
Lithium: A Structured Parallel Programming
Environment in Java

M. Danelutto & P. Teti

Dept. Computer Science – University of Pisa – Italy
{Marco.Danelutto@di.unipi.it, tetipaol@libero.it}

Abstract. We describe a new, Java based, structured parallel program-
ming environment. The environment provides the programmer with the
ability to structure his parallel applications by using skeletons, and to
execute the parallel skeleton code on a workstation network/cluster in a
seamless way. The implementation is based on macro data flow and ex-
ploits original optimization rules to achieve high performance. The whole
environment is available as an Open Source Java library and runs on top
of plain JDK.

1 Introduction

The Java programming environment includes features that can be naturally used
to address network and distributed computing (JVM and bytecode, multithread-
ing, remote method invocation, socket and security handling, and, more recently,
JINI, JavaSpaces, Servlets, etc. [20]). Many efforts have been performed to make
Java suitable for parallel computing too. Several projects have been started that
aim at providing features that can be used to develop efficient parallel Java ap-
plications on a range of different parallel architectures. Such features are either
provided as extensions to the base language or as class libraries. In the former
case, ad hoc compilers and/or runtime environments have been developed and
implemented. In the latter, libraries are supplied that the programmer simply
uses within his parallel code. As an example extensions of the JVM have been
designed that allow plain Java threads to be run in a seamless way on the dif-
ferent processors of a single SMP machine [2]. On the other side, libraries have
been developed that allow classical parallel programming libraries/APIs (such
as MPI or PVM) to be used within Java programs [15, 12].

In this work we discuss a new Java parallel programming environment which
is different from the environments briefly discussed above, namely a library we
developed to support structured parallel programming, based on the algorithmi-
cal skeleton concept. Skeletons have been originally conceived by Cole [5] and
then used by different research groups to design high performance structured
parallel programming environments [3, 4, 19]. A skeleton is basically an abstrac-
tion modeling a common, reusable parallelism exploitation pattern. Skeletons
can be provided to the programmer either as language constructs [3, 4] or as
libraries [9, 10]. They can be nested to structure complex parallel applications.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 844−853, 2002.
 Springer-Verlag Berlin Heidelberg 2002

import lithium.*;
...
public class SkeletonApplication {

public static void main(String [] args) {
...
Worker w = new Worker(); // encapsulate seq code in a skel
Farm f = new Farm(w); // use it as the task farm worker
Ske evaluator = new Ske(); // declare an exec manager
evaluator.setProgram(f); // set the program to be executed
String [] hosts = {"alpha1","alpha2",

"131.119.5.91"};
evaluator.addHosts(hosts); // define the machines to be used
for(int i=0;i<ntasks;i++)

evaluator.setupTaskPool(task[i]); // prepare input stream
// this can be done in parallel with parDo() actually

evaluator.stopStream(); // declare its end
evaluator.parDo(); // require parallel computation
while(!evaluator.isResEmpty()) { // retrieve comput. results

Object res = evaluator.readTaskPool();
...

} // print some statistics
System.out.println("elapsed time = "+evaluator.getElapsedTime()+

"\nstartup = "+evaluator.getStartupTime());
}

}

public class Worker extends JSkeleton {
...
public Object run(Object task) { // this method must be implemented

Object result; // it represents the seq skel body
... return(result); // computes an Object res out of

} // an Object input task
}

Fig. 1. Sample Lithium code: parallel application exploiting task farm parallelism

The compiling tools of the skeleton language or the skeleton libraries take care of
automatically deriving/executing actual, efficient parallel code out of the skele-
ton application without any direct programmer intervention [17, 10].

Lithium, the library we discuss in this work, represents a consistent refine-
ment and development of a former work [7]. The library discussed in [7] just
provided the Java programmer with the possibility to implement simple parallel
applications exploiting task farm parallelism only. Instead, Lithium:

– provides a reasonable set of fully nestable skeletons, including skeletons that
model both data and task parallelism;

– implements the skeletons by fully exploiting a macro data flow execution
model [8];

– exploits Java RMI to automatically perform parallel skeleton code execution;

– exploits basic Java reflection features to simplify the skeleton API provided
to the programmer;

– allows parallel skeleton programs to be executed sequentially on a single
machine, to allow functional debugging to be performed in a simple way.

