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Abstract: In this article, contact problem with fractional
derivatives is studied. We use fractional derivative in the
sense of Caputo. We deploy penalty function method to
degenerate the obstacle problem into a system of frac-
tional boundary value problems (FBVPs). The series solu-
tion of this system of FBVPs is acquired by using the
variational iteration method (VIM). The performance as
well as precision of the applied method is gauged by
means of significant numerical tests. We further study
the convergence and residual errors of the solutions by
giving variation to the fractional parameter, and graphi-
cally present the solutions and residual errors accord-
ingly. The outcomes thus obtained witness the high effec-
tiveness of VIM for solving FBVPs.

Keywords: fractional contact problem, obstacle, varia-
tional iteration method, Caputo’s fractional derivative

1 Introduction

Recently, numerous issues in physics, potential theory,
fluid mechanics, and economics have been transformed
in variational inequality form [1]. Variational inequality
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has close linkage with diverse fields such as optimal con-
trol problem governed by PDE, bi-level programming,
and free BVPs [2]. As a result of these diverse applica-
tions, implementing numerical techniques for variational
inequalities has received much attention by numerous
engineers and mathematicians.

Obstacle problem has its own importance in core
domain of variational inequalities. The fundamental con-
cern in discussing obstacle-type problems is to identify
the equilibrium point of elastic layer resting over a
hypothetical obstacle. Some of the issues in applied areas
can be demonstrated as obstacle problems, and some
notable referrals are refs [3-5]. The existence, unique-
ness, and regularity of the obstacle problems can found
in refs [6,1]. Due to highly nonlinear nature of obstacle
problem the task of finding the exact solution is difficult.
Many researchers solved the obstacle problems numeri-
cally by different methods including boundary element
method [7], projection method [8,9], and VIM [10-12].

In 1695, Leibniz made known the first ever notation
for gth order derivative of the function, i.e., Leibniz
queried to Mathematician D. Hospital that what it be
in the event that we take the order as a fraction. Later
on non-integer/fractional order derivatives gained immense
value to portray numerous problems faced in rheology,
physics, control systems, damping laws, fluid mechanics,
biomathematics, computational chemistry, control theory,
engineering science, and finance. With the passage of time
these applications motivated many mathematicians and
physicists to create various definitions of this concept of
fractional differential operators to model complicated phe-
nomena (see, e.g., [13-21]). In the book of Oldham and
Spanier [22], we can find the initial efforts put by many
mathematicians and researchers in the field of fractional
calculus.

Mostly, analytical and numerical schemes have been
developed to solve fractional order differential equations
as it is nevertheless not easy to compute their exact solu-
tions. Due to their invaluable involvement in almost
every field, scientists developed many numerical as
well as analytical algorithms with much stability, see
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refs [18,23-34,35] for solution of these types of equations.
Among them, Martin [29] has discussed the stability of
algorithm that is a combination of VIM and Laplace trans-
formation. With the help of weak formulation, Heidar-
khani et al. [36] succeeded to solve system of fractional
order differential equations. Nowadays, many researchers
[37,38] have shown their interest to tackle contact pro-
blems of fractional nature involving an obstacle because
of their immense importance in mathematical physics and
engineering. Recently, in ref. [39], an advanced Caputo
fractional derivative approach is used to study the gener-
alized model for quantitative analysis of sediments loss. In
ref. [40], Caputo derivatives are deployed to study the
magnetohydrodynamic (MHD) flow over a shrinking sheet
and heat transfer with viscous dissipation. Kavitha et al.
[41] studied the existence of mild solutions for the Hilfer
fractional evolution system with infinite delay via mea-
sures of noncompactness. Some of the most relevant
recent developments are presented in refs [42-51]. How-
ever, to the best of our knowledge, the analytical solution
of system of fractional boundary value problems (FBVPs)
using VIM has not been discussed in the literature so far.
Inspired by this, we attempt to present the analytical solu-
tion of system FBVPs in this proposed study.

We organized this study as follows: Section 2 pro-
vides some definitions and preliminaries. A short intro-
duction of the VIM introduced by Inokuti et al. [52] is also
presented here for readers. To estimate the viability of
applied VIM we did some numerical tests for various
cases in Section 3. Results and discussions are given in
Section 4.

2 Preliminaries

Here at first we give the definition of fractional derivative
which will be used later. There are many definitions of
fractional derivative which can be found in refs [13,16,53],
but in our work we will use the definition Caputo of frac-
tional order a > 0, see ref. [54].

2.1 Definition

Let n > a be the least integer, Caputo’s fractional deriva-
tive of order a > O is defined as
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where a is a real number and I' denotes the gamma
function.

