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Highlights 

 

 Metastatic colorectal cancer remains a deadly disease with a poor prognosis 

 Immune checkpoint inhibitors were found to be effective as treatment for 

microsatellite instability high metastatic colorectal cancer 

 Combination treatments and biomarker selection are being developed to boost 

immunotherapy efficacy across a wider population 
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Abstract 

Immunotherapy has recently become a major treatment modality for several types of 

solid tumours, achieving remarkable and long-lasting remissions. In metastatic 

colorectal cancer patients (mCRC), immune checkpoint inhibitors (ICIs) were found 

to be effective as treatment for deficient mismatch repair (dMMR)/ microsatellite 

instability high (MSI-H) tumours and received regulatory approval for this indication. 

However, mCRC is a complex disease and dMMR/MSI-H tumours represent a 

minority of the cases; therefore, new strategies are needed to extend the benefits of 

immunotherapy to a larger population of patients. This review explores the 

immunological differences between dMMR/MSI-H and proficient mismatch repair 

(pMMR)/ microsatellite instability low (MSI-L) tumours, focuses on new proposed 

biomarkers to predict response to immunotherapy and illustrates results reported from 

the main clinical trials with immunotherapeutic agents in CRC, addressing the most 

promising approaches being currently developed. 

 

1. Introduction 

Colorectal cancer (CRC) is a major cause of cancer death worldwide, with 104,610 

estimated new cases and 53,200 estimated deaths in the US in 2020.
1
 In developed 

countries, early detection through screening has improved the 5-year survival of 

patients with CRC, but ~25% of patients still present with stage IV disease, and a 

further 25–50% present with early-stage disease but eventually develop metastatic 
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disease. The prognosis for patients with metastatic CRC (mCRC) remains poor, with 

an overall survival of approximately 30 months.
2–6

 Thus, the development of more 

effective treatments for patients with this disease is an urgent unmet need.  

In the past decade, immunotherapy has elicited tremendous excitement owing to its 

success in achieving long-term durable responses in previously difficult-to-treat solid 

tumours, such as melanoma and lung cancer 
7
. The immune system distinguishes self 

from non-self through the binding of T-cell receptors (TCR) on T-cells to complexes 

of peptides with major histocompatibility complex (MHC) class I molecules 

presented on the surface of all cells, including tumour cells. Recognition of peptide–

MHC class I complexes by the TCR alone is insufficient for T-cell activation; TCR–

MHC signalling pathways are modulated by co-stimulatory or co-inhibitory signals, 

which tumour cells exploit to escape destruction 
8
. Current immunotherapy strategies 

rely on immune checkpoint inhibitors, targeting co-inhibitory receptors, such as 

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death 

protein 1 (PD-1) expressed on T-cells and other immune-cell subpopulations, or their 

ligands, such as programmed cell death protein 1 ligand 1 (PD-L1) expressed on 

tumour cells and various immune cells.  

In CRC, immune checkpoint inhibitor therapy (ICI) received regulatory approval in 

2017 for the treatment of tumours that are mismatch-repair-deficient (dMMR) or 

have high levels of microsatellite instability (MSI-H) (termed dMMR–MSI-H 

tumours). By contrast, current ICI therapies are ineffective in tumours that are 

mismatch-repair-proficient (pMMR) and are microsatellite-stable (MSS) or have low 

levels of microsatellite instability (MSI-L) (termed pMMR– MSI-L tumours). 

Following on the remarkable results of recently published clinical trials, in this 

review we describe the rationale for using immunotherapy in select patients with 

mCRC, discuss available clinical data supporting its use and highlight current clinical 

approaches and future directions for expanding the scope of immunotherapy in CRC.  

 

2. dMMR–MSI-H and pMMR–MSI-L CRC 

CRC can be categorized into two discrete groups on the basis of mutation patterns 

and ability to repair DNA microsatellite damage: tumours that have a dMMR–MSI-H 

signature and high overall mutation burden (>12 mutations per 106 DNA bases) and 

tumours that have a pMMR–MSI-L signature with a much lower mutation burden 

(<8.24 mutations per 106 DNA bases) 
9
.  MSI-H is the hallmark of tumours in 

patients with Lynch syndrome, but the development of this phenotype is a sporadic 

event in ~70–85% of all patients with dMMR–MSI-H tumours, commonly owing to 

somatic defects in MMR gene function such as hypermethylation of the MLH1 

promoter. MSI-induced frameshift mutations lead to the generation of a significant 
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number of mutations associated neoantigens (MANA), which account for the unique 

phenotypic characteristics of these tumours and explain the higher immunogenicity of 

