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Abstract
In this paper, a new approach in classification models, called Polarized Classification Tree
model, is introduced. From a methodological perspective, a new index of polarization to
measure the goodness of splits in the growth of a classification tree is proposed. The new
introduced measure tackles weaknesses of the classical ones used in classification trees
(Gini and Information Gain), because it does not only measure the impurity but it also
reflects the distribution of each covariate in the node, i.e., employing more discriminating
covariates to split the data at each node. From a computational prospective, a new algo-
rithm is proposed and implemented employing the new proposed measure in the growth of
a tree. In order to show how our proposal works, a simulation exercise has been carried out.
The results obtained in the simulation framework suggest that our proposal significantly
outperforms impurity measures commonly adopted in classification tree modeling. More-
over, the empirical evidence on real data shows that Polarized Classification Tree models
are competitive and sometimes better with respect to classical classification tree models.
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1 Introduction

Classification trees are non-parametric predictive methods obtained by recursively parti-
tioning the data space and fitting a simple prediction model within each partition (Breiman
et al. 1984).

The idea is to divide the entire X-space into rectangles such that each rectangle is as
homogeneous or pure as possible in terms of the dependent variable (binary or categorical),
thus containing points that belong to just one class (Shneiderman 1992).

As decision tree models are simple and easy interpretable models able to obtain good pre-
dictive performance, they are of interest in many recent works in literature (see for example
Aria et al. 2018, Iorio et al. 2019, Nerini and Ghattas 2007 and D’Ambrosio et al. 2017).

One of the main distinctive element of a classification tree model is how the splitting rule
is chosen for the units belonging to a group, which corresponds to a node of the tree, and
how an index of impurity is selected to measure the variability of the response values in a
node of the tree.

The main used splitting rules are the Gini index, introduced in the CART algorithm pro-
posed in Breiman et al. (1984), and the Information Gain, employed in the C4.5 algorithm
(Quinlan 2014). Other different splitting criteria have been proposed in literature as alter-
natives to these two ones. A faster alternative to the Gini index is proposed in Mola and
Siciliano (1997) employing the predictability index τ of Goodman and Kruskal (1979) as
a splitting rule. In Ciampi et al. (1987), Clark and Pregibon (2017), and Quinlan (2014),
the likelihood is used as splitting criterion, while the mean posterior improvement (MPI)
is used as an alternative to the Gini rule in Taylor and Silverman (1993). Statistical tests
are also introduced as splitting criteria in Loh and Shin (1997) and Loh and Vanichsetakul
(1988). Different splitting criteria are combined with a weighted sum in Shih (1999). Amore
recent work (see D’Ambrosio and Tutore 2011) proposes a new splitting criterion based
on a weighted Gini impurity measure. Mola and Siciliano (1992) introduces a two-stage
approach to find the best split as to optimize a predictability function. On this approach is
based the splitting rule proposed by Tutore et al. (2007), which introduce an instrumental
variable called Partial Predictability Trees. In Cieslak et al. (2012), the Hellinger distance is
used as splitting rules, and this method is shown to be very efficient for imbalanced datasets
but works only for binary target variables. See Fayyad and Irani (1992), Buntine and Niblett
(1992), and Loh and Shin (1997) for a comparison of different splitting rules. Despite many
different splitting rules have been proposed in literature, the most used in application prob-
lems are still the Information Gain and the Gini index and they are also used in literature
as benchmark to compare the performance of new proposed splitting rules, see for example
Chandra et al. (2010) and Zhang and Jiang (2012).

In this paper, a new measure of goodness of a split, based on an extension of polarization
indices introduced by Esteban and Ray (1994), is proposed for classification tree modeling.

The contribution of the paper is twofold: from a methodological perspective, a new mul-
tidimensional polarization measure is proposed; in terms of computation, a new algorithm
for classification tree models is derived which the authors call Polarized Classification Tree.
The new measure, based on polarization, tackles weaknesses of the classical measures used
in classification trees (e.g., Gini index and Information Gain) by reflecting the distribution
of each covariate in the node.

The rest of the paper is structured as follows: Section 2 describes impurity and polar-
ization measures; Section 3 shows our methodological proposal; Section 4 integrates the
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new measure inside decision tree algorithm. Sections 5 and 6 report the empirical evi-
dences obtained on simulated and real datasets respectively. Conclusions and further ideas
for research are summarized in Section 7.

2 Impurity and PolarizationMeasures

In the literature on classification trees (see Mingers 1989), it is recognized that splitting
rules based on the impurity measures (i.e., the Gini impurity index, the Information Gain)
suffer from some weaknesses. Firstly, impurity measures are equivalent one to one another
and they are also equivalent to random splits, in terms of the accuracy of the resulting model,
see Mingers (1989). Secondly, impurity measures do not take into account the distribution
of the features, but only the pureness of the descendant nodes in terms of the target variable
and this fact could lead to an high dependence on the data at hand, see Aluja-Banet (2003).
The algorithms proposed in classification tree analytics tend to select the same variables for
the splitting in different nodes, especially when these variables could be splitted in a variety
of ways, making it difficult to draw conclusions about the tree structure.