845Lithium: A Structured Parallel Programming Environment in Java

2 Lithium API

Lithium provides the programmer with a set of (parallel) skeletons that include a
Farm skeleton, modeling task farm computations1, a Pipeline skeleton, model-
ing computations structured in independent stages, a Loop and a While skeleton,
modeling determinate and indeterminate iterative computations, an If skeleton,
modeling conditional computations, a Map skeleton, modeling data parallel com-
putations with independent subtasks and a DivideConquer skeleton, modeling
divide and conquer computations. All the skeletons are provided as subclasses
of a JSkeleton abstract class.

All skeletons use other skeletons as parameters. As an example, the Farm

skeleton requires as a parameter another skeleton defining the worker computa-
tion, and the Pipeline skeleton requires a set of other skeleton parameters, each
one defining the computation performed by one of the pipeline stages. Lithium
user may encapsulate sequential portions of code in a sequential skeleton by cre-
ating a JSkeleton subclass2. Objects of the subclass can be used as parameters
of other, different skeletons.

All the Lithium parallel skeletons implement parallel computation patterns
that process a stream of input tasks to compute a stream of output results. As
an example, a farm having a worker that computes the function f processes an
input task stream with generic element xi producing the output stream with the
corresponding generic element equal to f(xi), whereas a pipeline with two stages
computing function f and g, respectively, processes stream of xi computing
g(f(xi)).

In order to write parallel applications using Lithium skeletons, the program-
mer should perform the following, (simple) steps:

1. define the skeleton structure of the application. This is accomplished by
defining the sequential portions of code used in the skeleton code as JSkeleton
objects and then using these objects as the parameters of the parallel skele-
tons (Pipeline, Farm, etc.) actually used to model the parallel behavior of
the application at hand;

2. declare an evaluator object (a Ske object) and define the program, i.e. the
skeleton code defined in the previous step, to be executed by the evaluator
as well as the list of hosts to be used to run the parallel code;

3. setup a task pool hosting the initial tasks, i.e. a data structure storing the
data items belonging to the input stream to be processed by the program;

4. start the parallel computation, by just issuing an evaluator parDo() method
call;

5. retrieve the final results, i.e. the stream of output data computed by the
program, from a result pool (again, issuing a proper evaluator method call).

Figure 1 outlines the code needed to setup a task farm parallel application
processing a stream of input tasks by computing, on each task, the sequential

1 also known as “embarrassingly parallel” computations
2 a JSkeleton object is an object having a Object run(Object) method that repre-

sents the sequential skeleton body

846 M. Danelutto and P. Teti

Worker.run() Stage1.run() Stage2.run()

Fig. 2. Macro data flow graphs related to program of Figure 1

code defined in the Worker run method. The application runs on three processors
(the hosts ones). The programmer is not required to write any (remote) process
setup code, nor any communication, synchronization and scheduling code. He
simply issues an evaluator.parDo() call and the library automatically com-
putes the evaluator program in parallel by forking suitable remote computa-
tions on the remote nodes. In case the user simply wants to execute the applica-
tion sequentially (i.e. to functionally debug the sequential code), he can avoid to
issue all the Ske evaluator calls. After the calls needed to build the JSkeleton

program he can simply issue a run() method call on the JSkeleton object. In
that case, the Lithium support performs a completely sequential computation
returning the results that the parallel application would return.

