if (p, q) ∈ {(1, 0), (2, 0)},
n − p = n + 1, if (p, q) = (−1, −1),

and hence from equations 3.2(1)(i)(b) (i = n), 3.2(2)(i)(b) (i = n + p), 3.2(3)(i)(c) (i = n + p) and 3.2(4)(i)(b) (i = n − p),
respectively, we have

g + m0 = λ1m1 =


(n + 1)m0 + (λ1 − n)m1, if (p, q) = (0, 0),
(n + p + 1)m0 + (λ1 − n − p)m1, if (p, q) ∈ N−

× {0},
(n + p + 1)m0 + (λ1 − n − p)m1, if (p, q) ∈ {(1, 0), (2, 0)},
(n + 1)m0 + (λ1 − n − 1)m1 + m2, if (p, q) = (−1 − 1).

But then we get r = max-deg(g) ≥ λ1 ≥ r + 2, a contradiction. This proves that B1,0(Γ , r) = ∅ for every r ∈ N and hence
Γ is 1-good by part (a) and Proposition 2.7(2). Therefore Γ is good by part (1) and part (b).

(3) (a) Note that by 3.2(3)(ii) S̃(2, 3) ≠ ∅, since n ≥ 2p − 1 and p ≥ 3 by assumptions. Further, since (n − p − 1)m2 + (p +

1)m3 ∈ S̃(2, 3) ⊆ S, (n+ 1)m1 ∈ S by 3.2(3)(ii) and (n− p− 1)m2 + (p+ 1)m3 +m0 = (n+ 2)m1 by 3.2(3)(i)(b), it is easy
to see that max-deg((n − p − 1)m2 + (p + 1)m3) = n and max-deg((n − p − 1)m2 + (p + 1)m3 + m0) = n + 2. Therefore
(n − p − 1)m2 + (p + 1)m3 ∈ B1,0(Γ , n).

(b) Note that by 3.2(4)(ii) S̃(2, 3) ≠ ∅, since n ≥ −4p− 1 and p ≤ −2 by assumptions. Further, since (n+ p− 1)m2 +m3 ∈

S̃(2, 3) ⊆ S, (n + p + 1)m1 ∈ S by 3.2(4)(ii) and (n + p − 1)m2 + m3 + m0 = (n + p + 2)m1 by 3.2(4)(i)(c) (k = 1), it is
easy to see that max-deg((n + p − 1)m2 + m3) = n + p and max-deg((n + p − 1)m2 + m3 + m0) = n + p + 2. Therefore
(n + p − 1)m2 + m3 ∈ B1,0(Γ , n + p).

(c) Note that by 3.2(5)(ii) S̃(1, 3) ≠ ∅, sincen ≥ 2p and p ≥ 1by assumptions. Further, since (n+p−1)m2+m3 ∈ S(2, 3) ⊆ S,
(n + p + 1)m1 ∈ S̃(1, 3) by 3.2(4)(ii) and (n + p − 1)m2 + m3 + m0 = (n + p + 2)m1 by 3.2(5)(i)(c), it is easy to
see that max-deg((n + p − 1)m2 + m3) = n + p and max-deg((n + p − 1)m2 + m3 + m0) = n + p + 2. Therefore
(n + p − 1)m2 + m3 ∈ B1,0(Γ , n + p). �

Theorem 3.4. Let p, q be fixed integers, n be a variable positive integer with n ≫ p (e.g. n ≥ 4|p| + 1), m := m0 =

n2
+ pn + q,m1 = m0 + n,m2 = m0 + 2n + 1,m3 = m0 + 3n + 1, Γ (n; p, q) = Nm0 + Nm1 + Nm2 + Nm3 and let

R(n; p, q) = K [[Γ (n; p, q)]] be the semigroup ring ofΓ (n; p, q) over a field K . Suppose that (p, q) ∈ (Z−
×{0})∪(Z+

×{0})∪∆Z.
Then G(n; p, q) is Cohen–Macaulay if and only if (p, q) ∈ (Z−

× {0}) ∪ {(−1, −1), (0, 0), (1, 0), (2, 0)}.

Proof. Immediate from Proposition 3.3(2), (3) and Theorem 1.6. �
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