2.2 Problem

BVP incorporated with an obstacle is the most classical
type of free BVPs. Consider a membrane is attached
between two fixed points. Effect of the gravitational force
is negligibly small. In a still position, i.e., when the mem-
brane is at rest, this problem resembles with the problem
of a string in 1D. When we push up this membrane with
the help of some non-flat object, called obstacle, we can
witness that membrane touches the obstacle at some
points, while at other points, obstacle stays below the
membrane. The collection of points at which membrane
and obstacle do not touch each other is called free
boundary. Now, we will present the mathematical formu-
lation of the obstacle-type problem. Assume i as an
obstacle function and the membrane u is fixed on the
boundary of domain D. Moreover, assume that the mem-
brane is forced to stay above the obstacle. The set

A={§eD:u) =y}

is called the coincidence set. If we set Q = D\ A, then the
set

'=0AND=0QnNnD

is the corresponding free boundary which is a priory
unknown. Figure 1 illustrates the obstacle problem. In the
equilibrium situation, the function u is harmonic outside
the contact set, i.e., % < 0in A, otherwise u(¢) = P(¢&).
We consider a system of boundary value problems as:

f, &) +ut)gw, &) +r, a<é<c

f(uxg)s CSde

fu,x) +ul@)gw, &) +r, d<é<b, 1<as<,
)]

_ d*u _
dée

with boundary conditions
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Figure 1: The obstacle §/(§) touches the membrane u and we are
looking for the free boundary ' and the solution u.

Ué)le=a = 0,  u(@)le=p =0 3)

having continuity conditions of u(¢ ), ¥ at a and b. Here,
parameters r, a, b, and ¢ are real constants and f(u, &),
g(u, &) are continuous functions on [a, b]. Systems of
type (2) arise in the mathematical modeling of contact,
obstacle, unilateral, moving, and free boundary value
problems. These problems have important applications
in pure and applied sciences; see ref. [55] and references
therein. For simplicity, we consider a second-order obstacle
boundary value problems of the type:

_ d*u

ae 21©): £elc,d]
Ju@® = x©), fele,d) @
[d{“ —f(f)][u(f) -k(]=0, §elcdl,
a=2 & c,d €R
subject to the BCs
u({)lfzc = 0’ u({)l{:d = 0! (5)

where f(¢) is a continuous functions, x(¢) is an obstacle
function and at the end of the domain, and R denotes a
set of real numbers.

Equation (4) describes geometrically an elastic string
pulled at the ends and having constraint to lie over an
elastic obstacle k() in the equilibrium position.

If u(¢) = x(¢), then problems (4) reduce to finding
such that

= f({)’ a= 2’ (6)

d{"‘
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with boundary conditions
u(i)lf:c =0,

A large class of problems arising in harmonic motion,
oscillatory vertical motion, solid-state physics, nuclear
charge in heavy atoms, and other analogous systems
can be formulated as problem (6), see ref. [56] and refer-
ences therein.

We study the problem (4) along with (5) in the frame-
work of variational inequalities. For this purpose, we
define the set K as

= {u(®) : ul§) € Hy: u() > x(§) on §¢[a, bl}.

One can associate an energy functional I[u] with the
obstacle problem (4) using the technique of Tonti [57] as:

U&)lg=a = 0. 7)

Iu]= I{—— - 2f(§)}u(.f)d£, Vu e K

dé?
(8)
du du
| o Lag-2 jf(f)u(f)df
- <Tu’ u) - 2<f9 u)a
where
du dv
(Tu,v) = aad Yu,v € K, 9)
and

b
(fyu) = _[f(é’)u(é’)df, Yu,v € K.

One can show that T defined by (9) is a linear, sym-
metric and positive operator. It is well known [58,59] that
a minimum of functional I[u] defined by (8), on the
closed and convex set K in Hi[a, b] can be characterized
by a variational inequality of the type

(Tu,v —u) > {f,v-u), Vvek. (10)

Thus, we conclude that the obstacle boundary value pro-
blem (4) is equivalent to solving the variational inequality
problem (10). This equivalence has been used to study the
existence of a unique solution of (4), see ref. [58]. Utilizing
the method of penalty function [60], the problem (4) can
be rewritten as follows:

_ d*u
dé

- p{u(€) - k(@) - x(§) = f(§). (11

In (11), the penalty function is denoted by p{.}. Let us
suppose the penalty function as follows:
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2, n=0,
um) = {0, n<o. (12)

In this article, the obstacle function k(&) is given as
follows:

1
3 a<éc<c,
K() = % c<é<d, 13)
1
-=,d<é<bh
5 <§<

Using (12) and (13) in (11), the following system of
boundary value problems is obtained

f&+2u+1, a<é<c

f&), c<&<d
fé&)+2u+1, d<é<d,

_du
dée

(14)
a=2,

with the boundary conditions as given in (3) and conti-
nuity conditions of u(¢), % at ¢ and d, which is of the

type (2).