All the skeletons defined in Lithium can be defined and used with API calls
similar to the ones shown in the Figure (see [21] or look at the source code avail-
able at [22]). We want to point out that a very small effort is needed to change
the parallel structure of the application, provided that the suitable sequential
portions of code needed to instantiate the skeletons are available. In case we
understand that the computation performed by the farm workers of Figure 1
can be better expressed with a pipeline of two sequential stages (as an example),
we can simply substitute the lines Worker w = new Worker(); and Farm f =

new Farm(w); with the lines:

Stage1 s1 = new Stage1(); // first seq stage

Stage2 s2 = new Stage2(); // second seq stage

Pipeline p = new Pipeline(); // create the pipeline

p.addWorker(s1); // setup first pipeline stage

p.addWorker(s2); // setup second pipeline stage

Farm f = new Farm(p); // create a farm with pipeline workers

and we get a perfectly running parallel program computing the results according
to a farm of pipeline parallelism exploitation pattern.

3 Lithium implementation

Lithium exploits a macro data flow (MDF, for short) implementation schema
for skeletons. The skeleton program is processed to obtain a MDF graph. MDF
instructions (MDFi) in the graph represent sequential JSkeleton run methods.

847Lithium: A Structured Parallel Programming Environment in Java

...
public static void main(...) {
 ...
 Ske evaluator = ...
 ...
 evaluator.parDo();

class SkeletonApplication {

controlThread[i]

remoteHost[i].execute(..)
store resulting fireable MDFi

fetch fireable MDFi

store resulting fireable MDFi

fetch fireable MDFi

controlThread[j]

remoteHostj].execute(..)

LithiumServer {
...
public TaskItem[]
 execute(TaskItem[] t)
...
public static void main() {
...
LithiumServer worker = new ...
Naming.rebind("LithiumWorker", worker);
...
}

LithiumServer {
...
public TaskItem[]
 execute(TaskItem[] t)
...
public static void main() {
...
LithiumServer worker = new ...
Naming.rebind("LithiumWorker", worker);
...
}

PE0 PEi

PEj

Fig. 3. Lithium architecture

The data flow (i.e. the arcs of MDF graph) is derived by looking at the skeleton
nesting structure [6, 8]. The resulting MDF graphs have a single MDFi getting
input task (tokens) from the input stream and a single MDFi delivering data
items (tokens) to the output stream. As an example, from the application of
Figure 1 we derive the MDF graphs of Figure 2: the left one is the one derived
from the original application, the right one is the one relative to application with
pipelined workers.

The skeleton program is then executed by setting up a server process on each
one of the processing elements available and a task pool manager on the local
machine. The remote servers are able to compute any one of the fireable MDFi in
the graph. A MDF graph can be sent to the servers in such a way that they get
specialized to execute only the MDFi in that graph. The local task pool manager
takes care of providing a MDFi repository (the taskpool) hosting fireable MDFi
relative to the MDF graph at hand, and to feed the remote servers with fireable
MDFi to be executed.

Logically, any available input task makes a new MDF graph to be instantiated
and stored into the taskpool. Then, the input task is transformed into a data flow
“token” and dispatched to the proper instruction (the first one) in the new copy
of the MDF graph3. The instruction becomes fireable and it can be dispatched to
one of the remote servers for execution. The remote server computes the MDFi
and delivers the result token to one or more MDFi in the taskpool. Such MDFi
may (in turn) become fireable and the process is repeated until some fireable
MDFi exists in the task pool. Final MDFi (i.e. those dispatching final result
tokens/data to the external world) are detected an removed from the taskpool
upon evaluator.readTaskPool() calls.

Actually, only fireable MDFi are stored in the taskpool. The remote servers
know the executing MDF graph and generate fireable complete MDFi to be
stored in the taskpool rather than MDF tokens to be stored in already existing,
non fireable, MDFi.

3 different instances of MDF graph are distinguished by a progressive task identifier

848 M. Danelutto and P. Teti

Remote servers are implemented as Java RMI servers. A remote server im-
plements a LithiumInterface. The interface defines three methods: a String

getVersion()method, used to check compatibility between local task pool man-
ager and remote servers4, a TaskItem[] execute(TaskItem[] task) method,
actually computing a fireable MDFi, and a void setRemoteWorker(Vector

SkeletonList) method, used to specialize the remote server with the MDF
graph currently being executed5. RMI implementation has been claimed to
demonstrate poor efficiency in the past [16] but recent improvements in JDK
allowed us to achieve good efficiency and absolute performance in the execution
of skeleton programs, as shown in Section 4. Remote RMI servers must be set up
either by hand (via some ssh hostname rmiregistry & plus a ssh hostname

java Server &) or by using proper Perl scripts provided by the Lithium envi-
ronment.