As explained in previous section, the problem of finding an efficient splitting rules has
been considered in different research papers. The aim of our contribution is to propose a new
class of measures to evaluate the goodness of a split which tackles the previous mentioned
weaknesses. In order to consider both the impurity and distribution of the features in the
growth of the tree, our idea is to replace the impurity measure with a polarization index.

Polarization measures, introduced in Esteban and Ray (1994), Foster and Wolfson
(1992), andWolfson (1994), are typically adopted in the socio-economic context to measure
inequality in income distribution. In Esteban and Ray (1994) and Duclos et al. (2004), the
authors provide an axiomatic definition for the class of polarization measures and a charac-
terization theorem. In Esteban and Ray (1994), polarization is viewed as a clustering of an
observed variable (typically ordinal) around an arbitrary number of local means, while in
Duclos et al. (2004), a definition of income polarization is proposed considering a continu-
ous variable. In Esteban and Ray (1994) and Duclos et al. (2004), the results of polarization
measures are related to one variable; thus, they can be considered univariate approaches.

In Zhang and Kanbur (2001), a multidimensional measure of polarization is proposed
which considers within-groups inequality to capture internal heterogeneity and between-
groups inequality to measure external heterogeneity. The index is composed by the ratio of
the between groups and the within groups inequality.

In Gigliarano and Mosler (2008), a general class of indices of multivariate polarization is
derived starting from a matrix X of size N × K , where N is the total number of individuals
with their endowments classified in K attributes. The class of indices can be written as
follows: P(X) = ζ(B(X),W(X), S(X)) where B and W reflect the measure of between
and within groups inequality respectively and S takes into account the size of each group. In
details, B and W can be chosen among different multivariate inequality indices present in
literature, e.g., Tsui (1995) and Maasoumi (1986), and they can be applied only to variables
that are transferable among individuals. ζ is a function R

3 → R increasing on B and S

and decreasing on W . Gigliarano and Mosler (2008) discuss the possibility of extending
the discrete version of the axioms proposed in Esteban and Ray (1994) to their proposed
measure, stating also some properties of the measure.

Our idea is to define a multidimensional polarization measure, which considers one con-
tinuous variable when groups are exogenously defined coupled with a generalization of the
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continuous version of the axioms defined in Duclos et al. (2004), opportunely adapted for
our measure, as described in Section 3 and proved in the Appendix.

3 A New Impurity Measure of Polarization for Classification Analytic

Our measure of polarization is evaluated measuring the homogeneity/heterogeneity of the
population with the use of variability between and within groups.

The new proposed index is a function of four inputs:

P(X) = ζ(B,W,p, M) (1)

whereB andW are the variability between and within groups respectively, p = (p1, ..., pM)

is the vector describing the proportion of elements in each group, and M is the number of
groups. Since we would like to introduce a measure which treats variables coming from dif-
ferent contexts (not only transferable variable), a measure of variability instead of inequality
is introduced, thus making our proposal different from the one in Gigliarano and Mosler
(2008).

Following the intuition on polarization, P(X) is high for large values of B (i.e., the
groups strongly differ from each other), for small values of W (i.e., the elements of the
groups are homogeneous), for large values of max{pj }, and for small values of M (i.e., the
population is divided into few groups with an unbalanced proportion of elements in one
single group).

On the other hand, we expect P(X) to take small values when the population is divided
into numerous balanced groups with small variability between groups B and high variability
within groups W .

Suppose that there are M groups exogenously defined, and that each observation is clas-
sified into one group through the use of a categorical variable with M levels. Let nj be the
number of individuals in the j th group, N the total number of observations in the popula-
tion, and pj = nj

N
the proportion of population in the j th group. Let fj be the probability

density function of the interesting feature x in the j th group with expected value μj ; the
expected value of the global distribution f of the population is μ.

We set the following assumptions:

Assumption 1 M > 1

Assumption 2 pj > 0 ∀j ∈ 1, ...,M

Assumption 3 {supp(fj )}j=1,...,M are connected and
{supp(fi)} ∩ {supp(fj )} = ∅ for i, j = 1, . . . , M with i �= j .

Assumption 4
∫
supp(fj )

fj dx = 1.

Assumptions 1 and 2 exclude trivial cases, respectively a unique group for the entire
population and the existence of empty groups.

Assumption 3 directly refers to the basic definition proposed in Duclos et al. (2004) for
the axiomatic theory of polarization measures. From an empirical point of view, Assump-
tion 3 translates the idea that the M groups of the original population are separated such
that there is no uncertainty about the belonging of a single element to a certain group. As
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for the original definition of polarization measures, also in the case of multidimensional
polarization measures, this assumption is not always verify in real application problems.

Assumption 4 requires that the functions fj are probability densities; this assumption is
necessary to provide an axiomatic definition of the polarization measure as pointed out in
the Appendix.

Our polarization measure is defined as follows.

Definition 3.1 Given a population X and M groups, the polarization is:

P(B, W,p,M) = η(B,W) · ψ(p,M) (2)

where

η(B,W) = B

B + W
= 1 − W

B + W
(3)

with

B =
M∑

j=1

(μj − μ)2 (4)

and

W =
M∑

j=1

∫

supp{fj }
(x − μj )

2fj (x) dx (5)

and

ψ(p,M) = maxj=1,...,M (pj ) − 1
N

N−2
N

(6)

The measure proposed in Definition 3.1 is the product of two components: η(B,W)

accounts for the variability between and within groups, while ψ(p,M) considers the
number of the groups and their cardinality.

