
 Procedia Computer Science 83 (2016) 1182 – 1187

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.244

ScienceDirect
Available online at www.sciencedirect.com

The 6th International Symposium on Internet of Ubiquitous and Pervasive Things
(IUPT 2016)

Linking the Web of Things: LDP-CoAP mapping

Giuseppe Loseto, Saverio Ieva, Filippo Gramegna, Michele Ruta∗, Floriano Scioscia, Eugenio Di Sciascio

Politecnico di Bari, via E. Orabona 4, Bari (I-70123), Italy

Abstract

The Linked Data Platform (LDP) W3C Recommendation defined resource management primitives for HTTP only, pushing into

the background not-negligible use cases related to Web of Things (WoT) scenarios where HTTP-based communication and infras-

tructures are unfeasible. This paper proposes a mapping of the LDP specification for Constrained Application Protocol (CoAP)

in order to publish Linked Data on the WoT. A general translation of LDP-HTTP requests and responses is provided, as well as a

fully comprehensive framework for HTTP-to-CoAP proxying. The theoretical work is corroborated by an experimental campaign

using the W3C Test Suite for LDP.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Linked Data Platform, CoAP, Semantic Web of Things

1. Motivation

The World Wide Web Consortium (W3C) has recently released the Linked Data Platform (LDP) specification1.

It aims to provide a reference format for exposing and managing LD resources on the Web. Particularly, clear and

direct guidelines are now given for resource classification made according to resource type. Although this stan-

dardization effort improves previous RDF graphs management based on SPARQL 1.1 Graph Store HTTP protocol

(https://www.w3.org/TR/sparql11-http-rdf-update/) and basically fixes multiple issues, it leaves out Web of Things

(WoT) scenarios where alternative lightweight application protocols surrogate HTTP. This is, for example, the case

of CoAP (Constrained Application Protocol)2, a level 7 standard designed for Machine-to-Machine (M2M) com-

munication of constrained devices in the Internet of Things. Following the REST (REpresentational State Transfer)

architectural style, CoAP adopts a loosely coupled client/server model, based on stateless operations on resource
representations3. Each resource is unambiguously identified by a URI (Uniform Resource Identifier). Clients ac-

cess resources via asynchronous request/response interactions over a datagram-oriented transport like UDP, using

HTTP-derived methods essentially mapping the Read, Create, Update and Delete operations of data management.

Hence, main motivation of the paper stems from the need of extending and enriching the standardization of Linked

Data Platforms also to Web of Things use cases. It should be said that the W3C indicated possible solutions for

∗ Corresponding author. Tel.: +39-339-635-4949; fax: +39-080-596-3410

E-mail address: michele.ruta@poliba.it

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.244&domain=pdf

1183 Giuseppe Loseto et al. / Procedia Computer Science 83 (2016) 1182 – 1187

resource management in the WoT (see sec. 3.12 of Linked Data Platform Use Cases and Requirements4), but their

scope is quite limited. In fact, an approach based on a one-to-one HTTP-CoAP translation was followed5. Unfortu-

nately, such a mapping only worked with basic HTTP interactions, where several methods and headers were not used

and/or some other ones were particularly simplistic. As an example the methods options, head and patch were not

allowed as well as several MIME types (content-format) were missing, so that not negligible constraints on resources

introduced by LDP could not be considered. Hence, by trivially applying the one-to-one mapping suggested by the

W3C for coping with WoT scenarios, significant LDP functionality would be lost.

This paper proposes a novel and specific variant of the HTTP-CoAP mapping able to preserve all the LDP features

and capabilities in the Web of Things with a full support of the W3C specification. It also adds modern features

giving value to the strongest potentialities of CoAP (e.g., resource discovery based on CoRE Link Format), which are

completely absent in HTTP.

The remainder of the paper is organized as follows. The next section presents some background about LDP and

CoAP in order to make the work self-consistent, Section 3 introduces the proposed LDP-CoAP mapping, while

Section 4 addresses early experiments made to validate and corroborate the proposal. Finally, Section 5 closes the

paper.

2. Background

2.1. Linked Data Platform

LDP W3C Recommendation states Linked Data Platform defines a set of rules for HTTP operations on web
resources, some based on RDF, to provide an architecture for read-write Linked Data on the web. In particular,

the specification describes the use of HTTP methods and headers for accessing and managing resources from LDP
servers following the Linked Data approach6. Basically, seven types of Linked Data Platform Resources (LDPRs) are

defined, conforming to simple patterns and conventions.

