
Estimating Range Queries using Aggregate Data
with Integrity Constraints: a Probabilistic

Approach

Francesco Buccafurri1, Filippo Furfaro2, Domenico Saccà3

1 DIMET, University of Reggio Calabria, 89100 Reggio Calabria, Italy,
bucca@ing.unirc.it

2 DEIS, University of Calabria, 87030 Rende, Italy, furfaro@si.deis.unical.it
3 ISI-CNR & DEIS, 87030 Rende, Italy, sacca@unical.it

Abstract. In fast OLAP applications it is often advantageous to provide
approximate answers to range queries in order to achieve very high per-
formances. A possible solution is to inquire summary data rather than
the original ones and to perform suitable interpolations. Approximate
answers become mandatory in situations where only aggregate data are
available. This paper studies the problem of estimating range queries (na-
mely, sum and count) over aggregate data using a probabilistic approach
for computing expected value and variance of the answers. The novelty of
this approach is the exploitation of possible integrity constraints about
the presence of elements in the range that are known to be null or non-
null. Closed formulas for all results are provided, and some interesting
applications for query estimations on histograms are discussed.

1 Introduction

Traditional query processing deals with computing exact answers by possibly
minimizing response time and maximizing throughput. However, a recent query-
ing paradigm, on-line analytical processing (OLAP) [11, 13, 5], often involves
complex range queries over very large datacubes (i.e., multidimensional rela-
tions with dimension and measure attributes) so that the exact answer may
require a huge amount of time and resources. As OLAP queries mainly deals
with operations of aggregation (e.g., count and sum) of the measure values on
dimension ranges, an interesting approach to improve performances is to store
some aggregata data and to inquiry them rather than the original data thus
obtaining approximate answers — this approach is very useful when the user
wants to have fast answers without being forced to wait a long time to get a
precision which often is not necessary.

The possibility of returning approximate answers for range queries has been
first explicitly addressed in [12] but, in that case, the approximation is temporary
since results are output on the fly while the tuples are being scanned and, at
the end, after all original tuples are consulted, the user will eventually get the
correct answer.

A Probabilistic Approach 391

The issue of computing approximate range query answers by never access-
ing original tuples but only consulting aggregate data has very recently started
receiving a deal of attention. Typical approaches consist in re-using statistical
techniques which have been applied for many lusters inside query optimizers for
selectivity estimation [17]. We recall that three major classes of statistical tech-
niques are used for selectivity estimation: sampling, histograms and parametric
modeling — see [2] for a detailed survey. Interesting applications of sampling and
histogram techniques already exist, see for instance [8, 9] and [10], respectively.
The usage of sampling techniques are also used for approximate join-queries
answering [1]. A recent technique for selectivity estimation, wavelet-based his-
tograms, has been already applied to approximate answering of range queries
[18].

In this paper we propose a probabilistic approach to compute approximate
answers to range queries (in particular, count and sum queries) by consulting a
compressed representation of the datacube, that is a partition of the datacube
into blocks of possibly different sizes storing a number of aggregate data (number
of non-null tuples and sum of their measure values) for each block. Our approx-
imated results will come with a detailed analysis of the possible error so that, if
the user is not satisfied with the obtained precision, s/he may eventually decide
to submit the query on the actual datacube. In this case, it is not necessary to
run the query over all tuples but only on those portions of the range that do not
fit the blocks.

Our approach is not concerned with the problem of finding the most effective
compressed representation of a datacube to increase accuracy in query estima-
tion — instead this is the main goal of the sampling and histogram techniques
mentioned above. We are involved with the ”apparently” simpler problem of
performing interpolation of aggregate data once the compressed representation
for the datacube has been decided. This means that our approach can be also
used to interpolate data from summarized ones for which detail tuples are not
available. This case has been first studied in [6] and interesting results have been
obtained by enforcing the optimization of some criterion like the smoothness of
the distribution of values. Our approach does not make any assumption on data
distribution and perform estimations extending the probabilistic framework in-
troduced in [3].

The novelty of our approach is that we exploit additional information on a
datacube that is often available under the form of integrity constraints. In par-
ticular, we assume the existence of constraints stating that a minimum number
of null or non-null tuples are present in given ranges. Such a situation often
arises in practice. For instance, given a datacube whose dimensions are the time
(in terms of days) and the products while the measure is the amount of daily
product sales, realistic integrity constraints are that the sales are null during the
week-end while at least 4 times a week the sales are not null.

In the paper we analyze two types of integrity constraints:

– number of elements that are known to be null: we are given a function LB=0

returning, for any range R, a lower bound to the number of null tuples

392 F. Buccafurri, F. Furfaro, D. Saccà

occurring in D — so |R| − LB=0(R) is an upper bound on the number of
non-nulls occurring in the range;

– number of elements that are known to be non-null: we are given a function
LB>0 returning, for any range R, a lower bound for the number of non-null
tuples occurring in R.

The two functions LB=0 and LB>0 are assumed to be monotone, to require a
little amount of additional storage space and to be computable very efficiently
— actually in time constant w.r.t. the size of the compressed datacube. Possible
future research directions could explore other types of integrity constraints: then
the problem of interpolating data from compressed representation could eventu-
ally enter the field of knowledge discovery and data mining. This explain why
we have above stressed that the problem is only apparently simple.