The measure P is normalized and takes values in the interval [0, 1] as proved in the
following proposition.

Proposition 3.2 Given a population X and M groups, P(B,W, p,M) ∈ [0, 1].

Proof Considering Definition 3.1, the measure
P(B, W,p, M) is the product of the two components η(B,W) and ψ(p,M).
The quantity η(B,W) is defined as a ratio of the non-negative variability measures B and

W , see Eq. 3; by construction η(B,W) ≤ 1. Moreover, the variability B is strictly positive,
and using Assumptions 1 and 3 at least one of the elements in the sum defining B is strictly
positive. So we have η(B,W) ∈ (0, 1].

The quantity ψ(p,M) is a non-negative ratio; the minimum value is achieved when
maxj=1,...,M (pj ) = 1

N
so that ψ(p,M) = 0. The maximum value is obtained when M = 2

and maxj=1,...,M (pj ) = N−1
N

; in this case ψ(p,M) = 1. In general, ψ(p,M) ∈ [0, 1].
As a consequence P(B, W,p,M) = η(B,W) · ψ(p,M) ∈ [0, 1] and the proposition is

proved.

The following Corollary holds.
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Corollary 3.3 The maximum and minimum values for P(B, W, p,M) are respectively
equal to 1 and 0 .

Proof Trivial from Property 3.2.

We note that P(B,W,p, M) = 0 if and only if ψ(p,M) = 0, or equivalently
maxj=1,...,M (pj ) = 1

N
. The condition is verified exclusively when M = N ; considering

Assumption 2, this is the case where each group contains one single element of the original
population supporting the intuition of absence of polarization.

On the other hand, note that P(B,W,p,M) = 1 if and only if η(B,W) = 1 and
ψ(p,M) = 1. The condition on η(B,W) requires W = 0 while ψ(p,M) = 1 is equivalent
to the case of M = 2 and one of the groups containing N − 1 elements. In other words,
the maximum polarization is achieved when the number of groups is minimum, the origi-
nal population except for one element belongs to one single group and the variance within
groups is null such that the groups show maximum internal homogeneity.

Moreover, we should underline that the proposed measure is invariant for any permuta-
tion of the vector p; intuitively the polarization of a population does not depend on the order
in which we take the groups into account. We provide the axiomatic base for multidimen-
sional polarization measures as a generalization of the axioms proposed by Duclos et al.
(2004).

Axiom 3.4 For any number of groups and any distribution of observations into the groups,
a global squeeze (as defined in Duclos et al. (2004)) can not modify the polarization.

Axiom 3.4 requires the polarization measure to be invariant with respect to a global
reduction of the variance of the population.

Axiom 3.5 If the population is divided symmetrically into three groups, each one composed
of a basic density with the same root and mutually disjoint supports, then a symmetric
squeeze of the side densities can not reduce polarization.

Axiom 3.5 requires the polarization measure to increase when the variability within
groups W decreases. Note that the values of B, p, and M are invariant with respect to the
transformation described.

Axiom 3.6 Consider a symmetric distributed population divided into four groups, each one
composed of a basic density with the same root and mutually disjoint supports. Slide the
two middle densities to the side (keeping all supports disjointed). Then polarization must
increase.

Axiom 3.6 requires the polarization measure to increase when the variability between
groups B increases, when W , p, and M are given.

Axiom 3.7 If PF ≥ PG and q is a non-negative integer value, then PqF ≥ PqG, where qF

and qG represent population scaling of F and G respectively.

Axiom 3.7 describes a transformation that changes the sample size of the population with
no consequences on the proportion of individuals in each group.
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In the Appendix, we prove that our proposal respects all four axioms, thus can be
classified as a multidimensional polarization measure.

4 Polarized Classification tree

In this section, we show how the multidimensional polarization measure introduced in
Section 3 can be used in classification tree models as a new measure of goodness of a split
in the growth of a classification tree.

The new approach, which the authors call Polarized Classification Tree (PCT), has been
implemented in R software. In Breiman et al. (1984), a split is defined as “good” if it gen-
erates “purer” descendant nodes then the goodness of a split criterion can be summarized
from an impurity measure.

In our proposal, a split is good if descendant nodes are more polarized, i.e., the polariza-
tion inside two sub-nodes is maximum. In order to evaluate the polarization in one sub-node
as in 1, we consider:

• The function ψ(p,M) which takes into account, the “pureness” of the sub-node. A sub-
node is “purer” if one class of the target variable is more represented with respect to the
others and the polarization is higher.

• The function η(B,W) which measures homogeneity and heterogeneity among groups.
η(B,W), and consequently the polarization, is higher if the groups are “well charac-
terized” by the variable X, selecting a split that obtains sub-nodes where the variable
clearly discriminates well between different groups.

To clarify how our measure works with respect to the indices used in the literature, a toy
example is described.

