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Abstract. We provide a mathematical proof of the existence of traveling vortex rings solutions to
the Gross–Pitaevskii (GP) equation in dimensionN ≥ 3. We also extend the asymptotic analysis
of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–
Landau equation for superconductivity as well as the traveling wave equation for GP. In particular
we rigorously derive a curvature equation for the concentration set (i.e. line vortices ifN = 3).
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1. Introduction

In this paper, we consider the Gross–Pitaevskii equation

i
∂ψ

∂t
+∆ψ + (1 − |ψ |

2)ψ = 0, (1)

whereψ : RN × R → C andN ≥ 3. In dimension 3, this equation, or its close variants,
are often used as models in various areas of physics: nonlinear optics, superfluidity, Bose–
Einstein condensation (see e.g. [21, 35, 38] for surveys). At least formally, it possesses a
Hamiltonian structure, whose energy is given by

E(ψ) :=
1

2

∫
RN

|∇ψ(·, t)|2 +
1

4

∫
RN
(1 − |ψ(·, t)|2)2. (2)

Another important quantity conserved by the flow (1) is the momentumP ∈ RN , given,
again formally, by

P(ψ) := Im
∫

RN
ψ · ∇ψ =

∫
RN
(iψ,∇ψ), (3)
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where(·, ·) stands for the scalar product inR2. The first component of the vectorP will
be denoted byP , i.e.P = P · e1.

Traveling wave solutions to (1) are known to play an important role in the full dynam-
ics of (1). More precisely, these are solutions of (1) of the form (up to rotation)

ψ(x, t) = U(x1 − Ct, x2, . . . , xN ), (4)

whereC > 0 is the wave’s speed andU : RN → C. One easily verifies thatψ is a
solution of (1) iff the “profile”U is a solution to the equation

iC
∂U

∂x1
= ∆U + U − |U |

2U. (5)

The focus of this paper is onfinite energy solutions to (5). Our purpose is twofold. First,
we embed equation (5) in a larger class of equations (which contain in particular the equa-
tions of superconductivity) and study qualitative properties of solutions in an asymptotic
regime which is described below. Since these results are of independent interest (and will
be used in forthcoming works), we devote a large appendix to this analysis. It will then
enter in a crucial way in our second scope, namely the existence problem for (5). The
existence of solutions in the caseN = 2 was considered in [14]; our main existence result
here concerns its extension to higher dimensions. For that purpose, consider in cylindrical
coordinates(x1, r, θ), wherer := (x2

2 + · · · + x2
N )

1/2, the sphereS := {(0,1, θ)}, and on
the upper half-planeH+ := {(x1, r) : r > 0}, the operator

LΨ = rN−2∂r(r
2−N∂rΨ )+ ∂2

x1
Ψ.

The linear problem {
−LΨ = 2πδq , q = (0,1),
Ψ (x1,0) = 0,

has a unique solutionΨ∗ bounded at infinity. Up to a phase change, there also exists (see
e.g. [9]) a unique functionω∗ ∈ C∞(H+ \ {q}) such that|ω∗| = 1 and(

ω∗ ×
∂ω∗

∂x1
, ω∗ ×

∂ω∗

∂r

)
=

(
−
∂Ψ∗

∂r
,
∂Ψ∗

∂x1

)
(herea×b := a1b2−a2b1 is the exterior product of two vectorsa, b ∈ R2

' C). Finally,
we consider the functionU∗ defined by

U∗(x1, r, θ) := ω∗(x1, r).

The functionU∗ is cylindrically symmetric, smooth onRN\S, with values in the circleS1.

In particular, in dimension 3,U∗ is singular on a circle (often referred to as a “concentrated
vortex ring”). Our main result states that, after scalings, there are solutions of (5) close
toU∗.

Theorem 1. There existsε0 > 0 such that for every0 < ε < ε0 there exists a solution
Uε to (5) withC = C(ε) satisfying

C(ε)

ε|logε|
→ N − 2 asε → 0, (6)
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and forE(ε) := E(Uε) andP(ε) := P(Uε) we have

P(ε)

2πε1−N
= |BN−1

|,
E(ε)

πε2−N |logε|
→ |SN−2

|, (7)

and
|Uε(x)| → 1 as |x| → ∞. (8)

Moreover, for everyk ∈ N,

Uε(x/ε) → U∗ in Ckloc(R
N

\ S). (9)

Remark 1.Notice that both the energyE(ε) and the momentumP(ε) diverge asε → 0,
and instead thatC(ε) → 0 asε → 0.

A few comments are in order. First, observe that (1) corresponds to a defocusing nonlin-
ear Schr̈odinger equation (NLS); it has been widely studied with respect to the Cauchy
problem in case the initial data are inL2(RN ) (see e.g. [41]). In this (different) situation,
due to dispersion, any solution vanishes as time tends to infinity. This phenomenon of
course excludes traveling wave solutions except for the trivial one. Instead, in our situa-
tion, theL2-norm is not bounded (this is incompatible with the fact thatE is bounded)
for the solutionUε; we have seen that|Uε(x)| → 1 as|x| → ∞, and dispersion effects
are balanced by the nonlinearity. Our results provide some rigorous mathematical proofs
to the study in [30].

Second, the Cauchy problem for (1) with an initial data inH 1(RN ) + {1} having its
vorticity concentrating on round spheres has been considered by Jerrard [28]. Although
our results are of a different nature, some of the arguments there are closely related to
ours.

Third, some properties of (1) can be usefully analyzed through the Madelung trans-
form

ψ(x, t) =
√
ρ exp(iϕ),

which is meaningful if|ψ | is not zero. In theρ andv := ∇ϕ variables, equation (1) can
be written as 

∂ρ

∂t
+ div(ρv) = 0,

ρ

(
∂v

∂t
+ v · ∇v

)
+ ∇ρ2

= −ρ∇

(
|∇ρ|

2

8ρ2
−
∆ρ

4ρ

)
.

(10)

If we neglect the term on the right-hand side of (10) (which is often termed the “quantum
pressure” in the physics literature), this system reduces to the Euler equations for com-
pressible ideal fluids with pressure given byρ2. The full system (10) enters the larger
class of quantum fluid equations (see e.g. [36]).

The existence of traveling wave solutions for the incompressible Euler equations was
already considered by Helmholtz in his celebrated paper of 1858 [27]; more precisely, the
solutions he proposed have vorticity concentrated on a ring of small cross-section (like
“smoke rings”). Later, Lord Kelvin computed the relations between the cross-section, the
radius of the ring, and its propagation speed. The first rigorous proofs of existence of such
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steady vortex rings (steady in a traveling frame) were given by Fraenkel and Berger [22]
in the seventies, and later by Ambrosetti and Struwe [4]. Concerning the compressible
Euler equation, we are only aware of numerical results in this direction [33].

We will turn later to the properties of the solutions in Theorem 1. In view of the last
statement of the theorem, it is clear that they behave like vortex rings. The remainder of
this introduction is a detailed description of the strategy of the analysis.

1.1. The variational approach

Since, as already mentioned, (1) is Hamiltonian, it follows that (5) is variational. At least
two different variational approaches are available. First, as considered in [14], one could
introduce the Lagrangian

FC(U) := E(U)− CP(U),

whose critical points are solutions to (5). This approach has the advantage that the wave
speedC is prescribed a priori. It was shown in [14], forN = 2, that for someC0 > 0, FC
has the mountain-pass geometry forC < C0, providing existence in a full interval of
speed ]0, C0[. In this approach, however, the question of stability seems more difficult to
address.

The second possible approach, the one we will use here, is by minimizing the energy
E keeping the momentumP fixed. It is convenient to perform the following rescaling for
0< ε < 1/2:

uε(x) := Uε

(
x

ε

)
, c(ε) :=

C(ε)

ε|logε|
,

so that ifUε is a solution of (5), thenuε solves the equation

ic(ε)|logε|
∂uε

∂x1
= ∆uε +

1

ε2
uε(1 − |uε|

2), (11)

and

Eε(uε) := ε2−NE(Uε) =

∫
RN

(
1

2
|∇uε|

2
+

1

4ε2
(1 − |uε|

2)2
)

≡

∫
RN
eε(uε).

The energyEε is often called the Ginzburg–Landau energy, and has been extensively
studied, in particular in the asymptotic limitε → 0 (see e.g. [9]). Likewise, the momen-
tum rescales as

p(uε) := ε1−NP(Uε) =

∫
RN
(iuε,∇uε).

One major difficulty comes from the fact that in the natural energy space

X := {u ∈ H 1
loc(R

N ) : Eε(u) < ∞},

the momentump is not well defined. Indeed, consider for example the functionw :=
exp(iϕ), whereϕ is smooth andϕ(x) = |x|α for some(1 −N)/2< α < (2 −N)/2 and
|x| > 1. Notice that|w| = 1 and|∇w| = |∇ϕ| ∈ L2(RN ) so thatw ∈ X. On the other
hand,(iw,∇w) = ∇ϕ /∈ L1(RN ) and similarly(i(w − 1),∇w) /∈ L1(RN ); hencep(w)
is not well defined in the Lebesgue sense. To overcome this difficulty, we will introduce a
series of approximate problems(Pεn) on expanding tori. A price has to be paid, however:
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• one has to find uniform bounds for both the Lagrange multipliers and the solutions
associated to(Pεn),

• some information (energy, momentum, . . . ) could be lost in the limit (see the discus-
sion on stability later).

1.2. The approximating problems

Setting. Forn ∈ N∗, consider the flat torus

Πn ' Ωn ≡ [−n, n]N ,

with opposite faces identified, and the space

Xn := H 1(Πn,C) ' H 1
per(Ωn,C)

of 2n-periodicH 1 functions. SinceΠn is compact, we can define the (first component of
the) momentum as

p(u) :=
∫
Πn

(iu, ∂1u),

and this clearly defines a quadratic functional onXn. Let

Γn := {u ∈ Xn : p(u) = 2π |BN−1
| },

and consider the minimization problem:

(Pεn) In,ε := inf
u∈Γn

Eε(u).

The constraint is easily seen to be nonvoid. It is also straightforward to prove existence of
a minimizer for(Pεn).

Proposition 1. There exists a minimizerun,ε ∈ Xn for (Pεn) and some constantcn,ε ∈ R
such thatun,ε satisfies(11), i.e.

icn,ε|logε|
∂un,ε

∂x1
= ∆un,ε +

1

ε2
un,ε(1 − |un,ε |

2) onΠn.

In what follows, for simplicity, we will skip the subscriptsn or ε when this is not mis-
leading.

Remark 2.There is presumably some freedom in the choice of the approximate problem.
A natural candidate might have been

Yn := {u ∈ H 1(Ωn,C) : u ≡ 1 on∂Ωn}.

One advantage ofYn is that

p(u) = m(u) :=
∫
Ωn

〈Ju, ξ1〉 for all u ∈ Yn,
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which follows easily by integration by parts. Here,Ju (the Jacobian ofu) denotes the
2-form onΩn

Ju :=
1

2
d(u× du) =

∑
i<j

(∂iu× ∂ju)dxi ∧ dxj , (12)

and the 2-formξ1 is defined onΩn by

ξ1(x) :=
2

N − 1

N∑
i=2

xidx1 ∧ dxi . (13)

Finally 〈·, ·〉 stands for the scalar product of 2-forms. As we will see later,m has a conve-
nient geometric interpretation which we will use throughout. On the torusΠn, however,m
is not well defined (due toξ1), and we will have to circumvent this difficulty by choosing
suitable unfoldings.

Whereas part of the analysis is somewhat simpler inYn, the main disadvantage is that
the translation invariance of our original problem is broken inYn.

Upper bound for In,ε and cn,ε. The upper bound onIn,ε is obtained using appropriate
comparison functions for(Pεn). As already mentioned, in the limitε → 0, the solution
uε (and alsoun,ε) will ultimately look like thin vortex rings. In what follows, forR > 0
(2R < n) we propose a simple construction of such a vortex ringwε,R of radiusR, which
will turn out to be an almost optimal candidate.

We carry out the construction in cylindrical coordinates(x1, r, θ), wherer := (x2
2 +

· · ·+x2
N )

1/2. The functionwε,R will be independent ofθ (i.e. cylindrically symmetric); we
therefore just need to describe it in the(x1, r) half-planeH+. For that purpose, consider
in the complex plane the pointzR := iR and the functionωR defined onB2R by

ωR(z) =
z− zR

|z− zr |

z+ zR

|z+ zr |
exp(iϕ),

whereϕ is a real harmonic function such thatωR ≡ 1 on∂B2R (see [9]). Then we set

wε,R(x1, r, θ) :=

{
ωR(x1 + ir) if x1 + ir ∈ B2R \ Bε(zR),

ε−1
|x1 + i(r − R)|ωR(x1 + ir) if x1 + ir ∈ Bε(zR).

By standard computations,

1

2

∫
RN

|∇wε,R|
2

=
1

2
|SN−2

|

∫
H+

|∇wε,R|
2rN−2 dx1 dr

= πRN−2
|SN−2

| |logε| +O(1),

and similarly
1

4ε2

∫
RN
(1 − |wε,R|

2)2 = O(1),

so that

Eε(wε,R) = π |SN−2
|RN−2

|logε| +O(1). (14)
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For the momentump(wε,R) = m(wε,R), we have

p(wε,R) = |SN−2
|

∫
H+

(
∂wε,R

∂x1
×
∂wε,R

∂r

)
2r

N − 1
rN−2 dx1 dr

= 2π
|SN−2

|

N − 1
RN−1

+ o(1) = 2π |BN−1
|RN−1

+ o(1), (15)

since
Jwε,R(x1, r, θ) = (∂x1wε,R × ∂rwε,R)dx1 ∧ dr

and since
∂x1wε,R × ∂rwε,R ⇀ πδ(0,R)

in the sense of measures onH+. The detailed computations to obtain estimates (14) and
(15) are standard and can be found in many places (see e.g. [9]), so we do not repeat them
here. With the help of these estimates, it is then fairly easy to obtain a (sharp) upper bound
for In,ε.

Lemma 1. There exists some constantK0, which is independent ofn andε, such that

|In,ε| ≤ K0|logε|. (16)

Moreover,

lim sup
ε→0

(
sup
n∈N∗

In,ε

|logε|

)
≤ π |SN−2

|. (17)

We next turn tocn,ε. As a consequence of the Pohozaev identity for (11) and some careful
analysis of the boundary terms relatingp(u) andm(u) in Xn we obtain the following.

Lemma 2. There existsε1 > 0 such that for0 < ε < ε1 andn ≥ n(ε), wheren(ε) ∈ N
depends only onε, we have

|cn,ε| ≤ K1. (18)

HereK1 is some constant which is independent ofn andε.

Remark 3.It follows from our proof of Lemma 2 that an upper bound forn(ε) is
K2|logε|ε3−N , whereK2 is some sufficiently large constant. With a little more work,
one should be able to prove that a large (but independent ofε) constant is a valid upper
bound. Since our final goal is to letn → ∞ at fixedε, the first upper bound is sufficient.

1.3. Some properties of the Euler–Lagrange equation

An important part of our results relies on the analysis of the Euler–Lagrange equation
(11). Since we believe that it is of interest in related topics, as, for instance, supercon-
ductivity (see Remark 4(iv)) we will be more general than what is strictly needed for the
proof of Theorem 1. Therefore, we will consider solutionswε to the class of equations

i|logε|c(x) · ∇w = ∆w +
1

ε2
w(1 − |w|

2)− |logε|2d(x)w onΩ, (19)
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whereΩ ⊆ RN is a piecewiseC1 simply connected domain,c : Ω → RN is a bounded
Lipschitz vector field andd : Ω → R is Lipschitz nonnegative and bounded [in our
original problemc is constant andd = 0]. If we allow c andd to depend onε (in view in
particular of the application to superconductivity), then we require that there exists some
constantΛ0 > 0 not depending onε such that

‖c‖
2
L∞(Ω) + ‖∇c‖

2
L∞(Ω) + ‖d‖2

L∞(Ω) + ‖∇d‖2
L∞(Ω) ≤ Λ2

0.

Notice that (19) can be rewritten as

i|logε|c(x) · ∇w = ∆w +
1

ε2
w(aε(x)− |w|

2), (20)

where

aε(x) := 1 − d(x)ε2
|logε|2.

When divc ≡ 0 it is also equivalent to(
∇ − i|logε|

c
2

)2

w +
1

ε2
w(bε(x)− |w|

2) = 0, (21)

where

bε(x) := aε(x)+ ε2
|logε|2

c2(x)

4
.

Equation (19) is variational whenc is divergence free; we will make this assumption
throughout. It is likely however that a large part of the analysis can be done in the general
case. Notice also that no boundary condition is prescribed here so that the focus in this
section will be on local properties.

The outline of our analysis of (19) follows closely the corresponding theory for the
Ginzburg–Landau equation developed in [9, 40, 13, 37, 31, 32, 10, 29, 5, 16] and the
references therein. In particular, the emphasis is placed there on the set

Sε := {x ∈ Ω : |wε(x)| ≤ 1/2},

where vorticity and energy will eventually concentrate in the limitε → 0. Notice that for
the proof of Theorem 1, the structure ofSε for ε fixed but expandingΩ will also play a
key role. We first start with the following standard pointwise estimates.

Lemma 3. LetK be any compact subset ofΩ. Then, for any solutionwε of (19)we have:‖wε‖L∞(K) ≤ 1 + c2
∞ ε2

|logε|2 + C
ε2

dist(K, ∂Ω)2
,

‖∇wε‖L∞(K) ≤ CK/ε,

wherec∞ := ‖c‖L∞ , C is a constant depending only onN , andCK is a constant de-
pending only onN, c∞ andK.
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In order to describe the properties ofSε, monotonicity formulas play an important role
(as in the works quoted above). More generally, they have been extensively used in the
context of regularity for various problems in PDE’s and geometry (see e.g. [34, 23]).

Forx0 ∈ Ω andr > 0 such thatBr(x0) ⊂ Ω, consider the scaled energy

Ẽε(wε, x0, r) :=
1

rN−2
Eε(wε, x0, r)

≡
1

rN−2

∫
Br (x0)

(
|∇wε|

2

2
+
(aε(x)− |wε|

2)2

4ε2

)
. (22)

When this does not lead to confusion, we will also denote it byẼε(x0, r) or evenẼε(r).