Our problem is therefore the following: given a range R inside a datacube
block B for which we know the count t (the number of non-null tuples) and
the sum s of their measure values, we want to compute the estimation (mean
and variance) of the count tR and the sum sR for the range R, knowing that
(|R| − LB=0(R)) ≤ tR ≤ LB>0(R) and (|R̄| − LB=0(R̄)) ≤ tR̄ ≤ LB>0(R̄),
where R̄ is the range in B complementary to R.

The results we provide are formulas for mean and variance of both count and
sum queries; besides the formulas are closed so that they can be computed very
efficiently. For instance, suppose that the block B has size 120, the number of
non-nulls in it is 80 and their sum is 12000 and that the range R consists of
the first 30 tuples in the block. Without integrity constraints we have that the
expected value for sR is obviously (30/120) × 12000 = 3000 — note that the
knowledge about the number of non-nulls does not contribute to the estimation.
Suppose now that we know that at least 4 of the first 20 tuples in the block
are null but at least 2 of them are not null; moreover, at least half of the last
20 tuples are not null. Thus, LB=0(R) = 4, LB>0(R) = 2, LB=0(R̄) = 0 and
LB>0(R̄) = 10. By applying our formulas we now obtain that the expected value
for sR is 4100.

Estimating mean values is not enough in most situations: we also need to
compute the possible error in the estimation. For instance, given a block of size
100 and sum 10000 and given a range R coinciding with half of the block, the
expected value for the sum in R is independent from the number of non-nulls in
B. But it is obvious that the error in the case this number is 2 is much higher
than for the case with, say, 90 non-nulls; so we need to consult the variance of
the estimation before concluding that it is meaningful. Our results include closed
formulas also for the variance of both count and sum queries. Indeed the proofs
of such formulas are rather long and complex so we have included only one proof
in the appendix. Besides, for reason of space, all the other proofs are either left
out or only sketched.

The paper is organized as follows. In Section 2 we introduce the compressed
representation of a datacube and the integrity constraints about the number of
null or non-null tuples in the datacubes ranges. In Section 3 we fix the proba-
bilistic framework for estimating count and sum range queries on a datacube
M by means of random queries variables over the population of all datacubes

A Probabilistic Approach 393

which both have the same aggregate data as M and satisfies the integrity con-
straints. For the sake of the presentation, in Section 4 we perform range query
estimation for the simple case that only integrity constraints about the null tu-
ples are available (i.e., only the function LB=0 is given); the general case is
treated in the subsequent section. Finally, in Section 6 we give some interesting
applications of our formulas for the estimation of frequency distribution inside
a bucket of a histogram [14–16]. The most common approach is the continuous
value assumption [17]: the sum of frequencies in a range of a bucket is estimated
by linear interpolation. We shall show that this computation does not yield a
correct estimation for the case of bucket whose extremes (or at least one of
them) is known to be not null. This situation, that arises for many of the most
popular histogram representations, can be formalized in terms of our integrity
constraints, thus obtaining more accurate estimations as well as the evaluation
of their errors.

2 Compressed Datacubes and Integrity Constraints

Let i = <i1, . . . , ir> and j = <j1, . . . , jr> be two r-tuples of cardinals, with
r > 0. We extend common operators for cardinals to tuples in the obvious way:
i ≤ j means that i1 ≤ j1, . . . ir ≤ jr; i+ j denotes the tuple <i1 +j1, . . . , ir +jr>
and so on. Given p ≥ 0, p r (or simply p, if r is understood) denotes the r-tuple
of all p. Finally, [i..j] = [i1..j1, . . . , ir..jr] denotes the range of all tuples from i
to j, that is {q| i ≤ q ≤ j}.

A multidimensional relation R is a relation whose scheme consists of r >
0 dimensions (also called functional attributes) and s > 0 measure attributes.
The dimensions are a key for the relation so that no two tuples have the same
dimension value. For the sake of presentation but without loss of generality, we
assume that
– s = 1 and the domain of the unique measure attribute is the set of cardinals,

and
– r ≥ 1 and the domain of each dimension q, 1 ≤ q ≤ r, is the range [1..nq],

where nq > 2, i.e., the projection of R on the dimensions is a subset of [1..n],
where n = <n1, . . . , nr>.

Given any range [i..j], 1 ≤ i ≤ j ≤ n, we consider the following range queries on
R:
– count query: count[i..j](R) denotes the number of tuples of R whose dimension

values are in [i..j], and
– sum query: sum[i..j](R) denotes the sum of all measure values for those tuples

of R whose dimension values are in [i..j].
Since the dimension attributes are a key, the relation R can be naturally viewed
as a [1..n] matrix (i.e., a datacube) M of elements with values in N such that
for each i ∈ [1..n], M [i] = v if the tuple <i, v> is in R or otherwise M [i] = 0 —
then i is a null element if either <i, 0> is in R or no tuple with dimension value
i is present in R. The above range queries can be now re-formulated in terms of
array operations as follows:

394 F. Buccafurri, F. Furfaro, D. Saccà

– count[i..j](R) = count(M [i..j]) = |{q| q ∈ [i..j] and M [q] > 0}|;
– sum[i..j](R) = sum(M [i..j]) =

∑
q∈[i..j] M [q].

