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Abstract: The low energy effective field theory of type II D4-branes coupled to bulk su-

pergravity fields is used to investigate quantum effects for D4-branes in the D0 supergravity

background. Classically, the D4-branes are unaffected by this background. However, quan-

tum (one-loop) effects are argued to lead to an induced density of D0-brane charge; e.g.,

D0-multipole moments on the D4-brane. The effect is divergent in field theory, but is

expected to be cut-off naturally by stringy corrections.
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1. Introduction

The polarization of branes by external fields [1, 2] is an important effect with many ap-

plications in string theory including those associated with giant gravitons [3], instanton

studies [4], brane inflation [5], and supertubes [6, 7], the last of these being the subject of

an interesting proposal [8, 9, 10] regarding black hole entropy. To our knowledge, however,

all of the standard applications can be viewed as classical polarization effects, perhaps with

quantum corrections. Consider, however, Dp-branes in the supergravity fields generated

by D(p± 4)-branes. In this context the unpolarized Dp-branes are known to saturate the

BPS bound. Thus, there can be no lower energy classical configuration and the classical

ground state remains unpolarized1. However, this argument leaves open the possible dis-

tortion of quantum fluctuations around the classical ground state and associated quantum

polarization effects.

Such quantum polarizations were first explored in [11], which considered a bound state

of N test D0-branes placed in the supergravity background generated by a collection of par-

allel D4-branes. It was argued under such conditions that, to lowest order in the weak field

limit, the width of the D0-bound state changes by an amount proportional to R0(gN)1/3f2,

where R0 is the unperturbed width of the bound state and f is a dimensionless measure

of the Ramond-Ramond field strength at the D0-branes. This result was shown to match

the corresponding distortion of the near-D0 supergravity solution in the manner expected

from gauge/gravity duality.

1There could, however, be several degenerate ground states so long as one remains unpolarized.
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Here we study the opposite limit and consider a test D4-brane placed in the supergrav-

ity background generated by a collection of D0-branes. The advantage of this context is

that one may find effects even for the abelian theory associated with a single brane. Instead

of examining the size of the brane, we compute the induced density of D0-brane charge,

〈ρD0〉, defined by the coupling of the D4-brane to the Ramond-Ramond 1-form C(1). In

the approximation of interest, this charge density is proportional to F ∧F plus a quadratic

fermion term, where F is the (abelian) Yang-Mills fields on the D4-brane. Because ρD0

contains quadratic terms, the expectation value 〈ρD0〉 is sensitive to quantum fluctuations.

Note, however, that this is indeed a polarization effect as the integral of ρD0 must vanish.

The calculations below are performed using the low energy effective field theory for

the D4-brane, including the couplings of world-volume Fermions to bosonic supergravity

backgrounds found in [12, 13]. We find that 〈ρD0〉 does not vanish in the supergravity

background generated by D0-branes. Instead, it diverges in our field theory treatment.

This is somewhat surprising given the supersymmetry of our setting2, but appears not to

contradict any known results. In a full string-theoretic treatment one naturally expects

that this divergence will be cutoff at the string scale.

We begin in section 2 below with a short review of the results of [13] and a precise

statement of our setup. The field-theoretic calculation of 〈ρD0〉 is then presented in section

3. As is clear from the above description, our calculation begs a full string-theoretic

treatment. While we defer such a calculation to future work, it is interesting to assume

that a full string treatment cuts off our divergences at the string scale but leaves them

non-vanishing, and to consider the implications. We discuss such implications in section 4,

showing that such a term has the right form to arise from a 1-loop (annulus) string diagram.

In particular, our polarization effect would require the D4-brane effective action to have a

1-loop term of the form
∫

d5x|p(dC(1))|2, where p(dC(1)) denotes the pull-back of the bulk 2-

form field strength dC to the brane and the notation |p(dC(1))|2 = [p(dC(1))]IJ [p(dC(1))]IJ ,

where the contraction is performed using the induced metric on the brane. We will use I, J

to denote worldvolume indices and A,B to denote spacetime directions. It is convenient

to mention here that we use analogous notation Î , Ĵ and Â, B̂ for tangent space directions,

and similarly i, j and a, b for world-volume and spacetime spatial directions (i.e., orthogonal

to the D0 worldlines) and î, ĵ, â, b̂ for the corresponding tangent space directions.

2. Preliminaries

Recall that our goal is to study deformations of the D4-brane ground state when placed in

the supergravity field generated by a collection of D0-branes. We shall therefore take the

D4-brane as a test object whose back-reaction on the supergravity fields can be ignored.

One expects this approximation to be valid in the limit where the string coupling g is taken

to zero but the number of D0-branes is increased so that the supergravity background

remains fixed.