2.3 Variational iteration method (VIM)

The main task of the method is to find u(¢) by considering
the problem such that

L(w) + Nw) = g(4),

where L and N are linear and nonlinear differential
operators, respectively, and g(¢) is a nonhomogeneous
term. For a given uy, an approximate solution u,,; of
problem (8) can be obtained as follows:

(15)

¢
poi(§) = 1§ + [AGS. E)Luy(s) + Nuy(s) ~ g,
0

p=0,1,2,...,

where A is known as the Lagrange multiplier. This A func-
tion can be found by taking variation § on both sides of
equation (9) with respect to the variable u,.

3
W@ + A6 PP + 20, + 1ds,
¢ . 3
lpoa(§) = { W& * fo As, )[ug?(s)]ds, X
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¢
bup1(§) = buy(é) + 5IA(S, E)[Luy(s) + Nuy(s) - g(s)]ds,
0

where u,(s) is a restricted term which means 6u,(s) = 0.
An unknown function A(s, &) is found by using the optim-
ality conditions, see ref. [55]. We may obtain the exact
solution u(¢), when

ué) = ;im up(§). A7)
This method of finding an approximate solution is named
as VIM. In this method, proper selection of initial approx-
imation leads to the fast converging solution, see refs
[61,62] and references therein for better clarifications.

3 Implementation of VIM

In this section, we give an example of systems of FBVPs
of type (2) to show the implementation and efficiency
of VIM.

3.1 Example

By taking f(u,&) =0, gw,&)=2,r=1,a=1, b=2,
Cc= %, and d = 1, problem (2) becomes
u+1, 1 <é< El
4 4
Q
_du ], 3ce<a 18)
dé« 4
2u+1, 13{3%, l<ac<?2,
with boundary conditions
U@le=1 =0, u@)e=3 =0 (19)

having continuity conditions of u(¢), % at % and 1.
Using VIM, one can construct a correct functional of
equation (18) as follows:

B
IN
Nlw

(20)

3
up(&) + I/\(S, OS(s) + 2uy(s) + 1]ds, 1<&< % p=0,1,2, ....
0
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We find A(s, &) for a = 2. Using the optimality condi-
tions [61,62], one has

A(s, &) =s - ¢. (21)

This parameter A(s, &) = s — &, works for all values of « in
the domain 1 < a < 2. To show its validity, residual errors
are plotted for each solution. We consider the initial
approximations as:

DE GRUYTER

a0£ + 4,

uo(§) = (22)

(12€ + as,

Case 1. In this case, we take a = 1.90 in equation (18). Using (21) and (22) in (20), we find the approximate solutions as:

0.93750 a; — 0.010417 ao — 0.031250 + (1.0625 ag + 0.5 a; + 0.25)¢ + (=1.0 a; — 0.5)¢? % <é< %
- 0.33333 apé?,
@) =g, 4 %S;g
~0.5 — 0.66667 a,; + (2.0 a, + 2.0 as + 1.0)¢ + (~1.0 a5 — 0.5)¢2 — 0.33333 a,é3, 1<éc< %
0.93012 ¢ — 0.012318 aq — 0.034941 + (1.0735 ag + 0.57366 a; + 0.28683)¢ % <é< %
+ (=1.9375 a; — 0.96875 + 0.010417 ag)é? + (0.91004 a; + 0.45502)¢ 1
+ (=0.6875 ao — 0.16667 a; — 0.083333)¢3 + 0.29356 apt
+ (0.16667 a; + 0.083333)¢% + 0.033333 apé”>,
3
U(§) = ya5 + ax, 5 s¢<1
-0.41614 — 0.58354 a, + 0.16771 as + (1.59 a4 + 1.4222 a5 + 0.71112)¢ 1<é< %
+ (=1.0 as — 0.5 + 0.66665 a4)¢2 + (0.91004 as + 0.45502)& 1
+ (-1.0 a4 — 0.66667 as — 0.33333)é3 + 0.29356 a,é10
+ (0.16667 as + 0.083333)é% + 0.033333 a,é>,
Using the boundary conditions (19) and continuity con- 0.15- S T~
ditions on u,x(¢), one has a system of linear equations. / \\
Solving that system using Maple software, one has: // \
ao = 0.620186560993483232717, / \
a = —0.1550466402483708082, 0107 / \
a, = —0.011189585534569415, u(®) / \
a; = 0.164486654638228502167, / \
a, = —0.011189585534569414455, 0.05- / \
as = 0.16448665463822850217. / \
The graph obtained by 20th iteration u,0(¢) of pro- / \
blem (18) is shown in Figure 2. / \
0 T T T T T T Y
04 0.6 038 1.0 1.2 14
g