We next introduce a compressed representation of the relation R by dividing
the datacube M into a number of blocks and by storing a number of aggregate
data for each of them. To this end, given m = <m1, . . . , mr> in [1..n], a m-
compression factor for M is a tuple F = <f1, . . . , fr>, such that for each q,
1 ≤ q ≤ r, fq is a [0..mq] array for which 0 = fq[0] < fq[1] < · · · < fq[mq] = nq.
For each k = <k1, . . . , kr> in [1..m], let F+(k) and F−(k) denote the tuples
<f1[k1], . . . , fr[kr]> and <f1[k1 − 1] + 1, . . . , fr[kr − 1] + 1>, respectively .
Therefore, F divides the range [1..n] into m1 × · · · ×mr blocks Bk, one for each
tuple k = <k1, . . . , kr> in [1..m]; the block Bk has range [F−(k)..F+(k)] and
size (f1[k1]−f1[k1−1])×· · · ×(fr[kr]−fr[kr −1]) if k > 1 or f1[k1]×· · · ×fr[kr]
otherwise.

For instance, consider the [1..10, 1..6] matrix M in Figure 1(a), which is
divided into 6 blocks as indicated by the double lines. We have that m = <3, 2>,
f1[0] = 0, f1[1] = 3, f1[2] = 7, f1[3] = 10, and f2[0] = 0, f2[1] = 4, f2[2] = 6.
The block B<1,1> has size 3×2 and range [1..3, 1..4]; the block B<1,2> has size
3 × 2 and range [1..3, 5..6], and so on.

1 3 0 0 5 5

5 1 0 4 5 9

5 5 0 2 5 0

2 0 0 0 1 5

5 3 0 0 5 5

5 0 0 1 5 5

0 1 0 1 5 0

1 0 0 0 5 5

1 1 0 0 6 2

1 0 0 0 2 3

([1..3,1..4],8,26) ([1..3,5..6],5,29)

([4..7,1..4],7,18) ([4..7,5..6],7,31)

([8..10,1..4],4,4) ([8..10,5..6],6,23)

(a) (b)

Fig. 1. A two-dimensional datacube and its compressed representation

A compressed representation of the datacube M consists of selecting a m-
compression factor F and storing the following aggregate data on the F -compressed
blocks of M :
– the [1..m] matrices Mcount,F and Msum,F such that for each k ∈ [1..m],

Mcs,F [k] = cs(M [F−(k)..F+(k)])

where cs stands for count or sum;
The compressed representation of the datacube M in Figure 1(a) is represented
in Figure 1(b) by a matrix of triples, one for each block; the values of each triple

A Probabilistic Approach 395

indicates respectively the range, the number of non-null elements and the sum
of the elements in the corresponding block. For instance, the block B<1,1> has
range [1..3, 1..4] and 8 non-null elements with sum 26; the block B<1,2> has
range [1..3, 5..6] and 5 non-null elements with sum 29, and so on.

We assume that the we are given a compressed representation of a datacube
M as well as additional information on M under the form of integrity constraints
on the content of M . The representation of such constraints needs a little amount
of additional storage space; besides, the requirements defined by the constraints
are expressed in terms of aggregate data which are computed by suitable func-
tion in constant time — thus the functions are not dependent on the actual
contents of M . As discussed in the Introduction, data distributions often match
this property in real contexts. For instance, consider the case of a temporal di-
mension with granularity day and a measure attribute storing the amount of
sales for every day. In this case, given any temporal range, it is easily recogniz-
able a number of certain null values, corresponding to the holidays occurring in
that range. In such cases, the constraints provide additional information that
can be efficiently computed with no overhead in terms of storage space on the
compressed representation of M .

Let 2[1..n] be the family of all subsets of indices in [1..n]. We analyze two
types of integrity constraints:

– number of elements that are known to be null: we are given a function LB=0 :
2[1..n] → N returning, for any D in 2[1..n], a lower bound to the number of
null elements occurring in D; the datacube M satisfies LB=0 if for each D
in 2[1..n],

∑
i∈D count(M [i]) ≤ |D| − LB=0(D), where |D| is the number of

elements of M in D;
– number of elements that are known to be non-null: we are given a function

LB>0 : 2[1..n] → N returning, for any D in 2[1..n], a lower bound for the
number of non-null elements occurring in D; the datacube M satisfies LB>0

if for each D in 2[1..n],
∑

i∈D count(M [i]) ≥ LB>0(D).

The two functions LB=0 and LB>0 are monotone: for each D′,D′′ in 2[1..n],
if D′ ⊂ D′′ then both LB=0(D′) ≤ LB=0(D′′) and LB>0(D′) ≤ LB>0(D′′).