Lemma 4. There existsC > 0 depending only onN such that for

Λ := C(c∞ + 1)|logε|, Q := CΛ0|logε|2ε,

and for anywε satisfying(19)onBR(x0) ⊂ Ω, we have

d

dr

(
exp(Λr)

(
Ẽε(x0, r)+

Q2

Λ

))
≥

1

rN−2

∫
∂Br

∣∣∣∣∂wε∂n
∣∣∣∣2

+
1

rN−1

∫
Br

(aε(x)− |wε|
2)2

4ε2
≥ 0

for 0< r < R. In particular, exp(Λr)(Ẽε(x0, r)+Q2/Λ) is increasing.

The above inequality is obtained using a crude estimate for the JacobianJwε. This re-
stricts somehow its usefulness to balls of sizeO(1/|logε|). In order to handle balls of
radiusO(1), refined estimates on Jacobian integrals are needed (see [29, 1]).

Proposition 2. There existC > 0 andβ > 0 depending only onN such that for anywε
satisfying(19)onBR(x0) ⊂ Ω, we have

Ẽε(x0, θr) ≤ C(Ẽε(x0, r)+ (1 +Λ0)
N−1εβ) (23)

for 0< θ < 1/2 and0< r < min(R,2/(Λ0 + 1)).

Using the previous two results, and following the arguments of [10] (see also [37, 31,
32]), we derive the following result, which plays an important role in the analysis.

Theorem 2. Letwε be a solution of(19)onΩ andσ > 0 be given. There exist constants
η > 0 and ε0 > 0, depending only onN , σ andΛ0, such that ifx0 ∈ Ω, ε ≤ ε0,
√
ε ≤ r ≤ 1/(1 +Λ0), B2r(x0) ⊂ Ω, and

Ẽε(x0, r) ≤ η|logε|,

then

|wε(x0)| ≥ 1 − σ.
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Asymptotic analysis of concentrating measures.We assume from now on thatwε sat-
isfies the bound

Eε(wε) =

∫
Ω

eε(wε) ≤ M0|logε|, (24)

whereM0 is some fixed constant. In this regime, one of the main consequences of The-
orem 2 is that asε tends to zero, the setSε concentrates on a rectifiable limiting setS∗,
of locally finite N − 2 Hausdorff measure. It is convenient to introduce the following
measures: 

µε :=
eε(wε)

|logε|
dx,

ηε := ε−21Sεdx,

Jε := Jwε.

In view of assumption (24),µε is bounded. Therefore, up to a subsequence we may as-
sume that

µε ⇀ µ∗ as measures.

Using Theorem 2 again, combined with a Besicovitch covering argument, we find that
ε−21Sε is locally bounded inL1(Ω). Extracting possibly a further subsequence, we may
thus assume that

ηε ⇀ η∗ as measures.

ConcerningJε (a measure with values in 2-forms), it is tempting to believe that it is also
bounded inL1

loc(Ω). We have no proof of that fact, but we may invoke Jerrard–Soner’s
[29] compactness result (valid for arbitrary functions satisfying (24), see also [1]) to assert
thatJε is bounded in [C0,α(K)]∗ for any compactK ⊂ Ω and any 0< α < 1. Going
possibly to a third subsequence, we thus have

Jε ⇀ J∗ in [C0,α(K,Λ2RN )]∗, for every compactK ⊂ Ω.

It is proved moreover in [29, 1] that

‖J∗‖ ≤ µ∗, (25)

and that the current [[J∗]] associated toJ∗ is an integer multiplicity(N − 2)-current. In
particular, its geometrical support

ΣJ := {x ∈ Ω : ΘN−2(‖J∗‖, x) > 0}

is an (N − 2)-rectifiable set. Here, for a Radon measureν ∈ M(Ω) andm > 0, the
m-dimensional density ofν atx ∈ Ω is defined by

Θm(ν, x) := lim inf
r→0

ν(B(x, r))

rm
.

Likewise we set
Σµ = {x ∈ Ω : ΘN−2(µ∗, x) > 0}

and similarly we defineΣη.
In the next theorem we will clarify the structure of the measureµ∗ and we will specify

its relation toJ∗.We emphasize thatno boundary condition has been prescribed on∂Ω.
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Theorem 3. The following properties hold.

(i) The setΣµ is closed inΩ and(N − 2)-rectifiable. There existsη0 > 0 such that for
eachx0 ∈ Σµ,

Θ∗(x0) := ΘN−2(µ∗, x0) = lim inf
r→0

µ∗(Br(x0))

rN−2
≥ η0. (26)

Moreover, for every compact setF ⊂ Ω \Σµ,

|wε(x)| → 1 uniformly onF asε → 0. (27)

(ii) The measureµ∗ can be decomposed as

µ∗ = |∇h(x)|2 ·HN +Θ∗(x) ·HN−2 Σµ, (28)

whereh is some harmonic function.
(iii) LetK ⊂ Ω be any compact set. There exists some constantCK , depending only

onK, such that
(CK)

−1 J∗ ≤ η∗ ≤ CK M0µ∗.

(iv) The varifoldV := V (Σµ,Θ∗) satisfies the equation

H(x) = ∗

(
c(x) ∧ ∗

dJ∗

dµ∗

)
for µ∗-a.e.x in Σµ, (29)

whereH(x) denotes the generalized mean curvature ofV at x, ∗ refers to the Hodge
duality, anddJ∗/dµ∗ is the Radon–Nikodym derivative ofJ∗ with respect toµ∗.

A short comment is needed concerning the interpretation of (29). The generalized mean
curvatureH of the varifoldV is defined by (see [39])∫

Ω

divΣµX = −

∫
Ω

H · X for all X ∈ C∞
c (Ω,R

N ),

where divΣµ denotes the divergence restricted to the tangent space. Moreover, we identify
vector fields and 1-forms.

Remark 4. (i) In the casec ≡ 0 andd ≡ 0, (19) is the standard Ginzburg–Landau
equation and then (29) means thatV is a stationary varifold (see [5, 10]).

(ii) Equation (29) is very reminiscent of the prescribed mean curvature equation in codi-
mension 1. However here, in codimension 2, an important difference is that the right
hand side of (29)doesdepend onV through its tangent space. To give a flavor of the
structure of (29), let us first consider the caseN = 3, andd‖J∗‖/dµ∗ = 1. ThenV
is a smooth curve and (29)

κ = c × τ , (30)

whereτ is the unit tangent vector toV andκ its curvature vector. In the casec ≡ c0
is a constant vector field, the solutions are

• straight lines parallel toc0,
• circles of radius 1/c0 in a plane orthogonal toc0,
• helicoids of axis parallel toc0.
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On the other hand, any constant mean curvature hypersurface in dimensionN − 1
yields a solution of (29) for some constant vector fieldc0. In dimension 3, this yields,
as already mentioned, the round circle as unique compact solution. In higher dimen-
sions, however, there is a rich class of constant mean curvature hypersurfaces be-
sides spheres (e.g. Wente’s tori in dimensionN = 4). It is tempting to believe that
any compact solution of (29) with a constant vector fieldc0 is contained in an affine
hyperplane (and is thus a constant mean curvature hypersurface).

(iii) In the cased‖J∗‖/dµ∗ = 1, V has integer multiplicity. In the optimal case where
J∗ has constant multiplicity, it follows from (29) and Allard’s theorem (see [2, 39])
thatV is aC1,α manifold.

(iv) Equation (19) withc(x) = A(x) andd(x) = |A(x)|2/4 is the first equation in the
Ginzburg–Landau system of superconductivity, namely

(∇ − iA|logε|/2)2u =
1

ε2
u(1 − |u|2).

In particular, for solutions satisfying the energy bound (24) in the Coulomb gauge,
vortices will be curved according to the equation

κ = A× τ ,

providedd‖J∗‖/dµ∗ = 1.

Theorem 3 states some compactness properties for the measures. However, without as-
sumptions on the boundary data, we cannot expect compactness for the functionswε, as
noticed in [17]. The presence in the decomposition (28) of one part which is absolutely
continuous with respect to the Lebesgue measure is precisely due to possible wild oscil-
lations ofwε on the boundary.

Asymptotics for wε. If we impose boundary conditions on∂Ω, then we may obtain
compactness properties for the sequencewε. In this subsection, we will focus only on the
case which is of interest for Theorem 1, namely

Ω := Πn ' Ωn,

with the convention thatΠ∞ := RN ; we refer to Appendix A for more general state-
ments. We make the assumption that

n ≥ (M0 + 1)|logε|. (31)

The main point here is that we would like to obtain estimates which are uniform with
respect to the domain size (i.e. independent ofn). In this situation we obtain:

Theorem 4. Letwε be a solution of(11)such that(24)and(31)are satisfied.

(i) Let 1 ≤ p < N/(N − 1). Then there exists some constantC, depending only onp,
Λ0 andM0, but independent ofε andn, such that for anyx0 ∈ Πn we have∫

B(x0,1)
|∇wε|

p
≤ C.
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(ii) There existR > 0, C > 0 and l ∈ N, depending only onΛ0 andM0, and q
pointsx1,ε, . . . , xq,ε (q ≤ l) in Πn such thatSε ⊂

⋃q

i=1B(xi,ε, R), B(xi,ε,8R) ∩

B(xj,ε,8R) = ∅ if i 6= j , and∫
Πn\

⋃
B(xi,ε,R)

eε(wε) ≤ C.

1.4. The isoperimetric problem

After this rather lengthy discussion on the Euler–Lagrange equation, we go back to our
original problem and consider from now on only minimizersun,ε of (Pεn). Since our
ultimate goal is to provide the existence of a solutionuε of (11) as well as some qualitative
properties (see Theorem 1), we will eventually letn go to∞ keepingε fixed (in particular,
we assume throughout that (31) is satisfied). In order to describe properly the behavior
of uε (including the stability properties, which will be discussed later), it is extremely
important, in this approach, to get more information than a simpleH 1

loc convergence.
The first crucial observation in this section is the relation of the energyEε(un,ε) and

the fluxp(un,ε) with geometrical properties ofJun,ε (as already observed in [14] and
[28]). This relation is best understood by taking the limit asε tends to 0 whenn is fixed
(note, however, that this is incompatible withn ≥ n(ε) of Lemma 2!). It follows from the
analysis of [29, 1] that, up to a subsequence,

Jun,ε → πTn = π∂Rn in [C0,1(Πn)]
∗,

whereTn = ∂Rn is an (N − 2)-dimensional integral boundary, i.e.Tn is a rectifiable
current with integer multiplicities (of course the choice of the rectifiable currentRn is not
unique). Moreover,

p(un,ε) → π∂Rn(∗ξ1) = πRn(∗d
∗ξ1) = 2πRn(∗dx1) ≡ F(Tn),

whereF(Tn) represents 2π times the flux of the vectore1 throughRn. Notice that in
particularF(Tn) ≤ 2πM(Rn). On the other hand, it is also proved in [29, 1] that

lim inf
ε→0

Eε(un,ε)

π |logε|
≥ M(Tn).

This establishes immediately the inequality

M(∂Rn)
N−1
N−2

M(Rn)
≤ lim inf

ε→0

2πEε(un,ε)
N−1
N−2

(π |logε|)
N−1
N−2p(un,ε)

. (32)

Using Lemma 1 we deduce that

M(∂Rn)
N−1
N−2

M(Rn)
≤ λN ≡

|SN−2
|
N−1
N−2

|BN−1|
. (33)

Since the right hand side of (33) is the best constant in the isoperimetric inequality it
follows thatTn = ∂Rn is a round(N − 2)-sphere (contained in an(N − 1)-hyperplane
orthogonal toe1).
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In our situation, we will obtain an inequality similar to (33), but uniformly forn large.
To be more precise, assume from now on thatn ≥ n(ε), wheren(ε) was defined in
Lemma 2. Then we have

Lemma 5. For everyn ≥ n(ε) there exists an(N − 2)-dimensional integral boundary
Tn,ε = ∂Rn,ε supported in at most̀balls of radiusR (`, R being independent ofn andε),
such that

(i) ‖Jun,ε − πTn,ε‖[C0,1(Πn)]∗ ≤ r(ε),
(ii) |p(un,ε)− F(Tn,ε)| ≤ r(ε),

(iii) M(Tn,ε) ≤
Eε(un,ε)

π |logε|
+ r(ε),

wherer(ε) → 0 asε → 0, independently ofn.

As mentioned, the choice of a currentRn,ε such thatTn,ε = ∂Rn,ε is not unique. We may
therefore additionally require that

M(Rn,ε) = inf{M(R) : ∂R = Tn,ε}. (34)

For such a choice (which is always possible by [20, 4.1.12]), the following isoperimetric
inequality is valid (see [3]):

M(Tn,ε)
N−1
N−2

M(Rn,ε)
≥ λN . (35)

Proposition 3. We have

M(∂Rn,ε)
N−1
N−2

M(Rn,ε)
= λN + r(ε), (36)

wherer(ε) → 0 asε → 0, independently ofn. In particular, for all sequencesεj → 0
andnj ≥ n(εj ) there exist subsequences (still denotedεj andnj ) and translationsτj in
Πnj such that

τjTnj ,εj → SN−2 in [C0,1
c (RN )]∗ asj → ∞, (37)

whereSN−2 is the unit round(N − 2)-sphere contained in the hyperspace orthogonal
to e1.

Remark 5.Actually, asj → ∞ we haveτjRnj ,εj → BN−1 and alsoτjTnj ,εj → SN−2

in the flat norm sense (see [20, 4.1.12]), withM(Rnj ,εj ) → |BN−1
| andM(Tnj ,εj ) →

|SN−2
|.

Note that (37) states a rather weak convergence. In particular, it does not exclude very
small structures even far from the limitSN−2. The next lemma, which improves statement
(ii) of Theorem 4, excludes such structures.

Lemma 6. There existR > 0, C > 0 independent ofε andn, andxn,ε ∈ Πn such that

(i) Sε(un,ε) ⊂ B(xn,ε, R),

(ii)
∫
Πn\B(xn,ε,R)

eε(un,ε) ≤ C,

for everyε ≤ ε0 andn ≥ n(ε), ε0 being independent ofn.
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As already mentioned, our problem is invariant under translation. We now remove this
invariance. To that end, in view of Lemma 6 and Proposition 3, we assume that the iden-
tificationΠn ' [−n, n]N is such that

xn,ε = 0 and Junj ,εj → πSN−2 in [C0,1
c (RN )]∗

for all sequencesεj → 0 andnj ≥ n(εj ), whereSN−2 is the unit(N−2)-sphere contained
in the subspace orthogonal toe1.

1.5. Limits of growing tori

It remains at this stage, for fixedε (but chosen sufficiently small), to letn → ∞. Since
Eε(un,ε) is bounded uniformly inn by Lemma 1 (but not inε!), up to a possible subse-
quence we may assume

un,ε ⇀ uε in H 1
loc(R

N ) asn → ∞,

so that
Eε(uε) ≤ lim inf

n→∞
Eε(un,ε).

Moreover, by standard elliptic estimates (ε is fixed),

un,ε → uε strongly inH 1
loc(R

N ) asn → ∞.

Note also that since(un,ε)n∈N is bounded inL∞, so isuε, and we may pass to the limit
in the equation. Hence,uε satisfies (11) with

c(ε) = lim
n→∞

cn,ε.

Since we also haveJun,ε → πSN−2 asε → 0, for fixed but smallε the JacobianJun,ε is
far from zero (for alln ≥ n(ε)) and thereforeuε is not a trivial solution. Hence, existence
of Uε(x) := uε(εx) in Theorem 1 is established. Properties (6)–(9) then follow from the
analysis of Subsection 1.3 (see Section 4 for the details).

The definition ofP(Uε) needs some clarification. For this purpose, we consider the
class of functions

W = {u ∈ L∞(RN ) : Eε(u) < ∞ and∃R > 0 : inf
|x|≥R

|u(x)| ≥ 1/2}.

If u ∈ W , we may write, for|x| > R,

u = ρ expiϕ,

whereϕ is a real function onRN \ BR(0) defined modulo a multiple of 2π. We define

p(u) :=
∫

RN
(iu, ∂1u)χ +

∫
RN
(1 − χ)(ρ2

− 1)∂1ϕ +

∫
RN
ϕ∂1(1 − χ), (38)

whereχ is an arbitrary smooth function with compact support such thatχ ≡ 1 onBR(0)
and 0≤ χ ≤ 1. One checks immediately that the definition makes sense inW and is
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independent of the choice ofχ andϕ. [To motivate this choice, notice that formally∫
RN
(iu, ∂1u) =

∫
RN
(iu, ∂1u)χ +

∫
RN
(iu, ∂1u)(1 − χ)

=

∫
RN
(iu, ∂1u)χ +

∫
RN
(1 − χ)ρ2∂1ϕ

=

∫
RN
(iu, ∂1u)χ +

∫
RN
(1 − χ)(ρ2

− 1)∂1ϕ +

∫
RN
ϕ∂1(1 − χ)

so that we recover the usual formula when∇u ∈ L1(RN ).] Clearly, in view of our analy-
sis,uε ∈ W so thatP(Uε) := εN−1p(uε) is well defined.

Remark 6.Consider the affine space

Y = H 1(RN )+ {1} = {u = 1 + v : v ∈ L2(RN ), ∇v ∈ L2(RN ) },

equipped with theH 1-distance. For functions inY , one may set

p̃1(u) =

∫
RN

(
u− 1,

∂u

∂x1

)
as a definition of the momentum. It is straightforward to see thatp̃1 is continuous onY
(for theH 1-norm). On the other hand,C∞

c (RN ) + {1} is dense inY , and included inW .
One verifies, in view of the definition ofp, that

p̃1(u) = p1(u), ∀u ∈ C∞
c (R

N )+ {1} ⊂ W.

1.6. Discussion on stability

The discussion about stability of special solutions for dynamical systems is a fundamental
issue, in particular if one aims at some physical relevance. This is a vast topic, and the
very notion of stability appears in different places with different meanings. We want to
stress first that we are not yet able to state any trully satisfactory result concerning the
stability ofUε.We next explain the main difficulty in this direction, and the partial results
we have obtained.

When dealing with PDE’s, a first step commonly needed for stability is to solve the
Cauchy problem, at least in a neighborhood of the special solution. In particular, one has
to define a suitable function space, and this usually requires some knowledge of the decay
properties of the solution. In our case, it can be proved (see [14]) that the Cauchy problem
is well defined onY = H 1(RN )∩L4(RN )+{1} and that both energyEε and momentum
p̃ are conserved during the flow. However, it is not known whether the solutionuε belongs
to Y (see however results by Gravejat [25] for the asymptotic behavior of finite energy
traveling waves), and the possibility to solve the Cauchy problem in other spaces has not
been investigated yet.

