
Linked Data (in low-resource) Platforms: a
mapping for Constrained Application Protocol

Giuseppe Loseto, Saverio Ieva, Filippo Gramegna, Michele Ruta?,
Floriano Scioscia, and Eugenio Di Sciascio

Politecnico di Bari - via E. Orabona 4, Bari (I-70125), Italy
{name.surname}@poliba.it

Resource type: Software

Permanent URL: http://dx.doi.org/10.5281/zenodo.50701

Abstract. This paper proposes a mapping of the Linked Data Plat-
form (LDP) specification for Constrained Application Protocol (CoAP).
Main motivation stems from the fact that LDP W3C Recommenda-
tion presents resource management primitives for HTTP only. A general
translation of LDP-HTTP requests and responses is provided, as well
as a framework for HTTP-to-CoAP proxying. Experiments have been
carried out using the LDP W3C Test Suite.

Keywords: Linked Data Platform, CoAP, Semantic Web of Things

1 Introduction and Motivation

The World Wide Web Consortium (W3C) has standardized the Linked Data
(LD) management on the Web with the Linked Data Platform (LDP) speci-
fication [8]. Unfortunately, this effort leaves out the so-called Web of Things
(WoT) where HTTP is replaced by simpler protocols, e.g., CoAP (Constrained
Application Protocol) [12], suitable for resource-constrained scenarios. CoAP
adopts a loosely coupled client/server model, based on stateless operations on re-
sources [2] identified by URIs (Uniform Resource Identifiers). Clients access them
via asynchronous request/response interactions through HTTP-derived methods
mapping the Read, Create, Update and Delete operations of data management.
Section 3.12 of Linked Data Platform Use Cases and Requirements [1] reports
on a possible one-to-one translation of HTTP primitives toward CoAP, never-
theless the proposed solution appears quite limited. The given mapping [3] only
considers basic HTTP interactions: options, head and patch methods are not
allowed and various MIME content-format types are missing.

Main motivation of this resource is to enable the extension of the Linked
Data Platform standard to Web of Things contexts. A specific variant of the
HTTP-CoAP mapping is proposed, preserving LDP features and capabilities:
the envisioned HTTP-CoAP proxy makes objects networks first-class Linked
Data providers on the Web. Novel features are also giving added value to the
strongest peculiarities of CoAP with respect to HTTP, e.g., resource discovery

? Corresponding author Tel.: +39-339-635-4949; fax: +39-080-596-3410

http://dx.doi.org/10.5281/zenodo.50701

Table 1: Current LDP implementations
Name Status Last Version License Language Supported LDP Resources

RWW.IO Pending 1.2 (Nov 2014) MIT PHP RS, BC

Apache Marmotta Full release 3.3.0 (Dec 2014) APL 2.0 Java RS, NR, BC

Bygle In progress Feb 2015 APL 2.0 Java RS, BC

Eclipse Lyo Completed 2.1.0 (Mar 2015) EPL 1.0 Java RS, NR, BC, DC

LDP.js Completed Apr 2015 APL 2.0 JavaScript RS, BC, DC

Glutton In progress Apr 2015 GPLv3 Python RS, BC

Carbon LDP In progress 0.5.7 (Oct 2015) BSD JavaScript RS, NR, BC, DC, IC

LDP4j In progress 0.2.0 (Dec 2015) APL 2.0 Java RS, BC, DC, IC

RWW Play In progress 2.3.6 (Dec 2015) APL 2.0 Scala RS, NR, BC

Fedora Full release 4.5.0 (Jan 2016) APL 2.0 Java RS, NR, BC, DC, IC

Callimachus Full release 1.5.0 (Mar 2016) APL 2.0 Java RS, NR, IC

gold In progress 1.0.1 (Apr 2016) MIT Go RS, BC

OpenLink Virtuoso Full release 7.2.5 (Apr 2016) GPLv2 C/C++ RS, BC

ldnode In progress 0.2.31 (Apr 2016) MIT JavaScript RS, BC

Table 2: HTTP-CoAP mapping of preference headers
HTTP Header LDP-CoAP

Prefer: return=representation; include="pref " ldp-incl=pref Core Link Format attribute

Prefer:return=representation; omit="pref” ldp-omit=pref Core Link Format attribute

Preference-Applied: return=representation pref returned using location-query CoAP option

via CoRE Link Format. The proposed solution is released as open source. Per-
formance tests evidence LDP-CoAP supports all types of LDP resources keeping
computational performances comparable with other frameworks. Results of the
W3C LDP conformance test suite show the proposal does not completely cover
LDP specification yet.

