
Assessing Insulin Secretion by Modeling in
Multiple-Meal Tests
Role of Potentiation
Andrea Mari,

1
Andrea Tura,

1
Amalia Gastaldelli,

2
and Ele Ferrannini

2

We developed a mathematical model of the glucose
control of insulin secretion capable of quantifying �-cell
function from a physiological meal test. The model
includes a static control, i.e., a secretion component
that is a function of plasma glucose concentration (the
dose-response function), and a dynamic control, i.e., a
secretion component that is proportional to the positive
values of the glucose concentration derivative. Further-
more, the dose-response function is assumed to be
modulated by a time-varying potentiation factor. To test
the model, nine nondiabetic control subjects and nine
type 2 diabetic patients received three standardized
mixed meals over a period of 14–15 h. Blood samples
were drawn for the measurement of glucose, insulin,
and C-peptide concentration. The dose-response func-
tion, the parameter of the dynamic control, and the
potentiation factor were determined by fitting the
model to glucose and C-peptide concentrations. In dia-
betic patients, the dose-response function was shifted
to the right (glucose concentration at a reference insu-
lin secretion of 300 pmol � min�1 � m�2 was 11.7 � 1.1 vs.
7.2 � 0.7 mmol/l; P < 0.05), and decreased in slope (53 �
15 vs. 148 � 38 pmol � min�1 � m�2 � mmol�1 � l; P < 0.05)
and the parameter of the dynamic control was decreased
(220 � 67 vs. 908 � 276 pmol � m�2 � mmol�1 � l; P < 0.05)
compared with the nondiabetic control subjects. Fur-
thermore, potentiation was markedly blunted and de-
layed: maximum potentiation was observed at the first
meal in normal subjects and at the second meal (about
4 h later) in diabetic subjects; the mean time for the
potentiation factor was higher (7.1 � 0.2 vs. 5.9 � 0.2 h;
P < 0.01), and the size of potentiation was reduced
(2.6 � 0.5 vs. 7.2 � 1.5 fold increase; P < 0.005). In
conclusion, our model of insulin secretion extracts mul-
tiple indexes of �-cell function from a physiological
meal test. Use of the model in patients with type 2
diabetes retrieves known defects in insulin secretion
but also uncovers new facets of �-cell dysfunction.
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T
he study of insulin secretion by modeling re-
ceived considerable attention in the 1970s, when
sophisticated experiments and models were de-
veloped (1–3). The application of modeling to

clinical research has since been slow, the intravenous
glucose test with ad hoc simplified models being the most
widely used approach (4).

A new impulse to in vivo modeling of insulin secretion
has come from the C-peptide–based methods (5,6), which
have overcome the problem of first-pass hepatic insulin
extraction, a potentially confounding factor. The most
recent approaches are based on the C-peptide method, in
particular those in which a meal or a meal-like test is used
to assess �-cell function (7–9). In these approaches, how-
ever, little of the original model complexity remains,
mainly because of the difficulty of estimating complex
models from clinical data.

One of the physiological aspects lost to simplified
models is potentiation of insulin secretion by repeated
glucose stimulation, which is part of the phenomenon
known as the Staub-Traugott effect (10,11). Potentiation is
known to have remarkable importance, and has been
considered with great attention in early modeling (1,3). In
a recent study in which we modeled insulin secretion
during a whole day of free living (12), we recognized that
some form of potentiation is necessary to explain the
experimental data. We have therefore developed a model
of the glucose control of insulin secretion that incorpo-
rates the potentiation phenomenon. We have used this
model to analyze the role of potentiation in multiple-meal
tests in lean subjects and in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS

Subjects. Nine healthy male subjects (age 24 � 1 years, BMI 22 � 0.5 kg/m2)
and nine type 2 diabetic patients (five men and four women, age 58 � 2 years,
BMI 33 � 1 kg/m2) participated in the study. Diabetes duration was 7 � 1
years, and HbA1c averaged 9.0 � 0.5%. Eight patients were treated with oral
hypoglycemic agents, one with diet; all medications were discontinued 3
weeks before the study. The subjects were admitted to the hospital 1 or 2 days
before the study and consumed their last meal at 7:00 P.M. on the day before
the study. On the study day, three meals were served (2,200 kcal in healthy
subjects and 1,700 kcal in diabetic patients), of which 25–30% were given as
breakfast and the remaining equally divided between the two other meals.
Meal composition was 50% carbohydrate, 20% protein, and 30% fat. Breakfast
was consumed between 8:00 and 9:00 A.M., lunch 4 h later, and dinner 12 h
(healthy subjects) or 10 h (diabetic patients) after breakfast. Blood sampling
started before the first meal (time 0) and continued for 14–15 h, for the
measurement of plasma glucose, insulin, and C-peptide concentrations. Writ-
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ten informed consent was obtained from all subjects, and the protocol was
approved by the local ethics committee.
Modeling. The model (Fig. 1) consists of three subunits: a model for fitting
the glucose concentration profile, a model describing the relationship be-
tween glucose concentration and insulin (or C-peptide) secretion, and a model
of C-peptide kinetics.

The purpose of the glucose model is to smooth and interpolate glucose
concentrations. It is described by the differential equation

dG�t�

dt
� � kG�t� � R�t� (1)

where G(t) (expressed in mmol/l) is the venous plasma glucose concentration,
k � 0.012 min�1 is an assigned constant, and R(t) is a function of time,
represented in discrete form as a piece-wise linear function over 5-min
intervals. Equation 1 yields a glucose concentration profile continuous in time
and its time derivative. Formally, Eq. 1 is a single-compartment model of
glucose kinetics, although in this context it is only used as a method for
smoothing glucose concentration.

In the insulin secretion model, insulin secretion [S(t), in pmol/min] is
represented as the sum of two components. The first component [Sg(t)]
expresses a static relationship between insulin secretion and glucose concen-
tration, i.e., it embodies a �-cell dose-response function. This dose-response
function is not time-invariant, however, but is modulated by a time-varying
factor, expressing a potentiation effect upon insulin secretion:

Sg�t� � eQ�t�f(G) (2)

where Q(t) is a function of time, represented in discrete form as a piece-wise
linear function as R(t) with zero mean over the experimental time period, and
f(G) is the dose-response function. The factor P(t) � eQ(t) is denoted as
potentiation factor: it is greater than 1 if Q(t) is above average, and less than
1 if Q(t) is below average.

The �-cell dose-response function f(G) has a formally complex expression
(Appendix A) but is characterized by the following simple properties: 1) f(G)
is positive for G � 0; 2) f(G) is quasi-linear for G below or above a given
glucose threshold; 3) the transition between the two quasi-linear portions can
be both smooth or sharp. f(G) is determined by four parameters: the initial and
final slopes (p3 and p4, see Appendix A), the threshold glucose level at which
the change in slope occurs (p2), and a parameter determining the smoothness
of the change (p1). This dose-response function has been designed on the

basis of our previous analysis (12), in which we have shown that a linear
dose-response function is generally sufficient, but in some subjects a change
in slope, more or less gradual, must be incorporated. The present dose-
response function overcomes the problem of negative f(G) values of the
previous formulation, although it still has the drawback that some parameters
(curvature and threshold) are not well identified when the actual dose-
response function is virtually linear in the range of the observed glucose
concentrations. Even in this case, however, the dose-response function is
well-defined, as curvature and threshold have little influence on f(G) when
f(G) is quasi-linear.

The dose-response function is modified during the experiment by the
potentiation factor P(t) (Eq. 2). We define the average dose-response as that
corresponding to the average P(t) in the entire experiment (which is close to
1, as Q(t) is 0 on average).

The second insulin secretion component [Sd(t)] represents a dynamic
dependence of insulin secretion on the rate of change of glucose concentra-
tion. Sd(t) is proportional to the derivative of glucose concentration when the
derivative is positive, and is 0 otherwise:

Sd�t� � �pd

dG�t�

dt
,
dG�t�

dt
� 0

0,
dG�t�

dt
� 0

(3)

Total insulin secretion is the sum of the two components described above:

S�t� � Sg�t� � Sd�t� (4)

Total insulin secretion is calculated every 5 min. Total insulin secretion is
not dependent on the specific model presented here, because it is equivalent
to insulin secretion as calculated by the C-peptide deconvolution method of
Van Cauter et al. (6).