2In particular, as shown in [13] our field theory retains an explicit invariance under an 8-supercharge

supersymmetry algebra when coupled to the D0 background.
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2.1 The charge density operator, ρD0

Since we wish to compute the charge density which couples to the Ramond-Ramond vector

potential CA, and since this charge is defined by varying the D4-brane action with respect

to CA, we will need the general coupling of the D4-brane to this field. The coupling of the

bosonic D4-brane fields is familiar, but the Fermion couplings are more complicated. The

complete set of such couplings was calculated in [13] to quadratic order in Fermions. This

will suffice for our purposes as we have already stated that we will take g small, and so

may work perturbatively in world-volume fields.

The lowest order effect is thus given by the quadratic truncation of the D4-brane

effective action, which is just the N = 4 U(1) theory coupled to our background (2.6). In

particular, the Fermion terms we require will be second order in Fermions and will involve

no coupling to the world-volume gauge field FIJ . Thus we will use a truncated effective

action of the form

Strunc
D4 = S

(0)
D4 + S

(2) trunc
D4 ,

S
(0)
D4 = −TD4

∫

d5ξe−φ
√

−(g + F) + TD4

∫

C e−F , (2.1)

where S
(2) trunc
Dp will contain the appropriate quadratic Fermion terms, g is the induced

metric, FIJ = FIJ + BIJ , C =
∑

nC
(n) is a formal sum of the IIA Ramond-Ramond

potentials and the integral
∫

C e−F picks out the form of rank 5 to integrate. We will also

use XA(ξ) to denote the embedding of the brane in spacetime.

The quadratic Fermion term is written in terms of a real Majorana Fermion ψ, which

lives in the 32-component representation of the Clifford algebra

{ΓÂ,ΓB̂} = 2ηÂB̂. (2.2)

The conjugate spinor ψ̄ is defined by ψ̄β = ψαCαβ, where C is the anti-symmetric charge-

conjugation matrix which we take to be Cαβ ≡ Γ0̂β
α. Following [13], we use of the notation

Γϕ̂ = Γ0̂Γ1̂Γ2̂Γ3̂Γ4̂Γ5̂Γ6̂Γ7̂Γ8̂Γ9̂ for the ten-dimensional chirality operator. We also use the

notation ΓD4 = 1
5!
√−g

ǫ̃IJKLMΓIJKLMΓϕ̂ for an interesting world-volume chirality operator,

where ǫ̃ denotes the Levi-Civita tensor density (which takes value ±1, 0 for any metric).

Finally, we will use the notation ΓI1...In = Γ[I1...ΓIn] denoting antisymmetrization with

weight one; e.g. Γ01 = 1
2(Γ0Γ1 − Γ1Γ0) = Γ0Γ1.

We may also drop any couplings of Fermions to the background Neveu-Schwarz two-

form BAB (though these are non-trivial and were computed in [12, 13]) since it will vanish

in the background generated by D0-branes and we will not need to vary it. With this

understanding the truncated quadratic Fermion action S
(2) trunc
D4 may be seen from [13] to

be

S
(2) trunc
D4 =

iTD4

2

∫

d5ξe−φ√−gψ̄(1 − ΓD4)(Γ
IDI − ∆)ψ, (2.3)

where

DA = ∂A +
1

4
ωAB̂ĈΓB̂Ĉ +

1

8
eφ
(

1

2!
F

(2)

B̂Ĉ
ΓB̂ĈΓAΓϕ̂ +

1

4!
F

(4)

B̂ĈD̂Ê
ΓB̂ĈD̂ÊΓA

)

and
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∆ =
1

2
ΓA∂Aφ+

1

8
eφ
(

3

2!
F

(2)

B̂Ĉ
ΓB̂ĈΓϕ̂ +

1

4!
F

(4)

B̂ĈD̂Ê
ΓB̂ĈD̂Ê

)

. (2.4)

Here ω is the spin connection of the spacetime metric and we have chosen to denote bulk

Ramond-Ramond fields by bold-face F(n) = dC(n−1) +Wess− Zumino terms in order to

distinguish them from the U(1) world-volume field F on the D4-brane. The superscript

(n) denotes the rank of the form.

It is now straightforward to vary the action (2.1) and obtain the current JA ≡
1√−g

δStrunc
D4

δC
(1)
A

that couples to C
(1)
A . The result is

JA =
TD4

8
√−g

∂XA

∂ξM
ǫ̃MIJKLFIJFKL+i

TD4

8
√−g∂B

(√−gψ̄(1 − ΓD4)
(

−ΓBA + 2ΓI∂I(X
[B)ΓA]

)

Γϕ̂ψ
)

.

(2.5)

We will in particular be interested in the charge density ρD0 ≡ J0, where 0 denotes the

direction along the world-lines of the D0-branes that generate the background of interest,

as all other components of JA will vanish by symmetry in our background.