LDP Resource (LDPR): a HTTP resource whose status complies with the basic LDP guidelines;

LDP RDF Source (LDP-RS): a LDPR whose status corresponds to an RDF graph and can be fully represented in a

RDF syntax. In particular LDP allows text/turtle7 and application/ld+json8 serializations;

LDP Non-RDF Source (LDP-NR): a LDPR not represented in RDF, i.e., a binary or text document without useful

RDF annotation. LDP servers can also generate metadata about LDP-NR resources, e.g., creation date or owner;

LDP Container (LDPC): a LDP-RS as collection of LDP resources. Three types of LDPC are defined, namely Basic,

Direct and Indirect;
LDP Basic Container (LDP-BC) is a LDPC defining a simple link to its resources through the ldp:contains

predicate, as shown in Figure 1(a);

LDP Direct Container (LDP-DC) is a LDPC increasing the flexibility of a LDP-BC with the membership feature.

A LDP-DC contains membership triples, according to the pattern in Figure 1(b), specifying the membership resource
and the member relation.

LDP Indirect Container (LDP-IC) is a LDPC similar to a LDP-DC, also capable of having member resources with

different URIs, as shown in Figure 1(c), unrelated to the main container URI. These resources are specified using the

insertedContentRelation LDP property in the body of LDP requests.

LDP specification also defines required and optional HTTP methods for LDP servers:

- GET: retrieves the description associated to the selected LDP resource;

- POST: creates a LDP resource in a LDP container;

- PUT: creates or updates a LDP resource in a LDP container;

- DELETE: removes a LDP resource on a LDP server;

- HEAD: retrieves the same HTTP headers as GET responses without body content;

- OPTIONS: lists the operations allowed on a LDP resource by means of specific HTTP response headers;

- PATCH: allows LDP clients to update a resource description exploiting the Linked Data Patch Format 9.

The W3C LDP Implementations reference page (http://www.w3.org/wiki/LDP Implementations) enumerates several

frameworks proposed in the last years. The most relevant ones are summarized in Table 1, showing both main features

1184 Giuseppe Loseto et al. / Procedia Computer Science 83 (2016) 1182 – 1187

/devices/sensors
LDP

/devices/sensors/tmp35
LDP

ldp:contains

(a) Basic Container

/devices
LDP

ldp:membershipResource

example:predicate

ldp:contains

ldp:hasMemberRelation

/devices/sensors/tmp35
LDP

/devices/sensors
LDP

(b) Direct Container

/devices
LDP

/devices/sensors
LDP

ldp:membershipResource

/devices/sensors/tmp35
LDP

example:predicate

ldp:contains

ldp:hasMemberRelation

/output/analog/tmp35
LDP

(c) Indirect Container

Fig. 1: Membership patterns of LDP containers (ldp prefix used as abbreviation of the LDP namespace http://www.w3.org/ns/ldp#)

and supported resources, as reported in the LDP implementation report 10. All implementations are based on the HTTP

protocol. No support is currently given to WoT standards, such as CoAP.

Name Status Last Version License Language Supported LDP Resources
Apache Marmotta Full release May 2014 APL 2.0 Java RS, NR, BC

Eclipse Lyo Completed Aug 2014 EPL 1.0 Java RS, NR, BC, DC

rww.io Pending Nov 2014 MIT PHP RS, BC

LDP.js Completed Apr 2015 APL 2.0 JavaScript RS, BC

Fedora 4.4 Full release Oct 2015 APL 2.0 Java RS, NR, BC, DC, IC

Carbon LDP In progress Oct 2015 BSD JavaScript RS, NR, BC, DC, IC

LDP4j In progress Dec 2015 APL 2.0 Java RS, BC, DC, IC

rww-play In progress Dec 2015 APL 2.0 Scala RS, NR, BC

OpenLink Virtuoso Full release Dec 2015 GPLv2 C/C++ RS, BC

gold In progress Jan 2016 MIT Go RS, BC

Callimachus Full release Jan 2016 APL 2.0 Java RS, NR, IC

Table 1: Current LDP implementations

2.2. Constrained Application Protocol

A CoAP message is composed of: (i) a 32-bit header, containing the request method code (or response status); (ii)

