

Р. Хомерики, Д. Леон, С. Руффо, С. Вимбергер, Нелинейная динамика в потенциалах вида двойной прямоугольной ямы, *ТМФ*, 2007, том 152, номер 2, 292–303

DOI: https://doi.org/10.4213/tmf6088

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 207.241.231.108 11 марта 2020 г., 04:00:31

ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА Том 152, № 2 август, 2007

© 2007 г.

Р. Хомерики^{*,†}, Дж. Леон[‡], С. Руффо^{*}, С. Вимбергер[§]

НЕЛИНЕЙНАЯ ДИНАМИКА В ПОТЕНЦИАЛАХ ВИДА ДВОЙНОЙ ПРЯМОУГОЛЬНОЙ ЯМЫ

Первый пример сосуществования режимов осцилляций Джозефсона и автолокализации обнаружен в контексте когерентной нелинейной динамики в потенциале вида двойной прямоугольной ямы. Доказано одновременное существование симметричных, антисимметричных и асимметричных решений ассоциированного с такой динамикой уравнения Гросса–Питаевского, что объясняет указанную макроскопическую бистабильность. Эффект продемонстрирован и подтвержден численным моделированием. Это обстоятельство позволяет предложить эксперименты с конденсатом Бозе–Эйнштейна в специально сконструированных оптических решетках, а также в слабосвязанных массивах оптических волноводов.

Ключевые слова: массивы волноводов, конденсат Бозе-Эйнштейна.

1. ВВЕДЕНИЕ

К проблеме нелинейной динамики в потенциале вида двойной ямы впервые обратился Иенсен [1], который рассмотрел пространственные осцилляции силы света в двух спаренных нелинейных волноводах, динамика которых напоминает осцилляции Джозефсона в пространственной области. Первоначально осцилляции Джозефсона были открыты в сверхпроводящих контактах, где они возникали в результате макроскопического квантового эффекта туннелирования, обусловленного глобальной фазовой когерентностью между электронами в различных слоях [2], [3]. Недавно

^{*}Dipartimento di Energetica "S. Stecco" and CSDC, Università di Firenze, INFN, via s. Marta, 3, 50139 Firenze, Italy

[†]Department of Exact and Natural Sciences, Tbilisi State University, 3 Chavchavadze, 0128 Tbilisi, Georgia. E-mail: khomeriki@hotmail.com

[‡]Laboratoire de Physique Théorique et Astroparticules CNRS-UMR5207, Université Montpellier 2, 34095 Montpellier, France

[§]Consiglio Nazionale delle Ricerche – Instituto Nazionale per la Fisica della Materia, Dipartimento di Fisica "E. Fermi", Università degli Studi di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy; Institut für theoretische physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany

были представлены данные о реализации бозонного контакта Джозефсона для конденсата Бозе–Эйнштейна (КБЭ), помещенного в макроскопический потенциал вида двойной гармонической ямы [4]. Отличие в поведении по сравнению с обычным контактом Джозефсона заключается в том, что осцилляции дисбаланса атомной населенности подавляются при высоких значениях дисбаланса и возникает режим автолокализации [5], [6].

Нелинейная динамика бозонных контактов, описываемая уравнением Гросса–Питаевского (ГП) [7], обычно представляется динамикой более простой системы, которая характеризуется двумя степенями свободы (дисбаланс населенности и разность фаз), при этом нелинейные свойства волновой функции внутри отдельной ямы игнорируются. При таком подходе симметричные и антисимметричные стационарные решения уравнения ГП используются в качестве базиса для построения глобальной волновой функции [8], [9]. Это описание позволяет показать, что в случае больших нелинейностей симметричные решения становятся нестабильными и вырождаются в асимметричное стационарное (приближенное) решение уравнения ГП, соответствующее новому режиму автолокализации [10], [11].