Figure 2: Graph of the approximate solution uyo(&) for a = 1.90.
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The residual error r,o(¢) of problem (18), for a = 1.9 is l
iven as follows:
8 2. % 10’13-|
d"0uy0(&) 1 3 \
—— =+ 2Uupp+1, — <<=
dé‘l.QO 20 4 ‘S 4 l
Az 3 ! x10’13-[
r = —" —<é<1 23 ’ ™
0) = 1= g0 <4 @ \ ) N\
1.90
%+2u20+1,1s{si. \ / \
d {1.90 2 o /"\ ] \
\ / \ \
and is plotted in Figure 3. \
From this figure, it is clear that residual error is very \ /
small close to zero. Its maximum error is 2.5 x 1073 -1.x 10713 \ /
até=1. g
04 06 08 10 12 14
. . . g
Case 2. In this c‘ase, we tak.e a = 1.8, in equation (18), we
find the approximate solutions as:
Figure 3: Graph of the residual error ro(§) for a = 1.90.
0.93750 a; — 0.010417 ao — 0.031250 + (1.0625 ag + 0.5 a; + 0.25)¢ % <é< %
+ (-1.0 a; - 0.5)¢? - 0.33333 apé>,
u = <
i) aé + as, % <é&<1
-0.5 - 0.66667 a; + (2.0 a; + 2.0 as + 1.0)¢ + (-1.0 a5 — 0.5)62 - 0.33333 a,¢3, 1<é< %,
0.92255 a; — 0.013986 ap — 0.038724 + (1.084 ag + 0.64566 a; + 0.32282)¢ % <é< %
+ (-1.9375 a; — 0.96875 + 0.010417 (zo)f2 + (0.82511 a; + 0.41258){%
+(~0.6875 ap — 0.16667 a; — 0.083333)¢3 + 0.25784 aps
+ (0.16667 a; + 0.083333)¢* + 0.033333 ayé>,
3
u2(5)2<a2$+a3’ ZS{Sl
-0.42158 - 0.63277 a4 + 0.15680 as + (1.6749 a, + 1.5181 as + 0.759)¢ 1<é< ;
+(~1.0 a5 — 0.5 + 0.66665 a,)é2 + (0.82511 as + 0.41258)¢ 5
+(~1.0 a, - 0.66667 as — 0.33333)¢3 + 0.25784 a,é’s
+ (0.16667 as + 0.083333)é% + 0.033333 a,é>,
Using the given boundary conditions (19) and continuity The graph obtained by VIM of the problem (19) for
conditions on uyy({), one has a system of linear equa- a = 1.8 is shown in Figure 4.
tions. Solving that system, one has: The residual error is
ap = —0.77051873743279377884, d8uy 1 3
a; = 0.19262968435819845182, ags Tl psisy
a, = —0.17195715916729766102, d8uy 3
a; = —0.10390004452240088474, no(§) = 1 “azs e §<1 (24)
a, = 0.06913369113725436632, g8 3
as = —0.31600378256024247227. Fléo + 2 +1, 185 2.
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Figure 5: Graph of the residual error (&) for a = 1.8.

Figure 4: Graph of the solution uyo(&), when a = 1.8.

The graph of residual error (24) is plotted in Figure 5. Case 3. In this case, we take a = 1.7 in equation (18). We
From this figure, it is clear that residual error is very small find the approximate solutions as:
close to zero. Its maximum error is 3 x 1078,

0.93750 a; — 0.010417 ao — 0.031250 + (1.0625 ag + 0.5 a; + 0.25)¢ % <é&< %
+ (1.0 a; — 0.50000)¢2 — 0.33333 aoé3,
3
w(é) = asd + as, Zggsl

~0.5 — 0.66667 a, + (2.0 a, + 2.0 as + 1.0)¢ + (-1.0 as — 0.5)¢2  1<&< ;

~0.33333 asd3,

0.91560 a; — 0.015349 ao — 0.042199 + (1.0923 ag + 0.70684 a; + 0.35343)&

D=
IA
.
IA
W

+ (=1.9375 a; — 0.96875 + 0.010417 ag)é? + (0.74532 a; + 0.37264).{%

+ (=0.6875 ay — 0.16667 a; — 0.083333)¢3 + 0.22585 apéio
+ (0.16667 a; + 0.083333)¢% + 0.033333 ayé>,

IN
s

IN

—_

uy(§) = { @b + a3,

IA

S

IN
N | W

—-0.43223 - 0.68057 a, + 0.13558 as + (1.7547 a4 + 1.6191 as + 0.80959)¢

+(-1.0 as — 0.5 + 0.66665 a;)¢2 + (0.74532 as + 0.37264)¢0
+ (1.0 a4 — 0.66667 as — 0.33333)&3 + 0.22585 aséto
+ (0.16667 as + 0.083333)¢% + 0.033333 a,é>,
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0.081
u(&)
0.067

0.041

0.021 :

Figure 6: Graph of the approximate solution uo(&) for a = 1.7.

Using the given boundary conditions (19) and continuity
conditions on u;p(¢), one has a system of linear equa-
tions. Solving that system, one has:

aop = —0.734299770795797,
a; = 0.183574942698949,

a; = —0.187080946262860,
az = —0.0859249043624337,
a, = 0.0709589933588242,
as = —0.312633230648770.