2.2 Specifics of the D0-background

Since we consider Fermions below, we will work in terms of the vielbien eÂA. The direction

picked out by the D0-worldline is clearly special and corresponds to A = 0. We will use the

symbol a = {1, ...9} to indicate one of the directions transverse to the zero-branes. Thus,

the supergravity background is

eφ = H−3/4, C0 = H−1 − 1, Ca = 0

ds2 = eÂeB̂ηÂB̂ , with eâ = H1/4δâ
b dx

b, e0̂ = H−1/4dt, (2.6)

with all other fields vanishing. The function H is a harmonic function on the nine-

dimensional space defined by x1, ..., x9 and sourced by the distribution of D0-branes. We

will proceed without assuming any particular form for H, but for the case of N0 D0-branes

at the origin H takes the familiar form H = 1 + 60π2 gℓ7sN0

r7 , where r2 =
∑

a x
axa.

The particular form of (2.6) allows a dramatic simplification of the effective action

(2.1). Following the discussion in section 5 of [13], it is useful to also impose static gauge

ξI = xI for I = 0, 1, 2, 3, 4 and to impose the κ-symmetry gauge

ψ̄
1

2
(1 − ΓD4) = ψ̄. (2.7)

Thus, from now on we take ψ to be a constrained Fermion satisfying (2.7) so that it has

only 16 independent components, though the Γs are 32 × 32 matrices.

Finally, at this stage we use our weak coupling approximation to truncate the action

by dropping all remaining terms beyond quadratic order in world-volume fields (including

interactions between the Fermions and the scalars Xp), as such terms give sub-leading con-

tributions in the gs → 0 limit. With this understanding the action (2.1) in the background

(2.6) becomes

Strunc
D4 = S

(0) trunc
D4 + S

(2) trunc
D4 , with
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S
(0) trunc
D4 = −TD4

∫

d5x − TD4

∫

d5x
{

1
4F

IJFIJ + 1
2∂

IXp∂IX
qgpq +

−1
8Θǫ̃0ijklFijFkl

}

,

S
(2) trunc
D4 = iTD4

∫

d5x ψ̄

[

ΓI∂I −
1

8
∂I lnH ΓI(1 + 2Γ0̂Γ

ϕ̂)

]

ψ . (2.8)

Here we have used indices I, J to denote spacetime directions {0, 1, 2, 3, 4} on the brane,

lower case i, j to denote space directions {1, 2, 3, 4} on the brane, and indices p, q to denote

directions {5, 6, 7, 8, 9} transverse to the brane. Below, we will also use Î , î, p̂ to denote

the corresponding tangent space directions. We have also introduced Θ = (H−1 − 1), the

moduli metric gpq = H1/2δpq and the worldvolume metric gIJ

gIJ =

(

−H−1/2 0

0 H1/2δij

)

, (2.9)

which is used to raise and lower the indices I, J, i, j, and the Levi-Civita tensor density

ǫ̃0ijkl whose non-zero entries are ±1.

The supersymmetries of the action (2.8) and their algebra were also derived in [13].

For completeness, we repeat them here. They are

δεψ = (1
4F

IJΓIJΓϕ̂ + 1
2∂IX

pΓIΓp)ε ,

δεAI = iε̄ΓIΓ
ϕ̂ψ ,

δεX
p = iε̄Γpψ , (2.10)

where ε = H−1/8ε(0) and ε(0) is any a constant spinor satisfying

1
2(1 + Γ0̂Γ

ϕ̂)ε(0) = 0 and,
1
2(1 + Γ0̂1̂2̂3̂4̂Γ

ϕ̂)ε(0) = 0. (2.11)

Note that the two projectors commute, so that 1/4 of the 32 supersymmetries survives.

¿From [13], the commutator of two such supersymmetry transformations corresponding

to ε1, ε2 acting on a bosonic field (X or A) is

[δε1 , δε2 ] =
(

−iε̄2Γ0ε1
)

∂0 −Q
[

iε̄2Γ0A0ε
1
]

, (2.12)

where Q is the generator of gauge transformations; i.e. Q[Λ]X = Q[Λ]ψ = 0, but Q[Λ]Ai =

∂iΛ. In reaching the above form we have used the fact that, since Γ1̂2̂3̂4̂ε = ε, one has

−iε̄2ΓIε1 = 0. Note that the factors of H in the first term cancel so that it represents a

constant time translation, which is indeed a symmetry of the action (2.8).

We may also use the κ-symmetry condition (2.7) and the identity that ψ̄ΓABCDEψ = 0

for any Majorana spinor ψ to simplify the expression (2.5) for the current which couples

to CI . The result is

JI =
TD4

8
√−g ǫ̃

IJKLMFJKFLM +
iTD4

4
√−g∂J

(√−gψ̄ΓJIΓϕ̂ψ
)

, (2.13)

where one is pleased to note that all derivatives transverse to the brane have disappeared.

