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There is a revolution going on, the digital revolution, engulfing all of us. Today the 
quantity of data that humans produce is huge: according to the TLC–Data Flow 
2019 (Cisco Statistics Report), 5 zb in 2019 (1 zb = 1021 bytes; a thousand billion 
gigabytes!), that will become 15 zb in 2022. And it doubles now every year: in 2019 
we generated as much data as had been produced in the entire history of humanity 
up to 2018. With the IoT catching up, in 2 ÷ 3 years 150 billion sensors will be con-
nected in a huge network, among themselves and with the humans: then the data 
doubling time will be 12 h.

The only way to deal with such a Tsunami and to extract value from these mas-
sive data sets is artificial intelligence (AI), which can grasp and organize the enor-
mous amount of correlations hidden in data.

In the arena of behavioral economics the keystone is behavior. In economics it 
bears on all sorts of proxies: social networks (opinions, preferences, beliefs); per-
sonal digital census (education, ethnicity, age group, sexual orientation); lifestyle; 
health; use of e-commerce channels.

In an ideal definition of consumer’s behavior, failures to repay debts, framing per-
spectives or price anchors should not have any bearing on choices, and decisions 
would be merely the result of a careful weighing of costs and benefits, informed 
exclusively by concrete, well-defined needs and preferences, with every deci-
sion rational. Herbert Simon’s concept of ‘bounded rationality’ dismantles such 
definition, bringing into play the notion that consumers’ minds (behavior) must be 
understood relative to the environment in which they evolved; thus decisions are 
not always optimal, even because human information processing has other severe 
restrictions, due both to incomplete information and knowledge and limits to com-
putational and logical capacities. Behavioral Economics Theory assumes that peo-
ple (consumers) are boundedly rational agents, with a limited ability to process 
information.
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Exploring just how available information affects the quality and outcome of deci-
sions, and what happens in  situations where people avoid information altogether, 
Richard Thaler coined the concept of mental accounting: people think of value 
in relative rather than absolute terms. They derive their pleasure not just from an 
object’s value, but from the quality of the deal as well: its transaction utility. Con-
sumers tend to work with the totality of their mental accounts: personal experience, 
reliable information, prompt feedback are the key factors that enable them to make 
good decisions; yet information avoidance takes place, circumstances in which peo-
ple choose not to secure knowledge, even if freely available. Deliberate information 
avoidance has many aspects: physical disregard, inattention, biased interpretation of 
information; even conscious oblivion.

Nowadays, however, more and more much of the decisions are data-based; 
made either by humans with the assistance of machine intelligence or wholly by 
AI machines. It is reasonable to assume that AI may reduce the impact of bounded 
rationality, as AI processes reduce information asymmetry in the market and 
improve decision-making, thus making markets more rational. The open question 
is whether the use of AI in the market in applications such as online trading and 
decision-making may change economic theories, having on them an impact bearing 
on issues such as rational choice and expectations, computational thinking, portfolio 
optimization, counterfactual reasoning.

In what follows two novel tools of AI will be outlined, which should be able to 
cast a new light on all these questions: Topological data analysis (TDA) and con-
structor theory based machine learning (CT-ML); pointing out as well to the intrin-
sic limits that the AI approach could possibly exhibit (decidability of learnability). 
What we require AI to be able to do in the context of behavioral economics is: 
behavior analysis and forecast (cognitive science-based); support to decision-mak-
ing (intelligence of processes, optimization of choices, predictive strategies, cogni-
tive analytics); processing of ‘languages’ (natural as well as artificial); optimization 
policies.

With TDA’s algebraic topology methods, integrated within the idea of treating 
data sets as spaces (their key property is that these are not vector spaces, but topo-
logical spaces) whose ‘shape’ is relevant, have progressively earned pivotal inter-
est in data analytics. The reason of their success is that topological measures and 
observables are by construction very robust, and that moreover they permit to cap-
ture explicitly interactions between more than pairs of agents (nodes), thus providing 
a framework to describe, quantify, compare the global shape of arbitrary data spaces. 
This is crucial because virtually all interesting complex systems can be thought of as 
living in either configuration or phase spaces, including those that can be approxi-
mately described using finite datasets in terms of simplices. The two main concepts 
used to achieve this are ‘persistent homology’ and ‘topological simplification’.

Persistent homology encodes the shape of topological spaces by progressively 
finer approximations—higher order analogs of links between nodes—in a network 
able to describe explicitly interactions of more than two agents at the same time. It 
allows us to identify (and reduce) noise vs. signal. The process emphasizes those 
topological features in increasing dimensions (one-dimensional cycles, three dimen-
sional cavities, etc.), that survive through the sequence and therefore characterize 



1 3

The new frontiers of AI in the arena of behavioral economics﻿	

the shape of the dataset, letting us compare in a principled way arbitrary spaces 
with different dimensions, number of points, shape (invariants), etc. We can thus 
study the shape of correlation spaces among data space regions and how such shape 
changes. Functional, global, and localized homological information can all be used 
to track the system evolution in time and fingerprint individual subjects.

Topological simplification (known as Mapper, from its most famous algorithm) is 
a topological dimensionality reduction scheme, aimed to extracting low-dimensional 
simplicial-complex backbones from high-dimensional datasets, as it is possible to 
use this topological information to build a topological skeleton able to highlight dis-
similarities both in structure and function of different behavioral pathways. This can 
be further leveraged to build a ‘topologically informed’ map of feature spaces, thus 
improving and stream-lining the selection of features important for classifications in 
such spaces (e.g., equivalence classes of correlation patterns).