The graphs obtained by VIM is shown in Figure 6.

0.000004+
0.000002- N
0 e : ‘
-0.000002 ' l
-0.000004
Error .
-0.0000067 -
-0.000008
-0.000010

-0.000012:

-0.000014+

Figure 7: Graph of the residual error ro(§) for o = 1.7.
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The residual error is

d1‘6u20 1 3
+2Up+1, —<é<—

aglr A0t h g sasy

d“7u 3

no(§) = 1 d{1~270 ) " <&<1 (25)

d1.7u20 3
+2Up+1, 1<é< =,

g 20 § 3

The graph of residual error (25) is plotted in Figure 7.

From this figure, it is clear that residual error is very
small close to zero. Its maximum error is 1.282195070 x
106 até=1.

4 Results and discussions

Physically, the solutions represent an elastic string lying
over an elastic obstacle in an equilibrium state having
fixed boundaries with some external forces. If we decrease
the value of fractional parameter, the bending of the string
decreases as shown in Figure 8.

Figure 9 gives the graphical representation of resi-
dual errors of the solution with different fractional para-
meters. This reveals that the suggested algorithm gives
satisfactory results for the FBVPs whose orders of deriva-
tive are close to second order. After checking the viabi-
lity, we can easily deduce that the technique of VIM is
very meticulous, clear-cut, and meek for solving obstacle
FBVPs. It is further observed that suggested algorithm is fit

0.157

0.104

A

04 06 0.8 1.0 12 1.4
€

[—oa=2—-a=190——o0=180""" a=1.70]

Figure 8: Comparison of solutions.
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0.0000044

0.000002+

0— - O -
-0.0000021
-0.000004

Error :

-0.0000061 :

-0.000008] :

-0.0000104 |

-0.0000121¢

-0.000014+

04 06 08 10 12 14
X

a=2""0o=190 ——oa=180""""" o=1.70

Figure 9: Comparison of residual errors.

for FBVPs with orders of derivative close to 2. We further
bring about that VIM algorithm is greatly operative, accu-
rate, and meek for the purpose of solving obstacle FBVPs.

Acknowledgment: This study was supported by Taif
University Researches Supporting Project number (TURSP-
2020/16), Taif University, Taif, Saudi Arabia.

Funding information: This research was supported by
National Natural Science Foundation of China (No.
71601072), Key Scientific Research Project of Higher
Education Institutions in Henan Province of China (No.
20B110006), and the Fundamental Research Funds for
the Universities of Henan Province.

Conflict of interest: Authors state no conflict of interest.

References

[1] Trémoliéres R, Lions JL, Glowinski R., Numerical analysis of
variational inequalities, Elsevier, Amsterdam, 2011.

[2] Friedman A. Variational principles and free-boundary pro-
blems. Dover, USA: Dover Books on Mathematics; 2010.

[3] Kikuchi N, Oden JT. Contact problems in elasticity: a study of
variational inequalities and finite element methods. Vol. 8.
Society for Industrial and Applied Mathematics; 1988.

[4] Rodrigues J-F. Obstacle problems in mathematical physics.
Vol. 134. Elsevier; 1987.

[5] Wilmott P, Howison S, Dewynne J. The mathematics of financial
derivatives: a student introduction. Cambridge University
Press; 1995.

(7]

(8]

(10]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

DE GRUYTER

Kinderlehrer D, Stampacchia S. An introduction to variational
inequalities and their applications. Classics in applied
mathematics. New York: SIAM, Academic Press; 2000.

Zhang S, Li X, Ran R, Self-adaptive projection and boundary
element methods for contact problems with Tresca friction.
Commun Nonlinear Sci Numer Simulat. 2019;68:72-85.

doi: 10.1016/j.cnsns.2018.05.001, http://www.sciencedirect.
com/science/article/pii/$100757041830145X

Zhang S. Projection and self-adaptive projection methods for
the Signorini problem with the BEM. Comput Math Appl.
2017;74(6):1262-73. doi: 10.1016/j.camwa.2017.06.021,
http://www.sciencedirect.com/science/article/pii/
$0898122117303693

Zhang S. Two projection methods for the solution of Signorini
problems. Appl Math Comput. 2018;326:75-86. doi: 10.1016/
j.amc.2018.01.004, http://www.sciencedirect.com/science/
article/pii/S0096300318300109

He J-H. Variational iteration method-a kind of non-linear ana-
lytical technique: some examples, Int ] Non-Linear Mech.
1999;34(4):699-708. doi: 10.1016/50020-7462(98)00048-1,
http://www.sciencedirect.com/science/article/pii/
S50020746298000481

Ahmad H, Seadawy AR, Khan TA, Thounthong P. Analytic
approximate solutions for some nonlinear parabolic dynamical
wave equations. ) Taibah Univ Sci. 2020;14(1):346-58.