Assume that in some way one is able to overcome this difficulty. Then in our context
the notion of (nonlinear) orbital stability seems to be the most suitable (see e.g. [6, 15,
18, 26]). Indeed, recall that our solution is obtained as a limit of constrained minimizers
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for which both the constraint and the minimized quantity are conserved by the flow.We
will show that uε is itself a constrained minimizer. For this purpose, set

Γ∞ := {u ∈ W : p(u) = 2π |BN−1
|}.

Theorem 5. We have
p(uε) = 2π |BN−1

| (39)

so thatuε ∈ W and
Eε(uε) := inf

u∈Γ∞

Eε(u). (40)

The proof of Theorem 5 relies essentially on the following proposition which provides a
decay of the energy at infinity.

Proposition 4. There exist constantsλ > 0 andC > 0, independent ofn ≥ n(ε), such
that ∫

Ωn\B(R)

eε(un,ε) ≤ CR−λ. (41)

In particular,
lim
n→∞

Eε(un,ε) = Eε(uε) (42)

and
lim
n→∞

p(un,ε) = p(uε) = 2π |BN−1
|. (43)

Recall that the definition ofp(uε) was given in (38).

Remark 7. (i) The result of Proposition 4 is anexact result forfixed ε, and has to be
compared with the weaker asymptotic result

Eε(un,ε) = Eε(uε)+O(1) asε → 0,

which is an easy consequence of Theorems 1 and 4.
(ii) In fact, it follows from the proof of Proposition 4 that (41) holds for anyλ <

√
N − 1, providedε is sufficiently small. One might expect, however, that the gra-

dient ofuε decays as the gradient ofU∗, andλ = N should be the optimal constant
in (41).

(iii) The statements in Proposition 4 essentially mean that there is no loss of compactness
at infinity (it excludes for example a sliding bump “escaping” towards infinity, or
vanishing but widespread oscillations).

Comments. (i) The existence of a unique solution for the Cauchy problem inH 1(Πn)

is standard. Moreover, it is easily proved that the set of minimizers for(Pn,ε) (which
containsun,ε) is orbitally stable. In particular, the uniqueness ofun,ε (up to trans-
lation and multiplication by a complex number of modulus one) would imply its
orbital stability.

(ii) One may wonder whether there is a direct proof (i.e. avoiding the approximate prob-
lems) of Theorem 5, and thus also of Theorem 1. This seems to be a difficult task,
mainly sinceW is not open.
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(iii) A rigorous proof of the orbital stability ofUε would require, in addition to solving
the Cauchy problem, obtaining compactness properties for minimizing sequences
for (40). We will not tackle this problem here.

Added in proof. After the completion of this work, P. Gravejat was able to prove that any
finite energy solution (in particularuε) belongs toY . It follows therefore from Remark 6
that

Eε(uε) = inf{Eε(u) : u ∈ Y, p̃(u) = 2π |BN−1
|},

which is certainly an important step towards orbital stability, since, as mentioned, the
Cauchy problem is well defined onY .

1.7. Cylindrically symmetric solutions

Since equation (11) is invariant under rotations preserving thex1 axis, it is tempting to
believe that up to a translationUε inherits this symmetry; i.e. thatUε(x1, x

′) depends
only onx1 and|x′

|, wherex′
= (x2, . . . , xN ). We have no proof of this fact. However,

the following variant of Theorem 1 can be easily established with minor changes in the
proof.

Theorem 6. There existsε1 > 0 such that for every0 < ε < ε1 there is a solution
Uε to equation(5) with C = C(ε) satisfying(6)–(9) and such thatUε is cylindrically
symmetric.

The slight change is to introduce the spaceZn of axially symmetric functions on [−n, n]N

with periodic boundary conditions:

Zn := {u ∈ H 1([−n, n]N ) : u = u(x1, |x
′
|) and∀k ∈ {1, . . . , N}

u(x1, . . . , xk−1,−n, xk+1, . . . , xN ) = u(x1, . . . , xk−1, n, xk+1, . . . , xN )}

and to consider the minimization problem

inf{Eε(u) : u ∈ Zn, p(u) = 2π |BN−1
|}.

All the arguments in the proof of Theorem 1 can be carried out similarly if we work with
Zn instead ofXn, yielding the proof of Theorem 6.

We emphasize, however, an important difference, concerning stability. Stability prop-
erties ofUε can be obtained (in the same way) for axially symmetric perturbations only.
This is a rather restricted class, and it seems difficult to obtain stability results for general
perturbations.

Remark 8. (i) As already mentioned, we nevertheless suspect that, up to translation and
multiplication by a complex number of modulus one,Uε = Uε.

(ii) An alternate proof of Theorem 6 would be to work directly in the upper half-plane
(x1, r), wherer = |x′

|, at the cost of introducing a degenerate elliptic operator.
Since this approach is basically two-dimensional, the results of the Appendix could
possibly be replaced by easier two-dimensional analysis.
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2. The approximating problems

The main purpose of this section is to present the proofs of Proposition 1 and of Lemmas
1 and 2. In particular, we stress the fact that Lemma 2 provides an important upper bound
for the Lagrange multipliercn,ε. This is the first step in order to implement the PDE
analysis of the Appendix.

Before we start with the proofs, we wish first to clarify the identificationΠn '

[−n, n]N ≡ Ωn, as well as the notion of unfolding.

Unfolding the torus. We start with the usual definitionΠn = RN/(2nZ)N obtained by
the identificationx ∼ x′ iff x − x′

∈ (2nZ)N . For a fixedα = (α1, . . . , αN ) ∈ RN , the
cubeCα :=

∏N
i=1[−n+ αi, n+ αi [ contains a unique element of each equivalence class

(Cα is often termed a fundamental domain); it may therefore be identified withΠn.Given
α ∈ RN , theunfoldingτα of Πn associated toα is by definition the one-to-one mapping

τα : Πn → Ωn ≡ [−n, n[N , p = [(x1 + α1, . . . , xN + αN )] 7→ (x1, . . . , xN ).

This corresponds to a translation of the origin inRN , and thus on the torus. For a given
functionf defined onΠn, each unfoldingτα induces a 2n-periodic functionfα defined
onΩn.

In some computations (in particular dealing with integration by parts for functions
which are not necessarily all periodic), we will need to estimate boundary integrals. The
following lemma provides a choice of a “good” unfolding of the torus, by averaging.

Lemma 2.1. Let f ∈ L1(Πn) be given. There exists an unfolding of the torusΠn such
that ∣∣∣∣∫

∂Ωn

fα(x) dx

∣∣∣∣≤ 2N−1

n

∫
Ωn

|fα(x)| dx. (44)

Moreover, for any0 < σ < 1 there exists a subsetDσ of Ωn of measure larger than
σ |Ωn| such that for anyα ∈ Dσ we have∣∣∣∣∫

∂Ωn

fα(x) dx

∣∣∣∣ ≤
C(σ)

n

∫
Ωn

|fα(x)| dx. (45)

Proof. Integrate the left hand side of (44) forα ∈ [−n, n[N and use the mean value
theorem to get (44). For (45), argue similarly. ut

[Notice that the trace offα is well defined for almost every unfolding.] In what follows,
we will no longer distinguishf andfα; hopefully this will not lead to a confusion.

Proof of Proposition 1.Let (ukn,ε)k∈N be a minimizing sequence for(Pεn). SinceEε(ukn,ε)
is uniformly bounded with respect tok, (ukn,ε)k∈N is bounded inH 1(Πn) so that up to a
subsequence we may assume

ukn,ε ⇀ un,ε in H 1(Πn) ask → ∞,

for someun,ε in H 1(Πn). By weak lower semicontinuity and the Rellich compactness
theorem, we infer that

Eε(un,ε) ≤ lim inf
k→∞

Eε(u
k
n,ε) = In,ε.
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On the other hand, the Rellich compactness theorem also yields

p(un,ε) = lim
k→∞

∫
Πn

(iukn,ε, ∂1u
k
n,ε) = 2π |BN−1

|.

Henceun,ε is a minimizer for(Pεn). The Lagrange multiplier rule implies that for some
λn,ε ∈ R,

dEε(un,ε) = λn,ε · dp(un,ε).

Definecn,ε := 2λn,ε/|logε|. The previous equality is precisely the weak formulation for
the equation

icn,ε|logε|
∂un,ε

∂x1
= ∆un,ε +

1

ε2
un,ε(1 − |un,ε|

2) onΠn.

This ends the proof. ut

Proof of Lemma 1.We will use the test functionswε,R constructed in Subsection 1.2.
Notice thatE(wε,R) andp(wε,R) depend continuously onR. It then follows from (15)
that

∃R(ε) > 0 : wε,R(ε) ∈ Γn

for each large enoughn and that

R(ε) → 1 as ε → 0.

The conclusion of Lemma 1 then follows from (14). ut

We now turn to the proof of Lemma 2. As often in elliptic PDE’s, Pohozaev’s identity
(also termed virial identity in the physics literature) leads to useful estimates. In our case,
after unfolding it reads (see Lemma A.2)

N − 2

2

∫
Ωn

|∇un,ε|
2
+
N

4ε2

∫
Ωn

(1 − |un,ε|
2)2 − cn,ε

N − 1

2
|logε|

∫
Ωn

〈Jun,ε, ξ1〉

=

∫
∂Ωn

[
n
|∇un,ε|

2

2
+

n

4ε2
(1 − |un,ε|

2)2 −
∂un,ε

∂ν
·

N∑
i=1

xi
∂un,ε

∂xi

]
,

whereξ1 is the 2-form defined in (13). Notice thatξ1 is not periodic and therefore (46)
depends on the choice of unfolding. In order to boundcn,ε, we thus need to provide a
lower bound for the quantity ∣∣∣∣∫

Ωn

〈Jun,ε, ξ1〉

∣∣∣∣ . (47)

As we have already noticed in the Introduction (see Remark 2), (47) is related to the
momentump(un,ε) (actually they would even be equal ifun,ε were constant on∂Ωn). In
the situation which is of interest for us, we have the following.
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Lemma 2.2. LetM0 > 0. There exists a constantK2 > 0 (depending only onM0) such
that for anyn ∈ N andu ∈ H 1(Πn) satisfying{

n ≥ K2|logε|ε3−N ,

Eε(u) ≤ M0|logε|,

there exists an unfolding ofΠn such that∣∣∣∣∫
Πn

(iu, ∂1u)−

∫
Ωn

〈Ju, ξ1〉

∣∣∣∣ ≤ r(ε),

wherer(ε) → 0 asε → 0, independently ofn, and

n

∫
∂Ωn

eε(u) ≤ C

∫
Πn

eε(u).

Proof. We first claim that there existsv ∈ Xn such that

‖∇v‖∞ ≤ C/ε, ‖v‖∞ ≤ 1, Eε(v) ≤ 2M0|logε|

and ∣∣∣∣∫
Πn

(iu, ∂1u)−

∫
Πn

(iv, ∂1v)

∣∣∣∣ ≤ r(ε),

wherer(ε) → 0 asε → 0, independently ofn. Indeed, consider first the functionv1
defined by

v1(x) :=

{
u(x) if |u(x)| ≤ 1,
u(x)/|u(x)| if not.

Clearly,Eε(v1) ≤ Eε(u) and∣∣∣∣∫
Πn

(iu, ∂1u)−

∫
Πn

(iv1, ∂1v1)

∣∣∣∣ ≤

∫
Πn

|u− v1| · |∇u| +

∣∣∣∣∫
Πn

(iv1, ∂1u− ∂1v1)

∣∣∣∣
=

∫
Πn

|u− v1| · |∇u| +

∣∣∣∣∫
Πn

(i∂1v1, u− v1)

∣∣∣∣
≤ C

(∫
Πn

|u− v1|
2
)1/2

Eε(u)
1/2

≤ C

(∫
|u|>1

(1 − |u|2)2
)1/2

Eε(u)
1/2

≤ Cε|logε| =: r1(ε). (48)

Next, consider a functionv2 defined as a solution of the minimization problem

min
w∈H1(Πn)

(
Eε(w)+

∫
Πn

|w − v1|
2

2ε

)
.
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Clearly, we also haveEε(v2) ≤ Eε(v1) and∣∣∣∣∫
Πn

(iv1, ∂1v1)−

∫
Πn

(iv2, ∂1v2)

∣∣∣∣ ≤ C

(∫
Πn

|v1 − v2|
2
)1/2

Eε(v1)
1/2

≤ C
√
ε Eε(v1)

1/2Eε(u)
1/2

≤ C
√
ε|logε| =: r2(ε). (49)

On the other hand,v2 satisfies the equation

∆v2 +
1

ε2
v2(1 − |v2|

2) =
v2 − v1

ε
,

so thatṽ2(x) := v2(εx) satisfies

∆ṽ2 + ṽ2(1 − |ṽ2|
2) = ε (ṽ2 − ṽ1)

(ṽ1 is defined similarly). Since‖ṽ1‖∞, ‖ṽ2‖∞ ≤ 1, it follows from standard elliptic esti-
mates that

‖∇ṽ2‖∞ ≤ C and so ‖∇v2‖∞ ≤ C/ε.

Combining (48) and (49) we conclude thatv := v2 satisfies the conditions of the claim
with r(ε) := r1(ε)+ r2(ε).

We will now choose a suitable unfolding. Notice first that for any unfolding ofΠn,∫
Πn

(iu, ∂1u)−

∫
Ωn

〈Ju, ξ1〉 = n

∫
∂Ωn

(iu, ∂1u). (50)

By Lemma 2.1, there exists an unfolding such that∫
∂Ωn

(
|u− v2|

2

√
ε

+
√
ε(eε(u)+ eε(v2))

)
≤

2N−1

n

∫
Πn

(
|u− v2|

2

√
ε

+
√
ε(eε(u)+ eε(v2))

)
. (51)

Hence, arguing as in (48),

n

∣∣∣∣∫
∂Ωn

((iu, ∂1u)− (iv2, ∂1v2))

∣∣∣∣ ≤ C · n

∫
∂Ωn

|u− v2| · (|∇u| + |∇v2|)

≤ C · n

∫
∂Ωn

(
|u− v2|

2

√
ε

+
√
ε(eε(u)+ eε(v2))

)
≤ C

∫
Πn

(
|u− v2|

2

√
ε

+
√
ε(eε(u)+ eε(v2))

)
≤ C

√
ε|logε| = r2(ε). (52)

If n ≥ C0ε
3−N

|logε|, then it follows from (51) that∫
∂Ωn

eε(v2) ≤
C

K2
ε3−N . (53)
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It is an easy matter to verify that the last inequality, combined with the estimate|∇v2|∞ ≤

C/ε, implies that forK2 sufficiently large,

|v2(x)| ≥ 1/2 for all x ∈ ∂Ωn.

We may thus writev2 = ρ exp(iϕ) on∂Ωn and from (53) it follows thatϕ is 2n-periodic
(see step 4 of Theorem 4 in Appendix C for a detailed proof of this last statement). Hence,∣∣∣∣∫

∂Ωn

(iv2, ∂v2)

∣∣∣∣ =

∣∣∣∣∫
∂Ωn

ρ2∂1ϕ

∣∣∣∣ =

∣∣∣∣∫
∂Ωn

(ρ2
− 1)∂1ϕ

∣∣∣∣
≤ Cε

(∫
∂Ωn

(ρ2
− 1)2

ε2

)1/2

·

(∫
∂Ωn

|∇v2|
2
)1/2

≤ Cε
Eε(v2)

n
=
r1(ε)

n
. (54)

Combining (50), (52) and (54) we finally obtain∣∣∣∣∫
Πn

(iu, ∂1u)−

∫
Ωn

〈Ju, ξ1〉

∣∣∣∣ ≤ r2(ε)+ r1(ε),

which finishes the proof. ut

We are now in a position to obtain the expected upper bound for the Lagrange multi-
plier cn,ε.

Proof of Lemma 2.We deduce from (46) that for each unfolding we have

cn,ε|logε|

∣∣∣∣∫
Ωn

〈Jun,ε, ξ1〉

∣∣∣∣ ≤ C

[
n

∫
∂Ωn

eε(un,ε)+

∫
Πn

eε(un,ε)

]
. (55)

By Lemma 2.2, there exists an unfolding such that

n

∫
∂Ωn

eε(u) ≤ C

∫
Πn

eε(u) (56)

and ∣∣∣∣∫
Πn

(iu, ∂1u)−

∫
Ωn

〈Ju, ξ1〉

∣∣∣∣ ≤ π |BN−1
|

providedε is chosen sufficiently small andn ≥ n(ε). Therefore, sinceun,ε satisfies the
constraint

∫
Πn
(iun,ε, ∂1un,ε) = 2π |BN−1

|, we obtain∣∣∣∣∫
Ωn

〈Ju, ξ1〉

∣∣∣∣ ≥ π |BN−1
|. (57)

Combining (55)–(57) we deduce

|cn,ε| ≤ C
Eε(un,ε)

|logε|
≤ K1,

where we have used Lemma 1 for the last inequality.
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3. Relation with the isoperimetric problem

In this section, we specify the geometrical interpretation of both the momentum and the
energy, in the asymptotic limitε → 0. Roughly speaking, forN = 3, Eε(un,ε) is pro-
portional to the length of the concentration set, whereasp(un,ε) is proportional to the
flux (alonge1) through the concentration set. As we emphasized in the introduction, the
concepts of geometric measure theory are appropriate to express these properties.

We start with the proof of Lemma 5. Recall that in view of Theorem 4, there exist
` ∈ N, R > 0 andq pointsx1,ε, . . . , xq,ε with q ≤ l such that

|un,ε(x)| ≥ 1/2 onΠn \
⋃q

i=1B(xi,ε, R). (58)

Without loss of generality, we may assume that the ballsB(xi,ε,8R) are disjoint. For a
mapu ∈ H 1(Πn,C), let ũ be defined by

ũ(x) :=


u(x) if x ∈

⋃q

i=1B(xi,ε, R),

λ(x)u(x)+ (1 − λ(x))ū(x) if x ∈
⋃q

i=1B(xi,ε,2R) \ B(xi,ε, R),

ū(x) otherwise,

where

ū(x) :=

{
u(x)/|u(x)| if |u(x)| ≥ 1/2,
2u(x) otherwise,

andλ(x) := (2R − |x − xi,ε|)/R if x ∈ B(xi,ε,2R) \ B(xi,ε, R). In view of (58),

J ũn,ε = 0 onΠn \
⋃q

i=1B(xi,ε,2R) (59)

and ∫
B(xi,ε,2R)

J ũn,ε = 0; (60)

this last inequality follows by integration by parts, by using the fact that|ũn,ε| = 1 on
∂B(xi,ε,2R). These localization properties ofJ ũn,ε will be useful below. On the other
hand,J ũn,ε andJun,ε are close in view of the following lemma.