Note that since the scalars Xp do not appear in (2.13) and are decoupled from all other

fields, they are irrelevant to our calculation and will not appear in any discussion below.
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3. The induced D0 charge density

We are now nearly ready to compute the expectation value 〈ρD0〉 = 〈J0〉 in our back-

ground. In order to properly take into account the deformation of the ground state, it is

useful to compute 〈ρD0〉 in the corresponding Euclidean signature background and then to

analytically continue back to Lorentz signature.

We find it easiest to keep track of the relevant signs and factors of i by proceeding

exactly as stated above; that is, by analytically continuing the background and making no

changes in the coordinates. That is, we take the Lorentzian action (2.1) to define a function

SL(X,F,ψ; b), where b is the supergravity background and simply substitute the Euclidean

background bE defined by (2.6) with the replacements

e0̂ = −iH−1/4dt and C = −i(H−1 − 1)dt. (3.1)

In particular, the metric still has the form ds2 = eÂeB̂ηÂB̂ with ηÂB̂ the Minkowski metric.

The Levi-Civita tensor density ǫ̃IJKLM of course remains ±1 or 0, but
√−g := det(e)

changes by the above factor of −i. We also follow the standard convention of introducing

another factor of −i in the Euclidean action, which we define for any background b as

SE(X,F,ψ; b) = −iSL(X,F,ψ; b).

Evaluating the Euclidean action SE(X,F,ψ; bE ) on the background bE of (3.1) yields:

Strunc
ED4 = S

(0)
D4 + S

(2) trunc
D4 ,

S
(0)
ED4 = TD4

∫

d5x+ TD4

∫

d5x
{

1
4F

IJFIJ + 1
2∂

IXm∂IX
ngmn

−1
8Θǫ̃0ijklFijFkl

}

. (3.2)

To display the Fermion action it is useful to first clarify our definition of the analytic

continuation. We take ΓÂ to be independent of the background, with ΓA defined in terms

of eÂ and ΓÂ. Thus, Γ0 depends on the background; it is anti-Hermitian in a Lorentzian

background and Hermitian in a Euclidean one. On the other hand, Γ0̂ is always anti-

Hermitian. However, we find it convenient to define Γ0̂
E := iΓ0̂ and ΓE,0̂ := −iΓ0̂, from

which we see that Γ0̂
E = ΓE,0̂. Note that we have:

ΓD4 = iΓE0̂Γ1̂Γ2̂Γ3̂Γ4̂Γ
ϕ̂, and (3.3)

Γϕ̂ = −iΓE0̂Γ1̂Γ2̂Γ3̂Γ4̂Γ5̂Γ6̂Γ7̂Γ8̂Γ9̂. (3.4)

We also introduce ψ̄E = −iψ̄. With such understandings the quadratic Fermion action is

S
(2) trunc
ED4 = −TD4

∫

d5x ψ̄E

[

ΓI∂I −
1

8
∂i lnH Γi(1 + i2ΓE,0̂Γ

ϕ̂)

]

ψ , (3.5)

where ψ continues to satisfy
1

2
ψ̄E(1 − ΓD4) = ψ̄E. (3.6)
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Similarly, we define a Euclidean current J0
E(X,F,ψ; b) on any background b through

J0
E(X,F,ψ; b) := −iJ0

L(X,F,ψ; bE). Evaluating this current on bE yields

J0
E =

TD4

8H3/4
ǫ̃0ijklFijFkl + i

TD4

4H3/4
∂i

(

H3/4ψ̄EΓîΓ0̂
EΓϕ̂ψ

)

. (3.7)

It will be convenient to restrict attention to weak supergravity fields so that we may treat

the system perturbatively. This amounts to the condition δH ≡ H − 1 ≪ 1, so that we

may approximate ∂i lnH ≈ ∂iH and Θ = H−1 − 1 ≈ 1 −H.

Because J0
E contains products of operators at coincident points, the individual terms

are likely to be divergent. Our strategy will be to point-split each term along some dis-

placement δ in the Euclidean time direction and then add the contributions from each

term together, analyzing the limit δ → 0. The purely Bosonic part J0
bE of the current

(3.7) will be studied in subsection 3.1 below, while the part J0
fE quadratic in Fermions

will be studied in subsection 3.2. We will then collect the terms and study the coincidence

limit in subsection 3.3. The reader may wonder what happens to these divergences in the

trivial background H = 1. As we will see below, it turns out that the index and Γ-matrix

structure of (3.2) and (3.7) cause both contributions to J0
E to vanish identically for H = 1,

even at finite point-splitting parameter δ.