Suppose that LB=0([4..6, 1..3]) = 3 and LB>0([4..6, 1..3]) = 1 in our runnning
example. Then we infer that the number of non-null elements in the range
[4..6, 1..3] is between 1 and (6− 4 + 1)× (3− 1 + 1)− 3 = 6. Note that the com-
pressed representation of M in Figure 1(b) only says that the block [4..7, 1..4]
has 7 non-nulls; so, from this information, we only derive that the bounds on
the number of non-null elements in [4..6, 1..3] are 0 and 7.

3 The Probabilistic Framework for Range Query
Estimation

We next introduce a probabilistic framework for estimating the answers of range
queries (sum and count) by consulting aggregate data rather than the actual
datacube. To this aim, we consider the queries as random variables and we

396 F. Buccafurri, F. Furfaro, D. Saccà

give their estimation in terms of mean and variance. More precisely, a range
query Q on a given datacube M is estimated by a random query variable Q,
defined by applying Q on a datacube M̃ extracted from the population of all
datacubes, whose compressed representations is ’compatible’ with the one of M .
Thus, the estimation of the range query Q is only based on the knowledge of
the compressed representation of M . A crucial point in such estimation is the
definition of population ’compatible’ with the compressed representation of the
given datacube M .

We start from the population of the datacubes having the same aggregate
data that we assume available for M : M−1

cs,F is the set of all the [1..n] matrix M ′

of elements in N for which both M ′
count,F = Mcount,F and M ′

sum,F = Msum,F .
We next restrict the population M−1

cs,F by considering only those datacubes which
satisfy a given set of integrity constraints on the number of non-null elements.

Let us now define the random variables for the estimation of the count and
the sum query.

Let the query count(M [i..j]) and sum(M [i..j]) be given and let LB=0 and
LB>0 be two integrity constraints that are satisfied by M . We shall estimate the
two queries with the two random query variables count(M̃ [i..j]) and sum(M̃ [i..j]),
respectively, in the following two cases:

1. for M̃ extracted from the population σLB=0(M
−1
cs,F) = {M ′| M ′ ∈ M−1

cs,F

and M ′ satisfies LB=0}; thus we estimate the number and the sum of the
non-null elements in M [i..j] by considering the population of all datacubes
having both the same sum and the same number of non-nulls in each block
as M and satisfying the lower bound constraint enforced by the function
LB=0 on the number of null elements occurring in each range;

2. for M̃ extracted from the population σLB=0,LB>0(M
−1
cs,F) = {M ′| M ′ ∈

M−1
cs,F and M ′ satisfies LB=0 and LB>0}; thus we estimate the number

and the sum of the non-null elements in M [i..j] by restricting the popula-
tion of the previous case to those datacubes which also satisfy the lower
bound constraint enforced by the function LB>0 on the number of non-null
elements occurring in each range.

We observe that Case 1 can be derived from the more general Case 2 but,
for the sake of presentation, we first present the simpler case and then we move
to the general case.

Once the datacube population for a random variable query(M̃ [i..j]) (where
query stands for count or sum) is fixed, we have to determine its probability
distribution and then its mean and variance — recall that both mean and vari-
ance are defined by the operator E. Concerning the mean, due to the linearity
of E we have:

E(query(M̃ [i..j]) =
∑

Bq∈TBF (i..j)

Mquery,F [q] +
∑

Bk∈PBF (i..j)

E(query(M̃ [ik..jk]))

where

A Probabilistic Approach 397

1. TBF (i..j) returns the set of blocks Bq that are totally contained in the range
[i..j], i.e., both i ≤ F−(q) and F+(q) ≤ j,

2. PBF (i..j) returns the set of blocks Bk that are partially inside the range,
i.e., Bk �∈ TBF (i..j) and either i ≤ F−(k) ≤ j or i ≤ F+(k) ≤ j, and

3. for each Bk ∈ PBF (i..j), ik and jk are the boundaries of the portion of the
block Bk which overlaps the range [i..j], i.e., [ik..jk] = [i..j]∩ [F−(k)..F+(k)].

For example, for the datacube in Figure 1(a), given i = <4, 3> and j =
<8, 6>, the block B<2,2> is totally contained in the range, the blocks B<2,1>,
B<3,1>, B<3,2> are partially contained in the range (with boundaries [4..7, 3..4],
[8..8, 3..4] and [8..8, 5..6], respectively), and the blocks B<1,1>, B<1,2> are out-
side the range.

Concerning the variance, we assume statistical independence between the
measure values of different blocks so that its value is determined by summing
the variances of all partially overlapped blocks, thus introducing no covariance.

σ2(query(M̃ [i..j]) =
∑

Bk∈PBF (i..j)

σ2(query(M̃ [ik..jk])).