С другой стороны, рассматривая потенциал вида двойной прямоугольной (а не гармонической) ямы, мы обнаружили, что в широком диапазоне нелинейностей состояние системы может либо по большей части оставаться запертым внутри одной из ям, либо периодически перескакивать из правой ямы в левую и обратно. Переход из одного состояния в другое инициируется незначительным локальным изменением потенциального барьера между ямами. Сосуществование режимов осцилляций и автолокализации отвечает одновременному существованию осцилляций Джозефсона и асимметричного решения уравнения ГП. Полученный нами результат отличается от известных результатов, описывающих поведение бозонных контактов Джозефсона, для которых наличие режима осцилляции и автолокализации определяется однозначно параметрами системы.

Свойство, которое мы в конечном счете получили, – переход системы из одного состояния в другое – должно иметь непосредственную экспериментальную реализацию в массивах волноводов, которые образуют по-настоящему одномерные системы и особенно удобны для наблюдения нелинейных эффектов [12]–[18], а также в специально сконструированных оптических решетках КБЭ [4]–[6], [9], [10], [19], [20], как это обсуждается ниже.

2. ТОЧНЫЕ НЕЛИНЕЙНЫЕ РЕШЕНИЯ В ДВОЙНОЙ ПРЯМОУГОЛЬНОЙ ЯМЕ

Запишем уравнение ГП в виде

$$i\frac{\partial\psi}{\partial t} + \frac{\partial^2\psi}{\partial x^2} - V(x)\psi + |\psi|^2\psi = 0,$$
(1)

где потенциал V(x), представленный на рис. 1, имеет вид двойной прямоугольной ямы, общая ширина которой равна 2L, высота промежуточного барьера равна V_0 , а ширина барьера – 2l.

Будем искать стационарное решение уравнения (1) в виде $\psi(t, x) = \Phi(x)e^{-i\beta t}$, где $\Phi(x)$ – некоторая вещественнозначная функция. Тогда эта функция выражается через эллиптические функции Якоби [21]:

$$-L < x < -l: \Phi = B \operatorname{cn}[\gamma_B(x+L) - \mathbb{K}(k_B), k_B],$$

$$l < x < L: \Phi = A \operatorname{cn}[\gamma_A(x-L) + \mathbb{K}(k_A), k_A],$$

$$-l < x < l: \Phi = C \operatorname{dn}[\gamma_C(x-x_0), k_C],$$
(2)

~?

где К – полный эллиптический интеграл первого рода, а параметры решения могут быть выражены через амплитуды следующим образом:

$$\begin{split} \gamma_A &= \sqrt{A^2 + \beta}, \qquad \gamma_B = \sqrt{B^2 + \beta}, \qquad \gamma_C^2 = V_0 - \beta - \frac{C^2}{2}, \\ k_A^2 &= \frac{A^2}{2(A^2 + \beta)}, \qquad k_B^2 = \frac{B^2}{2(B^2 + \beta)}, \qquad k_C^2 = \frac{V_0 - \beta - C^2}{V_0 - \beta - C^2/2} \end{split}$$

Отметим, что по построению выражения (2) удовлетворяют нулевым граничным условиям в точках $x = \pm L$.

Рис. 1. График потенциала непрерывной модели (1) в виде двойной прямоугольной ямы: 2L – ширина ямы, V_0 и 2l – высота и ширина барьера; кривые суть графики решений различных типов, полученные для значения полной мощности $P_t = 1.44$ (a). Форма асимметричного решения для различных значений полной мощности (б).

Решения в таком случае задаются в зависимости от пяти параметров (A, B, C, x_0, β) , четыре из которых определяются из условий непрерывности в точках $x = \pm l$. Поэтому сохраняющаяся полная закаченная мощность (параметр нелинейности)

$$P_{\rm t} = \int |\psi|^2 \, dx \tag{3}$$

вполне определяет решения. Другой полезной сохраняющейся величиной является полная энергия *E*, заданная формулой

$$E = \int \left(\left| \frac{\partial \psi}{\partial x} \right|^2 + V(x) |\psi|^2 - \frac{|\psi|^4}{2} \right) dx.$$
(4)

Рис. 2. Зависимость амплитуд (максимальных значений A и B в выражениях (2)) симметричных и асимметричных решений от полной мощности; амплитуды нечетных и четных симметричных решений практически совпадают (а). Относительная разность энергий симметричных (Φ_+) и асимметричных (Φ_+) решений в зависимости от полной мощности (б).