2 Coping with Lightweight Linked Data Platform

The LDP W3C Recommendation provides standard rules for accessing and man-
aging Linked Data on the Web LDP servers. Basically, it defines seven types of
LDP Resources as well as patterns of HTTP methods and headers for CRUD
(Create, Read, Update, Delete) operations1. W3C LDP implementations web
page (http://www.w3.org/wiki/LDP_Implementations) lists several software
tools: Table 1 reports the most relevant ones along with main properties and
supported resource types, in order of release date. All solutions are based on the
HTTP protocol, with no current support for WoT standards such as CoAP.

The W3C suggests explicit use cases [1] aiming to integrate LDP in resource-
constrained devices and networks with specific reference to CoAP [12], a com-
pact protocol conceived for machine-to-machine (M2M) communication. Some
CoAP options are derived from HTTP header fields (e.g., content type, headers
and proxy support), while some other ones have no counterpart in HTTP. So an
HTTP-CoAP mapping is needed to exploit all LDP features with CoAP. An early
mapping proposal was defined in [3], but it only worked with basic HTTP inter-
actions. The HTTP-CoAP mapping for LDP envisioned in [7] and outlined here,
enables a direct CoAP-to-CoAP interaction. HTTP methods mapping is applied

1 Due to space constraints, details of LDP specification are not recalled here; basic
knowledge of LDP is assumed, while the reader is referred to [8] for details

http://www.w3.org/wiki/LDP_Implementations

(a) Main modules (b) LDP HTTP-CoAP proxy server

Fig. 1: LDP-CoAP framework architecture

for each CoAP method (if present). HEAD and OPTIONS, undefined in CoAP, are
mapped to existing GET and PUT methods, by adding the new Core Link Format
attribute ldp. There is full backward compatibility with the standard protocol,
while extending the basic CoAP functionalities. W.r.t. the early proposal [7], ad-
ditional features have been also defined to support: (i) PATCH method; (ii) RDF
Patch format [10] along with application/rdf-patch content-format media
type; (iii) LDP Prefer headers of request/reply messages (Table 2).

LDP-CoAP mapping was implemented in a Java-based framework providing
the basic components required to publish Linked Data on the WoT according to
LDP-CoAP specification. It consists of several modules, as shown in Figure 1a.

ldp-coap-core : includes the implementation of all LDP-CoAP resources and a
basic LDP-CoAP server handling CoAP-based communication and RDF data
management. The main Java package coap.ldp was partitioned in the following
sub-packages each providing a specific functionality.

– coap.ldp.server: the reference CoAPLDPServer implementation. It extends
the CoAPServer provided by californium-core-ldp module (described below) and
exposes methods to create and manage LDP resources. The package also includes
the CoAPLDPTestSuiteServer, used for experiments described in Section 3.

– coap.ldp.resources: according to the LDP resource hierarchy [8], several
Java classes were developed extending the CoAPLDPResource base class providing
common methods and attributes. For each resource class, a specific data handler
can be implemented to retrieve whatever kind of data (e.g., observation from a
sensor) and update the RDF repository with user-defined periodicity. Handlers
can be defined starting from the LDPDataHandler abstract class. In this way,
developers can build specific applications implementing the whole business logic
and data management procedures within the handleData method of the handler,
without any other modification of the source code. CoAPLDPResourceManager
implements read-write operations on the RDF data storage exploiting an Open-
RDF Sesame (http://rdf4j.org) in-memory RDF repository.

– coap.ldp.handler: two simple handlers were defined as usage examples to
expose real-time system CPU load and RAM usage ratio as LDPRDFResource.
Data are collected through the operating system interfaces of Java 7 (or later).

http://rdf4j.org

– coap.ldp.exception: a CoAPLDPException class was defined to catch errors
due to incorrect usage of LDP methods, headers or attributes. Its subclasses
represent typical problems (e.g., content format or precondition failed).