It turns out that we only need to study the estimation of a query ranging
on one partial block as all other cases can be easily re-composed from this basic
case. Therefore, from now on we assume that the query range [i..j] is strictly
inside one single block, say the block Bk, i.e., F−(k) ≤ i ≤ j ≤ F+(k). We use
the following notations and assumptions:

1. b, b > 1, is the size of Bk, thus b is the number of elements in Bk;
2. bi..j, 1 ≤ bi..j < b, is the size of [i..j], that is the number of elements in the

range;
3. t = Mcount,F [k], 1 ≤ t ≤ b, is the number of non-null elements in Bk;
4. s = Msum,F [k], s ≥ max(1, t), is the sum of the elements in Bk;
5. tUi..j = bi..j − LB=0([i..j]) and tLi..j = LB>0([i..j]) are respectively an upper

bound and a lower bound on the number of non-null elements in the range
[i..j];

6. tU
ĩ..j

= b
ĩ..j

− LB=0([i.̃.j]) and tL
ĩ..j

= LB>0([i.̃.j]) are respectively an upper
bound and a lower bound on the number of non-null elements in the block
Bk outside the range [i..j];

7. tU = tUi..j + tU
ĩ..j

= b − LB=0([i..j]) − LB=0([i.̃.j]) and tL = tLi..j + tL
ĩ..j

=
LB>0([i..j]) + LB>0([i.̃.j]), where [i.̃.j] denotes the set of elements that are
in Bk but not in the range [i..j]; tU and tL are an upper bound and a lower
bound on the number of non-null elements in Bk.

Observe that the functions LB=0 and LB>0 are computed for the ranges
[i..j] and [i.̃.j] but not for the whole block Bk. Indeed, tL and tU do not in
general coincide with LB>0([F−(k)..F+(k)]) and b − LB=0([F−(k)..F+(k)]),
respectively, as the latter ones may be stricter bounds. For instance, suppose
that the block stores the bimonthly sales of a store and we want to estimate
the sales in the first month. The integrity constraints say that the store closes 4

398 F. Buccafurri, F. Furfaro, D. Saccà

days every month and an additional day every two months. So tU = 60− 4 = 56
and not 55. Thus the additional day is not taken into account but this does not
affect at all the accuracy of the estimation: indeed we have available the actual
number of opened days for the block of two months.

4 Case 1: Range Query Estimation using Upper Bounds
on the Number of Non-Null Elements

In this section we only consider upper bounds on the number of non-null elements
in the ranges [i..j] and [i.̃.j] which are derived by the function LB=0. We define
the random variables count(M̃ [i..j]) and sum(M̃ [i..j]) by extracting M̃ from the
population σLB=0(M

−1
cs,F) of all datacubes having both the same sum and the

same number of non-nulls in each block as M and satisfying the upper bound
constraints on the number of elements in each range. We assume that both tLi..j
and tL are equal to zero, i.e., both LB>0([i..j]) = 0 and LB>0([i.̃.j]) = 0.

Theorem 1. Let C1([i..j]) = count(M̃ [i..j]) and S1([i..j]) = sum(M̃ [i..j]) be
two integer random variables ranging from 0 to t and from 0 to s, respectively,
defined by taking M̃ in the datacube population σLB=0(M

−1
cs,F). If tLi..j = tL = 0

then for each ti..j and si..j, 0 ≤ ti..j ≤ tUi..j and 0 ≤ si..j ≤ s, the joint probability
distribution P (C1([i..j]) = ti..j, S1([i..j]) = si..j) is equal to:

P (C1([i..j]) = ti..j, S1([i..j]) = si..j) =
Q(tUi..j, ti..j, si..j) · Q(tU

ĩ..j
, t

ĩ..j
, s

ĩ..j
)

Q(tU , t, s)

where t
ĩ..j

= t − ti..j, s
ĩ..j

= s − si..j, and

Q(tu, t, s) =

0 if (t = 0 ∧ s > 0) ∨ (t > 0 ∧ s < t) ∨ t > tu

1 if t = 0 ∧ s = 0

(
tu
t

)
·
(

s − 1
s − t

)
otherwise.

Proof. (Sketch) The probability distribution does not change if we reduce the
size of the range and of the block by removing certain null elements. Therefore,
the size of the block Bk is assumed to be tU and, then, the size of the query
query becomes tUi..j. We can now see the block as a vector, say V , of tU elements
with values in [1..s] such that their total sum is s and the number of non null
elements is t. We divide V into two subvectors V ′ and V ′′ such that V ′ consists
of the first tUi..j elements and V ′′ of the last tU

ĩ..j
= tU − tUi..j ones. The probability

of the event (C1([i..j]) = ti..j ∧ S1([i..j]) = si..j) is then equal to the probability
that V ′ contains ti..j non-null elements whose sum is si..j. Let denote by P̄ this
probability. Observe that the event implies that V ′′ contains t − ti..j non null-
elements whose sum is s − si..j. It is then easy to see that P̄ is equal to

Q(tUi..j, ti..j, si..j) · Q(tU − tUi..j, t − ti..j, s − si..j)
Q(tU , t, s)

A Probabilistic Approach 399

where Q(tu, t, s) is the number of possible configurations for a vector of size tu
containing exactly t non-null elements with total sum s.

Q(tu, t, s) can be determined by considering all possible ways of distributing
the sum s into t non-fixed positions by assigning to each of such elements a value
from 1 to s. If we fix the positions of the t non-null elements,we obtain that the
number of such configurations is:

m(t, s) =
(

t + (s − t) − 1
s − t

)
=

(
s − 1
s − t

)
.

As the positions for the t non-null elements are not fixed, we have to multiply
m(t, s) by the number of all possible dispositions of t non-nulls over xd positions,
that is

n(tu, t) =
(

tu
t

)
.