The model for C-peptide kinetics is the two-exponential model proposed by
Van Cauter et al. (6), in which the model parameters are determined in each
individual on the basis of the subject’s sex, weight, height, and age. Plasma
C-peptide concentration [C(t)] is the convolution product of the individual-
ized, two-exponential C-peptide impulse response h(t) and C-peptide secre-
tion, S(t) (Eq. 4):

C(t) � h(t)VS(t) (5)

where R denotes convolution.
The model resulting from the combination of Eqs. 1–5 embodies three

differential equations (Eq. 1 for glucose and two differential equations for the
C-peptide model). The model predicts glucose and C-peptide concentration
once the parameters of f(G) and pd, R(t) (Eq. 1), and Q(t) (Eq. 2) are known.
Conversely, the parameters of f(G), pd, R(t), and Q(t) can be estimated using
least-squares techniques from the glucose and C-peptide data. For this
purpose, it is necessary to introduce regularization constraints on R(t) and
Q(t), as done in deconvolution schemes. The regularization method used adds
penalty terms for R(t) and Q(t) to the standard sum of squares term, which
eliminate the spurious oscillations that R(t) and Q(t) would otherwise exhibit.
The function that the least-squares algorithm actually minimizes is

�wG�t�2�G�t� � Ĝ�t�	2 � �wC�t�2�C�t� � Ĉ�t�	2
��wR(t)R�(t)	2
��wQ(t)Q�(t)	2
��wo(t)Q(t)	2 (6)

where the sums are over all time points, the hat denotes the model prediction,
the double quote is the second derivative with respect to time, and the w’s are
weights. In Eq. 6, the first two terms are the standard weighted sums of
squares for glucose and C-peptide, the third and fourth term are the regular-
ization terms based on the second derivatives of R(t) and Q(t), which are
normally employed in deconvolution algorithms, and the last term is the sum
of Q(t) squared.

The weights of the first two standard least-squares terms, wG(t) and wC(t),
were set to the inverse of the expected standard deviation of the measurement
error for glucose and C-peptide concentration. For glucose, the standard
deviation was assumed to be constant and equal to 2% of the mean glucose
concentration for each individual experiment. For C-peptide, the measure-
ment error was experimentally found to be concentration dependent and was
estimated for each point with the formula: SD � 0.0214 � C 
 10, where SD
and C are in pmol/l. The weights wR and wQ determine the degree of
smoothness of R(t) and Q(t): high weights give smoother R(t) and Q(t). The
weight w0 constrains Q(t) to be small in a least-square sense. This additional
constraint has little importance when the secretion rate is clearly correlated
with the glycemic excursions. When this correlation is weaker, it may happen
that the changes in insulin secretion are accounted for by the potentiation
factor P(t) rather than the dose response f(G). In these situations, the last

FIG. 1. Model of �-cell function.
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term of Eq. 6 helps to explain as much as possible the secretion changes with
glycemic excursions rather than with the potentiation factor P(t). These
weights were iteratively selected so that the standard deviation of glucose and
C-peptide concentrations calculated from the difference between the observed
and the model-predicted values are close to the values expected from the
measurement error. Model simulation and parameter estimation by minimi-
zation of Eq. 6 was performed using the language of technical computing,
Matlab.

To illustrate the role of the various secretion components, total insulin
secretion is split into three terms according to Eqs. 2 and 4:

S�t� � Sd�t� � P̄ f�G� � �P�t� � P̄] f(G) � Sd�t� � Ss�t� � Sp�t� (7)

where P is the mean value of P(t) during the experiment. In Eq. 7, the first
component Sd(t) is the dynamic component, the second component Ss(t) is a
static component obtained from the average dose-response function (i.e.,
without potentiation), and the third component Sp(t) is the potentiation
component. Sp(t) is a fictitious component expressing the deviation of the
actual secretion S(t) from that predicted by Sd(t) and Ss(t) and can be either
positive or negative.

Insulin secretion parameters were normalized to body surface area. From
the estimated model parameters, other parameters describing �-cell function
were calculated. From the dose-response function, the insulin secretion value
corresponding to a fixed reference glucose concentration value (e.g., 5
mmol/l) was calculated. The slope of the dose-response function at this
glucose concentration was also determined. This parameter quantifies �-cell
sensitivity to glucose concentration changes in the vicinity of the reference
glucose value. In the present series of subjects, comparison of insulin
secretion at a fixed glucose concentration between control and diabetic
subjects is not reliable because the two groups had very different glucose
levels. Comparison was thus made between the glucose levels corresponding
to a fixed (300 pmol � min�1 � m�2) insulin secretion.