В пределе слабой нелинейности (P_t мало) решения являются симметричными: четное решение $\Phi_+(x)$, соответствующее A = B в (2), и нечетное решение $\Phi_-(x)$, соответствующее A = -B. Для более высоких мощностей, превышающих некоторое пороговое значение, существует также асимметричное решение $\Phi_a(x)$, для которого $A \neq \pm B$. Эти аналитические решения представлены на рис. 1.

При построении решений были зафиксированы следующие значения параметров модели: ширина двойной прямоугольной ямы 2L = 7.5, ширина барьера 2l = 0.25, его высота $V_0 = 20$. Мы получили полный набор решений (2) и представили зависимость их амплитуд от полной мощности P_t (3) на рис. 2а. Ниже порогового значения $P_t \approx 0.9$ существуют только симметричные (нечетные и четные) решения и их амплитуды практически совпадают. При пороговом значении возникает новое решение, которое является асимметричным с амплитудами A и B в двух ямах; эти амплитуды представлены соответственно верхней и нижней ветвями графика на рис. 2а.

3. ПРИБЛИЖЕНИЕ ДВУХ МОД

Режим осцилляций Джозефсона обычно понимается в рамках приближения связанных мод следующим образом. Используя симметричное и антисимметричное решения, построим вариационный анзац и будем искать решение $\psi(z, x)$ в виде

$$\psi(t,x) = \psi_1(t)\Phi_1(x) + \psi_2(t)\Phi_2(x),$$

$$\sqrt{2}\Phi_1 = \Phi_+ + \Phi_-, \qquad \sqrt{2}\Phi_2 = \Phi_+ - \Phi_-.$$
(5)

Величины $|\psi_1(t)|^2$ и $|\psi_2(t)|^2$ интерпретируются как вероятности найти систему локализованной в левой или правой части двойного прямоугольного потенциала. По построению мы пренебрегаем перекрытием функций Φ_1 и Φ_2 , поэтому последовательное проецирование уравнения $\Gamma\Pi$ (1) на Φ_1 и Φ_2 дает уравнения связанных мод [1], [5]

$$i\frac{\partial\psi_1}{\partial t} + D|\psi_1|^2\psi_1 = r\psi_2,$$

$$i\frac{\partial\psi_2}{\partial t} + D|\psi_2|^2\psi_2 = r\psi_1$$
(6)

с константой связи rи параметром нелиней
ности D,которые определяются формулами

$$r = \int \left[(\partial_x \Phi_1)(\partial_x \Phi_2) + V \Phi_1 \Phi_2 \right] dx \Big/ \int \Phi_1^2 dx, \qquad D = \int \Phi_1^4 dx \Big/ \int \Phi_1^2 dx.$$

Явное решение уравнений (6), выраженное через эллиптические функции Якоби, было найдено в работе [1] и использовано в работе [6] при рассмотрении КБЭ. Это приближение хорошо работает для системы в двойной гармонической яме [11] и корректно описывает режим осцилляций в нашем случае. Действительно, когда мощность первоначально закачивается в один канал, скажем $|\psi_1(0)| = 1$, $|\psi_2(0)| = 0$, при D < 4r получаем

$$|\psi_1|^2 = \frac{1}{2} \left[1 + \operatorname{cn}\left(2rt, \frac{D}{4r}\right) \right], \qquad |\psi_2|^2 = 1 - |\psi_1|^2.$$
(7)

Поскольку величина $|\psi_1|$ достигает нулевого значения, последнее выражение описывает осцилляции интенсивности света между левым и правым каналами. Период этих осцилляций равен $T = 2\mathbb{K}(D/(4r))/r$, что было проверено в ходе различных численных экспериментов при разной полной входной мощности. Итак, в то время как режим автофокусировки допускает прямую интерпретацию на основе асимметричного решения, интерпретация режима осцилляций Джозефсона требует привлечения приближения связанных мод, которое, в свою очередь, не в состоянии объяснить наблюдаемое сосуществование обоих режимов.