As shown in Fig. 1, two explanatory variables X1 and X2 are considered. The tar-
get variable Y assumes three possible values a, b, and c, corresponding to three different
groups. Figure 1 shows the distribution of the two explanatory variables in the three groups
determined by Y .

In this example, the three groups are well distinguishable in both the distributions of X1
and X2, but it is evident that X2 has an higher discriminatory power compared to X1.

The four best splits, in terms of pureness of the descendant nodes, are as follows: splits 1
and 3, dividing group a from b and c respectively; splits 2 and 4, dividing a and b from c, as
shown in Fig. 1. When evaluating the goodness of these possible splits, Gini and information
Gain criteria can not discriminate; indeed, when the tree is estimated on the training set, all
the considered splits generate the same situation of impurity in the descendant nodes, thus
making impossible to discriminate between the different splits.

When evaluating the goodness of the splits using our polarization measure, the distribu-
tion of the explanatory variables in the groups is taken into account. The goodness is higher
for splits 3 and 4 with respect to splits 1 and 2, because the groups are more “characterized”
by variable X2, thus leading to selecting a split on X2 rather than on X1.

Since classification trees can treat both numerical and categorical variables, we will
extend the measure introduced in Section 3 to deal with categorical variables.

Consider a categorical variable X which assumes I different values, e.g., X ∈ {1, ..., I }
and suppose that there are M groups exogenously defined and each observation is assigned
to a group.



Journal of Classification

Fig. 1 Distributions of two explanatory variables for a three-class target variable

Let nij be the number of observations taking value in the ith category and assigned to the
j th group, ni· be the number of observations taking value in the ith category, and n·j be the
number of observations assigned to the j th group.

The polarization index can be written as in Eq. 2: P(B, W,p,M) = η(B,W) · ψ(p,M)

where W = N
2 − 1

2

∑M
j=1

1
n·j

∑I
i=1 n2ij and B = M .

Assumptions on the polarization index are described in Section 3. We note that the the-
oretical definition of the measure requires that M > 1. Obviously this assumption can not
always be satisfied in the computational stage when a pure node is obtained at some step. To
handle this case, we set P(B,W,p,M) = 1 when M = 1. In addition, some clarification
has to be done on Assumption 3; from an empirical point of view, this assumption reflects
the idea that observing the distribution of a covariate, we are able to clearly discriminate
among the groups defined in the target variable. Of course, in real application problems, this
assumption is not always satisfied. We show, in the empirical evaluation on both simulated
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and real datasets, that the relaxation of this hypothesis does not invalidate the performance
of the proposed measure as splitting criteria.

Algorithm 1 shows the procedure used to build the PCT model. Let S be the set of all
possible splits defined on the training set T. For each possible split, s ∈ S, all samples
can be divided into sub-node t sL the condition s is satisfied, otherwise t sR . The best split
s∗ is identified maximizing the polarization in the two sub-nodes. The growing procedure
is stopped in one node if the node is pure in terms of target variable or if other stopping
conditions are met (i.e., the number of samples in the node is less than a fixed threshold).
Following the same procedure adopted in CART model, when the tree is built, the most
representative class in each final node is assigned to that final node.

In the next sections we show how the proposed method works on different simulated and
real datasets. Results obtained using the PCTmodel are compared to the ones obtained using
the Gini index and the Information Gain measure as splitting rule, which are procedures
most used as benchmark to compare new proposed splitting rules, as already underlined in
Section 1.

5 Empirical Evaluation on Simulated Data

In order to show how our new impurity measure works inside PCT, this section reports
the empirical results achieved on different simulated datasets. The performance of the PCT
algorithm is compared with respect to the classification tree based on different splitting
criteria. In particular, the polarization splitting criteria are compared to the Gini impurity
index and the Information Gain in terms of the area under the ROC curve (AUC) value.
The results reported in the rest of the paper are based on a cross-validation exercise and
expressed in terms of out of sample performance.

The simulation framework considered in this paper is inspired by the paper of Loh
and Shin (1997) where different impurity measures are compared for classification tree
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modeling. The data are sampled from four pairs of distributions that are represented by the
solid density curves represented in Fig. 2, where each distribution represents the covariate
of a group Gi defined by the associated target variable. N(μ, σ 2) is a normal distribution
with mean μ and variance σ 2, T 2(μ) is a t-distribution with 2 degrees of freedom centered
at μ, and Chisq(ν) is a chi-square distribution with ν degrees of freedom. The 100 observa-
tions of the two groups represented by the target variable Y are sampled respectively from
the first and from the second distribution as shown in Fig. 2.

Results obtained by the three classification models under comparison are expressed in
terms of the AUC value. Averaged AUC values (i.e., mean (AUC)) and the correspond-
ing confidence intervals at 95% (i.e., CI (AUC)) for each simulated dataset obtained using
Monte Carlo simulation with 100 iterations are reported in Table 1.