Lemma 3.1. Let u ∈ H 1(Πn,C) be such thatEε(u) ≤ M0|logε|. Then there exists an
unfolding ofΠn such that for everyϕ ∈ C∞(Ωn,Λ

2RN ), we have∣∣∣∣∫
Ωn

〈Ju− J ũ, ϕ〉

∣∣∣∣ ≤

(
1

n
‖ϕ‖∞ + ‖d∗ϕ‖∞

)
Cε|logε|, (61)

and in particular

‖Ju− J ũ‖[C0,1(Πn)]∗ ≤ Cε|logε|, (62)

whereC depends only onN andM0 but is independent ofn.
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Proof. According to Lemma 2.1 there exists an unfolding ofΠn such that∫
∂Ωn

|u× du− ũ× dũ | ≤
2N−1

n

∫
Ωn

|u× du− ũ× dũ |. (63)

Let ϕ ∈ C∞(Ωn,Λ
2RN ). Integrating by parts onΩn, we obtain∫

Ωn

〈Ju− J ũ, ϕ〉 =
1

2

∫
∂Ωn

(u× du− ũ× dũ)> ∧ (∗ϕ)> −
1

2

∫
Ωn

〈u× du− ũ× dũ, d∗ϕ〉.

Hence, we deduce from (63) that∣∣∣∣∫
Ωn

〈Ju− J ũ, ϕ〉

∣∣∣∣ ≤ C

(
2N−1

n
‖ϕ‖∞ + ‖d∗ϕ‖∞

)
‖u× du− ũ× dũ‖L1(Ωn)

. (64)

The proof is completed by using the estimate for‖u × du − ũ × dũ‖L1(Ωn)
given in the

next lemma. ut

Lemma 3.2. There exists an absolute constantC > 0 such that

‖u× du− ũ× dũ‖L1(Ωn)
≤ CεEε(u). (65)

Proof. LetA = {|u| ≥ 1/2}, B = Ω \ A. A simple computation gives

‖u× du− ũ× dũ‖L1(A) ≤ C

∫
A

∣∣∣∣(1 −
1

|u|2

)
u× du

∣∣∣∣
≤ Cε

(∫
Ωn

(1 − |u|2)2

ε2

)1/2(∫
Ωn

|∇u|2
)1/2

≤ CεEε(u). (66)

On the other hand, we have

‖u× du− ũ× dũ‖L1(B) ≤ C

∫
B

|u× du| ≤ C|B|
1/2
(∫

Ωn

|∇u|2
)1/2

≤ Cε

(∫
Ωn

(1 − |u|2)2

ε2

)1/2

Eε(u)
1/2

≤ CεEε(u). (67)

Combining (66) with (67) yields (65). ut

In view of (59),J ũn,ε is localized in ballsB(xi,ε,2R). Concerning the existence of inte-
gral boundaries close toJ ũε, we will make use of recent works on the geometry of the
Jacobians [29, 1]. In particular theΓ -convergence results contained in the above quoted
works lead to the following.

Lemma 3.3. LetM0 > 0, R > 0 andX := {u ∈ H 1(B4R,C) : |u| ≥ 1/2 onB4R \BR}.
Then, for everyδ > 0, there existsε0 > 0 (depending only onδ, R andM0) such that for
any ε < ε0, and for anyu ∈ X such thatEε(u) ≤ M0|logε|, there exists an(N − 2)-
dimensional integral boundaryTu = ∂Ru supported inBR satisfying
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(i) ‖Ju− πTu‖[C0,1
c (B4R)]∗

≤ δ,

(ii) M(Tu) ≤
Eε(u)

π |logε|
+ δ.

Proof. We argue by contradiction. Assume that there exists someδ > 0, a sequence
εj → 0, and mapsuj ∈ X satisfying the bound

Eεj (uj ) ≤ M0|logεj | (68)

and such that for every integral boundaryT supported inBR and satisfying (i), statement
(ii) does not hold, i.e.

M(T ) >
Eε(u)

π |logε|
+ δ. (69)

According to theΓ -convergence results in [29, 1] (see e.g. Theorem 3.1 and Remark 3.2
in [1]), there exists an integral boundaryT ∗ supported inB4R such that

‖Juj − πT ∗
‖[C0,1

c (B4R)]∗
→ 0 asj → ∞ (70)

and

M(T ) ≤ lim inf
εj→0

Eεj (uj )

π |logεj |
. (71)

We deduce from (70) that (i) is satisfied forT = T ∗ andj sufficiently large, so that (71)
contradicts (69) [indeed the fact thatT ∗ is supported inBR, and therefore can be used as
a test current in (i), follows from its construction in [1]]. ut

Proof of Lemma 5 completed.We apply Lemma 3.3 tõun,ε restricted to the balls
B(xi,ε,4R), for i = 1, . . . , q. This yields integral boundariesTi (depending of course
on ε andn) supported inB(xi,ε, R) such that

‖J ũn,ε − πTi‖[C0,1
c (B(xi,ε,4R))]∗

≤ r(ε) (72)

and

M(Ti) ≤
Eε(ũn,ε;B(xi,ε,4R))

π |logε|
+ r(ε) ≤

Eε(un,ε;B(xi,ε,4R))

π |logε|
+ r(ε) (73)

[here and in the following,r(ε) denotes a generic function such thatr(ε) → 0 asε → 0,
independently ofn, but whose exact value may differ from place to place]. SetT =∑q

i=1 Ti . By (73),

M(T ) ≤
Eε(un,ε)

π |logε|
+ r(ε), (74)

so that (iii) is established. Concerning (i), sinceJ ũn,ε is supported in the balls of radius
2R, we deduce from (72) that

‖J ũn,ε − πT ‖[C0,1(Πn))]∗ ≤

q∑
i=1

‖J ũn,ε − πTi‖[C0,1(B(xi,ε,2R))]∗

≤ C

q∑
i=1

‖J ũn,ε − πTi‖[C0,1
c (B(xi,ε,4R))]∗

≤ r(ε).
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Since‖Jun,ε − J ũn,ε‖[C0,1(Πn))]∗ ≤ r(ε) in view of Lemma 3.1, we derive (i) from the
previous inequality.

Finally, we turn to (ii). For any unfolding we have∣∣∣∣∫
Ωn

〈Jun,ε − πT, ξ1〉

∣∣∣∣ ≤

∣∣∣∣∫
Ωn

〈J ũn,ε − πT, ξ1〉

∣∣∣∣+ ∣∣∣∣∫
Ωn

〈J ũn,ε − Jun,ε, ξ1〉

∣∣∣∣. (75)

Notice that∣∣∣∣∫
Ωn

〈J ũn,ε − πT, ξ1〉

∣∣∣∣ ≤

q∑
i=1

∣∣∣∣∫
B(xi,ε,2R)

〈J ũn,ε − πTi, ξ1〉

∣∣∣∣
=

q∑
i=1

∣∣∣∣∫
B(xi,ε,2R)

〈J ũn,ε − πTi, ξ1 − ξ i1〉

∣∣∣∣, (76)

whereξ i1 denotes the constant form

ξ i1 :=
2

N − 1

N∑
j=1

(xi,ε)jdxi ∧ dxj ,

and (xi,ε)j denotes thej -component of the pointxi,ε. For the last inequality, we have
used (60). By construction,

‖ξ1 − ξ i1‖L∞(B(xi,ε,2R)) ≤
4R

N − 1

(whereas‖ξ1‖L∞(B(xi,ε,2R)) diverges asn → ∞). Hence, we obtain the estimate∣∣∣∣∫
B(xi,ε,2R)

〈J ũn,ε − πTi, ξ1 − ξ i1〉

∣∣∣∣ ≤ C‖J ũn,ε − πTi‖[C0,1
c (4R)]∗ ≤ r(ε). (77)

We now choose the particular unfolding given by Lemma 3.1, and similarly we obtain∣∣∣∣∫
Ωn

〈Jun,ε − J ũn,ε, ξ1〉

∣∣∣∣ ≤ r(ε), (78)

so that (ii) follows from (75)–(78). ut

Proof of Proposition 3.First, observe that∣∣∣∣∫
Ωn

〈πTn,ε, ξ1〉

∣∣∣∣ =

∣∣∣∣∫
Ωn

〈πRn,ε,2dx1〉

∣∣∣∣ ≤ 2πM(Rn,ε). (79)

In view of (ii) and (iii) of Lemma 5 and (79), we deduce

M(Tn,ε)
N−1
N−2

M(Rn,ε)
≤

2πEε(un,ε)
N−1
N−2

(π |logε|)
N−1
N−2p(un,ε)

+ r(ε) , (80)

wherer(ε) → 0 asε → 0, independently ofn. The last inequality together with (17)
proves (36).
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Moreover, from Lemma 1 and (35), we deduce∣∣M(Tn,ε)− |SN−2
|
∣∣ ≤ r(ε),

∣∣M(Rn,ε)− |BN−1
|
∣∣ ≤ r(ε), (81)

and ∣∣∣∣∫
Πn

〈Rn,ε, dx1〉 − |BN−1
|

∣∣∣∣ ≤ r(ε), (82)

wherer(ε) → 0 asε → 0, independently ofn. From (81) we infer in particular (see [20,
4.2.17]) that for any sequencesεj → 0 andnj ≥ n(εj ) there exist subsequences (still
denotedεj andnj ) and translationsτj in Πnj such that

Tnj ,εj → T∞ and Rnj ,εj → R∞ in [C0,1
c (RN )]∗

asj → ∞, whereT∞ = ∂R∞ satisfies

M(T∞)
N−1
N−2

M(R∞)
= λN . (83)

From (83) and (81) we conclude thatT∞ = SN−2 andR∞ = BN−1. Combining (79)
with (82) we also obtain ∣∣∣∣∫RN

〈R∞, dx1〉

∣∣∣∣ = M(R∞), (84)

i.e.R∞ is contained in a hyperplane orthogonal toe1. The proof is complete. ut

Proof of Lemma 6.We claim first thatTn,ε is contained in a single ballB(xi,ε, R). The
other statements are then direct consequences of Theorem 4.

We argue by contradiction. Assume there exist sequencesεj → 0 andnj ≥ n(εj ) for
which the claim is false. In particular, for everyR > 0 and every sequencexj ∈ Πnj ,

(Πnj \ B(xj , R)) ∩ Snj ,εj 6= ∅ (85)

for j sufficiently large. By Proposition 3, up to some subsequence we have

τjTnj ,εj → SN−2, (86)

whereτj is a translation inΠnj . Let xnj ,εj := τ−1
j (0) andr > 1 be such that

|unj ,εj | ≥ 1/2 onB(xnj ,εj ,4r) \ B(xnj ,εj , r)

(the fact that such anr always exists follows easily by Theorem 2). From (85) withR =

8r we infer that
(Πnj \ B(xnj ,εj ,8r)) ∩ Snj ,εj 6= ∅

for j sufficiently large. From Theorem 2 we deduce the inequality∫
B(xnj ,εj ,4r)

eεj (unj ,εj )

π |logεj |
≤

∫
Πnj

eεj (unj ,εj )

π |logεj |
−
η

π
, (87)



Vortex rings 45

whereη > 0 is the constant given by Theorem 2 forσ = 1/2. Taking the limitj → ∞

we obtain, using respectively (86), Lemma 3.3(ii) withδ := η/(2π), and (17),

|SN−2
| ≤ lim inf

j→∞

∫
B(xnj ,εj ,4r)

eεj (unj ,εj )

π |logεj |
+

η

2π

≤ lim inf
j→∞

Eεj (unj ,εj )

π |logεj |
−
η

π
+

η

2π
≤ |SN−2

| −
η

2π
.

This is a contradiction. ut

4. Proof of Theorem 1 completed

Recall that in Section 1.5 of the introduction we have already constructed, for 0< ε < ε0
small butfixed, a subsequence ofun,ε (still denoted hereun,ε) such that{

un,ε → uε strongly inH 1
loc(R

N ),

cn,ε → cε in R,

asn → ∞. Moreover, asε → 0, we have

Juε → πSN−2 (88)

anduε is a solution onRN of

icε|logε|
∂uε

∂x1
= ∆uε +

1

ε2
uε(1 − |uε|

2). (89)

In view of (88),uε is nontrivial (nonconstant) at least for smallε.
Theorem 1 is stated withUε(x) := uε(εx). We will prove the equivalent statements

for uε; it is then straightforward to come back toUε.We decompose the remainder of the
proof into several steps.

Step 1. We have
lim sup
n→∞

|Eε(uε)− Eε(un,ε)| ≤ C,

whereC is independent ofε.

Proof. This is a direct consequence of Theorem 4 and of the strongH 1
loc convergence at

ε fixed. ut

Step 2. We have
Eε(uε)

π |logε|
= |SN−2

| + r(ε),

wherer(ε) → 0 asε → 0.

Proof. This is a direct consequence of Step 1, Lemma 1, assertion (iii) of Lemma 5, and
(36). ut

Step 3. Similarly, we have

p(uε) = p(un,ε)+ r(ε) = 2π |BN−1
| + r(ε)

wherer(ε) → 0 asε → 0, independently ofn.
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Proof. Recall that by Lemma 6,

|un,ε| ≥ 1/2 onΠn \ B(0, R),

so that we may write

un,ε = ρn,ε exp(iϕn,ε) onΠn \ B(0, R).

The definition ofp(uε) is then given by (see (38))

p(uε) =

∫
RN
(iuε, ∂1uε)χ +

∫
RN
(1 − χ)(ρ2

ε − 1)∂1ϕε +

∫
RN
ϕε∂1(1 − χ), (90)

whereχ is an arbitrary smooth function with compact support such thatχ ≡ 1 onBR(0)
and 0≤ χ ≤ 1. On the other hand, we have, forn sufficiently large,

p(un,ε) =

∫
RN
(iun,ε, ∂1un,ε)χ+

∫
Ωn

(1−χ)(ρ2
n,ε−1)∂1ϕn,ε+

∫
RN
ϕn,ε∂1(1−χ). (91)

By strongH 1
loc convergence, the first and third terms on the right hand side of (91) con-

verge to the corresponding terms in (90). For the second term, we have∣∣∣∣∫
Ωn

(1 − χ)(ρ2
n,ε − 1)∂1ϕn,ε

∣∣∣∣ ≤

(∫
Ωn

(ρ2
n,ε − 1)2

)1/2(∫
Ωn\B(0,R)

|∇ϕn,ε|
2
)1/2

≤ CεEε(un,ε).

A similar estimate holds for the second term in (90), so that the proof is complete.ut

Step 4.We have
c(ε) → N − 2 asε → 0.

Proof. The proof relies (as in Lemma 2) on Pohozaev’s identity; however, we are now in
a position to use Theorem 4 and Lemma 6, which provide a better decay of the energy
at infinity. SetB := B(0, R). By Lemma 2.1, there exists an unfolding of the torus such
that∂Ωn ∩ B = ∅ and∣∣∣∣n ∫

∂Ωn

eε(un,ε)

∣∣∣∣ ≤

∫
Ωn

eε(un,ε) · 1Ωn\B ≤ C, (92)

the last inequality being a consequence of Theorem 4. On the other hand, by Corollary
A.1 of the Appendix, we know that∫

Πn

(1 − |un,ε|
2)2

ε2
= o(|logε|) asε → 0. (93)

Finally, using Lemma 2.2, we may choose our unfolding so that it satisfies the additional
condition ∣∣∣∣∫

Πn

((iun,ε, ∂1un,ε)− 〈Jun,ε, ξ1〉)

∣∣∣∣ ≤ r(ε).
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Hence, by Step 2,∫
Πn

〈Jun,ε, ξ1〉 = p(un,ε)+ r(ε) = 2π |BN−1
| + r(ε). (94)

Going back to (46), we have by (92), for fixedε,∣∣∣∣N − 2

2

∫
Ωn

|∇un,ε|
2
+
N

4ε2

∫
Ωn

(1 − |un,ε|
2)2 − cn,ε

N − 1

2
|logε|

∫
Ωn

〈Jun,ε, ξ1〉

∣∣∣∣ ≤ C.

Dividing by |logε| and using (93) and (94) we are led to

N − 1

2
p(un,ε)cn,ε = (N − 2)

Eε(un,ε)

|logε|
+ r(ε). (95)

The conclusion follows from Steps 2 and 3. ut

From now on, we will not considerun,ε any more in this section, and derive asymptotic
properties ofuε asε goes to zero.

Step 5.Up to a subsequence, there exists some mapU∗ ∈ W
1,p
loc (R

N , S1) (1 ≤ p <

N/(N − 1)) such that

uε ⇀ U∗ weakly inW1,p
loc (R

N ) asε → 0,

whereU∗ is defined (up to a constant phase) in the statement of Theorem 1.

Proof. By Theorem 4(i),uε is bounded inW1,p
loc (R

N ). Therefore, up to a subsequence,

there exists some mapu∗ ∈ W
1,p
loc (R

N ) such thatuε ⇀ u∗ weakly inW1,p
loc (R

N ) and
almost everywhere. Moreover,∫

RN\BR(0)
|∇u∗|

2
≤ C (96)

since the same inequality holds foruε. We next show thatu∗ = U∗. Sinceuε satisfies
equation (89), taking the exterior product of (89) withuε andiuε respectively we are led
to d∗(uε × duε) = icε|logε|

∂

∂x1
(|uε|

2
− 1),

d(uε × duε) = 2Juε.

Passing to the limitε → 0 [notice thatcε|logε|(|uε|2 − 1) → 0 in L2(RN ) so that the
right hand side of the first equation above converges to zero inH−1(RN )], we obtain{

d∗(u∗ × du∗) = 0,
d(u∗ × du∗) = 2πSN−2.

This elliptic system together with (55) determinesu∗ uniquely (up to a constant phase).
Indeed, from the first equation and classical Hodge–de Rham theory (see e.g. the Ap-
pendix of [10]) there exists a 2-formψ such that

u∗ × du∗ = d∗ψ, dψ = 0, ∇ψ ∈ L2(RN \ BR(0)).
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Inserting this in the second equation satisfied byu∗ we obtain

∆ψ = 2πSN−2

so thatψ = ψ∗ (ψ∗ is defined before Theorem 1), and the conclusion follows. ut

Step 6. LetK ⊂ RN \ SN−2 be compact and simply connected. Forε sufficiently small,
we have

|uε(x)| ≥ 1/2 onK.