3.1 The Bosonic part of the Euclidean Current

Let us now consider the point-split bosonic contribution,

〈J0
bE(x, y)〉 =

TD4

8
ǫ̃0ijkl〈Fij(x)Fkl(y)〉(1+O(δH)) = −TD4

2
ǫ0ijkl∂ix∂jy〈Ak(x)Al(y)〉(1+O(δH)),

(3.8)

where we have written this result in terms of the two-point function of the world-volume

connection AJ that leads to the field strength FIJ . We have also explicitly indicated the

two arguments x, y of the point-split current. The subscripts x, y on indices indicate the

points at which the corresponding derivatives act. The two point function 〈Ak(x)Al(y)〉
may be computed from the equation of motion for F , which may be written

∂IF
IJ = −1

2
ǫ̃0iJklFkl∂iH +O(δH2). (3.9)

The two-point function satisfies this same equation, but with an additional delta-function

source.

As we will solve the problem perturbatively, we wish to express (3.9) in the form

δJLδIK∂IFKL = LJIAI , (3.10)

where LJI is a linear differential operator that is also linear in δH. Since every term in

(3.9) contains two derivatives (which act either on AK or on H), each term in LJI must

contain two derivatives as well (which act either on H or on the argument of LJI). The

perturbative solution for the two-point function will then be

TD4〈AK(x)AL(y)〉 = GKL(x, y) −
∫

d5zGKI(x, z)L
IJGJL(z, y), (3.11)
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where GKL(x, y) is the flat-space two-point function (corresponding to H = 1).

¿From (3.9) there are two possible sources of corrections to the flat-space two-point

function 〈Ak(x)Al(y)〉0. The first is from the metric factors used to raise the indices in F IJ

on the left-hand side of (3.9), the second is from the explicit source term on the right-hand

side. At lowest order in δH the full correction term is the sum of these two independent

sets of corrections.

Let us consider the first set of corrections, working in the Euclidean version of flat-

space Lorentz gauge: δIJ∂IAJ = 0; i.e., in a gauge that preserves all symmetries and in

which GKL = (δKL − ∂K∂L

∂2 )G, where ∂2 = δIJ∂I∂J is the flat Euclidean Laplacian and G

is the scalar Green’s function satisfying

∂2G(x, y) = −δ(x, y). (3.12)

Consider in particular the contribution of such corrections to the factor ∂i∂j〈Ak(x)Al(y)〉
appearing in (3.8). Note that (3.8) contracts this with ǫ̃0ijkl, so that we may neglect any

terms proportional to the flat-space metric (on any pair of indices). Thus, non-trivial terms

can arise only when each index is generated by the action of a derivative (∂i, ∂j , ∂k, ∂l) on

one of the Green’s functions or on H. Since ∂i, ∂j are explicit derivatives and LJI contains

two additional derivatives, there are indeed four derivatives in each such correction term.

However, each of these four derivatives must act on G(x, z), G(z, y), or H(z). Thus, some

two of these derivatives act on the same function and, when antisymmetrized by contraction

with ǫ̃0ijkl, cause the result to vanish. Thus, we may neglect all factors of H in the metric

and replace LJI by

LJL
right = −ǫ̃0iJkL(∂iH)∂k. (3.13)

Similarly, the anti-symmetry of ǫ̃0ijkl implies that the zero-order contribution to J0
bE

vanishes for all x, y. Since we wish to compute ǫ̃0ijkl∂ix∂jy〈Ak(x)Al(y)〉 (i.e., a correlator

of field strengths), it is also clear that we may simply replace GIJ by δIJG, dropping

the longitudinal correction term −∂K∂L

∂2 G, as this term will again lead to commutators of

coordinate derivatives. Thus, we have

〈J0
bE(x, y)〉 =

1

2
ǫ̃0ijklǫ̃0i′j′k′l′δkk′δll′

∫

d5z∂iG(x, z)[∂i′H(z)]∂j′∂jG(z, y)

= −(δikδjl − δilδjk)

∫

d5z∂iG(x, z)[∂j∂kH(z)]∂lG(z, y), (3.14)

where all derivatives are with respect to the zi coordinates. We will postpone detailed

analysis of the limit x → y until after computation of the fermion contribution J0
fE , to

which we now turn.

3.2 The Fermionic part of the Euclidean Current

Our approach to the Fermionic contribution J0
fE will proceed in parallel with our calculation

of the bosonic term J0
bE above. We wish to consider the Fermionic term

〈J0
fE(x, y)〉 = i

TD4

4
∂i

(

H3/4〈ψ̄E(x)ψ(y)〉βα(ΓîΓ0̂
EΓϕ̂)αβ

)

, (3.15)
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where ∂i = ∂ix +∂iy acts on functions of both x and y and where we have explicitly displayed

the spinor indices α, β. It will not matter at which point the factor H3/4 is evaluated as

we will shortly see that to leading order we may replace this factor with 1.