In the reported examples, AUC values obtained for PCT are better with respect to the
classical splitting methods based on the Gini index and Information gain, as shown in
Table 1. In all cases, the confidence intervals for the AUC derived using the polarization
splitting criteria do not intersect those obtained using the Gini index and Information gain.
For each simulated dataset, a De Long test (DeLong et al. 1988) is performed to compare
obtained results, in terms of AUC, among PCT and trees employing respectively the Gini
index and the Information Gain. In Table 2, the average p value of the De Long test obtained
along the 100 simulations for each dataset is shown. We also applied a one side Wilcoxon
test to compare the AUC values obtained with PCT and decision trees employing Gini and
Information Gain; in both cases, obtained p values for all the datasets are lower than 0.05,
showing that AUC values obtained with PCT are significantly higher.

Fig. 2 Simulation and representation of the different class populations used for the classifier comparison
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Table 1 Confidence intervals for AUC values obtained through a 100 iteration Monte Carlo procedure to
compare the performance of classifiers on different simulated datasets

Split criteria Distribution G1 Distribution G2 # Simulations Mean (AUC) CI (AUC)

Polarization N(0,1) N(1,0.25) 100 0.909 (0.908;0.909)

Gini N(0,1) N(1,0.25) 100 0.872 (0.872;0.873)

Information Gain N(0,1) N(1,0.25) 100 0.882 (0.881;0.883)

Polarization N(0,1) N(2,0.5) 100 0.964 (0.964;0.965)

Gini N(0,1) N(2,0.5) 100 0.919 (0.918;0.920)

Information Gain N(0,1) N(2,0.5) 100 0.926 (0.925;0.927)

Polarization T2(0) N(2,0.5) 100 0.946 (0.945;0.946)

Gini T2(0) N(2,0.5) 100 0.910 (0.909;0.911)

Information Gain T2(0) N(2,0.5) 100 0.918 (0.917;0.919)

Polarization Chisq(2) Chisq(8) 100 0.955 (0.954;0.957)

Gini Chisq(2) Chisq(8) 100 0.922 (0.921;0.923)

Information Gain Chisq(2) Chisq(8) 100 0.928 (0.927;0.930)

On the basis of the results at hand, the polarization measure introduced in this paper
shows a statistical significant superiority with respect to the other considered splitting
criteria in terms of predictive performance observing the obtained AUC values.

6 Empirical Evaluation on Real Data

The performance of the splitting criteria under comparison is evaluated on 18 different real
datasets. The considered datasets come from the UCI repository (Dua and Graff 2017).

In order to have a complete comparison among classifiers, different datasets character-
ized by binary or multiple class target variables are considered. The datasets are made up of
categorical and/or numerical explanatory variables. In Table 3, different information on the
datasets are reported: sample size (Samples), total number of variables (Var), number of cat-
egorical (Cat) and numerical (Num) variables, number of classes in the target variable (Num
Class), and the normalized Shannon entropy (Balance). The normalized Shannon entropy
is evaluated on the target variable to measure the level of imbalance of each dataset (i.e.,
the value is equal to 0 if the dataset is totally unbalanced and equal to 1 if the samples are
equi-distributed among the classes). See Appendix B for more details on the datasets.

Table 2 Average obtained p value of the De Long test to compare the AUC values of PCT against trees
employing Gini index and Information Gain

Distributions of G1 and G2 Average p value PCT vs Gini Average p value PCT vs IG

N(0,1) ; N(1,0.25) 0.0357 0.0006

N(0,1) ; N(2,0.5) 0.0080 0.0033

T2(0) ; N(2,0.5) 0.0294 0.00002

Chisq(2) ; Chisq(8) 0.0070 0.0305
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Table 3 Dataset descriptions

Dataset Samples Var Cat Num Num class Balance

Banknotes 1372 4 0 4 2 0.99

Breast 699 9 0 9 2 0.93

Breast cancer 286 9 8 1 2 0.79

Breast coimbra 116 9 0 9 2 0.99

Car 1728 6 6 0 4 0.60

Crx 690 15 10 5 2 0.99

Fertility 100 9 6 3 2 0.52

Glass 214 9 0 9 6 0.84

Haberman 306 3 0 3 2 0.83

Hepatitis 155 19 13 6 2 0.73

Horse colic 300 27 17 10 2 0.91

Krkp 3196 36 36 0 2 1

Lymph 148 18 18 0 4 0.61

Post operative 87 8 8 0 3 0.85

Scale 625 4 4 0 3 0.83

Sonar 208 60 0 60 2 1

Spectheart 80 22 22 0 2 1

Wine 178 13 0 13 3 0.99

A 10-fold cross-validation procedure for the datasets reported in Table 3 is performed
to evaluate the different approaches under comparison. All the classifiers are trained and
evaluated on the same 10-fold. In addition, the same stopping condition is used for all the
models, i.e., the minimum number of observations inside a node is set at 10% of the number
of observations in the training set.

As suggested in Demsar (2006), since datasets are different, the evaluated performance
metrics can not be compared directly, but for each dataset, the metrics are used to rank the
classifiers. On the basis of the AUC, each classifiers is ranked assigning value 1 to the best
one, considering the mean value between two ranks if the classifiers perform equally. A
Dunn test with Bonferroni correction is then applied to compare the obtained rankings with
confidence at 95%. Table 4 shows the ranking of each model registered on the datasets.
The Polarized Classification Tree works better with respect to Gini and Information Gain
assuming different kinds of target variables (i.e., banknotes authentication and glass). We
note that classification trees based on the Gini index and Information Gain are superior in
terms of performance for only two datasets each.