Proof. We apply Theorem 3 with the sequence(uε)ε>0. Indeed, we haveΣµ = SN−2

[this can be established arguing as in the proof of Lemma 4]. The claim then follows
directly for (27). ut

We may now write
uε(x) := ρε(x)exp(iϕε(x)) onK.

For convenience we skip the subscriptsε in what follows. It remains to prove the stronger
convergence in the compact setK. In contrast with the casec = 0, where(1 − |u|2)/ε2

remains bounded asε goes to zero (see [8]), this is not the case here (it diverges like
|logε|). We rely instead on a cancellation effect.

Step 7. We have

(i) ‖∇ϕ‖Ck(K) ≤ Ck ∀k ≥ 0, (97)

(ii)

∥∥∥∥2(1 − ρ)

ε2
+ cε|logε|

∂ϕ

∂x1

∥∥∥∥
Ck(K)

≤ Ck ∀k ≥ 0. (98)

In particular
‖∇ρ‖Ck(K) ≤ Ckε

2
|logε| ∀k ≥ 0 (99)

and the convergence claim in Theorem 1 follows from (97) and (99).

Proof. The first important point is to obtain uniformC0,α bounds, namely

‖u‖C0,α(K) ≤ C, (100)

for someα > 0. This is achieved as in [10, Theorem IV.1], by obtaining first a mono-
tonicity property

Ẽε(δr, x0) ≤
1
2Ẽε(r, x0) for all 0< r < r0,

for everyx0 ∈ K and for someδ > 0, and then using the Morrey embedding theorem. We
skip the details [see however Step 1 of the proof of Theorem 3 for a very similar proof to
obtain (B-9)]. The analysis of the further regularity properties ofu is long and technical in
the case of the general equation (19). For equation (89), we make use of the following trick
which gives rather directly some first rough (in the sense “nonuniform”) estimates for all
the derivatives (see also [19]). The remaining analysis is then substantially simplified.

Let v := exp(−icε|logε|x1)u. Thenv satisfies the equation

∆v +
1

ε2
v(hε − |v|2) = 0,
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wherehε := 1 + c2
εε

2
|logε|2. Setw(x) := (hε)

−1/2v(x) andw̃(x) := w(x/|logε|). We
have

∆w̃ +
1

ε̃
w̃(1 − |w̃|

2) = 0,

whereε̃2 := ε2
|logε|2h−1

ε . By (100) and the construction of̃w,

‖w̃‖C0,α
loc

≤ C.

Using the regularity theory for the Ginzburg–Landau equation, we thus infer (see [10,
Theorem IV.1]) that

‖w̃‖Ckloc
≤ Ck,

∥∥∥∥1 − |w̃|
2

ε̃2

∥∥∥∥
Ckloc

≤ Ck

for all k ≥ 0. Coming back tou, this yields

‖u‖Ckloc
≤ Ck|logε|k,

∥∥∥∥1 − |u|2

ε2

∥∥∥∥
Ckloc

≤ Ck|logε|2+k. (101)

Starting with these rough estimates we are now going to prove (97) and (98) using a
bootstrap argument. Define

Bε := 2(1 − ρ)+ cε|logε|ε2 ∂ϕ

∂x1
, Aε := ε−2Bε.

The equations needed for the bootstrap are

div(ρ2
∇ϕ) = cε|logε|

∂

∂x1
(ρ2

− 1), (102)

−∆ρ = Aε + cε|logε|(ρ − 1)
∂ϕ

∂x1
−

2(1 − ρ)2

ε2
(ρ + 2), (103)

−∆Bε +
ρ(1 + ρ)

ε2
Bε = 2ρ|∇ϕ|

2
+ ρ(ρ − 1)|logε|cε

∂ϕ

∂x1
− (1 − ρ2)ε2∆

∂ϕ

∂x1
. (104)

Sinceρ is bounded inC0,α by (100), we infer from Schauder regularity theory, (101) and
(102) that

‖∇ϕ‖C0,α
loc

≤ C. (105)

Using (101) and (105), we deduce that the right hand side of (104) is bounded inL∞

loc.

Hence, by (105) and standard arguments,

‖Bε‖C0
loc

≤ Cε2 and thus ‖Aε‖C0
loc

≤ C. (106)

Using (101) and (106), we deduce from (103) and then from (102) that

‖∇ρ‖C0,α
loc

≤ C, ‖∇ϕ‖
C

1,α
loc

≤ C. (107)

We are now in a position to differentiate (104) once. This leads us, using (101), (107), to
the estimate

‖Bε‖C1
loc

≤ Cε2, i.e. ‖Aε‖C1
loc

≤ C. (108)

We have thus proved that (i) and (ii) hold fork = 1. The estimates for the next derivatives
are obtained following exactly the same steps. This finishes the proof of Theorem 1.ut
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5. Proof of Theorem 5

The main ingredient in the proof of Proposition 4 is the following inequality:

Lemma 5.1. There exists a constantC > 0 such that∫
Ωn\B(R)

eε(un,ε) ≤ CR

∫
∂B(R)

eε(un,ε)

for R ≥ 2, n ≥ n(ε), andε sufficiently small.

Proof. We multiply the equation

div(ρ2
∇ϕ) = −

cε

2
|logε|

∂

∂x1
(ρ2

− 1)

by ϕ − ϕ̄, where

ϕ̄ :=
1

|∂B(R)|

∫
∂B(R)

ϕ

denotes the mean value of the phase on∂B(0, R). Integrating by parts onΩn \ B(R), we
obtain∫

Ωn\B(R)

ρ2
|∇ϕ|

2
=

∫
∂B(R)

ρ2∂ϕ

∂ν
(ϕ − ϕ̄)+

cε

2
|logε|

∫
Ωn\B(R)

∂(ρ2
− 1)

∂x1
(ϕ − ϕ̄)

=

∫
∂B(R)

ρ2∂ϕ

∂ν
(ϕ − ϕ̄)−

cε

2
|logε|

∫
∂B(R)

(ρ2
− 1)(ϕ − ϕ̄)n1

+
cε

2
|logε|

∫
Ωn\B(R)

(1 − ρ2)
∂ϕ

∂x1
.

We estimate each of the three terms on the right hand side separately. For the first term,
we invoke the Poincaré–Wirtinger inequality to assert that∣∣∣∣∫

∂B(R)

ρ2∂ϕ

∂ν
(ϕ − ϕ̄)

∣∣∣∣ ≤ C

(∫
∂B(R)

|∇ϕ|
2
)1/2(∫

∂B(R)

(ϕ − ϕ̄)2
)1/2

≤ CR

(∫
∂B(R)

|∇ϕ|
2
)

≤ CR

∫
∂B(R)

eε(un,ε). (109)

Similarly, we obtain

cε

2
|logε|

∣∣∣∣∫
∂B(R)

(ρ2
− 1)(ϕ − ϕ̄)n1

∣∣∣∣ ≤ Cε|logε|R

(∫
∂B(R)

(1 − ρ2)2

ε2

∫
∂B(R)

|∇ϕ|
2
)1/2

≤ Cε|logε|R
∫
∂B(R)

eε(un,ε), (110)

and
cε

2
|logε|

∣∣∣∣∫
Ωn\B(R)

(1 − ρ2)
∂ϕ

∂x1

∣∣∣∣ ≤ Cε|logε|
∫
Ωn\B(R)

eε(un,ε). (111)
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Combining (109)–(111) we are led to∫
Ωn\B(R)

|∇ϕ|
2

≤ CR

∫
∂B(R)

eε(un,ε)+ Cε|logε|
∫
Ωn\B(R)

eε(un,ε). (112)

We now turn to the equation forρ,

−∆ρ + ρ|∇ϕ|
2
+ cε|logε|ρ

∂ϕ

∂x1
= ρ

1 − ρ2

ε2
.

Multiplying by ρ2
− 1 and integrating by parts onΩn \ B(R) gives∫

Ωn\B(R)

(
2ρ|∇ρ|

2
+ ρ

(1 − ρ2)2

ε2

)
=

∫
∂B(R)

∂ϕ

∂ν
(1 − ρ2)

+ cε|logε|
∫
Ωn\B(R)

ρ(1 − ρ2)
∂ϕ

∂x1
+

∫
Ωn\B(R)

ρ(1 − ρ2)|∇ϕ|
2. (113)

We have ∣∣∣∣∫
∂B(R)

∂ϕ

∂ν
(1 − ρ2)

∣∣∣∣ ≤ Cε

∫
∂B(R)

eε(un,ε), (114)

and

cε|logε|

∣∣∣∣∫
Ωn\B(R)

ρ(1 − ρ2)
∂ϕ

∂x1

∣∣∣∣ ≤ Cε|logε|
∫
Ωn\B(R)

eε(un,ε). (115)

For the third term, we invoke the fact (see Theorem 1) that|∇ϕ| ≤ C in Ωn \ B(R) so
that∣∣∣∣∫
Ωn\B(R)

ρ(1−ρ2)|∇ϕ|
2
∣∣∣∣ ≤ C

∫
Ωn\B(R)

ρ(1−ρ2)|∇ϕ| ≤ Cε

∫
Ωn\B(R)

eε(un,ε). (116)

Combining (113)–(116), we are led to∫
Ωn\B(R)

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ Cε

∫
∂B(R)

eε(un,ε)+ Cε|logε|
∫
Ωn\B(R)

eε(un,ε).

(117)
Finally, from (112) and (117) we derive the conclusion. ut

Proof of Proposition 4.Set, forR > 2,

fn(R) :=
∫
Ωn\B(R)

eε(un,ε).

We infer from Lemma 5.1 that thefn satisfy the differential inequality

fn(s) ≤ −Csf ′
n(s) for all s > 2.

Integrating between 2 andR yields

fn(R) ≤ fn(2)

(
2

R

)λ
,

whereλ := 1/C. This proves (41). The other statements (42) and (43) follow directly
from this decay. ut
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Remark 5.1.In the previous computations, we have not tried to optimize the constants.
Using the best constant in the Poincaré–Wirtinger inequality for (109), we may prove that
(41) is valid with anyλ <

√
N − 1 providedε is sufficiently small (depending onλ).

Proof of Theorem 5.Equality (39) has already been established in Proposition 4. For
(40), we argue by contradiction and assume it is false. Then there existsv ∈ W such that

Eε(v) < Eε(uε) = lim
n→∞

Eε(un,ε) (118)

and
p(v) = 2π |BN−1

|. (119)

If v were constant outside some large ballB(R), then its restriction toΩn, for n ≥ R,
would be well defined onΠn and therefore, in view of (119), a test function for(Pεn).
This contradicts (118) forn sufficiently large.

In the general situation, we will construct fromv a functionṽ, constant outside some
large ballB(R), and satisfying

p(ṽ) = 2π |BN−1
| (120)

and
Eε(ṽ) < Eε(uε), (121)

so that a contradiction holds similarly.

Construction of ṽ. Sincev ∈ W , we may write

v = η exp(iψ) onRN \ B(R),

providedR is sufficiently large. We begin by the construction of a functionv̌R, constant
outsideB(3R), but which will not yet satisfy (120). For that purpose, consider the func-
tions η̌R andψ̌R defined onRN \ B(R) by

η̌R(x) := σ(x)η(x)+ (1 − σ(x)) with σ(x) :=
2R − |x|

R
,

ψ̌R(x) := τ(x)ψ(x)+ (1 − τ(x))

(
1

|∂B(R)|

∫
∂B(R)

ψ

)
with τ(x) :=

3R − |x|

R
.

Set

v̌R(x) :=


v(x) if |x| ≤ R,

η̌R(x)exp(iψ(x)) if R ≤ |x| ≤ 2R,
exp(iψ̌R) if 2R ≤ |x| ≤ 3R,

exp

(
i

1

|∂B(R)|

∫
∂B(R)

ψ

)
otherwise.

Some computation shows that for some constantC > 0 independent ofR,

|Eε(v̌R)− Eε(v)| + |p(v̌R)− p(v)| ≤ C

[∫
∂B(R)

eε(v)+

∫
Ωn\B(R)

eε(v)

]
.

We may next take a sequence(Rm)m∈N such thatRm → ∞ and∫
∂B(Rm)

eε(v) → 0 asm → ∞,
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so that
p(v̌Rm) = 2π |BN−1

| + o(1) asm → ∞ (122)

and
Eε(v̌Rm) = Eε(v)+ o(1) asm → ∞. (123)

We finally complete the construction ofṽ by setting

ṽRm(x) := v̌Rm(αmx),

whereαm > 0 is uniquely defined by the relationp(ṽRm) = 2π |BN−1
|. It follows from

(122) thatαm = 1 + o(1) asm → ∞. Hence, if we choosẽv := ṽRm , we verify thatṽ
satisfies the required conditions form sufficiently large. ut

Appendices

The purpose of these appendices is to develop the asymptotic analysis of the equation

i|logε|c(x) · ∇w = ∆w +
1

ε2
w(1 − |w|

2)− |logε|2d(x)w onΩ, (124)

whereΩ ⊆ RN is a piecewiseC1 simply connected domain,c : Ω → RN is a bounded
Lipschitz vector field andd : Ω → R is Lipschitz, nonnegative and bounded. The main
results of this analysis have been stated in Lemmas 3 and 4, Proposition 2 and Theorems
2, 3 and 4. We will provide proofs here. Notice that (124) can be rewritten as

i|logε|c(x) · ∇w = ∆w +
1

ε2
w(aε(x)− |w|

2), (125)

where
aε(x) := 1 − d(x)ε2

|logε|2.

When divc = 0 it is also equivalent to(
∇ − i|logε|

c
2

)2

w +
1

ε2
w(bε(x)− |w|

2) = 0, (126)

where

bε(x) := aε(x)+ ε2
|logε|2

c2(x)

4
.

In what follows, we assume throughout that

div c = 0.

Appendix A: the PDE analysis

In this first appendix we establish some basic estimates, in particular we give the proof of
Lemma 3.
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Proof of Lemma 3.Letw satisfy (124) andρ(x) := |w(x)|. Then we have

∆ρ2
= (2w,∆w)+ 2|∇w|

2

= −
2

ε2
ρ2(aε(x)− ρ2)+ |logε|(2iw, c · ∇w)+ 2|∇w|

2

≥ −
2

ε2
ρ2(aε(x)− ρ2)+

(
√

2|∇w| −
1

√
2
c∞|logε| |w|

)2

−
1

2
c2
∞|logε|2ρ2

≥ −
2

ε2
ρ2(b∞

ε − ρ2), (A-1)

whereb∞
ε := ‖bε‖L∞(K).Hence the functionW(x) := ρ2(x)−b∞

ε satisfies the inequality

∆W ≥
2

ε2
W(W + b∞

ε ) onΩ.

If x0 ∈ K andR := dist(x0, ∂Ω), the rescaled function

Y (x) := W(R(x − x0))

is thus a subsolution to the equation

∆y =
2

ε̃2
y(y + b∞

ε ) onB(0,1), (A-2)

whereε̃ := ε/R. On the other hand, it is easy to check that there exists a constantC > 0
depending only onN such that the function

Z(x) :=

{
Cε̃2(|x| − 1)−2 if |x| ∈ [ 1

3,1],
9
8Cε̃

2
+

81
8 Cε̃

2
|x|2 if |x| ∈ [0, 1

3],

is a supersolution to (A-2) [notice thatY (x) → ∞ as|x| → 1]. It then follows from the
maximum principle thatY (x) ≤ Z(x) for all x in B(0,1), and in particular

W(x0) = Y (0) ≤ Cε̃2
≤ C

ε2

dist(K, ∂Ω)2
.

Hence, we obtain the desired estimate

‖w‖L∞(K) ≤ ‖W‖L∞(K) + b∞
ε ≤ 1 + c2

∞ε
2
|logε|2 + C

ε2

dist(K, ∂Ω)2
.

Concerning the estimate on the gradient, letr := dist(K, ∂Ω) and

K̃ := {x ∈ Ω : dist(x,K) ≤ r/2} .

By the first step,‖w‖
L∞(K̃)

≤ CK , whereCK does not depend onw or ε. Let U be the
solution of 

(
∇ − i|logε|

c
2

)2

U = 0 onK̃,

U = w on ∂K̃.
(A-3)
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Sincew − U ∈ H 2(K̃) ∩ H 1
0 (K̃), we deduce from the Gagliardo–Nirenberg inequality

that

‖∇(w − U)‖
L∞(K̃)

≤ ‖∆(w − U)‖
1/2
L∞(K̃)

· ‖w − U‖
1/2
L∞(K̃)

≤ CK

(
1

ε
+ |logε|1/2c1/2

∞ ‖∇(w − U)‖
1/2
L∞(K̃)

)
≤ CK

(
1

ε
+

1

2CK
‖∇(w − U)‖

L∞(K̃)
+ 2CKc∞|logε|

)
, (A-4)

so that

‖∇(w − U)‖
L∞(K̃)

≤
CK

ε
.

Hence, sinceU satisfies (A-3)

‖∇w‖L∞(K) ≤ ‖∇U‖L∞(K) +
CK

ε
≤
CK

ε
‖U‖

L∞(K̃)
+
CK

ε
≤
CK

ε
, (A-5)

whereCK depends only onK,N andc∞. The lemma is proved. ut

Let us now define the 2-forms onRN ,

ξj (x) :=
2

N − 1

∑
i 6=j

xidxj ∧ dxi for j = 1, . . . , N,

which satisfy the equationsd∗ξj = 2dxj .

Lemma A.2 (Pohozaev identity). Letw be a solution of equation(124)onΩ. Then

N − 2

2

∫
Ω

|∇w|
2
+
N

4ε2

∫
Ω

(aε(x)− |w|
2)2 −

N − 1

2
|logε|

∫
Ω

〈
Jw,

∑
i

ci(x)ξi(x)
〉

=

∫
∂Ω

[
x · ν

|∇w|
2

2
+
x · ν

4ε2
(aε(x)− |w|

2)2 −
∂w

∂ν
·

(∑
xi
∂w

∂xi

)]
+

1

2
|logε|2

∫
Ω

(aε(x)− |w|
2) x · ∇d(x). (A-6)

In particular, forBr(x0) ⊂ Ω we have

N − 2

2

∫
Br (x0)

|∇w|
2
+
N

4ε2

∫
Br (x0)

(aε(x)− |w|
2)2

=
N − 1

2
|logε|

∫
Br (x0)

〈
Jw,

∑
i

ci(x)ξi(x − x0)
〉

+
1

2
|logε|2

∫
Br (x0)

(aε(x)− |w|
2)(x − x0) · ∇d(x)

+

∫
∂Br (x0)

[
r
|∇>w|

2

2
−
r

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

r

4ε2
(aε(x)− |w|

2)2
]
. (A-7)
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Forx0 ∈ Ω andr > 0 such thatBr(x0) ⊂ Ω, consider the scaled energy

Ẽε(w, x0, r) :=
1

rN−2
Eε(w, x0, r) ≡

1

rN−2

∫
Br (x0)

(
1

2
|∇w|

2
+
(aε(x)− |w|

2)2

4ε2

)
.