MSI-H disease compared to MSI-L 
10

. Importantly, dMMR–MSI-H tumours are 

heavily infiltrated by immune cells, notably CD8+ tumour-infiltrating lymphocytes 

(TILs), T helper 1 CD4+ TILs and macrophages and have an environment with 

higher levels of type I interferons compared to other types of CRC. These tumours 

also feature upregulation of several immune checkpoint regulators such as PD-1, PD-

L1, CTLA-4, Lymphocyte activation gene 3 (LAG3) 
11

. Both the high mutational 

burden and immune infiltration predict response to immune checkpoint blockade in 

several tumour types and might as well explain the different response to current 

immunotherapy approaches so far reported in dMMR–MSI-H and pMMR–MSI-L 

neoplasms 
12,13

.  

Mismatch repair deficiency is observed in 10% to 20% of colorectal cancer patients 

and indicates a biologically distinct type of CRC with wide prognostic, predictive and 

therapeutic implications 
14

, because of which MMR testing is recommended by both 

National Health Institute for Health and Care Excellence (NICE) and European 

Society of Medical Oncology (ESMO) guidelines 
15,16

. Current laboratory assays for 

MMR testing include either a multiplex polymerase chain reaction (PCR) assay 
17

, 

the “Bethesda Panel”, or a multiplex immunohistochemistry (IHC) assay, in order to 

demonstrate the absence of one of four mismatch repair (MMR) enzymes (MLH1, 

MSH2, MSH6, and PMS2) 
18

. Both assays require cost, additional tumour tissue and 

produce variable results, with different sensitivity and specificity reported in 

reference studies 
19–22

. Newer approaches are being validated to address these issues, 

such as deep learning based identification using haematoxylin and eosin-stained 

slides 
23

. 

 

3. Biomarkers for response to immunotherapy in CRC beyond dMMR/MSI 

status 

The presence of dMMR/MSI-H is an established biomarker for response to 

immunotherapy but given the complexity of anti-tumour immune response and 

disease heterogeneity, this characteristic is likely not enough to predict response to 

ICIs 
24

. 

 

3.1 PD-L1  

PD-1 is expressed by activated T-cells, B-cells, and natural killer (NK) cells and can 

bind to its ligand, PD-L1, expressed on tumour cells 
25

. However, several issues 

prevent PD-L1 expression from being a clinically useful biomarker, including the 
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lack of standardization of PD-L1 expression evaluation. In CRC, PD-L1 expression 

was not found to be associated with response or survival in the registration studies 
26

.  

 

3.2 Tumour Mutational Burden 

As stated before, mutation associated neoantigens can elicit an anti-tumour immune 

response 
27

. In CRC a high tumour mutational burden (TMB) has been proven to 

predict response to immunotherapy 
28,29

. High TMB is frequently observed in 

dMMR/MSI-H tumours but it has also been reported in neoplasms harbouring a 

POLE exonuclease domain mutation (1-2% of all CRC tumours). Given the similarly 

enhanced immunogenicity of POLE-mutated CRCs and dMMR/MSI-H CRCs, the 

therapeutic potential of immune checkpoint blockade in the subset of POLE- mutated 

CRCs is of particular interest 
30

. Recent evidence suggest DNA damage response 

(DDR) defects, and subsequent high TMB and upregulation of PD-L1, might as well 

predict response to immunotherapy, even in pMMR/MSI-L tumours 
31

.  

 

3.3 Immunoscore 

A scoring system (Immunoscore) based on the numeration of two lymphocyte 

populations (CD3/CD45RO, CD3/CD8, or CD8/CD45RO), both in the core of the 

tumour and in the invasive margin of tumours, has been validated as a prognostic tool 

in early CRC 
32

. It has been recently reported that higher intra-tumoral CD3+ and 

CD8+ T-cell densities were associated with a higher overall response rate and 

duration of disease control in a small sub- group of patients with dMMR/MSI-H 

mCRC treated with anti-PD-1 antibody pembrolizumab 
33

. 