In the local task pool manager a thread is forked for each one of the remote
servers displaced on the remote hosts. Such thread obtains a local reference
to a remote RMI server, first; then issues a setRemoteWorker remote method
call to communicate to the server the MDF graph currently being executed and
eventually enters a loop. In the loop body the thread fetches a fireable instruction
from the taskpool6, asks the remote server to compute the MDFi by issuing a
remote execute method call and deposits the result in the task pool (see Figure
3).

The MDF graph obtained from the JSkeleton object used in the evaluator.
setProgram() call can be processed unchanged or a set of optimization rules
can be used to transform the MDF graph (using the setOptimizations() and
resetOptimizations() methods of the Ske evaluator class). Such optimization
rules implement the “normal form” concept for skeleton trees and basically sub-
stitute skeleton subtrees by skeleton subtrees showing a better performance and
efficiency in the target machine resource usage. Previous results demonstrated
that full stream parallel skeleton subtrees can be collapsed to a single farm skele-
ton with a (possibly huge) sequential worker leading to a service time which is
equal or even better that the service time of the uncollapsed skeleton tree [1].
While developing Lithium we also demonstrated that 1) data parallel skeletons
with stream parallel only subtrees can be collapsed to dataparallel skeletons with
fully sequential workers, and 2) that normal form skeleton trees require a num-
ber of processing elements which is not greater that the number of processing
elements needed to execute the corresponding non normal form [21].

As the skeleton program is provided by the programmer as a single (pos-
sibly nested) JSkeleton object, Java reflection features are used to derive the
MDF graph out of it. In particular, reflection and instanceOf operators are
used to understand the type of the skeleton (as well as the type of the nested

4 remote server can be run as daemons, therefore they can survive to changes in the
local task pool managers

5 therefore allowing the server to be run as daemon, serving the execution of different
programs at different times

6 using proper TaskPool synchronized methods

849Lithium: A Structured Parallel Programming Environment in Java

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900 1000 1100

D
im

en
si

on
 (

in
 b

yt
es

)

No. of vectors

Vector
Theoretical

1000

10000

100000

1 10

C
om

pl
et

io
n

tim
e

Processing element No.

Normal form
Non normal form

Fig. 4. Serialization overhead (left) and Normal vs. non normal form (right)

skeletons). Furthermore, an Object[] getSkeletonInfo private method of
the JSkeleton abstract class is used to gather the skeleton parameters (e.g. its
“body” skeleton). Such method is implemented as a simple return(null) state-
ment in the JSkeleton abstract class and it is overwritten by each subclass (i.e.
by the classes Farm, Pipeline, etc.) in such a way that it returns in an Object

vector all the relevant skeleton parameters. These parameters can therefore be
inspected by the code building the MDF graph. Without reflection much more
info must be supplied by the programmer when defining skeleton nestings in the
application code [10].

4 Experiments

We evaluated Lithium performance by performing a full set of experiments on a
Beowulf class Linux cluster operated at our Department7. The cluster hosts 17
nodes: one node devoted to cluster administration, code development and user
interface, and 16 nodes (10 266Mhz Pentium II and 6 400Mhz Celeron nodes)
exclusively devoted to parallel program execution. The nodes are interconnected
by a (private, dedicated) switched Fast Ethernet network. All the experiments
have been performed using Blackdown JDK ports version 1.2.2 and 1.3.

We start considering the overhead introduced by serialization. As data flow
tokens happen to be serialized in order to be dispatched to remote executor
processes, and as we use Java Vector objects to hold tokens, we measured the size
overhead of the Vector class. Figure 4 (left) reports the results we got, showing
that serialization does not add significant amounts of data to the real user data
and therefore serialization does not cause significant additional communication
overhead.