A Dunn test with Bonferroni correction shows a significant difference between obtained
results for PCT and Gini index (the adjust p value is equal to 0.03), while no differences are
present between Information Gain and the other two splitting methods. Hence, we can affirm
that PCT is competitive and sometimes better with respect to the most two used splitting
rules (i.e., Gini index and Information Gain) and can be considered as a valid alternative to
be employed and compared when looking for the model that better suits the data at hand.
It can be noticed that PCT model obtains good performance when dataset covariates are
mainly numerical, as they perform better or equal to the other methods (see for example
banknotes, glass, or breast coimbra). Obtained results suggest instead that the balancing
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Table 4 Mean rank values for AUC for each classifier

Dataset Rank AUC

Gini InfoGain Pol

Bank note authentication 3 2 1

Breast 3 1.5 1.5

Breast cancer 1.5 1.5 3

Breast coimbra 2 3 1

Car 1.5 1.5 3

Crx 2 3 1

Fertility 1 2 3

Glass 3 2 1

Haberman 3 1.5 1.5

Hepatitis 3 2 1

Horse colic 3 2 1

Krkp 1.5 1.5 3

Lymph 2.5 2.5 1

Postoperative 1 2 3

Scale 3 1.5 1.5

Sonar 3 1 2

Spectheart 3 1.5 1.5

Wine 2.5 1 2.5

Mean rank 2.36 1.83 1.80

of the target variable and the presence of multiclass target variable do not influence the
performance of the introduced method.

7 Conclusions

This paper introduces a new index of polarization to measure the goodness of a split in
the growth of a classification tree. Definition and properties of the new multidimensional
polarization index are described in detail in the paper and proved in the Appendix.

The new measure tackles weaknesses of the classical measures used in classification
tree modeling, taking into account the distribution of each covariate in the node. From a
computational point of view, the new measure proposed is evaluated inside a classification
tree model and implemented in R software and is available from the authors upon request.

The results obtained in the simulation framework suggest that our proposal significantly
outperforms classical impurity measure commonly adopted in classification tree modeling
(i.e., Gini and Information Gain).

The performance registered running Polarized Classification Tree models on real data
extracted from the UCI repository confirms the competitiveness of our methodological
approach. More precisely, the empirical evidence at hand shows that Polarized Classifica-
tion Tree models are competitive and sometimes better with respect to classification tree
models based on Gini or Information Gain.
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A further analysis on this topic should compare the introduced Polarized Classification
Trees with other splitting measures present in literature and to include this new splitting
measure in ensemble three modeling (e.g., random forest).

Appendix A

Let f be a basic density, as defined in Duclos et al. (2004), i.e., an unnormalized, symmetric
and unimodal function, with compact support.

Some transformations can be performed on these functions s:

• λ-squeeze, with λ ∈ (0, 1) f λ = 1
λ
f

(
x−(1−λ)μ

λ

)
where μ is the mean of f .

• δ-slide, δ > 0 g(x) = f (x ± δ)
• population rescaling of a non-negative integer q g(x) = qf (x)
• income rescaling to a new mean μ′ g(x) = μ

μ′ f (
xμ
μ′ )

These transformations preserve symmetry and unimodality and the resulting transformed
function is still a basic density.

On the basis of the Hypotheses 1–4, stated in Section 3, we prove that the index
introduced in this paper verifies the axiomatic definition of polarization given in Section 3.

Some preliminary observations are needed for the proof. Let f be a density function of
a continuous. Suppose that supp f = [a, b] and μ is the expected value of the population.

Let f λ be the squeeze of f with λ ∈ (0, 1), then:

Observation A.1 The support of f λ is as follows: supp f λ = [λa + (1 − λ)μ, λb +
(1 − λ)μ] ⊂ [a, b]

Observation A.2
∫ λb+(1−λ)μ

λa+(1−λ)μ
1
λ
f (

x−(1−λ)μ
λ

) dx = ∫ b

a
f (x) dx = 1

Observation A.3 μ′ = ∫ λb+(1−λ)μ

λa+(1−λ)μ
x 1

λ
f (

x−(1−λ)μ
λ

) dx = ∫ b

a
(λy + (1 − λ)μ)f (y) dy =

= λμ + (1 − λ)μ = μ

Observation A.4 V (f λ) = ∫ λb+(1−λ)μ

λa+(1−λ)μ
(x − μ)2 1

λ
f (

x−(1−λ)μ
λ

) dx =
= λ2

∫ b

a
(y − μ)2f (y) dy = λ2V (f )

Axiom 1 Let fj be the density function of each group j = 1, ...,M . Since by assump-
tion the fj have disjoint supports, we can define the global distribution as f =
1
M

(f1 + ... + fM). A global squeeze on the entire population is defined as:

f λ = 1
Mλ

f
(

x−(1−λ)μ
λ

)
= 1

Mλ
f1

(
x−(1−λ)μ

λ

)
+ ... + 1

Mλ
fM

(
x−(1−λ)μ

λ

)
=

= 1
M

(
f λ
1 + ... + f λ

M

)

If supp(fj ) = [aj , bj ], then supp(f λ
j ) = [λaj + (1− λ)μ, λbj + (1− λ)μ] (for Obser-

vation A.1). The mean of each group is defined as follows: μj = ∫ bj

aj
xfj (x) dx. The

mean of each group after the squeeze becomes μ′
j = 1

λ

∫ λbj +(1−λ)μ

λaj +(1−λ)μ xfj (
x+(1−λ)μ

λ
) dx =
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∫ bj

aj
(λy+(1−λ)μ)fj (y) dy = λ

∫ bj

aj
yfj (y) dy+(1−λ)μ

∫ bj

aj
fj (y) dy = λμj +(1−λ)μ.