an optional token value, used to associate replies to requests, (iii) a sequence of option fields (containing information

such as resource URI and payload media type), (iv) the payload data. The CoRE Link Format specification11 is

adopted for resource discovery. A client accesses the reserved URI /.well-known/core on the server via GET

to retrieve available resource entry points. Further GET requests will include URI-query options to retrieve only

resources with given attributes. Standardized query attributes include resource type (rt), interface usage (if), content-

type (ct), and MIME (Multipurpose Internet Mail Extension) type for a resource. Further non-reserved attributes

can be freely used. CoAP also supports proxying, enabling Web applications to transparently access the resources

hosted in devices based on CoAP. A CoAP proxy can be explicitly selected by clients (forward-proxy) or can act as

the origin server for the target resource (reverse-proxy). Particularly, HTTP-CoAP cross-protocol proxying allows

HTTP clients to access resources on CoAP servers; a HTTP request containing a Request-URI with coap or coaps
scheme is forwarded to the specified CoAP resource.

3. LDP-CoAP mapping

A novel HTTP to CoAP mapping tought for LDP is presented here, improving the proposal in5. LDP-HTTP

request methods and headers have been properly translated to the corresponding LDP-CoAP ones and LDP-CoAP

1185 Giuseppe Loseto et al. / Procedia Computer Science 83 (2016) 1182 – 1187

responses are then mapped back to LDP-HTTP. The proposed mapping enables direct CoAP-to-CoAP interaction

among devices supporting LDP-CoAP.

Basically, the proposed LDP-CoAP association is obtained applying the following rules:

HTTP methods (shown in Table 2) are translated to the corresponding CoAP methods (if present). PATCH, HEAD and

OPTIONS, not defined in CoAP, are mapped to existing methods, adding the new Core Link Format attribute ldp. This

solution extends the basic CoAP functionalities while maintaining a full compatibility with the standard protocol.

HTTP status codes are mapped with available CoAP codes as described in Table 2. Codes for bad requests and errors

are translated as defined in the proposal5.

HTTP Headers of request/response messages are translated as in Table 3.

Finally, novel content-format media types are introduced in CoAP: text/turtle and application/ld+json.

HTTP Method Mandatory Supported in CoAP LDP-CoAP HTTP SC CoAP SC
GET YES YES GET 200 OK 2.05 Content

POST NO (optional) YES POST 201 Created 2.01 Created

PUT NO (optional) YES PUT 204 No Content 2.04 Changed

DELETE NO (optional) YES DELETE 204 No Content 2.02 Deleted

PATCH NO (optional) NO PUT ?ldp=patch 204 No Content 2.04 Changed

HEAD YES NO GET ?ldp=head 204 No Content 2.03 Valid

OPTIONS YES NO GET ?ldp=options 204 No Content 2.05 Content

Table 2: HTTP-CoAP Methods and Status Codes (SCs) Mapping

HTTP Header LDP-CoAP
Content-Type Content-Format (ct) CoAP option

Link (rel="type") Resource-Type (rt) Core Link Format attribute, available through a CoAP discovery request

Allow

Accept-Post

Accept-Patch
Not defined in CoAP, available in JSON format as body content of a LDP-CoAP Options request

Slug title Core Link Format attribute

Location location-path CoAP option

Table 3: HTTP-CoAP Headers Mapping

In order to make everything clearer, in what follows some reference examples of HTTP-CoAP translation are given.

Note that in some cases an HTTP request cannot be translated into a single CoAP request, but more CoAP messages

are needed.

Example 1. Basic HTTP GET request on an LDP resource
GET /alice/ HTTP/1.1

Host: example.org

Accept: text/turtle

The HTTP response is shown in Figure 2. In this case, a single CoAP GET request is not able to produce all the

required headers, because some of them are not defined in the response format of CoAP. So the original HTTP request

is translated to the following three LDP-CoAP requests:

- a GET message to map Content-Type (ct), ETag (if present) and RDF content of the LDP resource;

- a CoAP discovery message to retrieve the rt attribute indicating the LDP type of each resource. It maps the HTTP

Link response header;

- an OPTIONS message (described later) to map the Allow, Accept-Post and Accept-Patch response headers.