To quantify the excursion and the time distribution of the potentiation
factor, the ratio between its maximum and minimum value and its mean time
were calculated. The mean time is the integral over the first 14 h of the product
between time and the potentiation factor, divided by the integral of the
potentiation factor during the same period. The mean time is the center of
gravity of the potentiation factor curve.
Statistical analysis. Data and results are presented as mean � SE. The
statistical significance of differences between groups was assessed with the
Mann-Whitney U test.

RESULTS

Glucose and C-peptide concentrations are shown in Fig. 2
together with the model fit. The existence of potentiation
is evident from the data of Fig. 2: in the diabetic subjects,
for instance, the second C-peptide peak is similar to the
first in the face of a lower glucose peak.

Figure 3 shows the components of insulin secretion as
calculated by Eq. 7. The figure clearly shows that, in both
groups, insulin secretion is not accurately predicted from
the glucose changes when using only the static and the
dynamic control. For instance, in control subjects, total
insulin secretion is underestimated during the first glucose
peak and overestimated during the third glucose peak by
the static secretion component. With the inclusion of
potentiation, total insulin secretion is accurately pre-
dicted. Figure 3 also shows that the static component is
the largest, whereas the dynamic and the potentiation
components are smaller.

Figure 4 shows the dose-response functions, calculated
for plasma glucose values in the range of those experimen-
tally observed; Table 1 gives the dose-response parame-
ters. The dose-response function was virtually linear in 14
of 18 subjects. The slope of the dose-response function
was higher in control than in diabetic subjects. Further-
more, the parameter of the dynamic control (pd) was
lower in diabetic subjects.

Figure 5 shows the time course of the potentiation
factor. The differences in pattern are remarkable. Whereas

in control subjects potentiation rises during the first
glucose peak and is responsible for the higher secretory
response to the first meal, in diabetic subjects potentiation
is much delayed and sustains the secretory response
during the second meal. The mean time for the potentia-
tion factor is in fact significantly higher in diabetic sub-
jects (Table 1). Furthermore, in diabetic subjects, the
potentiation factor excursion is reduced more than two-
fold in comparison with nondiabetic subjects (Table 1). Of
interest is also that, in control subjects, potentiation
follows the first glucose peak, whereas after the third
glucose peak, which is comparable to the first in height,
potentiation changes only slightly.

DISCUSSION

For a critical evaluation of the results of this work, it is
important to review the model characteristics. Building on
long-standing concepts of glucose control of insulin secre-
tion and on our own previous experience (12), we mod-
eled a secretion component that is a quasi-linear function
of plasma glucose concentration and another component
that depends on the derivative of glucose concentration.
The need for these components has emerged from more

FIG. 2. Glucose and C-peptide concentrations in control subjects (A)
and type 2 diabetic subjects (B). The continuous line represents the
model fit; the hatched portion refers to the 4-h period with no data.
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recent work using meals or meal-like tests (7–9). In our
previous work (12) and in the present analysis, we found
that these model characteristics are not sufficient to
explain the data of repeated meal tests. In particular, an
invariant dose-response function is not compatible with
the observed data. As the experimental data show clear
evidence of potentiation of insulin secretion—a well-
known phenomenon—we have featured potentiation in
the model.

Because it is not likely that in a repeated meal test
potentiation is as simple as described in the mechanistic
model of Cerasi et al. (3) or the one by Bergman and
Urquhart (1), we have chosen a different approach. We

have represented the interplay between the static re-
sponse of the �-cells to glucose (the dose-response func-
tion) and potentiation in a form derived from Cerasi et al.
(3), i.e., as the product of the dose-response function and
the exponential function of a variable [Q(t) in our nota-
tion] representing potentiation. However, in the model of
Cerasi et al., potentiation is related to glucose concentra-
tion by a set of differential equations, whereas in our
model Q(t) is an estimated function of time, constrained to
be smooth but with no a priori determined relationship
with glucose. Although this choice has some limitations
(see below), it has the essential advantage of being inde-
pendent of specific assumptions on the mechanisms of
potentiation. In fact, in our analysis, the potentiation
pattern turns out to be not as simply related to glucose
concentration as presupposed by the model of Cerasi et al.
This is evident, for instance, in control subjects. The
model of Cerasi et al. could explain the onset of potenti-
ation during the first meal. However, because potentiation
in the last meal is totally different from that in the first
meal despite similar glucose excursions, the same model
could not explain both meals.