Такое сосуществование, однако, становится понятным в терминах энергии (4), которая может быть оценена при заданной полной мощности P_t как для симметричного решения Φ_+ , так и для асимметричного решения Φ_a . Как показано на рис. 26, эти энергии E_+ и E_a оказываются очень близкими вплоть до значения полной мощности $P_t \approx 2$. Следовательно, разрешено переключение из одного режима в другой при фиксированной мощности. В частности, в численных экспериментах, результаты которых представлены на рис. 3, полная мощность и энергия одинаковы до и после локального изменения высоты потенциального барьера.

Стоит отметить, что аналогичный анализ в случае двойной гармонической ямы [10], [11] показывает, что энергия асимметричного решения (когда это решение существует) значительно меньше энергии симметричного решения. В такой ситуации переход из состояния автофокусировки в режим осцилляций при сохранении без изменений и энергии, и полной мощности оказывается невозможным.

Рис. 3. Результаты численного моделирования для уравнения ГП (1). Небольшое локальное изменение высоты потенциального барьера в момент времени t = 150, представленное на вставке, приводит к переключению режима автолокализации на режим осцилляций Джозефсона. Полная закачанная мощность равна $P_t = \sum_i |\psi_j|^2 = 1.44$.

4. ПРИМЕНЕНИЯ ДЛЯ КБЭ И СПАРЕННЫХ МАССИВОВ ВОЛНОВОДОВ

Цель этого раздела – предложить эксперименты с КБЭ, а также с массивами волноводов, которые спроектированы таким образом, чтобы имитировать две слабосвязанные цепочки с результирующей потенциальной ямой, изображенной на рис. 4. Будет продемонстрирована возможность эффективного управления переходами между состояниями осцилляции и автолокализации в таких системах. Мы покажем, что задача сводится к уравнению ГП [7] в двойной прямоугольной яме, которое обнаруживает свойства, сильно отличающие его от рассмотренного ранее в случае двойной гармонической ямы [4]–[6], [10], [11], [20].

Начнем рассмотрение со случая КБЭ в оптической решетке, для которого одномерное уравнение ГП имеет следующий вид:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V(x)\psi + \frac{2\hbar^2 a_{\rm s}}{ma_{\perp}^2}|\psi|^2\psi,\tag{8}$$

где m – атомная масса, $a_{\rm s} < 0$ – длина рассеяния, отвечающая притяжению между атомами, и $a_{\perp} = \sqrt{\hbar/(m\omega_{\perp})}$ – длина поперечных колебаний, которая неявно учитывает реальную трехмерность системы [22], ω_{\perp} – частота поперечных колебаний

Рис. 4. Схема предлагаемой экспериментальной установки. В контексте КБЭ оптическая решетка дополняется двумя большими барьерами по обеим сторонам и маленьким барьером посередине (сплошная кривая). Конденсат первоначально помещается в основном в правую часть оптической решетки (штриховая кривая представляет плотность частиц). На вставке представлена редукция задачи к задаче о движении частицы в двойной прямоугольной яме. В контексте массивов волноводов сплошная кривая представляет (с противоположным знаком) изменение показателя преломления вдоль массива.

ловушки. Потенциал оптической решетки имеет вид

$$V(x) = \begin{cases} v \cos^2(k_{\rm L}x), & |k_{\rm L}x| > \pi/2, \\ (v+V_0) \cos^2(k_{\rm L}x), & |k_{\rm L}x| < \pi/2, \end{cases}$$
(9)

где $k_{\rm L}$ – волновое число лазерных пучков, создающих оптическую решетку, а V_0 – высота дополнительного энергетического барьера в пространстве, расположенного посередине оптической решетки. Кроме того, чтобы описать большие ограничивающие барьеры по обоим концам КБЭ, налагаются граничные условия Дирихле $\psi(\pm L) = 0$. Эти граничные условия могут быть реализованы в эксперименте с помощью дополнительной оптической решетки с большей амплитудой и большей постоянной решетки, как показано на рис. 4.