When this will not lead to confusion, we will also denote it byẼε(x0, r) or evenẼε(r).

Lemma A.3. Letw satisfy(124)onBR(x0) ⊂ Ω. Then for0< r < R,

d

dr
Ẽε(x0, r) =

1

rN−2

∫
∂Br (x0)

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

rN−1

∫
Br (x0)

(aε(x)− |w|
2)2

2ε2

−
N − 1

2rN−1
|logε|

∫
Br (x0)

〈
Jw,

∑
i

ci(x)ξi(x − x0)
〉

−
1

2rN−1
|logε|2

∫
Br (x0)

((x − x0) · ∇d(x))(aε(x)− |w|
2). (A-8)

Proof. Without loss of generality, we can assume thatx0 = 0. First one has

d

dr
Eε(r) =

∫
∂Br

|∇w|
2

2
+

1

4ε2

∫
∂Br

(aε(x)− |w|
2)2

=

∫
∂Br

(
|∇>w|

2

2
+

1

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

4ε2
(aε(x)− |w|

2)2
)
.

Hence,

d

dr
Ẽε(r) = −

N − 2

rN−1
Eε(r)+

1

rN−2

∫
∂Br

(
|∇>w|

2

2
+

1

2

∣∣∣∣∂w∂n
∣∣∣∣2+ (aε(x)− |w|

2)2

4ε2

)
= −

(
N − 2

rN−1

∫
Br

|∇w|
2

2
+

N − 2

4ε2rN−1

∫
Br

(aε(x)− |w|
2)2
)

+
1

rN−2

∫
∂Br

(
|∇>w|

2

2
+

1

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

4ε2
(aε(x)− |w|

2)2
)

= −
1

rN−1

[∫
Br

N − 2

2
|∇w|

2
+
N

4ε2

∫
Br

(aε(x)− |w|
2)2
]

+
1

2ε2rN−1

∫
Br

(aε(x)− |w|
2)2

+
1

rN−2

∫
∂Br

(
|∇>w|

2

2
+

1

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

4ε2
(aε(x)− |w|

2)2
)
.
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Using Lemma A.2, we obtain

d

dr
Ẽε(r) = −

1

rN−2

∫
∂Br

(
|∇>w|

2

2
−

1

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

4ε2
(aε(x)− |w|

2)2
)

−
N − 1

2rN−1
|logε|

∫
Br

〈
Jw,

∑
i

ci(x)ξi(x)
〉

−
1

2rN−1
|logε|2

∫
Br

(x · ∇d(x))(aε(x)− |w|
2)

+
1

rN−2

∫
∂Br

(
|∇>w|

2

2
+

1

2

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

4ε2
(aε(x)− |w|

2)2
)

=
1

rN−2

∫
∂Br

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

rN−1

∫
Br

(aε(x)− |w|
2)2

2ε2

−
N − 1

2rN−1
|logε|

∫
Br

〈
Jw,

∑
i

ci(x)ξi(x)
〉

−
1

2rN−1
|logε|2

∫
Br

(x · ∇d(x))(aε(x)− |w|
2),

which yields the result. ut

Proof of Lemma 4 (Monotonicity at small scales).Again we can assume thatx0 = 0. In
view of the previous lemma, we need to estimate the last two terms in (A-8). For the first
one, notice that

‖Jw(x)‖ ≤ C|∇w(x)|2 and ‖ξj (x)‖ ≤ Cr for all x ∈ Br ,

where‖ · ‖ refers e.g. to the Euclidean norm on 2-forms. Hence,

N − 1

2rN−1
|logε|

∣∣∣∣∫
Br

〈
Jw,

∑
i

ci(x)ξi(x)
〉∣∣∣∣

≤ Cc∞|logε|
1

rN−2

∫
Br

|∇w|
2

≤ Cc∞|logε|Ẽε(r), (A-9)

whereC depends only onN. For the second term we have

1

2rN−1
|logε|2

∣∣∣∣∫
Br

(x · ∇d(x))(aε(x)− |w|
2)

∣∣∣∣
≤

C

rN−2
ε|logε|2

(∫
Br

|∇d|2
)1/2

·

(∫
Br

(aε(x)− |w|
2)2

4ε2

)1/2

≤ CΛ0r
(2−N)/2ε|logε|2

(∫
Br

(aε(x)− |w|
2)2

4ε2

)1/2

≤ CΛ0ε|logε|2Ẽε(r)
1/2

≤ Ẽε(r)+ C2Λ2
0ε

2
|logε|4. (A-10)

SetΛ := C(c∞ + 1)|logε|. Then by Lemma A.3, (A-9) and (A-10),
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d

dr
(exp(Λr)Ẽε(r)) = Λexp(Λr)Ẽε(r)+ exp(Λr)

d

dr
Ẽε(r)

≥ Λexp(Λr)Ẽε(r)− exp(Λr)(Cc∞|logε|Ẽε(r)+ Ẽε(r)+ C2Λ2
0ε

2
|logε|4)

≥ − exp(Λr)C2Λ2
0ε

2
|logε|4) = −

d

dr

(
Q2

Λ
exp(Λr)

)
. (A-11)

This finishes the proof. ut

As already mentioned, the pointwise estimate on the Jacobian used in the previous proof
is far from being optimal. In order to obtain a monotonicity formula valid on larger balls,
we will use the following estimate due to Jerrard and Soner [29] (see [29] for a more
quantitative version).

Lemma A.4 (Jerrard & Soner). Let w ∈ H 1
loc(Ω,C), ϕ ∈ C0,1

c (Ω,Λ2RN ) and set
K := suppϕ. Then there exist constantsC > 0 (depending only onN ) and0 < α < 1
such that ∣∣∣∣∫

Ω

〈Jw, ϕ〉

∣∣∣∣ ≤
C

|logε|
‖ϕ‖L∞

∫
K

eε(w)

+ Cεα‖dϕ‖L∞

(
1 +

∫
K

eε(w)

)
(1 + |K|

2). (A-12)

The big advantage of (A-12) with respect to estimate (A-9) is the factor 1/|logε| which
appears in front of the energy. However, since (A-12) contains a second term involving a
derivative ofϕ, we need to adapt temporarily the definition ofẼε.

We define a cut-off functionf onR+ × R+ by

f (a, b) =


1 if b ≤ a,

2 − b/a if a ≤ b ≤ 2a,

0 if b ≥ 2a.

Forx0 ∈ Ω andr > 0 such thatB2r(x0) ⊂ Ω, we will consider the quantity

Ēε(x0, r) :=
1

rN−2

∫
B2r (x0)

eε(w)f (r, |x − x0|) dx. (A-13)

Lemma A.5. Letw satisfy(124)onBR(x0) ⊂ Ω. Then for0< r < R/2,

d

dr
Ēε(x0, r)

=
1

rN−2

∫ 2

1
t

∫
∂Btr (x0)

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

rN−1

∫
B2r (x0)

(aε(x)− |w|
2)2

2ε2
f (r, |x − x0|)

−
N − 1

2rN−1
|logε|

∫
B2r (x0)

〈
Jw,

∑
i

ci(x)ξi(x − x0)f (r, |x − x0|)
〉

−
1

2rN−1
|logε|2

∫
B2r (x0)

((x − x0) · ∇d(x))(aε(x)− |w|
2)f (r, |x − x0|). (A-14)
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Proof. Forx0 = 0 we have

d

dr
Ēε(r) = −

N − 2

rN−1

∫
B2r

eε(w)f (r, |x|) dx +
1

rN−2

∫
B2r

eε(w)∂rf (r, |x|) dx

= −
N − 2

rN−1

∫ 2

1

∫
Btr

eε(w) dx dt +
1

rN−2

∫ 2r

r

∫
∂Bt

eε(w)
t

r2
dx dt

= −
N − 2

rN−1

∫ 2

1

∫
Btr

eε(w) dx dt +
1

rN−2

∫ 2

1
t

∫
∂Btr

eε(w) dx dt

=

∫ 2

1
tN−1 d

d(tr)
Ẽε(tr) dt. (A-15)

It then suffices to use Lemma A.3 and to integrate int. The casex0 6= 0 is reduced to the
first one by a change of variable. ut

Lemma A.6 (Monotonicity at large scales).There exists a constantC > 0 such that
for anyw satisfying(124)andx0 ∈ Ω, r > 0 such thatB2r(x0) ⊂ Ω,

Ēε(θ r, x0) ≤ C exp(CΛ0r)

(
Ēε(r, x0)+

εα|logε|

(θr)N−1
+Λ0ε

2
|logε|4

)
for every0< θ ≤ 1.

Proof. The proof bears some resemblance to the one of Lemma 4. Once more we restrict
ourselves to the casex0 = 0; we first need to estimate the last two terms in (A-14). The
second one is treated as before:

1

2rN−1
|logε|2

∫
B2r

(x · ∇d(x))(aε(x)− |w|
2)f (r, |x|)

≤
C

rN−2
ε|logε|2

(∫
B2r

|∇d|2
)1/2

·

(∫
B2r

(aε(x)− |w|
2)2

4ε2

)1/2

≤ CΛ0r
(2−N)/2ε|logε|2

(∫
B2r

(aε(x)− |w|
2)2

4ε2

)1/2

≤ CΛ0ε|logε|2Ēε(2r)
1/2

≤ Ēε(2r)+ C2Λ2
0ε

2
|logε|4. (A-16)

Concerning the first term, notice that the 2-form

ϕ(x) :=
∑
i

ci(x)ξi(x)f (r, |x|)

satisfies the bounds

‖ϕ‖L∞(B2r ) ≤ Cc∞r, ‖dϕ‖L∞(B2r ) ≤ CΛ0.
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Hence, using Lemma A.4, we obtain

N − 1

2rN−1
|logε|

∫
B2r

〈
Jw,

∑
i

ci(x)ξi(x)f (r, |x|)
〉

≤ Cc∞Ēε(2r)+ CΛ0ε
α
|logε|

(
1

rN−1
+ Ēε(2r)

)
≤ CΛ0Ēε(2r)+

CΛ0

rN−1
εα|logε|. (A-17)

From (A-14), (A-16) and (A-17) we thus infer that

d

dr
Ēε(r) ≥ −CΛ0Ēε(2r)− C

(
Λ0

rN−1
εα|logε| +Λ2

0ε
2
|logε|4

)
. (A-18)

The conclusion then follows from a discrete version of Gronwall’s lemma given hereafter.
ut

Lemma A.7 (Discrete Gronwall inequality). Let h : (0,1] → R+ be continuously
differentiable and such that{

h(s) ≤ θN−2h(θs) for all θ ∈ [1,2],

h′(s) ≥ −Ch(2s)−D for all s ≤ 1/2,

whereC andD are positive constants. Then

h(s) ≤ 2N−2 exp(Ct)(h(t)+D/C) for all 0< s < t < 1. (A-19)

Proof. Let g(s) := h(s)+D/C. We haveg(s) = h(s)+
D

C
≤ θN−2h(θs)+ θN−2D

C
= θN−2g(θs) for all θ ∈ [1,2],

g′(s) = h′(s) ≥ −Ch(2s)−D = −Cg(2s) for all s ≤ 1/2,
(A-20)

so that we just need to consider the caseD = 0. Let 0 < s < t < 1 be given. If
s ∈ [t/2, t ], then by (A-20),

g(s) ≤ 2N−2g(t).

By induction, assume that for somek ∈ N∗,

g(s) ≤ 2N−2g(t)

k∏
i=2

(
1 +

Ct

2i

)
∀s ∈

[
t

2k
,
t

2k−1

]
.

Then, fors ∈ [t/2k+1, t/2k],

g(s) ≤ g

(
t

2k

)
+ C

∫ t/2k

s

g(2r) dr

≤ 2N−2g(t)

k∏
i=2

(
1 +

Ct

2i

)
+

Ct

2k+1
2N−2

k∏
i=2

(
1 +

Ct

2i

)

= 2N−2g(t)

k+1∏
i=2

(
1 +

Ct

2i

)
. (A-21)



Vortex rings 61

The conclusion then follows by using the fact that

m∏
i=1

(
1 +

Ct

2i

)
≤ exp(Ct) for all m ∈ N∗.

Coming back toh, we obtain

h(s) ≤ g(s) ≤ 2N−2 exp(Ct)g(t) = 2N−2 exp(Ct)(h(t)+D/C),

and the proof is complete. ut

Notice that whereas Lemma 4 was appropriate for balls of radius of the order of 1/|logε|,
Lemma A.6 is only appropriate for balls of radius larger thanO(εα/(N−1)). This is caused
by the oscillation term of orderεα/rN−1. Fortunately, these two conditions complement
perfectly to obtain Proposition 2.

Proof of Proposition 2.We first consider the case

θr < ρ := (|logε|(c∞ + 1))−1 < r/2,

the other ones being easier to treat. Using Lemma 4, we deduce that

Ẽε(θr) ≤ C(Ẽε(ρ)+Λ0|logε|3ε2). (A-22)

Next, by Lemma A.6 and the definition ofρ,

Ẽε(ρ) ≤ Ēε(ρ) ≤ C

(
Ēε(r/2)+

εα|logε|

ρN−1
+Λ0|logε|4ε2

)
≤ C(2N−2Ẽε(r)+ εα|logε|N (c∞ + 1)N−1

+Λ0|logε|4ε2). (A-23)

It then suffices to takeβ = α/2 and combine (A-22) and (A-23) to get the desired esti-
mate (23). In the caseθr ≥ ρ (resp.r ≤ ρ), it suffices to use Lemma A.6 (resp. Lemma 4)
to obtain (23) directly. This finishes the proof. ut

Proof of Theorem 2.Through a scaling, we first show that we can assume without loss of
generality thatx0 = 0, r = 1 andΛ0 ≤ 1. Indeed, let

u(x) := wε(r(x − x0)).

Thenu satisfies the equation

∆u+
1

ε̃2
u(1 − |u|2) = ic̃ · ∇u|log ε̃| + d̃|log ε̃|2u (A-24)

on B(0,2), where ε̃ := ε/r, c̃(x) := c(r(x − x0))r|logε|/|log ε̃|, and d̃(x) :=
d(r(x−x0))r

2
|logε|2/|log ε̃|2. Sincer ≥

√
ε, we have|logε| ≤ 2|log ε̃| so thatΛ0(c̃, d̃)

≤ 1. We conclude by noticing that̃Eε(wε, x0, r) = Ẽε̃(u,0,1).
From now on, we thus assume thatx0 = 0, r = 1 andΛ0 ≤ 1. For the ease of

presentation, we follow closely the lines of [10]. Let 0< δ < 1/32 be a constant to be
determined later (and depending only onN ). In what follows we will denote byC generic
constants not depending on the choice ofδ.
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Part A: Choosing a “good” radius

Lemma A.8. Assume that0 < ε < δ2(N−1)/α. Then there exists some constantC > 0
and a radiusr0 ∈ (εα/(2N−2),1) such that

1

rN−2
0

∫
Br0

(aε − |w|
2)2

2ε2
≤ C(η|logδ| + εβ),

Ẽε(r0)− 2N−2Ẽε(δr0) ≤ C(η|logδ| + εβ).

Proof. We will essentially make use of (A-14) together with a covering argument. First
notice that

r0 > εα/(2N−2) implies
εα

rN−1
≤ εβ for r ≥ r0.

Hence, from (A-14) and following the lines of Lemma A.6 we obtain∣∣∣∣ ddr Ēε(r)− A(r)

∣∣∣∣ ≤ CĒε(2r)+ Cεβ , (A-25)

where

A(r) :=
1

rN−2

∫ 2

1
t

∫
∂Btr

∣∣∣∣∂w∂n
∣∣∣∣2 +

1

rN−1

∫
B2r

(aε(x)− |w|
2)2

2ε2
f (r, |x − x0|).

From (A-25) and the monotonicity formula of Proposition 2 we thus infer that∫ 1/4

εα/(2N−2)
(A(r)+ CĒε(2r)+ Cεβ) dr ≤ C(η|logε| + εβ). (A-26)

Let k be the greatest integer such thatεα/(2N−2)(δ/4)−k ≤ 1/4, and define the intervals

Ij := (εα/(2N−2)(δ/4)−j+1, εα/(2N−2)(δ/4)−j ), 1 ≤ j ≤ k.

Clearly, these intervals are disjoint and
⋃k
j=1 Ij ⊂ (εα/(2N−2),1/4). Since

k ≥ C−1 |logε|

|logδ|

we deduce from (A-26) that there exists somej0 ∈ {1, . . . , k} such that∫
Ij0

(A(r)+ CĒε(2r)+ Cεβ) dr ≤ C(η|logδ| + εβ). (A-27)

In particular, by the mean-value formula there exists some

r0 ∈
(1

2ε
α/(2N−2)(δ/4)−j , εα/(2N−2)(δ/4)−j

)
such that

1

rN−2
0

∫
Br0

(aε(x)− |w|
2)2

2ε2
≤ C(η|logδ| + εβ),
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which establishes the first claim. Notice thatδ
2r0 ∈ I0, hence

Ẽε(r0)− 2N−2Ẽε(δr0) ≤ Ēε(r0)− Ēε

(
δ

2
r0

)
≤

∫
Ij0

A(r)+ CĒε(2r)+ Cεβ dr

≤ C(η|logδ| + εβ). (A-28)

The lemma is proved. ut

Part B: δ-Energy decay

In this second part, we present an estimate valid for any solutionu of (124) withΛ0 ≤ 1.
We will apply it later in Part C to an appropriate dilation ofw. Let 0 < γ < 1/8 be a
constant to be determined later.

Lemma A.9. There exist constantsεN > 0 (depending only onγ andN ) andC > 0
such that for any0 < ε < εN and any solutionu of (124)onB(0,2) for somec andd
satisfyingΛ0(c, d) ≤ 1 we have

Eε(δ) ≤ C

((
γ 2

+ δN + γ−4
∫
B1

(aε − |u|2)2

ε2

)
Eε(1)

+ γ−4
(∫

B1

(aε − |u|2)2

ε2
+ εβ

))
.