The two-point function is again determined by the equation of motion, which for the

spinor ψ is just

/∂Hψ =
1

8
∂I lnH ΓI(1 + i2ΓE,0̂Γ

ϕ̂)ψ, (3.16)

where /∂H = ΓI∂I and the subscript indicates the implicit dependence on H. Again, we

wish to express (3.16) as a linear perturbation of the flat-space result:

/∂ψ = Lψ, (3.17)

where /∂ = /∂0 = Γ0̂
E∂0 + Γî

E∂i and L is linear in δH. Here it is useful to introduce the

notation

ΓÎ
E =

{

Γ0̂
E for I = 0

Γĵ for I = j
, (3.18)

so that we may write /∂0 = ΓÎ
E∂I . The two-point function is then

2TD4〈ψ̄E(x)ψ(y)〉βα = Gβ
α(x, y) −

∫

d5z Gβ
γ (x, z)Lγ

σG
σ
α(z, y), (3.19)

where Gα
β(x, y) = (P /∂G(x, y))αβ where G(x, y) is again the scalar Green’s function, the

derivatives act on the first argument, and P = 1−ΓD4
2 is the projection onto spinors satis-

fying the constraint (2.7). Note that the 2 on the left-hand side of (3.19) is a result of our

unconventional normalization of the action for Majorana Fermions.

As in the bosonic case, we may consider two sorts of contributions to L: those from

the left-hand side of (3.16) and those from the right-hand side. Contributions from the

left-hand side yield Lleft = 1
4 (1 −H)(Γ0̂

E∂0 − Γĵ∂j). Note that (Lleft γ
σ Gσ

α)(z, y) = 1
4(1 −

H)(−ηIJ∂I∂JG(1−P )γα+2∂0∂jG(Γ0̂
EPΓĵ)γα). As a result, the corresponding contributions to

(3.15) involve traces of the matrices PΓĴ
EΓîΓ0̂

EΓϕ̂ and PΓĴ
EΓ0̂

EPΓk̂ΓîΓ0̂
EΓϕ̂ = PΓĴ

EΓk̂Γî
EΓϕ̂,

where we have used P 2 = P . But we have

(1 − ΓD4)Γ
Ĵ
EΓîΓÎΓϕ̂ = Γϕ̂(−1 − ΓD4)Γ

Ĵ
EΓîΓÎ , (3.20)

so it is in fact sufficient to average the left- and right-hand sides of (3.20) and, using cyclicity

of the trace, to compute the trace of ΓĴ
EΓD4Γ

ϕ̂ΓîΓÎ
E. However, this operator anti-commutes

with any Γk for which k 6= i, I, J and so must have vanishing trace. Thus it is sufficient to

replace L by Lright = 1
8∂I lnH ΓÎ

E(1 + 2iΓE,0̂Γ
ϕ̂).

Similar Γ-matrix algebra shows that Gβ
α(x, y)(ΓiΓ0̂

EΓϕ̂)αβ = 0 so that the zero-order

contribution to 〈J0
fE〉 vanishes identically at any x, y. The full expectation value is therefore

〈J0
fE(x, y)〉 = − 1

64
Tr[PΓÎ

EΓk(−i+ 2ΓE,0̂Γ
ϕ̂)PΓĴ

EΓlΓ0̂
EΓϕ̂]

× (∂lx + ∂ly)

∫

d5z ∂IG(x, z)[∂kH(z)]∂JG(z, y) + O(δH2), (3.21)
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where all derivatives inside the integral are performed with respect to z. Note that to this

order we may replace each remaining ΓI by its flat-space counterpart. We find

Tr[PΓÎ
EΓk(−i+2ΓE,0̂Γ

ϕ̂)PΓĴ
EΓlΓ0̂

EΓϕ̂] = 16(−ǫ̃0IJkl−2[δIlδkJ+δIkδJl−δIJδkl+2δ0Iδ0Jδkl])+O(δH).

(3.22)

However, the term involving ǫ̃0IJkl will contribute a term to 〈J0
fE〉 proportional to the

commutator of two derivatives, which of course vanishes. Thus the fermionic contribution

is

〈J0
fE(x, y)〉 =

1

2
(2δIlδkJ−δIJδkl+2δ0Iδ0J δkl)

∫

d5z ∂IG(x, z)[∂l∂kH(z)]∂JG(z, y)+O(δH2),

(3.23)

where we have used the fact that ∂k∂l = ∂l∂k to simplify the factor involving Kronecker

delta’s, and we continue with the convention that all derivatives inside the integral are

with respect to z. We note that this expression is structurally quite similar to the bosonic

contribution (3.14), except that a different combination of derivatives is involved as well as

a different overall coefficient. In particular, Euclidean time derivatives of G do appear in the

fermion contribution, while they were absent in (3.14). We also note that, in comparison

with the bosonic contribution, the Fermionic contribution weights the term where l, k are

contracted with I, J by an extra factor of two relative to the term where l, k are contracted

together. As we will shortly see below, these features will prevent the bosonic and fermionic

divergences from canceling.