Rafig M, Ahmad H, Mohyud-Din ST. Variational iteration
method with an auxiliary parameter for solving Volterraas
population model. Nonlinear Sci Lett A. 2017;8(4):389-96.
lomin A. Fractional evolution in quantum mechanics. Chaos
Soliton Fractal: X. 2018;1:100001. doi: 10.1016/
j.csfx.2018.100001, http://www.sciencedirect.com/science/
article/pii/$2590054418300010

Hamoud AA, Ghadle KP. Some new existence, uniqueness and
convergence results for fractional Volterra-Fredholm integro-
differential equations. ] Appl Comput Mech. 2019;5(1):58-69.
Inc M, Khan MN, Ahmad I, Yao S-W, Ahmad H, Thounthong P.
Analysing time-fractional exotic options via efficient local
meshless method. Results Phys. 2020;19:103385.

Bas E, Ozarslan R. Real world applications of fractional models
by Atangana-Baleanu fractional derivative. Chaos Soliton
Fractal. 2018;116:121-5. doi: 10.1016/j.chaos.2018.09.019,
http://www.sciencedirect.com/science/article/pii/
50960077918308397

Zhang T, Tong C. A remark on the fractional order differential
equations. ) Comput Appl Math. 2018;340:375-9.

doi: 10.1016/j.cam.2018.03.006, http://www.sciencedirect.
com/science/article/pii/S0377042718301328

Ahmad H, Khan T, Yao S. Numerical solution of second order
painlevé differential equation. )] Math Comp Sci.
2020;21(2):150-7.

Abo-Dahab SM, Abouelregal AE, Ahmad H. Fractional heat
conduction model with phase lags for a half-space with
thermal conductivity and temperature dependent. Math
Method Appl Sci. 2020;1-16. doi: 10.1002/mma.6614.

Soh ME, Enyi CD, lyiola OS, Audu JD. Approximate analytical
solutions of strongly nonlinear fractional BBM-Burger’s
equations with dissipative term. Appl Math Sci.
2014;8(155):7715-26.

Podlubny I. Fractional differential equations. San Diego:
Academic Press; 1999.


http://www.sciencedirect.com/science/article/pii/S100757041830145X
http://www.sciencedirect.com/science/article/pii/S100757041830145X
http://www.sciencedirect.com/science/article/pii/S0898122117303693
http://www.sciencedirect.com/science/article/pii/S0898122117303693
http://www.sciencedirect.com/science/article/pii/S0096300318300109
http://www.sciencedirect.com/science/article/pii/S0096300318300109
http://www.sciencedirect.com/science/article/pii/S0020746298000481
http://www.sciencedirect.com/science/article/pii/S0020746298000481
http://www.sciencedirect.com/science/article/pii/S2590054418300010
http://www.sciencedirect.com/science/article/pii/S2590054418300010
http://www.sciencedirect.com/science/article/pii/S0960077918308397
http://www.sciencedirect.com/science/article/pii/S0960077918308397
http://www.sciencedirect.com/science/article/pii/S0377042718301328
http://www.sciencedirect.com/science/article/pii/S0377042718301328

DE GRUYTER

(22]

(23]

(25]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Oldham K, Spanier ). The fractional calculus theory and
applications of differentiation and integration to arbitrary
order. Vol. 111. Elsevier; 1974.

Kumar D, Singh J, Purohit SD, Swroop R. A hybrid analytical
algorithm for nonlinear fractional wave-like equations. Math
Model Nat Phenom. 2019;14(3):304. doi: 10.1051/mmnp/
2018063.

Delkhosh M, Parand K, DomiriGanji D. An efficient numerical
method to solve the boundary layer flow of an Eyring-

Powell non-Newtonian fluid. ] Appl Comput Mech.
2019;5(2):454-67.

Akbar MA, Akinyemi L, Yao S-W, Jhangeer A, Rezazadeh H,
Khater MM, et al. Soliton solutions to the Boussinesq equation
through sine-Gordon method and Kudryashov method. Results
Phys. 2021;25:104228.

Ahmad H, Khan TA, Durur H, Ismail G, Yokus A. Analytic
approximate solutions of diffusion equations arising in oil
pollution. ) Ocean Eng Sci. 2021;6(1):62-9.

Khudair AR, Haddad S, Khalaf SL. Restricted fractional differ-
ential transform for solving irrational order fractional differ-
ential equations. Chaos Soliton Fractal. 2017;101:81-5.

doi: 10.1016/j.cha0s.2017.05.026, http://www.sciencedirect.
com/science/article/pii/S0960077917302151

Wei D, Li X. Finite element solutions of cantilever and fixed
actuator beams using augmented Lagrangian methods. ] Appl
Comput Mech. 2018;4(2):125-32.