On the other hand topological descriptions are equally useful in understanding 
artificial neural networks (ANN) and their capacity to learn new tasks. Topological 
methods have been realized to allow NN to take advantage of homological descrip-
tors to better detect or craft adversarial attacks by exploiting the topology of learned 
manifolds, and to improve the interpretability of what actually happens inside NN 
as they learn to perform complex tasks. The crossover between topology, neurosci-
ence and artificial intelligence occurs as the capacities of neural networks, like those 
of the human connectome, reside in how they represent data spaces internally, just 
like brain functions are encoded in functional patterns—a well defined problem of 
comparison of spaces. Topological invariants provide thus a common thread and a 
robust tool to understand both cognitive and behavioral processes and AI.

Constructor theory (CT) is a visionary extension of John von Neumann’s notion 
of ‘universal constructor’, a self-replicating machine in a cellular automata environ-
ment designed in the ‘40s, without a computer (the details were published in von 
Neumann’s book Theory of Self-Reproducing Automata, in 1966—completed by 
Arthur W. Burks after von Neumann’s death). Revived and fully (and rigorously) 
reformulated by David Deutsch and Chiara Marletto, CT was recently used to con-
struct Information Theory (IT) completely and solely in terms of which transforma-
tions of the ground physical systems may occur and which may not (which is in a 
nutshell what constructor theory does: the basic principle of constructor theory is 
indeed that “All subsidiary theories are expressible entirely in terms of ‘statements’ 
about which physical transformations are «possible» and which are «impossible», 
and why.”). CT regards science—even IT—not merely as an enterprise for the pur-
pose of making predictions, but as an enterprise for discovering what the world is 
really like, how it behaves and why.

A notorious problem with defining information within physics is that informa-
tion is thought of as fully abstract: the theory of computation as developed by Alan 
Turing regarded computers and the information they manipulate in purely abstract 
terms as mathematical objects. One must realize instead that information is physical 
and that there is no such thing as an abstract computer: only a physical object can 
compute. Though it may include laws of physics that are only conjectured, CT-IT 
does not regard information as an a priori mathematical or logical concept, but as 
something whose nature and properties are determined by the laws of physics alone. 



	 M. Rasetti 

1 3

For this it does not suffer from the circularity at the roots of existing IT, namely that 
information and distinguishability are each defined in terms of the other. Thus CT 
reveals itself as the natural tool to proceed toward a true ‘ML Theory’.

Machine learning is the branch of AI concerning the construction and study 
of systems that can learn from data. Its core is the capacity of representing data 
instances and functions evaluated on these instances in such a way as to allow for 
recognition and construction of the method the system will perform with on dif-
ferent data instances. Keynote is the algorithm’s ability to perform accurately on 
new, previously unseen examples after having trained on a learning data set. In other 
words, the core goal of a learner machine is to generalize from its experience. The 
training results are probability distributions obtained from a reduced scale experi-
ence on the data set, while the learner’s task is to extract something more general, so 
as to produce useful predictions in new cases. One can say that ML focuses on the 
discovery of previously unknown global properties of the dataset.

As for IT, the processes taking place when ML operates can be pretty well rep-
resented in the frame of CT, as they do share a common physical frame: neural 
networks, be they natural or artificial. ANNs, brick circuits of AI machines, aim to 
mimic the human brain based on the concept that one way to think about the rational 
brain is that it works by accreting smaller abstractions into larger ones. Complexity 
of ‘thought’, in this view, is measured by the range of smaller abstractions one can 
draw on, as well as by the number of times one can combine lower-level abstractions 
into higher-level abstractions.

On the other hand, as more and more AI mediates our social, cultural, economic, 
political interactions, understanding the behavior of AI systems is crucial to our 
ability to control their actions, crop their benefits, minimize the harm they can do. 
This is what makes of AI the natural tool to deal with behavioral economics, even 
though a stronger scientific research agenda focus on machine behavior and interac-
tive computing is badly necessary.

Giving a sound mathematical foundations to ML through CT (the technical tool is 
category theory) will progressively improve our understanding and provide us with 
novel principles and frameworks to design new learning paradigms; in particular ‘no 
go’ theorems. This bears on the fact that also ML cannot escape the curse that all 
advantages of mathematics have a cost. In 1931, Kurt Gödel showed that in any 
system of axioms expressive enough to model arithmetic, for some true statements 
their truth is unprovable. Successively, it was shown that the Continuum Hypothesis 
(CH)—which states that no set of distinct objects has a size larger than that of the 
integers but smaller than that of the real numbers—cannot be proved nor refuted 
using the standard axioms of mathematics.

ML does not escape the fate of Gödel’s incompleteness theorems. Recently Shai 
Ben-David et al., resorting to the equivalence between learnability and compression, 
which implies that the solution to the respective optimization problem may be iso-
morphic to the proof of CH, succeeded in constructing scenarios proving that learn-
ability may be undecidable in the sense of Gödel. Of course, identifying the learn-
able is (it must be) a fundamental goal of ML: but to achieve it, one needs a robust 
mathematical framework, supporting the formal treatment of learnability. Conven-
tional paradigms of ML fail to do this, as learnability cannot always be decided by 
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standard axioms of mathematics, which are unable to provide any dimension-like 
quantity characterizing learnability in full generality. We argue that redefining such 
paradigms within the boundaries, rules and constraints of CT and TDA may lead to 
define efficiently such quantity.
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