 

3.4 Gene expression signature 

A comprehensive re-evaluation and comparison of CRC molecular gene-expression 

profiles has enabled the CRC Subtyping Consortium (CRCSC) to identify four 

consensus molecular subtypes (CMS) 
34

. Stage-independent prognostic value and 

significant association with clinical, biological, and treatment features have been 

demonstrated and recently validated in phase III clinical studies 
35–37

. CMS1-immune 

and CMS4-mesenchymal subtypes are both considered to be immune-reactive and 

highly infiltrated by immune cells as opposed to CMS2-canonical and CMS3-

metabolic; therefore, both are likely to respond well to immune therapies, but they 

should each be treated distinctly. CMS1 tumours feature CD8+ T-cells and CD68+ 

macrophage infiltration as well as frequent upregulation of immune checkpoint 

molecules (CTLA-4, PD-1, and PD-L1) and might benefit from ICI therapy alone. 

CMS4 CRCs present a different pattern of immune infiltration, which is mainly 

suppressive; it features the infiltration of myeloid-derived suppressor cells (MDSCs), 
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T-regulatory cells (Tregs), monocyte-derived cells, and Th17 cells and upregulation 

of immunosuppressive factors such as Transforming Growth Factor beta (TGF-b), 

CXCL12, IL-23, IL-17. It is likely that this subtype would be best suited to strategies 

combining TGF-b inhibitors, Tregs/ MDSCs inhibition, and ICIs. It should be noted 

that CMS classification was developed using primary tumour samples and has not 

been validated in the metastatic setting.  

 

3.5 Microbiome 

Finally, it has been suggested that the gut microbiome also influences the outcome of 

cancer therapy by modulating the host inflammatory response 
38

; however, its role in 

predicting response to  immunotherapy in CRC remains largely unexplored and most 

of the evidence available is derived from pre-clinical models. 

Administration of IL-10 CpG oligodeoxynucleotide has proven to be successful in 

treating early CRC in mice; the effectiveness of this combination supposedly relies 

on Tumour Necrosis Factor alpha (TNF-a) local release in the tumour 

microenvironment as induced by the Alistipes shahii bacterial species; interestingly, 

this effect is lost upon antibiotics administration 
39

. Likewise, anti-CTLA-4 drug 

ipilimumab reduces the growth of colorectal cancer in mice with normal microflora, 

but has no effect germ-free specimens or when broad spectrum antibiotic therapy is 

applied; however it has been shown that transplant of fecal microbial composition 

including immunogenic Bacterioides restores efficacy of CTLA-4 inhibitors 
40

. A 

similar effect can be obtained when fecal transplant containing Akkermansia 

muciniphila is combined with anti-PD-1 therapy 
41

. 

 

4. Immunotherapy for dMMR–MSI-H CRC 

Early studies published between 2010 and 2013 proved very limited activity for ICIs 

in non-selected mCRC, with anecdotal efficacy reported in MSI-H patients 
42–44

. On 

the basis of the knowledge of the immunogenic microenvironment of MSI-H tumours 

and the impressive tumour response observed, several studies were launched to 

investigate the therapeutic potential of PD-1 inhibitors. A phase II trial 

(NCT01876511, KEYNOTE-016) of the anti-PD-1 antibody pembrolizumab was 

reported in 2015, in which three separate cohorts of patients were treated: dMMR–

MSI-H CRCs, pMMR–MSI-L CRCs and dMMR–MSI-H non-CRCs 
45

. In updated 

results presented at the 2016 American Society of Clinical Oncology (ASCO) Annual 

Meeting, the response rate (RR) was 50% and the disease control rate (DCR) was 

89% in patients with dMMR–MSI-H tumours versus 0% and 16% for pMMR CRC, 

respectively. At 24 months, progression free survival (PFS) was 61%, and overall 

survival (OS) was 66% in MSI-H disease 
46

. Interestingly, the number of somatic 

                  



 7 

mutations significantly correlated with the chance of achieving a response to therapy 
47

. These results led to the regulatory approval of pembrolizumab for patients with 

dMMR CRC after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecan. 

In July 2017, the FDA also approved anti-PD-1 antibody nivolumab, either alone or 

in combination with low dose anti CTLA-4 antibody ipilimumab, for patients with 

dMMR CRC based on the results of the CheckMate 142 study 
48,49

. This trial enrolled 

in different cohorts both pre-treated and treatment-naïve dMMR mCRC patients. 