Proof. The starting point is the identity

4|u|2|∇u|2 = 4|u× ∇u|2 + |∇|u|2|2, (A-29)

which holds for any map fromRN to Rk; in the special case wherek = 2 and|u(x0)| 6= 0,
nearx0 we may write

u(x) = ρ exp(iϕ),

and then
u× ∇u = ρ2

∇ϕ,

i.e.u× ∇u plays the role of the gradient of the phase. The advantage of the form (A-29)
is thatu × ∇u is always globally well defined, while the phase need not be well defined
whenu vanishes somewhere.

Sinceu is a solution onB(0,2), we infer from Lemma 3 that there existsεN depend-
ing only onN andγ andC > 0 such that if 0< ε < εN then

‖u‖∞ ≤ 1 + γ /2, ‖∇u‖∞ ≤ C/ε in B(0,1). (A-30)

By the mean-value inequality, we may find somer1 ∈ [ 1
16,

1
8] such that∫

∂Br1

|∇u|2 ≤ 32
∫
B1

|∇u|2,∫
∂Br1

(aε − |u|2)2 ≤ 32
∫
B1

(aε − |u|2)2.

(A-31)

We divide the estimate into several steps.
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Step 1: Hodge–de Rham decomposition ofu× ∇u. Observe that sinceu is a solution
of (124),

d∗(u× du) = u×∆u = (u, c · ∇u)|logε|

= d∗

(
(|u|2 − 1)

∑
ci(x)dxi |logε|

)
. (A-32)

Let ξ be the solution of the auxiliary Neumann problem∆ξ = 0 inBr1,
∂ξ

∂n
= u×

∂u

∂n
− (|u|2 − 1)c · n|logε| on ∂Br1.

Notice thatξ exists since div(u × ∇u − (|u|2 − 1)c|logε|) = 0 implies by integration∫
∂Br1

(u× ∇u− (|u|2 − 1)c|logε|) · n = 0. Moreover, we have∫
Br1

|∇ξ |2 ≤ C

∫
B1

|∇u|2 + Cε2
|logε|2

∫
B1

1 − |u|2

ε2
≤ C(Eε(1)+ εβ).

Sinceξ is harmonic onBr1, we have by standard elliptic estimates, for 0< δ ≤ r1,∫
Bδ

|∇ξ |2 ≤ CδN
∫
Br1

|∇ξ |2 ≤ CδN (Eε(1)+ εβ). (A-33)

By construction we verify that

d∗

[(
u× du− (|u|2 − 1)

∑
ci(x)dxi |logε| − dξ

)
1Br1

]
= 0 inD′(RN ),

where 1A denotes the characteristic function of the setA. By classical Hodge theory (see
[10, Proposition A.7]) there exists some 2-formϕ onRN such thatϕ ∈ H 1

loc(R
N ) and

d∗ϕ =

(
u× du− (|u|2 − 1)

∑
ci(x)dxi |logε| − dξ

)
1Br1 in D′(RN ), (A-34)

dϕ = 0 inD′(RN ), (A-35)

‖∇ϕ‖L2(RN ) ≤ C(Eε(r1)+ ‖∇ξ‖L2(Br1)
), (A-36)

|ϕ(x)| · |x|N−1 tends to zero at infinity. (A-37)

We therefore have

u× du = d∗ϕ + dξ + (|u|2 − 1)
∑

ci(x)dxi |logε| in Br1. (A-38)

In order to bound theL2-norm ofu× du onBδ, we next turn to estimates ford∗ϕ.

Step 2: Improved estimates for∇ϕ onBδ. Letf : R+
→ (1,1/(1−γ )) be any smooth

function such that 
f (t) = 1/t if t ≥ 1 − γ,

f (t) = 1 if t ≤ 1 − 2γ,

|f ′(t)| ≤ 4 for anyt ∈ R+.
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Define onRN the functionτ by

τ(x) =

{
f 2(|u(x)|) in Br1,

1 outside,

so that, taking (A-30) into account,

0 ≤ τ − 1 ≤ 4γ in RN . (A-39)

Notice that
f 2(|u|)u× du = f (|u|)u× d(f (|u|)u),

hence

d(τu× du) = d(f 2(|u|)u× du) = d(f (|u|)u× d(f (|u|)u)) in Br1,

i.e.
d(τu× du) =

∑
i<j

2(f (|u|)u)xi × (f (|u|)u)xj dxi ∧ dxj .

Now we turn toϕ. We have

−∆ϕ = dd∗ϕ = d(1Br1τu× du)− d(1Br1dξ)− d
(
1Br1 (|u|

2
− 1)

∑
cidxi |logε|

)
+ d(1Br1 (1 − τ)u× du) in D′(RN )

= ω1 + ω2 + ω3 + ω4 + ω5,

where

ω1 = 1Br1d(τu× du) = 1Br1

∑
i<j

2(f (|u|)u)xi × (f (|u|)u)xj dxi ∧ dxj ,

ω2 = σ∂Br1
f (|u|)u× du ∧ dr (r = |x|),

ω3 = −d(1Br1dξ) = σ∂Br1
dr ∧ dξ,

ω4 = −d
(
1Br1 (|u|

2
− 1)

∑
cidxi |logε|

)
,

ω5 = d(1Br1 (1 − τ)u× du).

Hereσ∂Br1 stands for the surface measure on∂Br1. Setϕi := G ∗ ωi, whereG(x) :=

cN |x|2−N is the fundamental solution of−∆ in RN . Sinceϕ tends to zero at infinity by
(A-37) and eachϕi tends to zero at infinity (because eachωi has compact support), we
conclude that

ϕ =

5∑
i=1

ϕi .

We now proceed to estimate separately eachϕi .

Estimate forϕ5. We have ∫
RN

|∇ϕ5|
2

≤ Cγ 2
∫
B1

|∇u|2. (A-40)
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Indeed, we have
−∆ϕ5 = ω5 = d(1Br1 (1 − τ)u× du).

Multiplying by ϕ5 and integrating we obtain∫
RN

|∇ϕ5|
2

≤ ‖1 − τ‖L∞(B1)‖u‖L∞(B1)‖∇u‖L2(B1)
‖∇ϕ5‖L2,

and thus ∫
RN

|∇ϕ5|
2

≤ Cγ ‖∇u‖L2(B1)
‖∇ϕ5‖L2(RN ),

by (A-30) and (A-39), which yields the result.

Estimate forϕ4. We have∫
RN

|∇ϕ4|
2

≤ C

∫
B1

(1 − |u|2)2

ε2
≤ C

(∫
B1

(aε − |u|2)2

ε2
+ εβ

)
. (A-41)

Indeed, we have

−∆ϕ4 = ω4 = −d
(
1Br1 (|u|

2
− 1)

∑
cidxi |logε|

)
.

Multiplying by ϕ4 and integrating we obtain∫
RN

|∇ϕ4|
2

≤ ε|logε| · ‖c‖L∞(B1)

(∫
B1

(1 − |u|2)2

ε2

)1/2

‖∇ϕ4‖L2,

which yields the result sinceΛ0 ≤ 1.

Estimate forϕ3. We have ∫
Bδ

|∇ϕ3|
2

≤ CδN (Eε(1)+ εβ). (A-42)

Indeed, we have
−∆ϕ3 = ω3 = −d(1Br1dξ).

Multiplying by ϕ3 and integrating we obtain∫
RN

|∇ϕ3|
2

≤ ‖∇ξ‖L2(Br1)
‖∇ϕ3‖L2.

Sinceϕ3 is harmonic onBr1 (r1 ≥ 1/16), we also have

‖∇ϕ3‖L∞(B1/32) ≤ C‖∇ϕ3‖L2(Br1)
,

so that (δ ≤ 1/32)∫
Bδ

|∇ϕ3|
2

≤ CδN‖∇ξ‖2
L2(Br1)

≤ CδN (Eε(1)+ εβ).

Estimate forϕ2. We have ∫
Bδ

|∇ϕ2|
2

≤ CδN
∫
B1

|∇u|2. (A-43)
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Indeed, we have
−∆ϕ2 = ω2 = σ∂Br1

f (|u|)u× du ∧ dr.

By standard elliptic estimates for harmonic functions with measure data,

‖∇ϕ2‖L∞(B(1/32)) ≤ C‖ω2‖ ≤ C

(∫
∂Br1

|∇u|2
)1/2

,

so that using (A-31) we finally obtain∫
Bδ

|∇ϕ2|
2

≤ CδN
∫
B1

|∇u|2.

Estimate forϕ1. We start with the crucial observation that

|ω1| ≤ Cγ−2 (aε − |u|2)2

ε2
in B1. (A-44)

Indeed, we have to distinguish the two regions

Vγ = {x ∈ B1 : |u(x)| ≥ 1 − γ }, Wγ = {x ∈ B1 : |u(x)| ≤ 1 − γ }.

Recall that

ω1 = 1Br1d(τu× du) = 1Br1

∑
i<j

2(f (|u|)u)xi × (f (|u|)u)xj dxi ∧ dxj .

OnVγ we havef (|u(x)|) = 1/|u(x)| and therefore

(f (|u|)u)xi × (f (|u|)u)xj = 0 for i 6= j.

OnWγ we have, by (A-30),
|(f (|u|)u)xi | ≤ C/ε,

so that

|ω1| ≤
C

ε2
=
C

ε2
γ−2γ 2

≤
C

ε2
γ−2(1 − |u|)2 ≤ Cγ−2 (1 − |u|2)2

ε2
.

DecreasingεN if necessary, we have

(1 − |u|2)2 ≤ 2(aε − |u|2)2 onWγ ,

which yields (A-44).
The final crucial estimate is

‖ϕ1‖L∞(RN ) ≤
C

γ 2
(Eε(0,1)+ εβ). (A-45)

Indeed,

ϕ1(x) =

∫
RN

cN

|x − y|N−2
ω1(y) dy =

∫
Br1

cN

|x − y|N−2
ω1(y) dy,
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so that

|ϕ1(x)| ≤
C

γ 2

∫
Br1

(aε − |u(y)|2)2

ε2|x − y|N−2
dy.

Assume|x| ≤ r1 ≤ 1/8. SinceBr1 ⊂ B1/4(x) we have

|ϕ1(x)| ≤
C

γ 2

∫
B1/4(x)

(aε − |u(y)|2)2

ε2|x − y|N−2
dy.

Next, we observe that∫
B1/4(x)

(aε − |u(y)|2)2

ε2|x − y|N−2
dy =

∫ 1/4

0

1

rN−2

(∫
∂Br

(aε − |u|2)2

ε2

)
dr

= (N−2)
∫ 1/4

0

1

rN−1

(∫
Br

(aε − |u|2)2

ε2

)
dr+

[
1

rN−2

∫
Br

(aε − |u|2)2

ε2

]1/4

0

. (A-46)

Using the monotonicity formulae (A-8) whenr ∈ (0,1/|logε|), and (A-14) whenr ∈

(1/|logε|,1/4), together with the estimates in Lemmas 4 and A.6, we thus infer that∫
B1/4(x)

(aε − |u(y)|2)2

ε2|x − y|N−2
dy ≤ C(Ẽε(x,1/2)+ εβ) ≤ C(Eε(0,1)+ εβ), (A-47)

sinceB(x,1/2) ⊂ B(0,1). Hence for everyx ∈ Br1

|ϕ1(x)| ≤ Cγ−2(Eε(0,1)+ εβ).

Recall that∆ϕ1 = 0 outsideBr1, so that by the maximum principle

‖ϕ1‖L∞(RN ) = ‖ϕ1‖L∞(Br1)
≤ Cγ−2(Eε(0,1)+ εβ),

which is (A-45).
Going back to the equation

−∆ϕ1 = ω1 in RN ,

we conclude that ∫
RN

|∇ϕ1|
2

≤ ‖ϕ1‖L∞(RN )

∫
Br1

|ω1|,

so that ∫
RN

|∇ϕ1|
2

≤ Cγ−4
∫
B1

(aε − |u|2)2

ε2
(Eε(0,1)+ εβ). (A-48)

We now gather the different estimates forϕ1, . . . , ϕ5 to obtain∫
RN

|∇ϕ|
2

≤ C

((
γ 2

+ δN + γ−4
∫
B1

(aε − |u|2)2

ε2

)
Eε(1)

+ γ−4
(∫

B1

(aε − |u|2)2

ε2
+ εβ

))
. (A-49)
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Step 3: Improved estimates for∇(|u|2) onBδ. The equation for|u|2 reads

∆(|u|2)+ 2
(aε − |u|2)|u|2

ε2
= 2|∇u|2 + 2|logε|(ic · ∇u, u).

Multiplying by aε − |u|2 and integrating onBr1 we obtain∫
Br1

(
|∇|u|2|2 + 2

(aε − |u|2)2|u|2

ε2

)
= 2

∫
Br1

(aε − |u|2)|∇u|2 +

∫
∂Br1

(aε − |u|2)
∂|u|2

∂n

+

∫
Br1

∇|u|2 · ∇aε +

∫
Br1

2|logε|(ic · ∇u, u)(aε − |u|2). (A-50)

From (A-31) we deduce∣∣∣∣∫
∂Br1

(aε − |u|2)
∂|u|2

∂n

∣∣∣∣ ≤ Cε

(∫
B1

(aε − |u|2)2

ε2

)1/2(∫
B1

|∇u|2
)1/2

. (A-51)

We also have∣∣∣∣∫
Br1

(aε − |u|2)|∇u|2
∣∣∣∣ ≤ C

∫
V
γ2

γ 2
|∇u|2 + Cγ−2

∫
W
γ2

(aε − |u|2)2

ε2

≤ Cγ 2
∫
B1

|∇u|2 + Cγ−2
∫
B1

(aε − |u|2)2

ε2
. (A-52)

On the other hand,∣∣∣∣∫
Br1

2|logε|(ic · ∇u, u)(aε − |u|2)

∣∣∣∣
≤ Cε|logε|

(∫
B1

(aε − |u|2)2

ε2

)1/2(∫
B1

|∇u|2
)1/2

, (A-53)

and ∣∣∣∣∫
Br1

∇|u|2 · ∇aε

∣∣∣∣ ≤
1

2

∫
Br1

|∇|u|2|2 + 2ε4
|logε|4

∫
Br1

|∇d|2. (A-54)

Inserting (A-51)–(A-54) in (A-50) we finally obtain the estimate∫
Br1

|∇|u|2|2 ≤ C

(
γ 2
∫
B1

|∇u|2 + γ−2
∫
B1

(aε − |u|2)2

ε2
+ εβ

)
. (A-55)

Step 4: Proof of Lemma A.9 completed.Recall that

4|u|2|∇u|2 = 4|u× ∇u|2 + |∇|u|2|2,



70 F. Bethuel et al.

and thus

(3 + aε)|∇u|
2

= 4|u× ∇u|2 + |∇|u|2|2 + 4(aε − |u|2)|∇u|2

≤ 8
(
|∇ϕ|

2
+ |∇ξ |2 + (1 − |u|2)2

∣∣∣∑ ci(x)dxi

∣∣∣2|logε|2
)

+ |∇|u|2|2 + 4(aε − |u|2)|∇u|2,

by (A-38). Combining (A-49), (A-33), (A-55), (A-52) and the easy estimate∫
Bδ

(1 − |u|2)2
∣∣∣∑ ci(x)dxi

∣∣∣2|logε|2 ≤ C

(
ε2

|logε|2
∫
B1

(aε − |u|2)2

ε2
+ εβ

)
,

we finally obtain

Eε(δ) ≤ C

((
γ 2

+ δN + γ−4
∫
B1

(aε − |u|2)2

ε2

)
Eε(1)

+ γ−4
(∫

B1

(aε − |u|2)2

ε2
+ εβ

))
,

which is the desired estimate. This ends the proof. ut

Part C: Proof of Theorem 2 completed

Remember that we are concerned with a solutionw of (124) withΛ0 ≤ 1 onB1 satisfying
the estimate

Eε(w,0,1) ≤ η|logε|. (A-56)

Recall also that in Part A we have exhibited somer0 ∈ (εα/(2N−2),1) such that

1

rN−2
0

∫
Br0

(aε − |w|
2)2

2ε2
≤ C(η|logδ| + εβ), (A-57)

Ẽε(r0)− 2N−2Ẽε(δr0) ≤ C(η|logδ| + εβ), (A-58)

whereδ is fixed but to be determined later. The functionu(x) := w(r0x) defined onB1
satisfies the equation

∆u+
1

ε̃2
u(1 − |u|2) = ic̃ · ∇u|log ε̃| + d̃|log ε̃|2u,

whereε̃ := ε/r0 andΛ0(c̃, d̃) ≤ 1. Sincer0 ≥ εα/(2N−2), we haveε̃ ≤ ε1/2. By scaling
we also have the identities

Eε̃(u,0,1) = Ẽε(w,0, r0),

Eε̃(u,0, δ) =
1

rN−2
0

Eε(w,0, δr0) = δ2−N Ẽε(w,0, δr0),

and ∫
B1

(aε̃ − |u|2)2

ε̃2
=

1

rN−2
0

∫
Br0

(aε − |w|
2)2

ε2
.



Vortex rings 71

We now apply Lemma A.9 tou, and using the previous identities we find

1

rN−2
0

Eε(δr0) ≤ C

((
γ 2

+ δN + γ−4 1

rN−2
0

∫
Br0

(aε − |w|
2)2

ε2

)
Ẽε(r0)

+ γ−4
(

1

rN−2
0

∫
Br0

(aε − |w|
2)2

ε2
+ εβ

))
.

Using (A-57) and (A-58) we obtain

Ẽε(r0) ≤ 2N−2Ẽε(δr0)+ C(η|logδ| + εβ)

≤ CδN−2(γ 2
+ γ−4(η|logδ| + εβ))Ẽε(r0)+ Cδ2Ẽε(r0)

+ Cγ−4(η|logδ| + εβ).

We now fix the values ofδ andγ. First, chooseδ small enough so that

Cδ2
≤ 1/4.

Next, chooseγ small enough so that

CδN−2γ 2
≤ 1/4.

There also existεN andηN such that ifε < εN andη ≤ ηN then

CδN−2γ−4(η|logδ| + εβ) ≤ 1/4.

Hence,
Ẽε(r0) ≤ Cγ−4(η|logδ| + εβ) for ε < εN , η < ηN . (A-59)

Using the monotonicity formula of Proposition 2, we thus obtain

1

εN

∫
Bε

(1 − |u|2)2 ≤ C

(
1

εN

∫
Bε

(aε − |u|2)2 +Λ2
0ε
β

)
≤ C(Ẽε(ε)+Λ2

0ε
β)

≤ C(Ẽε(r0)+Λ2
0ε
β) ≤ Cγ−4(η|logδ| +Λ2

0ε
β).