During the first meal, the potentiation pattern is such
that it determines an increase in total insulin secretion

FIG. 3. Insulin secretion components in control subjects (A) and type
2 diabetic subjects (B). For clarity, error bars are drawn every 30 min
for total insulin secretion only.

FIG. 4. Dose-response functions in control and type 2 diabetic subjects.
Error bars are drawn at 1 mmol/l glucose concentration intervals.

TABLE 1
�-Cell function parameters

Control
subjects

Type 2
diabetic
subjects

Secretion at 5 mmol/l glucose
(pmol � min�1 � m�2)

136 � 10 279 � 24*†

Slope at 5 mmol/l glucose
(pmol � min � �1m�2 mM�1)

119 � 30‡ 54 � 15*

Slope (pmol � min�1 � m�2 � mM�1) 148 � 38‡ 53 � 15
Dynamic control (pd)

(pmol � m�2 � mM�1)
908 � 276‡ 220 � 67

Glucose at reference secretion§
(mmol/l)

7.2 � 0.7‡ 11.7 � 1.1

Potentiation factor max/min ratio� 7.2 � 1.5¶ 2.6 � 0.5
Potentiation factor mean time# (h) 5.9 � 0.2** 7.1 � 0.2

*Parameter at 10 mmol/l glucose. †Not comparable with control
subjects because of the different reference glucose level. ‡P  0.05,
control vs diabetic subjects. §Glucose concentration at which the
dose-response function predicts an insulin secretion of 300
pmol � min�1 � m�2. �Ratio between the maximum and minimum
values of the potentiation factor. ¶P 0.005, control vs diabetic
subjects. #Mean time for the potentiation factor (see RESEARCH DESIGN

AND METHODS). **P  0.01, control vs. diabetic subjects.

FIG. 5. Potentiation factor in control and type 2 diabetic subjects.
Error bars are drawn every 30 min.
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when glucose concentration falls compared with the pe-
riod during which it rises. This phenomenon has also been
interpreted as a time delay of insulin secretion with
respect to glucose concentration (8,9), following a para-
digm proposed by Licko (13). The existence of a delay
cannot be excluded. The mathematical representation of
the delay used in Breda et al. (8), Toffolo et al. (9), and
Licko (13), however, does not appear to be adequate to
explain our experimental data, because different delays
would be necessary to explain the first and the last insulin
secretion peak. Our analysis thus supports the concept
that the apparent delay, when observed, is in reality a
potentiation phenomenon. This is in accord with classical
perfused pancreas experiments [e.g. (1)], which clearly
show that during a square-wave glucose stimulation the
onset and the offset of insulin secretion (not considering
the initial peak) are not symmetrical (as the proposed
delay model would predict).

One limitation of our model is that the separation
between the contribution of the dose-response function
f(G) and the potentiation factor P(t) to total insulin
secretion rests on the smoothness constraints imposed on
the potentiation factor, because with no constraints on
P(t), Eq. 2 has multiple solutions. The logic of this choice
is that as much as possible of the insulin secretion changes
should be linked with the glucose changes through f(G),
leaving it to P(t) to explain the secretion changes that
cannot be accounted for by f(G). If the true insulin
secretion were a quasi-linear function of glucose concen-
tration like f(G) (i.e., without potentiation), then our
approach would yield the correct f(G), and P(t) would
equal 1 (because it is for this solution that the regulariza-
tion terms of Eq. 6 are minimal, i.e., zero). On the other
hand, in those cases in which total insulin secretion does
not appear to be clearly related to glucose concentration,
the estimation of the dose-response function and the
potentiation factor are less precise. The present results,
however, indicate that both the dose-response function
and the potentiation factor are generally well determined.
On average, in both subject groups, the quantitatively
dominant secretory component is the static component,
whereas potentiation accounts for the evident changes in
the dose response during the experiment (Fig. 3). The
dose-response functions are clearly separated between
groups (Fig. 4). In addition, the coefficient of variation of
dose response within each group, which includes the
variance of the estimation error, is not very different from
that calculated in previous studies in which the dose
response was directly assessed (14), suggesting that the
estimation error has an acceptable variance.