Previously treated patients were allocated to receive either single agent nivolumab or 

a combination of nivolumab plus low dose ipilimumab. Single agent nivolumab 

yielded an overall response rate of 31.1%, with 69% of patients showing disease 

control for 12 weeks or longer; twelve-month progression-free survival was 50% and 

12-month overall survival was 73%. Latest available data on the combination cohort 

show an overall response rate (ORR) of 55% and disease control rate of 80%. Among 

all responders, median duration of response was not reached, with 94% of responses 

ongoing at data cut-off. The 9-months PFS and OS rates were 76% and 87%, 

respectively. Treatment with combined nivolumab and ipilimumab resulted in an 

increased rate of drug-related immune adverse events: 32% of patients experienced 

grade 3–4 treatment- related adverse events compared with 20% of patients treated 

with nivolumab alone 
50

. CM-142 also evaluated the combination of nivolumab plus 

low dose ipilimumab as first line treatment in dMMR–MSI-H CRC. The most recent 

update reported at ASCO GI Symposium 2020 showed an ORR of 64% and a DCR 

of 84%; median PFS and OS were not reached. Compared to the cohort of previously 

treated patients, the combination showed a better safety profile with only 20% of 

patients experiencing treatment-related grade 3 and 4 toxicities 
51

. At ASCO GI 

Symposium 2021 authors confirmed objective response was observed regardless of 

RAS/BRAF mutational status, ECOG performance status, tumour sidedness and 

stage at diagnosis 
52

. In 2020 the investigators of the KEYNOTE-177 trial reported 

the results of a study comparing pembrolizumab to 5-fluorouracil–based 

chemotherapy with or without anti-Vascular Endothelial Growth Factor (VEGF) drug 

bevacizumab or anti Epidermal Growth Factor Receptor (EGFR) drug cetuximab as 

first line treatment in MSI-H mCRC 
53

. The two primary end points were 

progression-free survival and overall survival. After a median follow-up of 32.4 

months, pembrolizumab was found to be superior to chemotherapy with respect to 

progression-free survival (median, 16.5 vs. 8.2 months; hazard ratio, 0.60; P=0.0002). 

An overall response was observed in 43.8% of the patients in the pembrolizumab 

group and 33.1% in the chemotherapy group; among patients with an overall 

response, 83% in the pembrolizumab group had ongoing responses at 24 months. 

Efficacy was observed across the whole population, but early data suggest that RAS 
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mutant tumours might derive a smaller benefit. Updated results presented at ASCO 

GI 2021 show an improvement in PFS2 as well, with a median PFS2 not reached vs. 

3.5 months (HR 0.63; 95% CI, 0.45-0.88) 
54

. Treatment-related adverse events of 

grade 3 or higher occurred in 22% of the patients in the pembrolizumab group. Based 

on these results FDA approved pembrolizumab as first line treatment of patients with 

unresectable or metastatic dMMR-MSI-H colorectal cancer. Final analysis, presented 

at ASCO 2021 Annual Meeting, showed a median PFS of 16.5 vs 8.2 months (HR 

0.59; 95% CI, 0.45-0.79 and ORR of 45.1% vs 33.1%. Hazard ratio for OS favoured 

pembrolizumab monotherapy, although it did not reach statistical significance; 

authors reported a 60% effective crossover rate in the intention-to-treat population 
55

. 

Research in this subtype of patients is still ongoing with new results reported from a 

phase 2 trial investigating the activity of anti-PD-1 antibody dostarlimab in patients 

with dMMR or POLE mut gastro-intestinal tumours; confirmed ORR in dMMR 

patients was 38.7% (36% in CRC alone) with 80.9% of responses ongoing after 18 

months 
56

. Further strategies being investigated in this population of patients include 

the use of anti-PD-L1 antibody atezolizumab either alone or in combination with 

mFOLFOX6 plus bevacizumab compared to chemotherapy plus bevacizumab as first 

line treatment (NRG-GI004/SWOG-S1610, COMMIT) 
57

. Preclinical evidence 

suggests in fact that oxaliplatin-containing chemotherapy in combination with anti-

VEGF enhances the anti-tumour activity of PD-1 pathway blockade in murine CRC 

models 
58

. While durable disease control is often observed for advanced MSI-H 

cancers treated with immune checkpoint inhibitors, some patients experience 

treatment resistance, frequently associated with increased signalling of the 

immunosuppressive TGF-b pathway. Bintrafusp alfa, a bifunctional fusion protein 

composed of the extracellular domain of the TGF-bRII receptor fused to a human 

IgG1 monoclonal antibody blocking PD-L1, was tested in a cohort of 15 patients (12 

of which had CRC) who progressed on prior ICI therapy; unfortunately the 

experimental drug did not demonstrate significant anti-tumour activity 
59

. 