Martin O. Stability approach to the fractional variational
iteration method used for the dynamic analysis of viscoelastic
beams. ) Comput Appl Math. 2019;346:261-76. doi: 10.1016/
j.cam.2018.06.024, http://www.sciencedirect.com/science/
article/pii/S0377042718303765.

Bisheh-Niasar M, ArabAmeri M. Moving mesh non-standard
finite difference method for non-linear heat transfer in a thin
finite rod. ] Appl Comput Mech. 2018;4(3):161-6.

Ahmad H, Khan TA, Yao S-W. An efficient approach for the
numerical solution of fifth-order kdv equations. Open Math
2020;18(1):738-48.

Jena RM, Chakraverty S. Residual power series method

for solving time-fractional model of vibration equation

of large membranes. ] Appl Comput Mech.

2019;5(4):603-15.

Abouelregal AE, Yao S-W, Ahmad H. Analysis of a functionally
graded thermopiezoelectric finite rod excited by a moving heat
source. Results Phys. 2020;19:103389.

Sun Z, Zhuang X, Zhang Y. Cracking elements method for
simulating complex crack growth. ] Appl Comput Mech.
2019;5:552-62.

Rahman M, Hasan AS, Yeasmin IA. Modified multi-level
residue harmonic balance method for solving nonlinear
vibration problem of beam resting on nonlinear elastic foun-
dation. J Appl Comput Mech. 2019;5(4):627-38.

Heidarkhani S, Cabada A, Afrouzi G, Moradi S, Caristi G.

A variational approach to perturbed impulsive fractional dif-
ferential equations. ] Comput Appl Math. 2018;341:42-60.
doi: 10.1016/j.cam.2018.02.033, http://www.sciencedirect.
com/science/article/pii/S0377042718301122

Waheed A, Mohyud-Din ST, Naz I. On analytical solution

of system of nonlinear fractional boundary value

problems associated with obstacle. ] Ocean Eng Sci.
2018;3(1):49-55.

Series solution to fractional contact problem using Caputo’s derivative

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

— 411

Korvenpda ), Kuusi J, Palatucci G. Holder continuity up to the
boundary for a class of fractional obstacle problems. Atti
Accad Naz Lincei Rend Lincei Mat Appl. 2016;27:355-67.
AhmadSheikh N, Jamil M, Ling ChuanChing D, Khan I,

Usman M, Sooppy Nisar K. A generalized model for quantita-
tive analysis of sediments loss: a caputo time fractional
model. ) King Saud Univ Sci. 2020;33(1):101179. doi: 10.1016/
j.jksus.2020.09.006, http://www.sciencedirect.com/science/
article/pii/S1018364720302731

Lund LA, Omar Z, Alharbi SO, Khan I, Nisar KS. Numerical
investigation of multiple solutions for caputo fractional-order-
two dimensional magnetohydrodynamic unsteady flow of
generalized viscous fluid over a shrinking sheet using the
adams-type predictor-corrector method. Coatings.
2019;9(9):548.

Kavitha K, Vijayakumar V, Udhayakumar R, Nisar KS. Results
on the existence of Hilfer fractional neutral evolution equa-
tions with infinite delay via measures of noncompactness.
Math Method Appl Sci. 2020;44(2):1438-55. doi: 10.1002/
mma.6843.

Ali F, Ahmad Z, Arif M, Khan I, Nisar KS. A time fractional model
of generalized Couette flow of couple stress nanofluid with
heat and mass transfer: applications in engine oil, IEEE
Access 2020;8:146944—-66. doi: 10.1109/
ACCESS.2020.3013701.

Kumar A, Chauhan HVS, Ravichandran C, Nisar KS, Baleanu D.
Existence of solutions of non-autonomous fractional
differential equations with integral impulse condition. Adv
Differ Equ. 2020;1(434):1-14. doi: 10.1186/513662-020-
02888-3.

Shaikh AS, Shaikh IN, Nisar KS. A mathematical model of
covid-19 using fractional derivative: outbreak in India with
dynamics of transmission and control. Adv Differ Equ.
2020;2020:373. doi: 10.1186/513662-020-02834-3
Ravichandran C, Logeswari K, Panda SK, Nisar KS. On new
approach of fractional derivative by Mittag-Leffler kernel to
neutral integro-differential systems with impulsive conditions.
Chaos Soliton Fractal. 2020;139:110012. doi: 10.1016/
j.cha0s.2020.110012.

Kumar D, Singh |, Baleanu D. On the analysis of vibration
equation involving a fractional derivative with Mittag-Leffler
law. Math Method Appl Sci. 2020;43(1):443-57.

Kumar D, Singh J, Tanwar K, Baleanu D. A new fractional
exothermic reactions model having constant heat source in
porous media with power, exponential and Mittag-Leffler laws.
Int ) Heat Mass Transfer. 2019;138:1222-7. doi: 10.1016/
j.ijheatmasstransfer.2019.04.094.