3.3 The coincidence limit

Having obtained the expressions (3.14) and (3.23), we now turn to an exploration of the

coincidence limit x→ y. To this end, it will be convenient to reparametrize the problem in

terms of the average location ∆I
+ = (xI + yI)/2 and the difference ∆I

− = (xI − yI)/2 of the

two points. We will take the separation to be purely in the Euclidean time direction, so

that ∆i
− = 0. We will be most interested in the singular contributions to (3.14) and (3.23),

which result from the region where z is close to either x or y. As a result, it is convenient

to parametrize z as zI = ∆I
+ + |∆0

−|ηI .

Recall that the explicit form of the scalar Green’s function is G(x, y) = 1
3V (S4)|x−y|3 ,

where V (S4) is the volume of a unit S4 and |x− y| is the Euclidean length of the 5-vector

x− y. Using this result, we may write our results in the form

〈J0
E(x, y)〉 =

−1

|∆−|3
1

[V (S4)]2

∫

d5η
(ηI − ∆I

−/|∆−|)(ηJ + ∆J
−/|∆−|)

|η − x̂0|5 |η + x̂0|5 AIJ(∆+ + |∆0
−|η),
(3.24)

where x̂0 is a unit vector in the positive x0 direction. Note in particular that |∆−| = |∆0
−|,

the absolute value of the time component of ∆−. In the above expression,

AIJ(z) = Abose
IJ (z) +Afermi

IJ (z) with,

Abose
IJ (z) = (δk

I δ
l
J − δIJδ

lk + δlkδJ0δI0)∂k∂lH(z),

Afermi
IJ (z) = −1

2
(2δl

Iδ
k
J − δIJδ

kl + 2δ0Iδ0Jδ
kl)∂k∂lH(z). (3.25)
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One may now expand AIJ(z) about the point ∆+ to obtain a power series in |∆−|.
Since any odd parity integrand will integrate to zero, only even terms in this expansion

will contribute. Furthermore, terms of order z4 or higher in AIJ(z) will give vanishing

contribution in the limit ∆− → 0. Thus, the only relevant terms involve AIJ(∆+) and

∂K∂LAIJ(∆+). The complete list of relevant integrals is provided in appendix A, and

quickly yields the result

〈J0
bE(x, y)〉 =

1

12

V (S3)

[V (S4)]2

(

1

|∆−|3
∂2
⊥H(∆+) +

1

3

1

|∆−|
(∂2

⊥)2H(∆+)

)

+ O(∆−),

〈J0
fE(x, y)〉 = − 1

18

V (S3)

[V (S4)]2
1

|∆−|3
∂2
⊥H(∆+) + O(∆−), (3.26)

where ∂2
⊥ = δij∂i∂j is the Laplacian in the 1,2,3,4 directions. It is interesting that the

O(∆−1) Fermion contribution vanishes.

Finally, we should continue the result back to Lorentzian spacetime. To do so, let us

first compute the Lorentzian current in the Euclidean background bE defined by (3.1):

J0
L(bE) = iJ0

E(bE) =
i

36

V (S3)

[V (S4)]2|∆−|3
∂2
⊥H(∆+)(1 + O(∆3

−))

=
1

36

V (S3)

[V (S4)]2|∆−|3
∂2
⊥C

0(bE)(∆+)(1 + O(∆3
−)), (3.27)

where we have used (3.14) to see that the factor of H above came only from C0(bE) =

g00(bE)C0(bE) = −i(H−1 − 1) = iδH + O(δH2), where the g00 results from the contrac-

tion of the two Levi-Civita symbols. Thus, we may analytically continue to a Lorentzian

background to find

〈J0
L〉 =

1

36

V (S3)

[V (S4)]2|∆−|3
∂2
⊥C

0(bE)(∆+)(1 + O(∆3
−)). (3.28)

4. Discussion

The calculations above find that, when a D4-brane probe is placed in the supergravity

background generated by D0-branes, the expectation value of the point-split D0-brane

charge density 〈ρD0(x, y)〉 is non-zero at leading order. Furthermore, our low-energy field

theory calculation gives a divergent result in the coincidence limit x → y. However, we

note that the divergences are proportional to ∂2
⊥H or (∂2

⊥)2H. Thus, as one would expect

from charge conservation, they yield zero total induced D0-charge when integrated over

the D4-brane. We also note that this charge density vanishes in the limit H → 1 where

the D0 source is infinitely far away.