 

5. Immunotherapy for pMMR-MSI-L CRC 

Unlike in patients with dMMR–MSI-H CRC, immunotherapy alone has not 

demonstrated a clinical benefit in patients with pMMR–MSI-L CRC, who constitute 

the vast majority of patients with mCRC. For these patients, ICIs are being actively 

explored in combination with treatments that aim to increase the intra-tumoral 

immune response and render the tumour ‘immune-reactive’.  

 

5.1 Combination immunotherapy 
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Dual blockade of multiple TCR co-repressors has proven effective in several solid 

tumours, including dMMR-MSI-H CRCs. A combination of anti PD-L1 antibody 

durvalumab plus anti CTLA-4 antibody tremelimumab has been compared to best 

supportive care alone in refractory CRC. The combination improved OS with a HR of 

0.66 (p= .02) in MSS patients; the benefit was even greater in TMB-high patients 

(HR 0.34; p= .004) 
60

. The same combination was tested in association to 

oxaliplatin/5-FU based chemotherapy as first line treatment in MSS RAS mutant 

CRC in the phase Ib/II MEDETREME trial, yielding a 6 months PFS of 62.5%; 

median PFS was not reached 
61

. Isatuximab is a monoclonal antibody directed against 

CD38 receptors expressed on immunosuppressive cells in the tumour 

microenvironment. It was recently compared in combination with atezolizumab to 

tyrosine kinase inhibitor (TKI) regorafenib in the phase Ib/II MORPHEUS trial; 

unfortunately, superior efficacy of this combination was not shown 
62

. The same 

platform also evaluated a combination of atezolizumab, bevacizumab and Imprime, a 

pathogen-associated molecular mimic which activates the innate immune response, 

unfortunately yielding no activity signal 
63

. 

 

5.2 Radiation therapy 

Preclinical and early clinical studies have suggested that radiation therapy (RT) or 

chemo-radiation therapy (CRT) may expose neoantigens through immunogenic cell 

death (ICD), thus eliciting immune-mediated antitumour responses. This immune 

effect is applicable not only to the irradiated tumour site, but also to distant sites 

through the ‘abscopal effect’, which theoretically could be enhanced with ICIs 
64

. The 

data to understand the role of RT and ICIs in CRC are, however, limited. Recently, a 

combination of nivolumab plus ipilimumab with RT (8 Gy in three fractions to a 

single metastatic lesion) demonstrated promising activity in a phase II study that 

included 40 patients with chemo-refractory mCRC; this strategy provided a DCR of 

37%, with a median DOR of over 15 months. However 33% of the patients enrolled 

did not receive RT due to toxicity or progressive disease 
65

. In contrast with this 

experience, two more phase II trials showed limited activity for this approach, using 

both single agent and combination ICIs 
66–68

.  

 

5.3 Chemotherapy and targeted therapies 

Agents currently used to treat metastatic CRC can modulate anti-tumour immune 

response. Chemotherapy regimens can induce ICD by releasing damage-associated 

molecular patterns (DAMPs) 
69

. Analysis of CRC liver metastases revealed that 

patients treated with preoperative chemotherapy had a significantly higher density of 

cytotoxic and memory T-cells compared with samples of untreated patients; this was 
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also true for patients achieving pathological or radiological responses, suggesting the 

development of an adaptive immune response 
70,71

.  

VEGF is often upregulated in cancer where it contributes to tumour angiogenesis; it 

also plays a role in the immune microenvironment by upregulating immune 

checkpoint molecules (PD-1, PD-L1, CTLA-4, LAG-3) and downregulating antigen-

presentation molecules. Additionally, VEGF inhibits dendritic cell (DC) maturation 

and increases the function of suppressor cells 
72,73

. Combination of anti VEGF agents 

and ICIs was first tested in the MODUL trial, where maintenance treatment with 

combined atezolizumab/bevacizumab/fluoro- pyrimidine after first-line induction 

with FOLFOX/bevacizumab did not demonstrate any clinical benefit in PFS or OS 

compared to bevacizumab and fluoropyrimidine alone 
74

; additionally a biomarker 

analysis was recently reported, showing that in BRAF wt population, neither PD-L1, 

CD8/GrB or FoxP3 appear to have predictive value 
75

. Combination of anti-

angiogenetic and immunotherapeutic drugs was further tested in the 

REGONIVO/EPOC1603 phase Ib trial, in which a combination of regorafenib plus 

nivolumab showed encouraging anti-tumour activity in refractory mCRC with a 

manageable safety profile. The combination produced a 36% RR with a 7.9 months 

median PFS in an Eastern population 
76

. However the combination of regorafenib 

plus nivolumab showed a much more modest activity in a study on Western 

population 
77

, with newer reports showing a RR of 7.1% and a trend for greater 

benefit in patients with higher tumour immune infiltration and higher circulating 

angiogenesis biomarkers 
78

. Furthermore, early results from a phase II trial testing a 

combination of capecitabine, bevacizumab and nivolumab in pre-treated MSS mCRC 

patients were recently published, showing a 9% RR and an expected toxicity profile 
79