We measured the differences in the completion time of different applications
executed using normal and non normal form. As expected normal form always

7 the Backus cluster has been implemented in the framework of the Italian National
Research Council Mosaico Project

850 M. Danelutto and P. Teti

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 4 6 8 10 12 14 16

C
om

pl
et

io
n

tim
e

(m
se

c.
)

Processing element No.

Measured completion time
Ideal completion time

0.81

0.9

0.99

2 3 4 5 6 7 8 9

E
ffi

ci
en

cy

Processing elements No.

Grain=81
Grain=225

Grain=450

Fig. 5. Ideal vs. measured completion time (left) and Efficiency vs. grain size (right)

performs better that non normal form (see Figure 4 right). The good news are
that it performs significantly better and scales better (see the behavior when
the PE number increases in Fig. 4 right).

Last but not least, we measured the Lithium applications absolute completion
time and efficiency related to the computational grain of MDFi. Typical results
are drawn in Figure 5. The left plot shows that that Lithium support scales (at
least in case of medium to coarse grain computations)8. The right plot shows
that fairly large grain is required in order to achieve good performance values9.

All the experiments have been performed using “syntetic” applications. These
applications stress different features of the Lithium environment and use skeleton
trees (nestings) up to three levels deep, including both task and data parallel
skeletons. In addition, we used a couple of simple number crunching applications
including Mandelbrot set computation. In all cases the results are similar to the
ones presented in the graphs of this Section.

5 Related work

Despite the large number of projects aimed at providing parallel programming
environments based on Java, there is no existing project concerning skeletons
but the CO2P3S one [14, 13]. Actually this project derives from the design pat-
tern experience [11]. The user is provided with a graphic interface where he can
combine different, predefined parallel computation patterns in order to design
structured parallel applications that can be run on any parallel/distributed Java
platform. In addition, the graphic interface can be used to enter the sequential

8 the completion times show an additional decrement from 10 nodes on, as the 11th
to 16th nodes are more powerful that the first 10 nodes and therefore take a shorter
time to execute sequential portions of Java code.

9 grain represents the average computational grain of MDFi. grain = k means that
the time spent in the computation of MDFi is k times the time spent in delivering
such instructions to the remote servers plus the time spent in gathering results of
MDFi execution from the remote servers

851Lithium: A Structured Parallel Programming Environment in Java

portions of Java code needed to complete the patterns. The overall environment
is layered in such a way that the user designs the parallel application using the
patterns, then those patterns are implemented exploiting a layered implementa-
tion framework. The framework gradually exposes features of the implementation
code thus allowing the programmer to perform fine performance tuning of the
resulting parallel application. The whole object adopt a quite different approach
with respect to our one, especially in that it does not use any kind of macro data
flow technique in the implementation framework. Instead, parallel patterns are
implemented by process network templates directly coded in the implementation
framework. However, the final result is basically the same: the user is provided
with an high level parallel programming environment that can be used to derive
high performance parallel Java code running on parallel/distributed machines.

Macro data flow implementation techniques, instead, have been used to im-
plement skeleton based parallel programming environments by Serot in the Skip-
per project [19, 18]. Skipper is an environment supporting skeleton based, paral-
lel image processing application development. The techniques used to implement
Skipper are derived from the same results we start with to design Lithium, al-
though used within a different programming enviroment.

6 Conclusions and future work

We described a new Java parallel programming environment providing the user
with the possibility to model all the parallel behavior of his applications by using
predefined skeletons. This work significantly extends [7] as both data and stream
parallel skeletons are implemented, and optimisation rules are provided that im-
prove execution efficiency. Being based on skeletons, the Lithium environment
relieves the programmer of all the error prone activities related to process setup,
mapping and scheduling, communication and synchronization handling, etc. that
must usually be dealt with when programming parallel applications. Lithium is
the first full fledged, skeleton based parallel programming environment writ-
ten in Java and implementing skeleton parallel execution by using macro data
flow techniques. We performed experiments with Lithium that demonstrate that
good scalability and efficiency values can be achieved. Lithium and is currently
available as open source at http://massivejava.sourceforge.net.