So we can evaluate the variability between groups after the squeeze as follows: B ′ =∑
j (μ

′
j−μ)2 = ∑

j (λμj+(1−λ)μ−μ)2 = ∑
j (λμj−λμ)2 = λ2B. The variability within

groups after the squeeze becomes W ′ = ∑
j

1
λ

∫ λbj +(1−λ)μ

λaj +(1−λ)μ (x −μ′
j )

2fj

(
x+(1−λ)μ

λ

)
dx =

∑
j

∫ bj

aj
(λy + (1 − λ)μ − λμj − (1 − λ)μ)2fj (y) dy =

∑
j

∫ bj

aj
λ2(y − μj )

2fj (y) dy = λ2W . So the polarization becomes P(B ′, W ′, p,M) =
B ′

B ′+W ′ · ψ(p,M) = λ2B

λ2B+λ2W
· ψ(p,M) = P(B, W,p,M). Axiom 1 is proved .

Axiom 2 Let f1, f2, f3 be three basic densities of the population corresponding to three
different groups and P the total polarization value. The global distribution is completely
symmetric, so groups 1 and 3 have the same population and group 2 is exactly mid-
way between them. If we operate the same squeeze to f1 and f3, we can prove that the
polarization value is not decreasing.

First, it is possible to observe that as the squeeze is performed on f1 and f3
separately, the expected values μ1 and μ3 do not change (for Observation A.4).
P(B, W,p,M) = B

B+W
· ψ(p,M) where W = ∑3

j=1

∫
suppfj

(x − μj )
2fj (x) dx and

P ′(B,W ′, p,M) = B
B+W ′ · ψ(p,M) where W ′ = K2

∫
suppf2

(x − μ2)
2f2(x) dx +

λ2
(
K1

∫
suppf1

(x − μ1)
2f1(x) dx + K3

∫
suppf3

(x − μ3)
2f3(x) dx

)
< W .

So we can conclude that P ′(B,W ′, p,M) ≥ P(B, W,p,M).

Axiom 3 Let f1, f2, f3, f4 be four basic densities referred to four different groups, with
mutually disjoint supports, and let the distribution of the entire population be completely
symmetric. A symmetric slide of f2 and f3 to the side must increase the polarization.

Before the slide: P(B,W,p,M) =
(
1 − W

B+W

)
· ψ(p,M) where B =

∑4
j=1(μj − μ)2 = (μ1 − μ)2 + (μ2 − μ)2 + (μ3 − μ)2 + (μ4 − μ)2 After the slide,

because of the symmetry of the transformation, the global mean μ does not change while
the means of f2 and f3 become respectively μ2 − δ and μ3 + δ.
So we obtain the following: B ′ = (μ1 −μ)2 + (μ2 − δ −μ)2 + (μ3 + δ −μ)2 + (μ4 −μ)2

= (μ1 − μ)2 + (μ2 − μ)2 + δ(δ − 2μ2 + 2μ)

+ (μ3 − μ)2 + δ(δ + 2μ3 − 2μ) + (μ4 − μ)2 where δ(δ − 2μ2 + 2μ) > 0 and
δ(δ + 2μ3 − 2μ) > 0 under the hypothesis that μ2 < μ and μ3 > μ and B ′ > B.
Thus, we obtain that P ′(B ′,W,p,M) > P(B, W,p,M).

Axiom 4 Considering two different distributions referred to the same population, the
function η(B,W) is not affected by the scaling transformation of the two distributions.

So if PF (BF , WF , pF ,M) > PG(BG,WG,pG, M),

then
maxj pF

j − 1
N

N−2
N

>
maxj pG

j − 1
N

N−2
N

.

Then we can trivially show that PqF (BqF ,WqF ,pqF ,M) > PqG(BqG,WqG, pqG,M)

with q a non-negative integer value. Indeed:
maxj p

qF
j − 1

qN
qN−2
qN

>
maxj p

qG
j − 1

qN
qN−2
qN

. We conclude

that the measure proposed is a multidimensional polarization measure.
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Appendix B

The performance of the splitting criteria under comparison is evaluated on 18 different real
datasets, coming from the UCI repository (Dua and Graff 2017). In this section, detailed
information on each dataset are reported.

Banknote authentication Data were extracted from images that were taken from genuine
and forged banknote-like specimens. For digitization, an industrial camera usually used for
print inspection was used. The final images have 400 × 400 pixels. Due to the object lens
and distance to the investigated object, gray-scale pictures with a resolution of about 660
dpi were gained. Wavelet Transform tool was used to extract features from images.