– rdf.vocabulary: contains RDF ontologies mapped as Java classes to simplify
creation and querying of RDF triple. As an example, SSN-XG ontology [4] was
mapped through the Sesame Vocabulary Builder (http://github.com/tkurz/
sesame-vocab-builder) tool and included here.

The following libraries are required to correctly compile ldp-coap-core: JSON-
java (http://github.com/stleary/JSON-java) to format data in JSON; jsonld-
java (http://github.com/jsonld-java) to support the json-ld specification
[6]; Apache Marmotta RDF Patch Util (http://marmotta.apache.org/sesame.
html) to update RDF statements of a Sesame repository according to the rdf-patch
[10] format.

californium-core-ldp: a modified version of the Californium CoAP framework
[5], extended to support LDP features. Main modifications include: (i) novel
content-format media types added to MediaTypeRegistry class; (ii) additional
response codes introduced within CoAP main class.

ldp-coap-proxy : a modified version of californium-proxy implementing the map-
ping rules defined before and translating LDP-HTTP request to the correspond-
ing LDP-CoAP ones. As shown in Figure 1b, LDP-CoAP mapping procedures
take advantage of the classes in this module. In particular, ProxyHttpServer is re-
sponsible for processing a request –coming from a generic HTTP client– through
its HttpStack member class where the mapping occurs. HttpStack transforms
an HTTP request into a compatible LDP-CoAP one and for each CoAP re-
quest it starts two threads, CoapRequestWorker and CoapResponseWorker, syn-
chronized according to the producer-consumer pattern. The CoapRequestWorker
thread produces the LDP-CoAP translated request for the ProxyHttpServer class
instance which forwards that request to the proper LDP-CoAP server. The
CoapResponseWorker is responsible for consuming and translating the LDP-
CoAP response coming from the ProxyHttpServer into the HTTP response which
is returned to the client.

In addition to the basic framework, the following two packages were developed
to build LDP-CoAP applications on embedded and resource-constrained devices.

ldp-coap-raspberry : ldp-coap-core was tested on a Raspberry Pi (http://www.
raspberrypi.org) board. W.r.t. other LDP implementations, LDP-CoAP is
very lightweight and simple to run on low-resource environments like Raspberry
Pi, having a minimum number of dependencies and low system requirements
in terms of memory and processing capabilites. As a reference example, two
handlers were implemented to publish CPU temperature and free RAM as LDP
resources. Data are retrieved using the Pi4J (http://pi4j.com) library.

ldp-coap-android : a simple project exploiting ldp-coap-core on Android de-
vices. It runs unmodified on all platforms supporting modules compiled with
Java SE runtime environment, version 7 or later, so it can be directly used as
a library also by Android applications. Android OS provides a uniform inter-
face (the Android sensor framework, http://developer.android.com/guide/

http://github.com/tkurz/sesame-vocab-builder
http://github.com/tkurz/sesame-vocab-builder
http://github.com/stleary/JSON-java
http://github.com/jsonld-java
http://marmotta.apache.org/sesame.html
http://marmotta.apache.org/sesame.html
http://www.raspberrypi.org
http://www.raspberrypi.org
http://pi4j.com
http://developer.android.com/guide/topics/sensors/sensors_overview.html

GET /alice/ HTTP/1.1

Host: example.org Accept: text/turtle

HTTP/1.1 200 OK

Content-Type: text/turtle; charset=UTF-8

Link: <http://www.w3.org/ns/ldp#BasicContainer> rel="type",

<http://www.w3.org/ns/ldp#Resource> rel="type"

Allow: OPTIONS,HEAD,GET,POST,PUT,PATCH

Accept-Post: text/turtle, application/ld+json

Accept-Patch: application/rdf-patch

Content-Length: 250

ETag: W/’123456789’

...RDF payload...

(a) HTTP GET

GET coap://example.org/alice?ldp=options

2.05 Content

Content-Format (ct): application/json

{
"Allow": ["OPTIONS", "HEAD", "GET",

"POST", "PUT", "PATCH"],

"Accept-Post": ["text/turtle",

"application/ld+json"],

"Accept-Patch": "application/rdf-patch"

}

(b) CoAP OPTIONS

GET coap://example.org/.well-known/core?title=alice

2.05 Content

Content-Format (ct): application/link-format

</alice>

rt="http://www.w3.org/ns/ldp#BasicContainer

http://www.w3.org/ns/ldp#Resource";

ct=4; title="alice"

(c) CoAP Discovery

GET coap://example.org/alice/

Accept: text/turtle

2.05 Content

Content-Format (ct): text/turtle

ETag: W/’123456789’

...RDF payload...