Вводя безразмерные единицы измерения длины $\tilde{x} = 2k_{\rm L}x$ и времени $\tilde{t} = E_{\rm B}t/\hbar$, где $E_{\rm B} = 8E_{\rm R} = 4\hbar^2 k_{\rm L}^2/m$, $E_{\rm R}$ – энергия отдачи [23], можно переписать уравнение (8)

следующим образом:

$$i\frac{\partial\Psi}{\partial\tilde{t}} = -\frac{1}{2}\frac{\partial^2\Psi}{\partial\tilde{x}^2} + \tilde{V}(\tilde{x})\Psi + g|\Psi|^2\Psi,\tag{10}$$

где Ψ – нормированная волновая функция [24], $\int |\Psi(\tilde{x})|^2 d\tilde{x} = 1$. Безразмерный потенциал \tilde{V} по-прежнему задается выражением (9), в которое теперь входят безразмерные глубины оптической решетки. Эти параметры, а также безразмерный параметр нелинейности g имеют следующий вид:

$$\tilde{v} = \frac{v}{E_{\rm B}}, \qquad \tilde{V}_0 = \frac{V_0}{E_{\rm B}}, \qquad g = \frac{Na_{\rm s}}{k_{\rm L}a_{\perp}^2}.$$
(11)

Мы провели численное моделирование [25] для уравнения (10) с 12 ямами (по шесть с каждой стороны от барьера, как показано на рис. 4) и параметрами $\tilde{v} = 0.25$ (в физических единицах это означает, что глубина оптической решетки равна $v = 2E_{\rm R}$), $\tilde{V}_0 = 0.15$ и фиксированным значением нелинейности g = -0.025 (притягивающее взаимодействие, $a_{\rm s} < 0$). Сходная динамика будет наблюдаться и при отталкивающем взаимодействии между атомами. Наблюдаемая картина слабо зависит от выбранного размера системы, коль скоро решетка содержит хотя бы по три ямы с каждой стороны от барьера.

Рис. 5а показывает, что приготовленное автолокализованное состояние конденсата остается таковым до тех пор, пока не произойдет кратковременное изменение высоты барьера. После этого конденсат переходит в осциллирующий режим туннелирования. В случае обратного процесса, начав с осциллирующего режима туннелирования (рис. 5б), конденсат попадает в автолокализованное состояние снова благодаря локальному во времени изменению энергетического барьера.

Отметим, что поскольку энергия барьера меняется адиабатически, полная энергия конденсата остается неизменной, т.е. режимы автолокализации и осцилляций имеют одинаковую энергию. Такое положение коренным образом отличается от того, которое имеет место в случае двойной гармонической ямы [4]–[6], [10], [11], [20]. Дело в том, что в последнем случае энергия асимметричного стационарного решения меньше, чем энергия симметричного решения, и разность энергий резко возрастает с ростом нелинейности. В такой ситуации энергия, необходимая для осуществления перехода между двумя режимами, довольно велика. В нашем случае переход достигается просто посредством локального изменения энергетического барьера. Мы утверждаем, что это происходит потому, что наш случай сводится эффективно к случаю двойной прямоугольной ямы (см. вставку на рис. 4 и процедуру редукции ниже), для которого асимметричные и симметричные стационарные решения обладают почти равными энергиями в широком диапазоне значений параметра нелинейности.

Приступим теперь к редукции уравнения (10) к дискретному нелинейному уравнению Шредингера (ДНУШ). Это делается посредством приближения сильной связи [15], [26], [27], в котором волновая функция $\Psi(\tilde{x})$ представляется как

$$\Psi(\tilde{x}) = \sum_{j} \phi_j \Phi_j(\tilde{x}), \tag{12}$$

Рис. 5. Численное моделирование уравнения (10): переход из состояния автолокализации в режим макроскопического туннелирования (а), обратный процесс (б). На вставках показано изменение энергетического барьера, необходимое для реализации переключения между различными режимами. Время измеряется в единицах $10^4 \hbar/E_{\rm B}$.