Breast The dataset contains information about samples that arrive periodically as Dr. Wol-
berg reports his clinical cases. The database therefore reflects this chronological grouping
of the data and contains 8 groups of patients.

Breast cancer This is one of three domains provided by the Oncology Institute that has
repeatedly appeared in the machine learning literature (see also lymphography and primary-
tumor). It contains clinical informations about patient with breast cancer. This data set
includes 201 instances of one class and 85 instances of another class. The instances are
described by 9 attributes, some of which are linear and some are nominal.

Breast coimbra The dataset contains clinical features that were observed or measured for
64 patients with breast cancer and 52 healthy controls. There are 10 predictors, all quanti-
tative, and a binary dependent variable, indicating the presence or absence of breast cancer.
The predictors are anthropometric data and parameters which can be gathered in routine
blood analysis. Prediction models based on these predictors, if accurate, can potentially be
used as a biomarker of breast cancer.

Car Car Evaluation Database was derived from a simple hierarchical decision model orig-
inally developed for the demonstration of DEX, as described in Bohanec and Rajkovic
(1990). The model evaluates cars according to the following concept structure: car accept-
ability is estimate by overall price (that is divided in buying price and price of the
maintenance) and technical characteristics detailed as confort (number of doors, capacity in
terms of persons to carry and size of luggage boot) and safety.

CRX This dataset contains informations that concerns credit card applications. All attribute
names and values have been changed to meaningless symbols to protect confidentiality of
the data. This dataset is interesting because there is a good mix of attributes: continuous,
nominal with small numbers of values, and nominal with larger numbers of values. There
are also a few missing values.

Fertility A total of 100 volunteers provide a semen sample analyzed according to the WHO
2010 criteria. Sperm concentration is related to socio-demographic data, environmental
factors, health status, and life habits

Glass This data are from USA Forensic Science Service; it contains 6 types of glass defined
in terms of their oxide content (i.e., Na, Fe, K). The study of classification of types of glass
was motivated by criminological investigation.
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Haberman The dataset contains cases from a study that was conducted between 1958 and
1970 at the University of Chicago’s Billings Hospital on the survival of patients who had
undergone surgery for breast cancer.

Hepatitis This dataset contains medical information about a group of 155 people with acute
and chronic hepatitis, initially studied by Peter B. Gregory of the Stanford University School
of Medicine. Among these 155 patients, 33 died and 122 survived, and for each of them,
19 variables, such as age, sex, and the results of standard biochemical measurements, are
collected. The aim of the dataset is to discover whether the data could be combined in a
model that could predict a patient’s chance of survival. See Diaconis and Efron (1983).

Horse colic This dataset contains health information about horses in order to predict
whether or not a horse can survive, based upon past medical conditions.

Krkp The Chess Endgame Database for White King and Rook against Black King (KRK)
contains information on chess end game, where a pawn on a7 is one square away from
queening. The main aim is to predict the outcome of the chess endgames; thus, the tar-
get variable contains two possible values: White-can-win (“won”) and White-cannot-win
(“nowin”).

Lymph This is one of three domains provided by the Oncology Institute that has repeat-
edly appeared in the machine learning literature. The aim of this dataset is to make
a lymphatic diseases diagnosis observing different information extracted through medi-
cal imaging techniques; four different diagnoses are possible: normal, arched, deformed,
displaced.

Post-operative Because hypothermia is a significant concern after surgery, in this dataset,
different attributes which correspond roughly to body temperature measurements are col-
lected from 87 different patients. The aim of this dataset is to determine where patients in
postoperative recovery area should be sent to next. In particular, three different decisions
can be taken: I (patient sent to intensive care unit), S (patient prepared to go home), and A
(patient sent to general hospital floor).

Scale In this dataset, results of a psychological experiment are collected observing tips of
625 patients. Four attributes are collected for each sample: the left weight, the left distance,
the right weight, and the right distance. Each example is then classified as having the balance
scale tip to the right, tip to the left, or be balanced.

Sonar This dataset is composed by 208 sonar signals bounced off a metal cylinder or a
roughly cylindrical rock. For each signal, we have a set of 60 numbers in the range 0.0 to
1.0, representing the energy within a particular frequency band, integrated over a certain
period of time. The integration aperture for higher frequencies occurs later in time, since
these frequencies are transmitted later during the chirp. The target variable associated with
each record contains the letter “R” if the signal is bounced off a rock and “M” if it is bounced
off a mine (metal cylinder).

Spectheart Diagnosing of cardiac single proton emission computed tomography (SPECT)
images are described in the dataset. The database of 80 SPECT image sets (patients) was
processed to extract features that summarize the original SPECT images. As a result, 44
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continuous feature patterns were created for each patient and then each pattern was further
processed to obtain 22 binary feature patterns. Each of the patients is classified into two
categories: normal and abnormal, contained in the target variable.

Wine The wine dataset contains the results of a chemical analysis performed on three dif-
ferent types of wines grown in a specific area of Italy. A total of 178 samples are analyzed
and 13 different attributes are recorded for each sample. The target variable is a three classes
categorical variable representing the analyzed type of wine.
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