(d) CoAP GET

Fig. 2: HTTP-CoAP mapping for an LDP GET request/response

topics/sensors/sensors_overview.html) to access sensor data. Therefore, a
single handler (named GenericSensorHandler) was implemented to manage
both hardware and software-based device sensors. The project includes a basic
activity starting a LDP-CoAP server exposing data from interface sensors mod-
eled as LDP resources. Source code is available on [9], including Javadoc docu-
mentation; quick usage examples are on the project website http://sisinflab.
poliba.it/swottools/ldp-coap. All modules were developed as Eclipse (http:
//eclipse.org) projects using Apache Maven (http://maven.apache.org) to
manage dependencies. Only ldp-coap-android is a project for Android Studio
(http://developer.android.com/tools/studio/index.html), the Google of-
ficial IDE for app development. In this case, all dependencies can be defined
through a Gradle (http://gradle.org) configuration file.

A few validation examples are reported here, in order to clarify the proposal.
Full examples are on the LDP-CoAP project website.

Ex. 1 – Basic HTTP GET request on an LDP resource
HTTP-CoAP mapping is shown in Figure 2. As described in [7], a single CoAP
GET request cannot produce all the needed headers. So the original HTTP request
(Figure 2a) is translated to three LDP-CoAP packets: a GET message (Figure 2d),
a CoAP discovery message (Figure 2c), and an OPTIONS message (Figure 2b). In
particular, since Allow, Accept-Post and Accept-Patch response headers are
not defined in CoAP, their values are set in the LDP-CoAP OPTIONS response
body in JSON syntax and then mapped to the corresponding HTTP headers.
As per the CoRE Link Format specification [11], the CoAP discovery request
maps the HTTP Link header with the resource type (rt) retrieved via the
/.well-known/core reserved resource path.

Ex. 2 – Create a new LDP resource through an HTTP POST request
In this case, the HTTP request (Figure 3a) is translated to a single CoAP POST
message, as in Figure 3b (see [7] for details).

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://sisinflab.poliba.it/swottools/ldp-coap
http://sisinflab.poliba.it/swottools/ldp-coap
http://eclipse.org
http://eclipse.org
http://maven.apache.org
http://developer.android.com/tools/studio/index.html
http://gradle.org
/.well-known/core

POST /alice/ HTTP/1.1

Host: example.org Slug: foaf

Content-Type: text/turtle

...RDF payload...

HTTP/1.1 201 Created

Location: http://example.org/alice/foaf

Link: <http://www.w3.org/ns/ldp#Resource> rel=’type’

Content-Length: 0

(a) HTTP POST

POST coap://example.org/alice?title=foaf

Content-Format (ct): text/turtle

...RDF payload...

2.01 Created

Location-Path:

coap://example.org/alice/foaf

(b) CoAP POST

Fig. 3: HTTP-CoAP mapping for an LDP POST request/response

Table 3: Comparison of implementation conformance tests

Feature
MUST SHOULD MAY

LDP-CoAP Highest Val. LDP-CoAP Highest Val. LDP-CoAP Highest Val.

LDP-RS 91.7% (22/24) 100% [a,b,c,d,e] 71.4% (5/7) 100% [a,b,c,d] 100% (1/1) 100% [all]

LDP-BC 86.5% (32/37) 100% [b,c,d,e] 88.2% (15/17) 100% [b,c] 100% (4/4) 100% [b,c,e,f]

LDP-DC 88.1% (37/42) 100% [b,d,e] 89.5% (17/19) 100% [b] 100% (4/4) 100% [b,d,f]

LDP-IC 84.6% (33/39) 97.4% [a] 88.2% (15/17) 88.2% [d] 100% (4/4) 100% [f]

LDP-NR 80.0% (12/15) 100% [a,b,c] 100% (1/1) 100% [a,b,c,f,i] 66.7% (4/6) 100% [b,c,f]

(a) Callimachus, (b) Eclipse Lyo, (c) Apache Marmotta, (d) LDP4j, (e) LDP.js, (f) Fedora4,
(g) ldphp, (h) Virtuoso, (i) rww-play