где $\Phi_j(\tilde{x})$ – нормированная изолированная волновая функция полностью линейной (g = 0) оптической решетки, которая может быть выражена через функции Ваннье (см., например, [28]). Для простоты используем здесь приближение этой функции для гармонической ловушки с центрами в точках $r_j = j\pi(|j| + 1/2)/|j|$ (|j| меняется от 1 до n и нумерует ямы). В случае эволюционного уравнения (10) функция $\Phi_j(\tilde{x})$ имеет вид

$$\Phi_j(\tilde{x}) = \left(\frac{\sqrt{\tilde{v}}}{\pi\sqrt{2}}\right)^{1/4} e^{-\sqrt{\tilde{v}}(\tilde{x}-r_j)^2/\sqrt{8}}$$
(13)

при $|j| \neq 1$, а чтобы получить приближенную формулу для волновой функции при |j| = 1, следует заменить \tilde{v} на $\tilde{v} + \tilde{V}_0$ в последнем выражении.

Предполагая далее, что перекрытие соседних волновых функций мало, получаем из формулы (10) следующее ДНУШ для значений индексов $|j| \neq 1$:

$$i\hbar \frac{\partial \phi_j}{\partial \tilde{t}} = -Q(\phi_{j+1} + \phi_{j-1}) + U|\phi_j|^2 \phi_j, \qquad (14)$$

тогда как для |j| = 1 имеем

$$i\hbar \frac{\partial \phi_{\pm 1}}{\partial \tilde{t}} = -Q\phi_{\pm 2} - Q_1\phi_{\mp 1} + U_1|\phi_{\pm 1}|^2\phi_{\pm 1}, \tag{15}$$

где предполагается выполнение нулевых граничных условий. Константы Q, Q_1, U и U_1 легко вычисляются из следующих выражений $(|j| \neq 0)$:

$$Q = -\int \left[\frac{\partial \Phi_j}{\partial \tilde{x}} \frac{\partial \Phi_{j+1}}{\partial \tilde{x}} + \tilde{v} \cos^2 \frac{\tilde{x}}{2} \Phi_j \Phi_{j+1} \right] d\tilde{x},$$

$$Q_1 = -\int \left[\frac{\partial \Phi_1}{\partial \tilde{x}} \frac{\partial \Phi_{-1}}{\partial \tilde{x}} + (\tilde{v} + \tilde{V}_0) \cos^2 \frac{\tilde{x}}{2} \Phi_1 \Phi_{-1} \right] d\tilde{x},$$

$$U = g \int \Phi_j^4 d\tilde{x} \simeq U_1 = g \int \Phi_{\pm 1}^4 d\tilde{x}.$$
(16)

Чтобы охарактеризовать решения уравнений (14) и (15), будем следовать предложенной в работе [29] процедуре, в которой используется непрерывное приближение. Предполагая, что $\phi_1 = \phi_{-1}$, приходим окончательно к уравнению

$$\frac{i\hbar}{Q}\frac{\partial\phi(j)}{\partial\tilde{t}} = -\frac{\partial^2\phi(j)}{\partial j^2} + W(j)\phi(j) + R|\phi(j)|^2\phi(j), \tag{17}$$

где теперь j – непрерывная переменная, W(j) – потенциал вида двойной прямоугольной ямы с высотой и шириной барьера соответственно $w = 2(Q - Q_1)/Q$ и l = 1, функция $\phi(j)$ удовлетворяет нулевым граничным условиям $\phi(j)|_{j=\pm L} = 0$ (2L – ширина двойной прямоугольной ямы) и параметр нелинейности равен R = U/Q < 0. Полагая $\psi \equiv \sqrt{|R|}\phi$, снова переопределяя $t \equiv Q\tilde{t}/\hbar$ и учитывая, что полная мощность P_t связана с параметром нелинейности R следующим образом: $P_t = |R|$, мы видим, что уравнение (17) совпадает с уравнением (1), и, таким образом, весь проведенный выше анализ характерных особенностей для потенциала вида двойной прямоугольной ямы прямо переносится на рассматриваемые решетки КБЭ.