Example 2. Create a new LDP resource through a HTTP POST request
POST /alice/ HTTP/1.1

Host: example.org

Slug: foaf

Content-Type: text/turtle

<payload>

In this case, the request is translated to a single CoAP POST message with URL:

coap://example.org/alice?title=foaf&rt=ldp:Resource ct=text/turtle <payload>

1186 Giuseppe Loseto et al. / Procedia Computer Science 83 (2016) 1182 – 1187

DISCOVERY
REQUEST

OPTIONS
REQUEST

HTTP/1.1 200 OK
Content-Type: text/turtle; charset=UTF-8
Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
 <http://www.w3.org/ns/ldp#Resource>; rel="type"

Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH
Accept-Post: text/turtle, application/ld+json, image/bmp, image/jpeg
Accept-Patch: text/ldpatch
Content-Length: 250
ETag: W/'123456789'

Fig. 2: Example1. HTTP GET response (payload data not included)

As defined in Table 3, title and rt query parameters are obtained from the Slug and Link HTTP header fields,

respectively. If the Link header is not defined, ldp:Resource is used as default value of rt. The HTTP response will

contain the Location HTTP header corresponding to the Location-Path CoAP response option.

Example 3. HTTP OPTIONS request on a LDP resource
An OPTIONS request is used to obtain useful information about a resource, e.g., the list of available methods.

HTTP OPTIONS response is shown in Figure 3. Also in this case, multiple LDP-CoAP requests are combined to obtain

all the headers produced by the HTTP reply:

- Allow, Accept-Post and Accept-Patch response headers are not defined in CoAP so their values are set in the LDP-

CoAP OPTIONS response body in JSON syntax and then mapped to the corresponding HTTP headers;

- a CoAP discovery request is used to obtain the resource type (rt) then mapped to the HTTP Link response header.

Further examples for each method are on our LDP-CoAP Web page (http://sisinflab.poliba.it/swottools/ldp-coap).

DISCOVERY
REQUEST

HTTP/1.1 204 No Content
Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH
Accept-Post: text/turtle, application/ld+json, image/bmp, image/jpeg
Accept-Patch: text/ldpatch
Link: <http://www.w3.org/ns/ldp#BasicContainer>; rel="type",
<http://www.w3.org/ns/ldp#Resource>; rel="type"

Fig. 3: Example 3. HTTP OPTIONS response

4. Validation

The validation framework consists of four elements, shown in Figure 4:

- LDP-CoAP Server, a CoAP server exposing resources complying with LDP-CoAP;

- CoAP Client, making requests to the LDP-CoAP server through CoAP;

- HTTP Client, querying through HTTP messages a web server which exposes LDP resources. It does not communi-

cate directly with a LDP-CoAP server;

- LDP-CoAP Proxy, an HTTP-to-CoAP device used to connect CoAP devices to HTTP-based networks. It is respon-

sible for: (i) processing requests from HTTP clients; (ii) mapping HTTP requests to compatible LDP-CoAP ones

via the mapping rules described in Section 3; (iii) forwarding requests to the LDP-CoAP server; (iv) translating the

LDP-CoAP responses to HTTP responses to be returned to the client.

HTTP
Client

LDP

LDP-CoAP
Proxy

LDP

LDP-CoAP
Server

LDP

CoAP
Client

LDP

HTTP CoAP CoAP

Fig. 4: LDP-CoAP validation architecture

Californium Java library12 was used to implement the LDP-CoAP framework. In particular, the LDP-CoAP proxy

was based on the californium-proxy package, whilst the LDP-CoAP server exploited californium-core and OpenRDF
Sesame 2.8.6 library (http://rdf4j.org/) for RDF data processing and storage.

1187 Giuseppe Loseto et al. / Procedia Computer Science 83 (2016) 1182 – 1187

Functionality of the proposed framework was evaluated through the W3C LDP Test Suite (http://w3c.github.io/ldp-
testsuite/). By default, the suite diyurectly queries a LDP server by means of HTTP messages; therefore for LDP-

CoAP tests requests were sent to the server through a LDP-CoAP proxy as in Figure 4. The suite consists of 236

tests referred to rules and restrictions of the LDP W3C specification. Table 4 reports on the obtained results grouped

by supported LDP resources: RDF Sources, Non-RDF Sources and Basic, Direct, Indirect Containers. For each test

category, the specification requirements are divided in three compliance levels: MUST, SHOULD, and MAY. Due to

the lack of space, extensive reports with full details are not reported here, but can be found on the project Web page.