Another limitation of our approach is that the potentia-
tion factor does not include only true potentiation, but
also secretory phenomena that may exist but are not
explicitly represented in the model, such as circadian
rhythms or pulsatility. This makes the physiological inter-
pretation of the potentiation factor more complex.

The obvious advantage of the present analysis for
clinical investigation is that it allows calculation of the
�-cell dose-response function from a meal test, which is
simpler and more physiological than performing complex
formats of glucose infusion. Furthermore, it does feature

potentiation, which is a well known but not much ex-
plored phenomenon.

When the dose-response functions are compared, our
analysis confirms that �-cell function is markedly impaired
in diabetes. Our results also show, in accord with expec-
tation, that the coefficient of the dynamic insulin secretion
component, which is an index of early-phase insulin
secretion, is reduced in diabetes.

New findings are those concerning the potentiation
factor. We show that potentiation, broadly defined as a
change in the relationship between glucose concentration
and insulin secretion, plays a differential role in euglyce-
mic and hyperglycemic conditions. In particular, in dia-
betic subjects, potentiation is markedly blunted, and its
onset is much delayed. The sharp potentiation peak ob-
served in control subjects at the first meal is missing in
diabetic subjects, and potentiation reaches its maximum
only 5–6 h after the first meal. The current data cannot
elucidate the mechanisms underlying this difference, as
several factors may have affected the �-cell response (e.g.,
repeated exposure to glucose, entero-insular factors, reg-
ulatory hormones, nonglucose secretagogues). Differences
in age, physical fitness, BMI, and total caloric intake (but
not meal composition, which was the same in the two
groups) may also have played some role. However, a
blunted and delayed potentiation in type 2 and gestational
diabetes has been reported previously (15,16). Our study
thus confirms this finding and quantifies it. Furthermore, it
shows that this defect is distinct from the other secretory
defects, i.e., the rightward shift in the dose-response
function and the depressed dynamic component. In pa-
tients with diabetes, an impaired first-phase insulin re-
sponse is reputed to feed forward on the subsequent
regulatory response to hyperglycemia. This analysis shows
also that the lack of a sufficient potentiation response may
contribute substantially to the delayed regulatory re-
sponse.

In summary, in its current formulation, our model of
insulin secretion extracts multiple indexes of �-cell func-
tion from a physiological meal test. These indexes are the
dose-response function relating insulin secretion to glu-
cose concentration, and a parameter expressing the ability
of glucose concentration changes to stimulate insulin
secretion. In addition, for multiple meal tests, the model
yields the time course of a factor representing potentiation
of insulin secretion. Testing the model in normotolerant
subjects and diabetic patients appears to retrieve known
defects in insulin secretion but also to uncover new facets
of �-cell dysfunction.

ACKNOWLEDGMENTS

We are indebted to the Institut de Recherches Internation-
ales Servier (Courbevoie, France) for providing the data
on which our analysis is based and a research grant in
partial support of the work. Further financial support was
provided through a grant from the project “Mathematical
methods and models for the study of biological phenom-
ena” of the Italian National Research Council.

APPENDIX A

The dose-response function f(G) is described by the equation
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f�G� � p3G � �p4 � p3�
log(cosh�p1�G � p2��) � log(cosh�p1p2�)

p1
� tanh(p1p2)G

1 � tanh�p1p2�

It can be verified by standard techniques that 1) f(0) �
0 and f(G) � 0 for G � 0; 2) p2 is the glucose level at which
the slope of f(G) changes from the initial value p3 to the
final value p4; 3) p1 determines the curvature of the
function around the threshold glucose level p2: if p1 is high
(e.g., 10 for the current glucose levels in mmol/l), the
transition from the initial slope p3 to the final slope p4 is
brisk; if p1 is low (e.g., 0.1), the transition is gradual. The
equation for f(G) is derived assuming that the slope of f(G)
is a sigmoid function represented by a hyperbolic tangent,
i.e., the slope changes more or less rapidly between
near-constant values.
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