В случае систем волноводов ситуация даже проще. Действительно, массив расположенных рядом волноводов, обменивающихся мощностью, моделируется ДНУШ [30], [27], которое имеет вид

$$i\frac{\partial\psi_j}{\partial z} + \frac{\omega}{c}(n_j - n)\psi_j + Q(\psi_{j+1} + \psi_{j-1} - 2\psi_j) + |\psi_j|^2\psi_j = 0,$$
(18)

где z – продольное расстояние в направлении массива волноводов, положения отдельных волноводов нумеруются индексом $j, -N \leq j \leq N$, и комплексные поля ψ_j являются результатом проецирования огибающей электрического поля на собственные моды отдельного волновода. Эти поля нормированы таким образом, что коэффициент при нелинейном члене равен единице. Линейный показатель преломления n_j взят равным n для всех $j \neq 0$ и $n_0 < n$ для j = 0. Константа связи между двумя соседними волноводами равна Q, ω и c – частота и скорость света. Нулевые граничные условия $\psi_{N+1} = \psi_{-N-1} = 0$ моделируют поле, быстро убывающее за пределами волноводов. Рассматривая теперь величину $1/\sqrt{Q}$ как эффективный шаг решетки, можно представить функции $\psi_j(z)$ функцией $\psi(x, z)$ непрерывной переменной $x = j/\sqrt{Q}$. В результате модель ДНУШ (18) посредством переопределения $z \to t$ превращается в модель (1) с изначально рассматриваемым потенциалом вида двойной прямоугольной ямы.

5. ЗАКЛЮЧЕНИЕ

Новое когерентное состояние обнаружено в системе с потенциалом вида двойной прямоугольной ямы. Это когерентное состояние обладает свойством *бистабильности*: можно легко переходить из режима осцилляций в режим автолокализации и обратно. Такое нетривиальное поведение может иметь интересные приложения в различных слабо связанных протяженных системах, таких как системы КБЭ, массивы волноводов или контактов Джозефсона, что заслуживает дальнейшего исследования.

В области нелинейности, где асимметричное решение существует одновременно с симметричным и антисимметричными стационарными решениями, мы инициировали переключение с одного режима на другой посредством изменения высоты барьера. В реальном эксперименте такие переходы можно инициировать изменением показателя преломления центрального волновода (в случае слабо связанных массивов волноводов) или локальным изменением барьера оптического потенциала (в случае КБЭ).

Благодарности. Мы благодарим Ф. Т. Арекки, Е. Аримондо, А. Монтину и O. Морша за полезные обсуждения. Р. Хомерики благодарит за поддержку Marie-Curie International Incoming Fellowship Award (грант MIF2-CT-2006-021328) и NATO (грант FEL.RIG.980767). С. Руффо выражает благодарность за финансовую поддержку в рамках проекта "Dynamics and thermodynamics of systems with long-range interactions" (грант PRIN05). С. Вимбергер благодарит фонд Александра Гумбольта (программа Feodor-Lynen).