Currently unsatisfied test cases are related to the following unsupported features: PUT-to-create and PATCH methods,

paging and sorting, preference HTTP headers.

Feature MUST SHOULD MAY
Basic Container 32/37 (86.5%) 12/17 (70.6%) 3/4 (75.0%)

Direct Container 37/42 (88.1%) 13/19 (68.4%) 3/4 (75.0%)

Indirect Container 33/39 (84.6%) 12/17 (70.6%) 3/4 (75.0%)

Non-RDF Source 12/15 (80.0%) 1/1 (100.0%) 4/6 (66.7%)

RDF Source 22/24 (91.7%) 5/7 (71.4%) 1/1 (100.0%)

Table 4: LDP-CoAP Test Suite results summary

5. Conclusion and Future Work

This paper introduced a CoAP mapping of the Linked Data Platform specification for publishing Linked Data on

the Web of Things. The LDP W3C Recommendation, which defined resource management primitives only for HTTP,

stated the need for this work. The proposal includes a translation of LDP-HTTP requests and responses, as well as a

framework for HTTP-to-CoAP proxying.

Future work will include a performance evaluation of the proposed framework to assess the impact of LDP support

in resource-constrained devices. Furthermore, mapping the currently unsupported LDP features is under way, in

order to increase the compatibility with the specification: running the test suite again on future revisions will measure

progress in this area. Finally, a complete scenario will be defined to expose both real-time data and sensor observations

(e.g., weather data13) according to LDP-CoAP specifications.

References

1. A. Malhotra, J. Arwe, S. Speicher, Linked Data Platform 1.0, W3C Recommendation, W3C, http://www.w3.org/TR/ldp/ (Feb. 2015).

2. Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC 7252 (Proposed Standard) (Jun. 2014).

URL http://www.ietf.org/rfc/rfc7252.txt

3. C. Bormann, A. Castellani, Z. Shelby, CoAP: An Application Protocol for Billions of Tiny Internet Nodes, IEEE Internet Computing 16 (2)

(2012) 62–67.

4. S. Battle, S. Speicher, Linked Data Platform Use Cases and Requirements, W3C Working Group Note, W3C, http://www.w3.org/TR/ldp-ucr/

(Mar. 2014).

5. A. Castellani, S. Loreto, A. Rahman, T. Fossati, E. Dijk, Guidelines for HTTP-CoAP Mapping Implementations, Internet-Draft draft-ietf-

core-http-mapping-07, IETF Secretariat (July 2015).

6. T. Heath, C. Bizer, Linked data: Evolving the web into a global data space, Synthesis lectures on the semantic web: theory and technology

1 (1) (2011) 1–136.

7. G. Carothers, E. Prud’hommeaux, RDF 1.1 Turtle (Terse RDF Triple Language), W3C Recommendation, W3C, http://www.w3.org/TR/turtle/

(Feb. 2014).

8. M. Lanthaler, M. Sporny, G. Kellogg, JSON-LD 1.0 (A JSON-based Serialization for Linked Data), W3C Recommendation, W3C,

http://www.w3.org/TR/json-ld/ (Jan. 2014).

9. A. Bertails, P.-A. Champin, A. Sambra, Linked Data Patch Format, W3C Working Group Note, W3C, http://www.w3.org/TR/ldpatch/ (Jul.

2015).

10. S. Speicher, S. Fernández, Linked Data Platform Implementation Conformance Report, W3C Working Group Note, W3C,

http://www.w3.org/TR/ldp-implreport/ (Dec. 2014).

11. Z. Shelby, Constrained RESTful Environments (CoRE) Link Format, RFC 6690 (Proposed Standard) (Aug. 2012).

URL http://www.ietf.org/rfc/rfc6690.txt

12. M. Kovatsch, M. Lanter, Z. Shelby, Californium: Scalable cloud services for the internet of things with coap, in: Internet of Things (IOT),

2014 International Conference on the, IEEE, 2014, pp. 1–6.

13. H. Patni, S. S. Sahoo, C. Henson, A. Sheth, Provenance Aware Linked Sensor Data, in: Proceedings of the Second Workshop on Trust and

Privacy on the Social and Semantic, 2010.