3 Experiments

The W3C LDP Test Suite (http://w3c.github.io/ldp-testsuite/) is used
to evaluate the functionality of the proposed framework and to compare it with
existing solutions. The suite consists of 236 tests which query an LDP server by
means of HTTP messages; only for LDP-CoAP requests were sent to the server
through an LDP-CoAP proxy as in Figure 1a. Obtained results are grouped
by supported LDP resources (RDF Sources, Non-RDF Sources and Basic, Di-
rect, Indirect Containers – see [8] for definitions) and compliance levels (MUST,
SHOULD, MAY). For each resource/level pair, Table 3 compares the score of
LDP-CoAP with the highest value obtained by other LDP tools. Full LDP-
CoAP results are on the project website. Overall, LDP-CoAP presents good
scores, when considering 17 manual tests were skipped in this first experimental
campaign and only automated ones were executed.

In addition to LDP-CoAP 7 tools were evaluated: Virtuoso, LDP.js, Apache
Marmotta, LDP4j, RWW.IO, Fedora4 and Eclipse Lyo. They were selected ac-
cording to the features listed in Table 1: current status, completeness, open li-
cense, last update and supported resources (in particular RDF Source and Basic
Container). Gold was tested and discarded due to the limited compatibility with
LDP specification. Only supported resources were taken into account to retrieve
processing time. Each test was repeated three times on the same PC and (only
for tests passed by all tools) the average value was reported in Figure 4. Fedora4
and LDP-CoAP support all LDP resources. Eclipse Lyo and LDP4j manage four
resources groups, whereas remaining frameworks only operate on RDF Sources
and Basic Containers. LDP-CoAP has good processing times, as results are com-
parable with the other implementations even while involving the HTTP-CoAP
proxy. Only for non-RDF Source tests performance is slightly worse.

http://w3c.github.io/ldp-testsuite/

20 30 40 50 60 70 80 90 100 110

Basic Container

Direct Container

Indirect Container

RDF Resource

Non RDF Source

Processing Time (ms)

LD
P

 R
e

so
u

rc
e

s

Eclipse Lyo

Fedora4

RWW.IO

LDP4j

Marmotta

LDP.js

Virtuoso

LDP-CoAP

Fig. 4: Comparison of processing time for tested LDP implementations

To evaluate the feasibility of exploiting LDP in mobile and pervasive com-
puting scenarios, LDP-CoAP performance was tested on three different Java-
compatible platforms: a PC2, an Android smartphone (LG Google E960 Nexus 4,
specifications at http://www.lg.com/us/cell-phones/lg-LGE960-nexus-4) and
a Raspberry Pi 1 Model B+ board (http://www.raspberrypi.org/products/
model-b-plus/) All requests were originated from a PC client running both the
LDP Test Suite and the LDP HTTP-CoAP proxy, connected through a local
IEEE 802.11 network to one of the three LDP-CoAP servers for each test. The
overall processing time, shown in Figure 5, is defined as the time elapsed from
sending the request until receiving a response by the client, including commu-
nication and HTTP-CoAP message translation times. Values on Android are
roughly 3 times higher than on PC, whereas performance on Raspberry are an
order of magnitude higher with respect to PC. However, average response times
are under 1 second both on Android and Raspberry (except for LDP-NR re-
sponses on Raspberry). Memory usage was also measured every 2 s during the
execution of the test suite for the three platforms. Memory allocation peak of
the LDP-CoAP server was about 44.7 MB on PC, 18.3 MB on Android and 7.4
MB on Raspberry. Stricter memory constraints on smartphones and embedded
devices imposes to have as much free memory as possible at any time. Conse-
quently, on these platforms Java virtual machines perform more frequent and
aggressive garbage collection (see Figure 6). The garbage collector was invoked
many times, corresponding to the falling edges in the chart. This behavior re-
duces memory usage, but on the other hand it causes the processing time gap
found on the different platforms.