Список литературы

- [1] S. M. Jensen, *IEEE J. Quantum Electronics*, **18** (1982), 1580.
- [2] B. D. Josephson, *Phys. Lett.*, **1** (1962), 251.
- [3] P. L. Anderson, J. W. Rowell, *Phys. Rev. Lett.*, **10** (1963), 230.
- [4] M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, M. K. Oberthaler, *Phys. Rev. Lett.*, 95 (2005), 010402.
- [5] A. Smerzi, S. Fantoni, S. Giovanazzi, S. R. Shenoy, Phys. Rev. Lett., 79 (1997), 4950.
- [6] S. Raghavan, A. Smerzi, S. Fantoni, S. R. Shenoy, Phys. Rev. A, 59 (1999), 620.
- [7] Л. П. Питаевский, ЖЭТФ, 40 (1961), 646; Е. Р. Gross, Nuovo Cimento, 20 (1961), 454;
 J. Math. Phys., 4 (1963), 195.
- [8] E. A. Ostrovskaya, Yu. S. Kivshar, M. Lisak et al., Phys. Rev. A, 61 (2000), 031601.
- [9] D. Ananikian, T. Bergeman, *Phys. Rev. A*, **73** (2006), 013604.
- [10] A. Montina, F. T. Arecchi, Phys. Rev. A, 66 (2002), 013605.
- [11] T. Kapitula, P.G. Kevrekidis, Nonlinearity, 18 (2005), 2491; P.G. Kevrekidis, Zhigang Chen, B.A. Malomed, D.J. Frantzeskakis, M.I. Weinstein, Phys. Lett. A, 340 (2005), 275.
- [12] H.S. Eisenberg, Y. Silberberg, R. Morandotti et al., Phys. Rev. Lett., 81 (1998), 3383.
- [13] R. Morandotti, H.S. Eisenberg, Y. Silberberg, M. Sorel, J.S. Aitchison, Phys. Rev. Lett., 86 (2001), 3296.
- [14] D. Mandelik, H.S. Eisenberg, Y. Silberberg et al., *Phys. Rev. Lett.*, **90** (2003), 053902;
 D. Mandelik, R. Morandotti, J.S. Aitchison, Y. Silberberg, *Phys. Rev. Lett.*, **92** (2004), 093904.
- [15] A. A. Sukhorukov, D. Neshev, W. Krolikowski, Y. S. Kivshar, *Phys. Rev. Lett.*, **92** (2004), 093901.
- [16] J.W. Fleischer, T. Carmon, M. Segev et al., Phys. Rev. Lett., 90 (2003), 023902.
- [17] J.W. Fleischer, M. Segev, N.K. Efremidis et al., Nature, 422 (2003), 147.
- [18] A. Fratalocchi, G. Assanto, *Phys. Rev. E*, **73** (2006), 046603; A. Fratalocchi, G. Assanto,
 K. Brzdakiewicz, M. Karpierz, *Opt. Express*, **13** (2005), 1808.
- [19] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, M. Inguscio, *Science*, **293** (2001), 843.
- [20] M. Anderlini, J. Sebby-Strabley, J. Kruse et al., J. Phys. B, **39** (2006), S199.
- [21] P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin–Göttingen–Heidelberg, 1954.
- [22] T. Bergeman, M. G. Moore, M. Olshanii, Phys. Rev. Lett., 91 (2003), 163201.
- [23] I. Bloch, J. Phys. B, 38 (2005), S629; O. Morsch, M. Oberthaler, Rev. Mod. Phys., 78 (2006), 179.
- [24] L. Carr, M. J. Holland, B. A. Malomed, J. Phys. B, 38 (2005), 3217; S. Wimberger,
 P. Schlagheck, R. Mannella, J. Phys. B, 39 (2006), 729; P. Schlagheck, T. Paul, Phys. Rev. A, 73 (2006), 023619.
- [25] R. Khomeriki, S. Ruffo, S. Wimberger, Europhys. Lett., 77 (2007), 40005; cond-mat/0610014.
- [26] A. Smerzi, A. Trombettoni, *Phys. Rev. A*, **68** (2003), 023613.
- [27] M. J. Ablowitz, Z. H. Musslimani, Phys. Rev. Lett., 87 (2001), 254102; Phys. Rev. E, 65 (2002), 056618.
- [28] J.C. Slater, Phys. Rev., 87 (1952), 807.
- [29] R. Khomeriki, J. Leon, S. Ruffo, Phys. Rev. Lett., 97 (2006), 143902.
- [30] D. N. Christodoulides, R. I. Joseph, Opt. Lett., 13 (1988), 794.