. Additionally, results presented at this year ASCO GI Symposium show that a 

combination of pembrolizumab, bevacizumab and capecitabine is safe and active in 

MSS CRC patients, with a DCR of 80% 
80

. Results from the colorectal cancer cohort 

of the LEAP-005 trial were presented as well, testing a combination of the TKI 

lenvatinib and pembrolizumab in pMMR tumours; authors reported an ORR of 22% 

with median DOR not reached, a median PFS of 2.3 months and a median OS of 7.5 

months 
81

. 

Accumulating preclinical evidence suggests that anti EGFR antibody cetuximab can 

evoke a T-cell mediated anti-tumour immune response and stimulate NK-mediated 

cell-antibody-dependent cellular cytotoxicity 
82,83

. Interestingly this activity is 

observed regardless of the RAS mutational status 
84

. In the single-arm phase II 

AVETUX study a regimen of avelumab and cetuximab plus oxaliplatin, leucovorin, 

and 5-fluorouracil (mFOLFOX6) in patients with previously untreated RAS/BRAF-

wild type metastatic CRC induced an 80% response rate but did not meet its primary 
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progression free survival end point, with a 12 months PFS rate of only 40% 
85

. 

Interim analysis from a different proof of concept phase II trial (AVETUXIRI) was 

recently reported; a combination of avelumab plus cetuximab and irinotecan was 

tested in a population of refractory mCRC patients irrespective of RAS mutational 

status and obtained a similar DCR in both RAS wild type and RAS mutant cohorts 

(60% and 61.5%, respectively); 6 months-PFS rate was 40.0% and 38.5% in RAS 

wild type and mutant patients while 12 months-OS rate was reported at 53.3% and 

57.7%, respectively 
86

. A similar strategy was explored in the CAVE Colon phase II 

trial, testing a combination of avelumab plus cetuximab as a rechallenge treatment in 

previously treated RAS wild type metastatic CRC patients. The authors reported a 3.6 

months median PFS with a 55.4% DCR; OS was reported to be 13.1 months 
87

; 

interestingly grade 2 or 3 cutaneous toxicity seems to predict better OS 
88

. Dual ICIs 

combination strategies are also being tested; early results from a trial evaluating a 

combination of nivolumab, ipilimumab and panitumumab in MSS RAS wild type 

mCRC show a 12-week RR of 35% and a median PFS of 5.7 months 
89

. Safety 

profile was acceptable but there was a single grade 5 event of myocarditis.  

Preclinical studies have reported that MEK inhibitors could have synergistic activity 

with ICIs 
90

. This possibility was further explored in a phase Ib trial evaluating a 

combination of atezolizumab and MEK inhibitor cobimetinib, which achieved a 37% 

response rate 
91

. However, the subsequent IMblaze370/COTEZO randomized phase 

III trial failed to confirm this result, showing no increase in tumour response or 

survival for patients treated with the combination compared to patients treated with 

single agent atezolizumab or regorafenib 
92

. 

 

5.4 Other strategies 

New approaches are currently being evaluated in clinical trials and involve 

modulation of the immune environment via cytokines/ chemokines, regulation of 

metabolic pathways, use of bi-specific fusion proteins, oncolytic viruses. One trial 

was recently reported, testing a combination of nivolumab plus metformin in 

refractory MSS colorectal cancer; preclinical data suggests in fact that metformin can 

improve immune exhaustion of tumour infiltrating lymphocytes and potentiate the 

effects of PD-1 blockade by normalizing the hypoxic tumour micro-environment. 

Unfortunately, while 2 of the patients treated achieved stable disease, authors 

reported no objective response and the trial did not proceed to the following stage of 

enrolment 
93

. The main ongoing clinical trials are listed in Table 1.  

 

6. Adjuvant/neo-adjuvant therapy 
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Efforts are being made to integrate immunotherapy strategies in the early-stage 

setting. The phase III randomized controlled ATOMIC trial comparing standard 

chemotherapy alone or in combination with atezolizumab as adjuvant therapy for 

patients with stage III dMMR colon cancer is currently ongoing and results are 

eagerly awaited 
94

.  