Singh J, Jassim HK, Kumar D. An efficient computational tech-
nique for local fractional Fokker Planck equation. Physica A:
Stat Mech Appl. 2020;555:124525. doi: 10.1016/
j-physa.2020.124525.

Goswami A, Singh ], Kumar D, Gupta S. An efficient analytical
technique for fractional partial differential equations occurring
in ion acoustic waves in plasma. ] Ocean Eng Sci.
2019;4(2):85-99. doi: 10.1016/j.joes.2019.01.003.

Goswami A, Singh J, Kumar D. Numerical simulation of fifth
order kdv equations occurring in magneto-acoustic waves. Ain
Shams Eng ). 2018;9(4):2265-73. doi: 10.1016/
j.as€j.2017.03.004, http://www.sciencedirect.com/science/
article/pii/S209044791730059X


http://www.sciencedirect.com/science/article/pii/S0960077917302151
http://www.sciencedirect.com/science/article/pii/S0960077917302151
http://www.sciencedirect.com/science/article/pii/S0377042718303765
http://www.sciencedirect.com/science/article/pii/S0377042718303765
http://www.sciencedirect.com/science/article/pii/S0377042718301122
http://www.sciencedirect.com/science/article/pii/S0377042718301122
http://www.sciencedirect.com/science/article/pii/S1018364720302731
http://www.sciencedirect.com/science/article/pii/S1018364720302731
http://www.sciencedirect.com/science/article/pii/S209044791730059X
http://www.sciencedirect.com/science/article/pii/S209044791730059X

412 — Muhammad Rafiq et al.

(51]

(54]

(55]

Goswami A, Singh J, Kumar D. Numerical computation of
fractional Kersten-Krasil’ Shchik coupled kdv-mkdv system
occurring in multi-component plasmas. AIMS Math.
2020;5(3):2346-68.

Inokuti M, Sekine H, Mura T. General use of the Lagrange
multiplier in nonlinear mathematical physics. Variational
method in the mechanics of solids. 1978;33(5):156—-62.
Jarad F, Abdeljawad T, Hammouch Z. On a class of ordinary
differential equations in the frame of Atangana-Baleanu frac-
tional derivative. Chaos Soliton Fractal. 2018;117:16-20.

doi: 10.1016/j.cha0s.2018.10.006, http://www.sciencedirect.
com/science/article/pii/50960077918307689

Kubica A, Ryszewska K. Decay of solutions to parabolic-type
problem with distributed order caputo derivative. ] Math Anal
Appl. 2018;465(1):75-99. doi: 10.1016/j.jmaa.2018.04.067,
http://www.sciencedirect.com/science/article/pii/
50022247X18303743

Noor MA, Noor Kl, Rafig M, Al-said EA. Variational iteration
method for solving a system of second order boundary value
problems. Int ] Nonlinear Sci Numer Simulat.
2010;11(12):1109-20.

(56]

(57]

(58]

(59]

(60]

(61]

(62]

DE GRUYTER

Bush V, Caldwell SH. Thomas-Fermi equation solution by the
differential analyzer. Phys Rev. 1931;38:1898. https://books.
google.com.pk/books?id=txr_jgEACAA)

Tonti E. Variational formulation for every nonlinear problem.
Int ] Eng Sci. 1984;22(11-12):1343-71.

Noor MA, Noor KI, Rassias TM. Some aspects of variational
inequalities. ] Comput Appl Math. 1993 Sep 30;47(3):285-312.
Sofonea M, Matei A. Variational inequalities with applications:
a study of antiplane frictional contact problems. Vol. 18.
Springer Science & Business Media; 2009.

Lewy H, Stampacchia G. On the regularity of the solution of a
variational inequality. Commun Pure Appl Math.
1969;22(2):153-88.

Rafig M, Kamran M, Ahmed N, Mohyud-Din ST, Bashir Y,
Haider SA, et al. Analytical solution for the flow of second
grade fluid over a stretching sheet. AIP Advances.
2019;9(5):055313.

Rafig M, Noor MA, Tahir M, Kamran M, Qureshi MA, Farwa S.
Efficient analytical approach to solve system of bvps asso-
ciated with fractional obstacle problem. AIP Advances.
2019;9(9):095007.


http://www.sciencedirect.com/science/article/pii/S0960077918307689
http://www.sciencedirect.com/science/article/pii/S0960077918307689
http://www.sciencedirect.com/science/article/pii/S0022247X18303743
http://www.sciencedirect.com/science/article/pii/S0022247X18303743
https://books.google.com.pk/books?id=txr_jgEACAAJ
https://books.google.com.pk/books?id=txr_jgEACAAJ

	1 Introduction
	2 Preliminaries
	2.1 Definition
	2.2 Problem
	2.3 Variational iteration method (VIM)

	3 Implementation of VIM
	3.1 Example

	4 Results and discussions
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