Such calculations clearly beg a fully string theoretic calculation. We reserve such a

Ramond-Ramond calculation for future work, but it is natural to expect the result to

merely cut off our field-theoretic divergence at the string scale, ∆0
− ∼ ℓs, yielding a finite

induced Lorentz-signature charge density of the form

〈ρD0(x)〉 =
1

36

V (S3)

[V (S4)]2|∆−|3
∂2
⊥H(∆+)(1 + O(∆3

−)) ∼ aℓ−3
s ∂2

⊥H(x)(1 + O(ℓ2s)), (4.1)
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where a is an unknown coefficient of order 1 which one naively expects to be positive3. In

particular, (4.1) indicates a non-vanishing quantum polarization of the D4-brane by the

D0-background, although such an effect does not occur classically at any order in α′.

The effect arises because the boson and fermion contributions fail to cancel, though

they do have opposite signs. We note that the sign of the final effect is the natural one

expected of a polarizable medium, which follows from the natural tendency of an applied

electric field to separate (in this case, virtual) charges.

It also interesting to ask what a term of the form (4.1) would imply for the quantum-

corrected low-energy D4-brane effective action4. That is, we may ask what term in an

action Sqc
D4 would, when treated classically, yield an induced charge density of this form.

The charge density is by definition the variation of Sqc
D4 with respect to the background

Ramond-Ramond field C(1). Thus, a charge density linear in the background fields could

in principle arise from a quadratic term involving two powers of C(1), or from a term

involving one power of C(1) and one power of the metric or dilaton. However, there are

no Lorentz-invariant quadratic couplings of a 1-form to a metric or scalar, so the coupling

must be quadratic in C(1). The Lorentz invariant such term that leads to (4.1) is

− a

4
(2π)4TD4

∫

d5x
(

gsℓ
2
sF

(2)
IJF

(2)IJ
)

, (4.2)

where we have used TD4 = 1
(2π)4ℓ5sgs

to write this term using the familiar normalizations of

the D4-effective action in order to make clear that it does indeed have the form of a first

order correction in gs; i.e., a one-loop (annulus) string correction. Note that F(2)
IJ is the

pull-back of the bulk Ramond-Ramond two form field strength to the brane5. Thus, we

expect the quantum-corrected D4 action to contain pull-backs of bulk kinetic terms.

We note, however, that such terms are known from [14] not to arise for type II branes

at order g0
s at any order in α′, though Einstein-Hilbert terms on the brane do arise as α′

correction to branes in bosonic string theory [16]. Returning to the type II context, one

may expect that, in order for terms (4.2) to reside in a supersymmetric effective action or

to follow from a covariant term in the M5-brane effective action6, an Einstein-Hilbert term

for the world-volume metric would also be required. As pointed out in [15], such a term

could have interesting cosmological implications in braneworld scenarios. However, this

term appears not to arise [17] for type II branes7. It is not clear to us how this tension is

3 Of course, it is possible that this quantum induced effect could be cancelled by some intrinsic c-number

O(g) correction to the D0 charge density on a D4-brane. We thank Allen Adams for raising this possibility.
4We thank Joe Polchinski for raising this question.
5Note that that quantum corrections of our form arise only from corrections to the Green’s functions that

follow from couplings of bulk fields to world-volume fields in the classical D4-effective action. Since C(1)

appears in this action only through its pull-back, corresponding terms induced in the quantum-corrected

effective action must also involve only the pull-back of C(1).
6We thank Savdeep Sethi for raising this latter question
7In particular, after our original posting of this paper on the arxiv, the author of [17] shared with us his

unpublished calculations which explicitly show that the coefficient of the Einstein-Hilbert term vanishes.

One is tempted to believe that supersymmetry lies behind the vanishing of this coefficient, but no argument

for this seems to be known.
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resolved, though it may be that the quantum polarization term is cancelled by an explicit

O(g) term as suggested above in footnote 3.
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A. List of Relevant Integrals

The following is a list of integrals needed to attain the result 3.26.

∫

d5η
ηiηj

|η − x̂0|5 |η + x̂0|5 =
V (S3)

36
δij (A.1)

∫

d5η
(η0 − 1)(η0 + 1)

|η − x̂0|5 |η + x̂0|5 = −V (S3)

18
(A.2)

∫

d5η
ηiηj(η0 − 1)(η0 + 1)

|η − x̂0|5 |η + x̂0|5 = 0 (A.3)

∫

d5η
ηiηjηkηl

|η − x̂0|5 |η + x̂0|5 =
V (S3)

54
(δijδkl + δikδjl + δilδjk) (A.4)
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