Last year results from the pilot NICHE trial were published, testing a pre-operative 

combination of nivolumab plus ipilimumab in dMMR/pMMR colorectal cancer 

patients; patients received a single dose of ipilimumab and two doses of nivolumab 

before surgery, the pMMR group with or without celecoxib. Pathological response 

was observed in 20/20 dMMR tumours, with 19 major pathological responses 

(MPRs, ≤10% residual viable tumour) and 12 pathological complete responses. In 

pMMR tumours, 27% of patients showed pathological responses; notably CD8+ T-

cells infiltration was predictive of response 
95

. Results were recently reported from 

the experimental pembrolizumab arm in the platform phase II trial NRG-GI002 using 

total neoadjuvant therapy (TNT) in locally advanced rectal cancer. Pembrolizumab 

added to chemo-radiotherapy as part of TNT was safe and without unexpected short-

term toxicities but failed to improve the Neoadjuvant Rectal Cancer score and the 

combination did not meet PFS and OS endpoints 
96

. 

Finally, at ASCO 2021 results from the AVANA study were presented, showing a 

promising activity and a feasible safety profile for the combination of preoperative 

chemoradiotherapy plus avelumab in locally advanced rectal cancer. Authors 

reported a 23% pathological complete response (pCR) rate and a 61% MPR rate; 

interestingly, of the patients evaluable for MMR status, most were pMMR 
97

. 

 

7. Conclusions 

It is evident that substantial advances have been made with immunotherapy 

approaches in CRC. An algorithm of possible treatment sequencing based on 

available clinical data is shown in Figure 1. Unfortunately, most of the progress has 

been observed in dMMR/MSI-H CRC, which represent only a small subgroup of all 

colorectal tumours. 

The key remaining challenge remains to identify which patients are most likely to 

benefit from immunotherapy, either alone or in combination with synergistic agents. 

It is fundamental to further develop on biomarkers to predict benefit from existing 

regimens and to insist on researching novel agents able to target specific features of 

the different subtypes of colorectal cancer, in order to expand treatment possibilities 

for such patients. 
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Currently active immunotherapy studies in CRC (Table 1) 

Metastatic Colorectal Cancer 

Sub-population LoT Combination Strategy Interventions Trial Type Trial Identifier 

dMMR/MSI-H 1L Immune regulation Pembro Phase 3 NCT02563002 

None >1L Immune regulation Pembro Phase 2 NCT02460198 

None N/A Immune regulation Durva + Treme Phase 2 NCT02870920 

dMMR/MSI-H N/A Immune regulation Nivo + Ipi Phase 3 NCT04008030 

dMMR/MSI-H 2L Immune regulation Avelumab Phase 2 NCT03186326 

pMMR/MSI-L N/A Immune regulation Nivolumab Phase 2 NCT03981148 

None N/A Immune regulation BO-112 + Pembro Phase 2 NCT045078140 

pMMR/MSI-L N/A Immune regulation Nivo + Relatlimab Phase 2 NCT03642067 

pMMR/MSI-L N/A VEGF Nivo + Regorafenib Phase 2 NCT04126733 

None N/A VEGF Atezo + Bev Phase 2 NCT02982694 

None N/A VEGF Ave + Regorafenib Phase 1/2 NCT03475953 

None N/A VEGF Atezo + Cabozantinib Phase 1/2 NCT03170960 

None N/A VEGF Pembro + Regorafenib Phase 1/2 NCT03657641 

None N/A VEGF Pembro + Lenvatinib Phase 2 NCT03797326 

None >2L EGFR Ave + Cetuximab Phase 2 NCT04551336 

pMMR/RASwt N/A EGFR Nivo + Ipi + Panitumumab Phase 2 NCT03442569 

None N/A EGFR Pembro + Cetuximab Phase 2 NCT02713373 

KRAS G12C mut N/A EGFR Pembro + MRTX849 + 

Cetuximab 

Phase 1/2 NCT03785249 

None N/A MEK Nivo / Ipi / Cobimetinib / 

Daratumumab / anti LAG 3 

Phase 2 NCT02060188 

None N/A MEK Pembro + Bev + Binimetinib Phase 2 NCT03475004 
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None N/A MEK Nivo + Ipi + Trametinib Phase 1/2 NCT03377361 