Hence, Q(tu, t, s) = n(tu, t) · m(t, s). �

Mean and variance of the random variable C1([i..j]) are presented in the next
proposition.

Proposition 1. Let C1([i..j]) be the random variables defined in Theorem 1.
Then, mean and variance are, respectively:

E(C1([i..j])) =
tUi..j
tU

· t

σ2(C1([i..j])) = t · (tU − t) · tUi,j ·
tU
ĩ..j

(tU)2 · (tU − 1)

Proof. (Sketch) Consider the vector V , V ′ and V ′′ defined in the proof of The-
orem 1. The event (C1([i..j]) = ti..j) is equivalent to the event that V ′ contains
exactly ti..j non-null elements. Observe that the probabilty that an element is not
null is equal to t/tU . Hence (C1([i..j]) = ti..j) is in turn equivalent to the event
of extracting ti..j non-nulls from V in tUi..j trials. This probability is described by
the well-known hypergeometric distribution [7]. �

Now we determine mean and variance of the random variable S1([i..j]).

Theorem 2. Consider the random variable S1([i..j]) defined in Theorem 1. Then,
mean and variance of S1([i..j]) are, respectively:

E(S1([i..j])) =
tUi..j
tU

· s

σ2(S1([i..j])) =
s · tUi,j · tUĩ..j

tU
2 · (tU − 1) · (t + 1)

· [tU · (2 · s − t + 1) − s · (t + 1)].

400 F. Buccafurri, F. Furfaro, D. Saccà

Proof. (Sketch) Consider the vector V , V ′ and V ′′ defined in the proof of Theo-
rem 1. The event (S1([i..j]) = si..j) is equivalent to the following event: the sum of
all elements in V ′ is si..j. From s =

∑
1≤i≤tU V [i], we derive s =

∑
1≤i≤tU E(V [i])

by linearity of the operator E. Further, the mean of random variable V [i] is equal
to the mean of the random variable V [j], for any i, j, 1 ≤ i, j ≤ tU . Indeed, for
symmetry, the probability that an element of V assumes a given value is inde-
pendent on the position of this element inside the vector. Let denote by m this
mean. From the above formula for s it then follows that m·tU = s, thus t = s/tU .
Consider now the vector V ′. Let S′ be the random variable representing the sum
of all elements of V ′. Then E(S′) = tUi..j · m. Hence, E(S′) = tUi..j · s/tU .

The variance can be obtained using its definition. To this end, we first need
to determine the probability distribution of S1([i..j]) from the joint probability
distribution obtained in Theorem 1. The detailed proof is rather elaborated and,
for the sake of presentation, is included in the appendix. �

Note that the mean of the random variable S1([i..j]) representing the sum
query does not depend on the number t of non-null elements in the block Bk.
On the other hand, the knowledge about certain null elements derived by the
function LB=0 does influence the value of the sum. Indeed, the mean depends
both on the size of the query range w.r.t. the size of the block and on the number
of the nulls that are already known to be in the range and in the complementary
part of the block.

5 Case 2: Range Query Estimation using both Lower
Bounds and Upper Bounds on on the Number of
Non-Null Elements

We are now ready to perform the estimation of range queries in the general case
where the datacube population is the set σLB=0,LB>0(M

−1
cs,F) of all datacubes

having the same aggregate data (count and sum) as M and satisfying both
constraints: the lower bound on the number of null elements occurring in each
range and the lower bound on the number of non-null elements.

Theorem 3. Let C2([i..j]) = count(M̃ [i..j]) and S2([i..j]) = sum(M̃ [i..j]) be two
integer random variable ranging from 0 to t and from 0 to s, respectively, defined
by taking M̃ in the datacube population σLB=0,LB>0(M

−1
cs,F). Then, for each ti..j

and si..j, tLi..j ≤ ti..j ≤ tUi..j and 0 ≤ si..j ≤ s, the joint probability distribution
P (C2([i..j]) = ti..j, S2([i..j]) = si..j) is equal to:

P (C2([i..j]) = ti..j, S2([i..j]) = si..j) =
N(tUi..j, ti..j, si..j, t

L
i..j) · N(tU

ĩ..j
, t

ĩ..j
, s

ĩ..j
, tL

ĩ..j
)

N(tU , t, s, tL)

A Probabilistic Approach 401

where t
ĩ..j

= t − ti..j, s
ĩ..j

= s − si..j, and

N(tu, t, s, tl) =

0 if t > tu ∨ t > s ∨ (t = 0 ∧ s > 0)
1 if t = 0 ∧ s = 0(

tu − tl
t − tl

)
·
(

s − 1
s − t

)
otherwise

Proposition 2. Consider the random variable C2([i..j]) of Theorem 3. Then,
mean and variance are:

E(C2([i..j])) = tLi..j +
tUi..j − tLi..j
tU − tL

· (t − tL)

σ2(C2([i..j])) =
tUi..j − tLi..j
tU − tL

· (t − tL) · [(tU − tL) − (tUi..j − tLi..j)] · (tU − t)
(tU − tL) · (tU − tL − 1)

Theorem 4. Consider the random variable S2([i..j]) of Theorem 3. Then, mean
and variance are:

E(S2([i..j])) = tLi..j ·
s

t
+ (tUi..j − tLi..j) ·

s

t
· t − tL

tU − tL
.