References

1. M. Aldinucci and M. Danelutto. Stream parallel skeleton optimisations. In Proc.
of the IASTED International Conference Parallel and Distributed Computing and
Systems, pages 955–962. IASTED/ACTA Press, November 1999. Boston, USA.

2. G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst.
”Compiling Multithreaded Java Bytecode for Distributed Execution”. In A. Bode,
T. Ludwig, W. Karl, and R. Wismuller, editors, ”EuroPar 2000 - Parallel Process-
ing”, number 1900 in LNCS, pages 1039–1052. Springer Verlag, 2000.

852 M. Danelutto and P. Teti

3. P. Au, J. Darlington, M. Ghanem, Y. Guo, H.W. To, and J. Yang. Co-ordinating
heterogeneous parallel computation. In L. Bouge, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, Europar ’96, pages 601–614. Springer-Verlag, 1996.

4. B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous
environment for HPC applications. Parallel Computing, 25:1827–1852, Dec 1999.

5. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

6. M. Danelutto. Dynamic Run Time Support for Skeletons. In E. H. D’Hollander,
G. R. Joubert, F. J. Peters, and H. J. Sips, editors, Proceedings of the International
Conference ParCo99, volume Parallel Computing Fundamentals & Applications,
pages 460–467. Imperial College Press, 1999.

7. M. Danelutto. Task farm computations in java. In Buback, Afsarmanesh, Williams,
and Hertzberger, editors, High Performance Computing and Networking, LNCS,
No. 1823, pages 385–394. Springer Verlag, May 2000.

8. M. Danelutto. Efficient support for skeletons on workstation clusters. Parallel
Processing Letters, 11(1):41–56, 2001.

9. M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. Parallel Functional Pro-
gramming with Skeletons: the OCAMLP3L experiment. In ACM Sigplan Workshop
on ML, pages 31–39, 1998.

10. M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons
in C. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller, editors, Euro-Par
2000 Parallel Processing, LNCS, No. 1900, pages 1175–1184. Springer Verlag, Au-
gust/September 2000.

11. E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

12. jPVM. ”http://www.chmsr.gatech.edu/jPVM/”. The jPVM home page, 2001.
13. S. McDonald, D. Szafron, J. Schaeffer, and S. Bromling. From Patterns to Frame-

works to Parallel Programs. submitted to Journal of Parallel and Distributed
Computing, December 2000.

14. S. McDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generating Parallel Pro-
gram Frameworks from Parallel Design Patterns. In A. Bode, T. Ludwing, W. Karl,
and R. Wismüller, editors, Euro-Par 2000 Parallel Processing, LNCS, No. 1900,
pages 95–105. Springer Verlag, August/September 2000.

15. MpiJava. ”http://www.npac.syr.edu/projects/pcrc/mpiJava/”. The MpiJava
home page, 2001.

16. C. Nester, R. Philippsen, and B. Haumacher. ”A More Efficient RMI for Java”.
In ACM 1999 Java Grande Conference, pages 152–157, June 1999.

17. S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.
18. J. Serot. ”Putting skeletons at work. An overview of the SKIPPER project”.

PARCO’2001 workshop on Advanced Environments for Parallel and Distributed
Computing, to appear, September 2001.

19. J. Serot, D. Ginhac, R. Chapuis, and J. Derutin. ”Fast prototyping of parallel-
vision applications using functional skeletons”. Machine Vision and Applications,
12:217–290, 2001. Springer Verlag.

20. Sun. ”The Java home page”. http://java.sun.com, 2001.
21. P. Teti. ”Lithium: a Java skeleton environment”. (in italian) Master’s thesis, Dept.

Computer Science, University of Pisa, October 2001.
22. P. Teti. ”http://massivejava.sourceforge.net”. home page of the Lithium

project at sourceforge.net, 2001.

853Lithium: A Structured Parallel Programming Environment in Java

	1 Introduction
	2 Lithium API
	3 Lithium implementation
	4 Experiments
	5 Related work
	6 Conclusions and future work
	References