pMMR/MSI-L N/A MEK Durva + Trametinib Phase 2 NCT03428126 

pMMR/RASmut N/A MEK Nivo + Ipi + Binimetinib Phase 2 NCT03271047 

pMMR/BRAFmut N/A BRAF/MEK Nivo + Encorafenib + 

Binimetinib 

Phase 1/2 NCT04017650 

None 1L Chemotherapy/VEGF Atezo + Bev + FOLFOXIRI Phase 2 NCT03721653 

pMMR/MSI-L N/A Chemotherapy/VEGF Pembro + Bev + CAPOX Phase 2 NCT04262687 

pMMR/MSI-L N/A Chemotherapy/VEGF Pembro + Bev + Capecitabine Phase 2 NCT03396926 

RAS/BRAFmut >1L Chemotherapy/VEGF Nivo + Bev + FOLFOXIRI Phase 2 NCT04072198 

None >1L Chemotherapy/VEGF Atezo + Bev + Capecitabine Phase 2 NCT02873195 

None 1L Chemotherapy/VEGF Nivo + FOLFOX Phase 2/3 NCT03414983 

dMMR/MSI-H N/A Chemotherapy/VEGF Atezo + Bev + FOLFOX Phase 3 NCT02997228 

pMMR/MSI-L >1L Chemotherapy/EGFR Ave + Cetuximab +Irinotecan Phase 2 NCT03608046 

None N/A Chemotherapy/EGFR Ave + Cetuximab 

+FOLFOXIRI 

Phase 2 NCT04513951 

None 1L Chemotherapy/EGFR Ave + Cetuximab +FOLFOX Phase 2 NCT03174405 

None N/A Chemotherapy/EGFR Pembro +FOLFOX Phase 2 NCT02375672 

pMMR/MSI-L N/A Chemotherapy Pembro + Temozolomide Phase 2 NCT03519412 

pMMR/MSI-L N/A Chemotherapy Nivo + Ipi + Temozolomide Phase 2 NCT03832621 

None N/A Chemotherapy Nivo + CDDP + 

Temozolomide 

Phase 2 NCT04457264 

None N/A Chemotherapy Durva + Treme + FOLFOX Phase 1/2 NCT0320758 

None N/A Radiation Therapy Atezo + RT Phase 2 NCT02992912 

None N/A Radiation Therapy Pembro + RT Phase 2 NCT02437071 

None N/A Radiation Therapy Durva + Treme + RT Phase 2 NCT03101475 
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None N/A Radiation Therapy Durva + Treme + RT Phase 2 NCT02888743 

None N/A Radiation Therapy Nivo + Ipi + RT Phase 2 NCT03104439 

None N/A Multiple Rego / Atezo / Imprime PGG / 

Bev / Selicrelumab/ 

Isatuximab / Idasanutlin / 

AB928 

Phase 1/2 NCT03555149 

dMMR/MSI-H N/A TGF-beta M7824 Phase 1/2 NCT03436563 

None N/A Cytokines ICI + N-803 Phase 2 NCT03228667 

None N/A Cytokines Pembro + poly-ICLC Phase 1/2 NCT02834052 

pMMR/MSI-L N/A PI3K Nivo + Copanlisib Phase 1/2 NCT03711058 

pMMR/MSI-L N/A Other Nivo + metformin Phase 2 NCT03800602 

Early Colorectal Cancer 

Tumour Type LoT Combination Strategy Interventions Trial Type Trial Identifier 

Lynch Syndrome Adj Immune regulation Nivo Phase 2 NCT03631641 

None Adj Personalized treatment Nivo / FOLFIRI / Enco + Bini 

+ Cetuximab 

Phase 3 NCT03803553 

dMMR/MSI-H Adj Chemotherapy Atezo + FOLFOX Phase 3 NCT02912559 

dMMR/POLEmut Adj Chemotherapy Ave + FOLFOX Phase 3 NCT03827044 

Rectal Cancer NeoAdj Radiation Therapy Ave + Capecitabine + RT Phase 2 NCT03854799 

Rectal Cancer NeoAdj Radiation Therapy Pembro + RT Phase 2 NCT04109755 

Rectal Cancer NeoAdj Radiation Therapy Atezo + CRT Phase 1/2 NCT03127007 

Rectal Cancer NeoAdj Radiation Therapy Nivo + Ipi + CRT Phase 2 NCT04124601 

Rectal Cancer NeoAdj Radiation Therapy Durva+ CRT Phase 2 NCT04293419 

pMMR RC NeoAdj Radiation Therapy Durva+ CRT Phase 2 NCT03102047 

                  



Future possible treatment options in metastatic CRC (Figure 1) 

 

                  