σ2(S2([i..j])) = α · (tUi..j − tLi..j) · t−tL

tU−tL ·
[
1 + (tUi..j − tLi..j − 1) · t−tL−1

tU−tL−1

]
+

(β + 2 · α · tLi..j) · (tUi..j − tLi..j) · t−tL

tU−tL + (α · tLi..j
2 + β · tLi..j) − γ2

where:

α =
s · (s + 1)
t · (t + 1)

, β =
s · (s − t)
t · (t + 1)

and γ = tLi..j ·
s

t
+ (tUi..j − tLi..j) ·

s

t
· t − tL

tU − tL
.

Note that, unlike the case 1, the mean S2([i..j]) of the random variable rep-
resenting the sum query depends on the number t of non null elements occurring
in the block Bk. Indeed, in this case, the information encoded in the function
LB>0 actually invalidates the symmetry condition about the aggregate informa-
tion used for the estimation, on which the independence of the mean from t is
based. This happens since LB>0 returns a number of certain non-null elements,
thus giving a positive contribution both to the count and the sum query. Thus,
such positions cannot be eliminated in order to re-formulate the query into a
new query applied on a block with indistinguishable positions as it happens for
the Case 1.

Also in this case, the mean is not in general a linear function respect to the
size of the query, since it depends both on tUi..j (and then on LB=0([i..j])) and on
tLi..j (and then on LB>0([i..j])). Thus, once again, the estimation depends on the
actual distribution of the values inside the block and not only on the aggregate
information concerning count and sum of the block.

402 F. Buccafurri, F. Furfaro, D. Saccà

6 Estimation of Range Queries on Histograms

Histograms are mono-dimensional compressed datacube that are used to sum-
marize the frequency distribution of an attribute of a database relation for the
estimation of query result sizes [14–16]. The estimation is made using aggregate
data such as the number t of non-null values in each block (bucket in the his-
togram terminology) Bk, the total frequency sum s in Bk and the boundaries
of Bk. A crucial point for providing good estimations is the way the frequency
distributions for original values are partitioned into buckets. Here we assume
that the buckets have been already arranged using any of the known techniques
and we therefore focus on the problem of estimating the frequency distribution
inside a bucket.

The most common approach is based on the continuous value assumption [17]:
the sum of frequencies in a range of a bucket is estimated by linear interpolation.
It thus corresponds to equally distributing the overall sum of frequencies of the
bucket to all attribute values occurring in it. This result can be derived from
Theorem 2 by assuming that there are no integrity constraints on the number
of null and non-null elements.

Corollary 1. Let Bk be a block of a histogram and let S3([i..j]) = sum(M̃ [i..j])
be an integer random variable ranging from 0 to s, defined by taking M̃ in the
datacube population M−1

cs,F . Then mean and variance of S3([i..j]) are, respec-
tively:

E(S3([i..j])) =
bi..j
b

· s

σ2(S3([i..j])) =
s · bi..j · (b − bi..j)

b2 · (b − 1) · (t + 1)
· [b · (2 · s − t + 1) − s · (t + 1)].

Thus our approach gives a model to explain the linear interpolation and, be-
sides, allows to evaluate the error of the estimation, thus exploiting the knowl-
edge about the number t of non-nulls in a block — instead t is not mentioned
in the computation of the mean.

We now recall that the classical definition of histogram requires that both
lowest and highest elements (or at least one of them) of any block are not null
(i.e., they are attribute values occurring in the relation). A block for which the
extreme elements are not null are called 2-biased; if only the lowest (or the
highest) element is not null then the block is called 1-biased.

So far linear interpolation is also used for biased blocks thus producing a
wrong estimation — it is the case to say a ”biased” estimation. We next show
the correct formulas that are derived from Theorem 4.

Corollary 2. Let Bk be a block of a histogram and let S4([i..j]) = sum(M̃ [i..j])
be an integer random variable ranging from 0 to s, defined by taking M̃ in the
datacube population σLB>0(M

−1
cs,F). Then

A Probabilistic Approach 403

1. if the block Bk is 1-biased and i is the lowest element of the block then mean
and variance of S4([i..j]) are, respectively:

E(S4([i..j])) =
s

t
+ (bi..j − 1) · s

t
· t − 1
b − 1

,

σ2(S4([i..j])) = α · (bi..j − 1) · t−1
b−1 ·

[
1 + (bi..j − 2) · t−2

b−2

]
+

(β + 2 · α) · (bi..j − 1) · t−1
b−1 + (α + β) − E(S4([i..j]))

2

2. if the block Bk is 1-biased and i is not the lowest element of the block then
mean and variance of S4([i..j]) are, respectively:

E(S4([i..j])) = bi..j · s

t
· t − 1
b − 1

,

σ2(S4([i..j])) = α·bi..j· t − 1
b − 1

·
[
1 + (bi..j − 1) · t − 2

b − 2

]
+β·bi..j· t − 1

b − 1
−E(S4([i..j]))