4 Future directions

This paper presented an LDP-CoAP mapping and framework for managing
Linked Data in the Web of Things. Performance tests evidence LDP-CoAP
supports all types of LDP resources and its computational performances are

2 With Intel Core i7 CPU 3770K at 3.50 GHz (4 cores/8 threads), 12 GB DDR3-
SDRAM (1333 MHz), 2 TB SATA (7200 RPM) HD, 64-bit Microsoft Windows 7
Professional and 64-bit Java 8 SE Runtime Environment (build 1.8.0 65-b17).

http://www.lg.com/us/cell-phones/lg-LGE960-nexus-4
http://www.raspberrypi.org/products/model-b-plus/
http://www.raspberrypi.org/products/model-b-plus/

10.0

100.0

1000.0

10000.0

Basic
Container

Direct
Container

Indirect
Container

RDF
Resource

Non RDF
Source

Ti
m

e
 (

m
s)

LDP Resources

PC Android Raspberry Pi

Fig. 5: Device time comparison

2

3

4

5

6

7

8

1 6 11 16 21 26 31 36 41 46 51 56

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

Sampling Time (T = 2 sec)

Fig. 6: Memory use on Raspberry Pi

comparable with those of other frameworks. Future revisions will extend com-
pliance as much as possible; progress will be measured through test suite adopted
here. Planned developments also include: evolving the forks of Californium core
and proxy modules to merge them with the original codebase eventually; adding
the capability to manage RDF resources on persistent storage in addition to
in-memory ones; porting LDP-CoAP server to more languages (e.g., C/C++,
Python, Go) and computing platforms (e.g., Arduino).

References

1. Battle, S., Speicher, S.: Linked Data Platform Use Cases and Requirements. W3C
Working Group Note, W3C (Mar 2014), http://www.w3.org/TR/ldp-ucr/

2. Bormann, C., Castellani, A., Shelby, Z.: CoAP: An Application Protocol for Bil-
lions of Tiny Internet Nodes. IEEE Internet Computing 16(2), 62–67 (2012)

3. Castellani, A., Loreto, S., Rahman, A., Fossati, T., Dijk, E.: Guidelines for HTTP-
CoAP Mapping Implementations. Internet-Draft 07, IETF Secretariat (July 2015)

4. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN Ontology
of the W3C Semantic Sensor Network Incubator Group. Web Semantics: Science,
Services and Agents on the World Wide Web 17 (2012)

5. Kovatsch, M., Lanter, M., Shelby, Z.: Californium: Scalable cloud services for the
Internet of Things with CoAP. In: Internet of Things, 2014 Int. Conf. on the. pp.
1–6. IEEE (2014)

6. Lanthaler, M., Sporny, M., Kellogg, G.: JSON-LD 1.0. W3C Recommendation,
W3C (Jan 2014), http://www.w3.org/TR/json-ld/

7. Loseto, G., Ieva, S., Gramegna, F., Ruta, M., Scioscia, F., Di Sciascio, E.: Linking
the Web of Things: LDP-CoAP mapping. In: Shakshuki, E. (ed.) 7th Int. Conf. on
Ambient Systems, Networks and Technologies (ANT 2016) / Affiliated Workshops.
Procedia Computer Science, vol. 83, pp. 1182–1187. Elsevier (May 2016)

8. Malhotra, A., Arwe, J., Speicher, S.: Linked Data Platform 1.0. W3C Recommen-
dation, W3C (Feb 2015), http://www.w3.org/TR/ldp/

9. Ruta, M., Scioscia, F., Loseto, G., Ieva, S., Gramegna, F., Sciascio, E.D.: LDP-
CoAP: Linked Data Platform for the Constrained Application Protocol (v1.0).
http://dx.doi.org/10.5281/zenodo.50701 (2016)

10. Seaborne, A., Vesse, R.: RDF Patch Describing Changes to an RDF Dataset.
Unofficial Draft (Aug 2014), https://afs.github.io/rdf-patch/

11. Shelby, Z.: Constrained RESTful Environments (CoRE) Link Format. RFC 6690
(Aug 2012), http://www.ietf.org/rfc/rfc6690.txt

12. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252 (Jun 2014), http://www.ietf.org/rfc/rfc7252.txt

http://dx.doi.org/10.5281/zenodo.50701
http://www.ietf.org/rfc/rfc6690.txt
http://www.ietf.org/rfc/rfc7252.txt

	Linked Data (in resourceless) Platforms: a mapping for Constrained Application Protocol
	Introduction and Motivation
	Coping with Lightweight Linked Data Platform
	Experiments
	Future directions