2

3. if the block Bk is 2-biased and either i or j is an extreme element of the block
then mean and variance of S4([i..j]) are, respectively:

E(S4([i..j])) =
s

t
+ (bi..j − 1) · s

t
· t − 2
b − 2

,

σ2(S4([i..j])) = α · (bi..j − 1) · t−2
b−2 ·

[
1 + (bi..j − 2) · t−3

b−3

]
+

(β + 2 · α) · (bi..j − 1) · t−2
b−2 + (α + β) − E(S4([i..j]))

2

4. if the block Bk is 2-biased and neither i nor j is an extreme element of the
block then mean and variance of S4([i..j]) are, respectively:

E(S4([i..j])) = bi..j · s

t
· t − 2
b − 2

,

σ2(S4([i..j])) = α·bi..j· t − 2
b − 2

·
[
1 + (bi..j − 1) · t − 3

b − 3

]
+β·bi..j· t − 2

b − 2
−E(S4([i..j]))

2

where:

α =
s · (s + 1)
t · (t + 1)

and β =
s · (s − t)
t · (t + 1)

.

The above formulas have been used in [4] to replace the continuous value
assumption inside one of the most efficient methods for histogram representation
(the maxdiff method [16]) and have produced some meaningful improvements in
the performance of the method.

In [16, 15], another method for estimating frequency sum inside a block is
proposed, based on the uniform spread assumption: the t non-null attribute
values in each bucket are assumed to be located at equal distance from each other
and the overall frequency sum is therefore equally distributed among them. This
method does not give a correct estimation unless we assume that nun-nulls are
scattered on the block in some particular, unrealistic way. Our approach gives
instead an unbiased estimation.

404 F. Buccafurri, F. Furfaro, D. Saccà

References

1. S. Acharya, P.B. Gibbons, Poosala, S. Ramaswamy. Join Synopses for Approximate
Query Answering, In Proc. of SIGMOD International Conference On Management
Of Data June 1999.

2. Barbara, D., DuMouchel, W., Faloutsos, C., Haas, P.J., Hellerstein, J.M., Ionnidis,
Y., Jagadish, H.V., Johnson, T., Ng, R., Poosala, V., Ross, K.A., Sevcik, K.C., The
New Jersey data reduction report, Bulletin of the Technical Committee on Data
Engineering 20, 4, 3-45, 1997.

3. Buccafurri, F., Rosaci, D., Sacca’, D., Compressed datacubes for fast OLAP ap-
plications, DaWaK 1999, Florence, 65-77.

4. Buccafurri, F., Pontieri, L., Rosaci, D., Sacca’, D., Improving Range Query Esti-
mation on Histograms, unpublished manuscript, 2000.

5. Chaudhuri, S., Dayal, U., An Overview of Data Warehousing and OLAP Technol-
ogy, ACM SIGMOD Record 26(1), March 1997.

6. C. Faloutsos, H. V. Jagadish, N. D. Sidiripoulos. Recovering Information from Sum-
mary Data. In Proceedings of the 1997 VLDB Very Large Data Bases Conference,
Athens, 1997

7. W. Feller, An introduction to probability theory and its applications. John Wiley &
Sons, 1968.

8. P. B. Gibbons and Y. Matias. New sampling-based summary statistics for im-
proving approximate query answers. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, Seattle, Washington, June 1998

9. P.B.Gibbons, Y.Matias, V.Poosala. AQUA Project White Paper, At
http://www.bell-labs.com/user/pbgibbons/papers, 1997.

10. P.B.Gibbons, Y.Matias, V.Poosala. Fast incremental maintenance of approximate
histograms, Proc. of the 23rd VLDB Conf., 466-475, August 1997.

11. Gray, J., Bosworth, A., Layman, A., Pirahesh, H., Data Cube: A Relational Aggre-
gation Operator Generalizing Group-By, Cross-Tab, and Sub-Total, Proc. of the
ICDE 1996, pp. 152-159

12. J. M. Hellerstein, P. J. Haas, H. J. Wang. Online Aggregation. In Proceedings
of 1997 ACM SIGMOD International Conference on Management of Data, pages
171-182, 1997

13. Harinarayan, V., Rajaraman, A., Ullman, J. D., Implementing Data Cubes Effi-
ciently, Proc. of the ACM SIGMOD 1996, pp. 205-216

14. Y. Ioannidis, V. Poosala. Balancing histogram optimality and practicality for query
result size estimation. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 233-244, 1995

15. V. Poosala. Histogram-based Estimation Techniques in Database Systems. PhD
dissertation, University of Wisconsin-Madison, 1997

16. V. Poosala, Y. E. Ioannidis, P. J. Haas, E. J. Shekita. Improved histograms for se-
lectivity estimation of range predicates. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 294-305, 1996

17. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. T. Price.
Access path selection in a relational database management system. In Proc. of
ACM SIGMOD Internatinal Conference, pages 23-24, 1979

18. J. S. Vitter, M. Wang, B. Iyer. Data Cube Approximation and Histograms via
Wavelets. In Proceedings of the 1998 CIKM International Conference on Informa-
tion and Knowledge Management, Washington, 1998