The conclusion then follows from the next lemma taken from [10]. ut

Lemma A.10. Letw be a solution of(124)onB1. Then

1 − |w(0)| ≤ C

(
1

εN

∫
Bε

(1 − |w|
2)2
)1/(N+2)

.

Proof. Setk = |w(0)| and assume thatk ≤ 1 (otherwise there is nothing to be proved).
By (A-30) we have

|w(x)− w(0)| ≤
C

ε
|x| ≤ 1 −

k

2
,

provided|x| ≤ ε(1− k)/(2C) ≡ λ. Therefore|w(x)| ≤ (1+ k)/2 onBλ. We distinguish
two cases.
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Case 1:λ < ε. Then ∫
Bλ

(1 − |w|
2)2 ≤

∫
Bε

(1 − |w|
2)2.

On the other hand,∫
Bλ

(1 − |w|
2)2 ≥

∫
Bλ

(1 − |w|)2 ≥

(
1 − k

2

)2

|Bλ| = CεN (1 − k)N+2,

by definition ofλ. Consequently,

(1 − k)N+2
≤
C

εN

∫
Bε

(1 − |w|
2)2,

and the conclusion follows.

Case 2:λ ≥ ε. Then

|w(x)| ≤
1 + k

2
in Bε,

and ∫
Bε

(1 − |w|
2)2 ≥

(
1 − k

2

)2

|Bε|.

Therefore

(1 − k)N+2
≤ (1 − k)2 ≤

C

εN

∫
Bε

(1 − |w|
2)2,

and the lemma is proved. ut

Corollary A.1. Let 0 < σ < 1, and letη > 0 andε0 > 0 be given by Theorem2. Let
x0 ∈ Ω andr > 0 be such thatB(x0,2r) ⊂ Ω and4

√
ε < r < 4/(1+Λ0). Then for all

ε < ε0, if w is a solution of(124) in Ω and

Ẽε(x0, r) ≤ 42−Nη|logε|, (A-60)

then ∣∣1 − |w(x)|
∣∣ ≤ σ for all x ∈ B(x0,3r/4). (A-61)

Proof. If x ∈ B(x0,3r/4), thenB(x, r/4) ⊂ B(x0, r) so that

Ẽε(x, r/4) = 4N−2 1

rN−2
Eε(x, r/4) ≤ 4N−2Ẽε(x0, r) ≤ η|logε|,

and the conclusion follows by Theorem 2. ut

Concerning the asymptotics of the potential part in the energy, namely∫
Ω

(aε(x)− |w|
2)2

ε2
,

it is tempting to believe that it remains bounded asε → 0 (at least away from the bound-
ary). We have no proof of that fact; however, the following proposition holds.
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Proposition A.1. LetK ⊂ Ω be a compact subset andw a solution of(A.1) satisfying
(24). Then ∫

K

(aε(x)− |w|
2)2

ε2
≤ Cr(ε)|logε|, (A-62)

wherer(ε) → 0 asε → 0 andC depends only onM0.

Proof. Let ρ := |w|. If w satisfies (124) thenρ satisfies

−∆ρ2
+ 2|∇w|

2
=

2

ε2
ρ2(aε − ρ2)− (w, ic · ∇w)|logε|. (A-63)

Let 0 < σ < 1/2. DefineA := {x ∈ K : ρ(x) > 1 − σ } and ρ̄ := max(ρ,1 − σ),
so thatρ = ρ̄ onA. Let alsoζ ∈ D(Ω) be such that 0≤ ζ ≤ 1 onΩ, ζ ≡ 1 onK,
and|∇ζ | ≤ C, whereC depends only onK. Multiplying equation (A-63) byζ(ρ̄2

− 1)
(which is compactly supported inΩ) and integrating overΩ we obtain∫
Ω

∇ρ2
∇ρ̄2ζ +

∫
Ω

2ρ(1 − ρ2)(1 − ρ̄2)

ε2
ζ =

∫
Ω

(1 − ρ̄2)|∇w|
2
+

∫
Ω

∇ρ2
∇ζ(1 − ρ̄2)

+

∫
Ω

2ρ|logε|2d(x)(1 − ρ̄2)ζ

+

∫
Ω

(w, ic · ∇w)(ρ̄2
− 1)ζ |logε|.

It follows that∫
Ω

2ρ(1 − ρ2)(1 − ρ̄2)

ε2
ζρ2

∇ρ̄2

≤ 2σ
∫
Ω

|∇w|
2
+ Cσ

∫
Ω

|∇ρ||aε − ρ2
| + CΛ0M0ε|logε|2

≤ 2σ
∫
Ω

|∇w|
2
+ Cσ

[∫
Ω

|∇ρ|
2
+

∫
Ω

(aε − ρ2)2

4ε2

]
+ CΛ0M0ε|logε|2.

Hence, sinceρ ≥ 1/2 andζ = 1 onA, we obtain∫
A

(aε − ρ2)2

ε2
≤ CσEε(w)+ CΛ0M0ε|logε|2. (A-64)

Define alsoB := K \ A. We claim that∫
B

(aε − ρ2)2

ε2
≤ C, (A-65)

whereC depends only onσ ,M0 andK. This follows from Theorem 2, the monotonicity
formula in Lemma 4 and the Besicovitch covering theorem, along the same lines as the
proof of Proposition 1 in [10]. [Indeed, only the aforementioned ingredients are used and
hence the proof there applies also to our equation.] In particular, we infer from (A-65)
that there existsεσ > 0 such that∫

B

(aε − ρ2)2

ε2
≤ σ |logε| (A-66)
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for all 0 < ε < εσ , whereεσ depends only onσ , M0 andK. Combining (A-64) and
(A-66) we finally obtain∫

K

(aε(x)− |w|
2)2

ε2
≤ Cσ |logε| for 0< ε < εσ .

Clearly we can assume that the mappingt : σ 7→ εσ is strictly increasing. The function
r := t−1 fulfills the statement of the proposition, so that the proof is complete. ut

Appendix B: Properties of the concentration setΣµ

Recall that
Σµ = {x ∈ Ω : Θ∗(µ∗, x) > 0}.

The purpose of this section is to describe and prove the properties ofΣµ stated in Theo-
rem 3. We first have

Lemma B.11. There existsη0 > 0 such that ifx0 ∈ Σµ, then

Θ∗(µ∗, x0) ≥ η0.

Proof. Let σ > 0, to be determined later, and letη > 0 andε0 > 0 be the corresponding
constants provided by Theorem 2. Set

η0 = 42−Nη.

Assume by contradiction that
Θ∗(x0) < 42−Nη. (B-1)

Then for eachr0 > 0 there exists 0< r < r0 such thatB(x0,2r) ⊂ Ω, andε1 ≤

min(ε0, r
2/16) such that

Ẽε(x0, r) < 42−Nη|logε| ∀ε ≤ ε1. (B-2)

From Corollary A.1 we thus infer that∣∣1 − |w(x)|
∣∣ ≤ σ ∀x ∈ B(x0,3r/4).

We write
w(x) = ρ(x)exp(iϕ(x)) in B(x0,3r/4).

The phaseϕ satisfies the equation

−∆ϕ = −div((1 − ρ2)∇ϕ)+
1
2|logε|c · ∇(ρ2

− 1) in B(x0,3r/4). (B-3)

Let ϕ̃ be the harmonic function defined onB(x0,3r/4) such thatϕ̃ = ϕ on the boundary
of B(x0,3r/4). In particular, we have∫

B(x0,3r/4)
|∇ϕ̃|

2
≤

∫
B(x0,3r/4)

|∇ϕ|
2
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and for allδ > 0,∫
B(x0,δ3r/4)

|∇ϕ̃|
2

≤ CδN
∫
B(x0,3r/4)

|∇ϕ̃|
2

≤ CδN
∫
B(x0,3r/4)

|∇ϕ|
2. (B-4)

Multiplying equation (B-3) byϕ − ϕ̃ and integrating overB(x0,3r/4) we obtain, as in
the proof of Theorem 2,∫

B(x0,δ3r/4)
|∇(ϕ − ϕ̃)|2 ≤ C(σ +Λ0ε|logε|)Eε(x0,3r/4). (B-5)

Combining (B-4) and (B-5) we finally obtain∫
B(x0,δ3r/4)

|∇ϕ|
2

≤ C(δN + σ +Λ0ε|logε|)Eε(x0,3r/4). (B-6)

Concerning the modulus, letξr ∈D(B(x0,3r/4), [0,1]) be such thatξ≡1 onB(x0,3r/8)
and|∇ξr | ≤ C/r. Multiplying the equation

−∆ρ + ρ|∇ϕ|
2

=
1

ε2
ρ(aε − ρ2)+ |logε|ρc · ∇ϕ

by ξr(1 − ρ) and integrating overB(x0,3r/4) we obtain∫
B(x0,3r/8)

|∇ρ|
2
+
(aε − ρ2)2

ε2
≤ Cσ

∫
B(x0,3r/4)

|∇w|
2

+ C
ε

r
Eε(x0,3r/4)+ CΛ0ε|logε|2. (B-7)

Hence, sincer ≥ 4
√
ε, from (B-6) and (B-7) we have

Ẽε(x0, δ3r/4) ≤ C(δ2
+ δ2−N (σ +Λ0ε|logε|+ ε1/2)Ẽε(x0, r)+C

Λ0ε|logε|2

(δr)N−2
. (B-8)

Now chooseδ such thatCδ2 < 1/4 and thenσ such thatCδ2−Nσ < 1/4. Letting ε tend
to zero in the previous inequality keepingr fixed yields

µ∗(B(x0, δ3r/4)

(δ3r/4)N−2
≤

1

2

µ∗(B(x0, r))

rN−2
. (B-9)

Sincer < r0, andr0 was arbitrarily small, we infer taking a sequencer0 → 0 that

Θ∗(x0) ≤
1
2Θ∗(x0), i.e. Θ∗(x0) = 0.

This contradicts the definition ofΣµ and the proof is complete. ut

Lemma B.12. Σµ is closed inΩ.

Proof. This follows directly from the upper semicontinuity ofΘ∗, the lower density. ut

Lemma B.13 (Uniform convergence away fromΣµ). LetK ⊂ Ω \ Σµ be any com-
pact subset. For anyσ > 0, there exists̃ε > 0 depending only onK andσ such that if
0< ε < ε̃, then ∣∣1 − |w|

∣∣ ≤ σ onK.
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Proof. Let σ > 0 and let the correspondingη > 0 andε0 > 0 be given by Theorem 2.
For eachx ∈ K, we deduce from Lemma B.11 that there existr(x) > 0 andε(x) > 0
such that

Ẽε(x, r(x)) ≤ 42−Nη|logε| ∀ε ≤ ε(x).

Let x1, . . . , xk be such that

K ⊂
⋃k
i=1B(xi, r(xi)/2)

and letε̃ := min(ε0, ε(x1), . . . , ε(xk)). From Corollary A.1, it follows that forε ≤ ε̃,∣∣1 − |w|
∣∣ ≤ σ onB(xi, r(xi)/2) ∀i = 1, . . . , k.

This proves the lemma. ut

Lemma B.14 (Structure ofµ∗). We have

µ∗ = g(x)HN + h(x)HN−2 Σµ ,

whereg andh are locally bounded onΩ andh satisfies

η0 ≤ Θ∗(x) < h(x) ≤ Θ∗(x) ≡ lim sup
r→0

µ∗(B(x, r))

rN−2
≤ c(x)M0.

Proof. SinceΣµ is closed inΩ and hence measurable, we have

µ∗ = µ∗ Σµ + µ∗ (Ω \Σµ).

As in [10, Theorem VIII.1], we infer from Corollary A.1 thatHN−2(Σµ) ≤ CM0. It also
follows from the monotonicity formula of Proposition 2 that for allx ∈ Ω,

Θ∗(x) := lim sup
r→0

µ∗(B(x, r))

rN−2
≤ CM0.

Using the Radon–Nikodym theorem, we thus obtain

µ∗ Σµ = h(x) ·HN−2 Σµ (B-10)

for someΘ∗ ≤ h ≤ Θ∗. We will prove that in factΘ∗ = Θ∗.

Now, letx0 ∈ Ω \Σµ andr > 0 be such thatB(x0,2r) ⊂ Ω \Σµ. By Lemma B.13,

σ :=
∥∥1 − |w|

∥∥
L∞(B(x0,2r))

= o(1) asε → 0.

The same computation as in Lemma B.11 (see (B-8)) shows that for each 0< δ < 1/2,

Eε(x0, δ3r/4) ≤ C(δN + σ +Λ0ε|logε| + ε1/2)Eε(x0, r)+ CΛ0ε|logε|2, (B-11)

but now we know thatσ = σ(ε) = o(1). Hence, dividing both sides by|logε| and
sendingε to zero we obtain

µ∗(B(x0, δ3r/4)) ≤ CδNµ∗(B(x0, r)).

This implies thatµ∗ (Ω \ Σµ) is absolutely continuous with respect to the Lebesgue
measure, and using the Radon–Nikodym theorem once more we finally deduce that

µ∗ = g(x) ·HN + h(x) ·HN−2 Σµ (B-12)

for some locally bounded functiong. ut
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Lemma B.15. We have

g(x) = |∇h∗(x)|
2 a.e. inΩ,

whereh∗ is some harmonic function.

Proof. The argument is similar to the one carried out in [12] for Theorem A(iv). Since
the proof is rather lengthy we briefly sketch the main steps.

First, one has to prove that if|wε| ≥ 1− σ0 on some ballB(x0, R) (whereσ0 is some
suitable constant), then

|∇wε|
2

' |∇φε|
2 onB(x0,3R/4),

whereφε is harmonic and satisfies

|∇φε|
2

≤ C
√
M0| logε|.

Then
φε√

|logε|
⇀ h∗,

which is thus harmonic onB(x0,3R/4).
A second important step is to prove thath∗ is globally well defined and harmonic

onΩ. Here the argument is the same as in [12]. ut

Proof of the curvature equation and the rectifiability ofΣµ. Let X ∈ D(Ω,RN ) be a
smooth vector field and

eε(w) :=
1

2
|∇w|

2
+

1

4ε2
(aε − |w|

2)2.

We have∫
Ω

eε(w)div X = −

∫
Ω

∇eε(w) · X

= −

∫
Ω

(
1

2
∇(|∇w|

2)+
1

2ε2
(aε − |w|

2)(−2w∇w + ∇aε)

)
· X, (B-13)

and ∫
Ω

∑
i,j

∂w

∂xi

∂w

∂xj

∂Xi

∂xj
= −

∫
Ω

∑
i,j

(
∂2w

∂xi∂xj

∂w

∂xj
+
∂w

∂xi

∂2w

∂x2
j

)
Xi

= −

∫
Ω

∇w · X∆w −

∫
Ω

∑
i,j

∂

∂xi

∣∣∣∣ ∂w∂xj
∣∣∣∣2Xi

= −

∫
Ω

∇w · X∆w −

∫
Ω

1

2
∇(|∇w|

2) · X. (B-14)
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Sincew is a solution of (124), we deduce from (B-13) and (B-14) that

1

|logε|

∫
Ω

(
eε(w)δij −

∂w

∂xi

∂w

∂xj

)
∂Xi

∂xj

=
1

|logε|

∫
Ω

(∇w · X)
(
∆w +

1

ε2
w(aε − |w|

2)

)
+

1

2
(aε − |w|

2)|logε|2∇d · X

=

∫
Ω

(∇w · X, ic · ∇w)+

∫
Ω

1

2
(aε − |w|

2)|logε|∇d · X

= −

∫
Ω

〈∗ (c ∧ ∗Jw) ,X〉 +

∫
Ω

1

2
(aε − |w|

2)|logε|∇d · X. (B-15)

Set

αijε :=
1

|logε|

(
eε(w)δij −

∂w

∂xi

∂w

∂xj

)
.

Notice thatαijε is a symmetric matrix with trace larger than(N − 2)µε, and a little linear
algebra shows that its eigenvalues are less than or equal toµε. Moreover,

|αijε | ≤ Nµε. (B-16)

Going if necessary to a subsequence, we may thus assume that

αijε → α
ij
∗ in the sense of measures.

In view of (B-16) we have|αij∗ | ≤ Nµ∗, therefore we may write

α
ij
∗ (x) = Aij (x)µ∗ for µ∗-a.e.x ∈ Ω,

where the matrixAij (x) is symmetric, with traceequal to N − 2 and eigenvalues less
than or equal to one [the fact that the trace is equal toN − 2 and not just less thanN − 2
follows from Proposition A.1]. From (B-16) we also have

Aij ≥ −Nδij for µ∗-a.e.x ∈ Ω. (B-17)

Notice that∣∣∣∣∫
Ω

1

2
(aε − |w|

2)|logε|∇d · X

∣∣∣∣ ≤ CΛ0ε|logε| → 0 asε → 0,

so that passing to the limit in (B-15) we obtain∫
Ω

Aij (x)
∂Xi

∂xj
dµ∗(x) = −

∫
Ω

〈∗(c(x) ∧ ∗dJ∗(x)),X〉

= −

∫
Ω

〈
∗

(
c ∧ ∗

dJ∗

dµ∗

)
,X
〉
dµ∗(x). (B-18)
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We decompose the r.h.s. of (B-18) as∫
Ω

Aij (x)
∂Xi

∂xj
dµ∗(x) =

∫
Ω

Aij (x)
∂Xi

∂xj
dµ∗(x) Σµ

+

∫
Ω

(
|∇h∗|

2

2
δij −

∂h∗

∂xi

∂h∗

∂xj

)
∂Xi

∂xj
dx. (B-19)

Sinceh∗ is harmonic, the last term in (B-19) vanishes. Hence, the support ofJ∗ being
included inΣµ, using (B-12) we obtain∫

Ω

Aij (x)
∂Xi

∂xj
dµ∗(x) Σµ = −

∫
Ω

〈
∗

(
c ∧ ∗

dJ∗

dµ∗

)
,X
〉
dµ∗(x) Σµ. (B-20)

Since X was arbitrary, the previous equality means in particular that the generalized
(N − 2)-varifold (see [5])

Ṽ := δAij (x)µ∗ Σµ(x)

has a first variation. From Step 1 and [5, Theorem 3.8(c)] we thus infer thatṼ is indeed a
real rectifiable(N − 2)-varifold. In particular, the geometrical supportΣµ of µ∗ Σµ is
rectifiable. From the rectifiability ofΣµ, we deduce that

Θ∗(x) = Θ∗(x) for µ∗-a.e.x in Σµ,

so that
µ∗ = g(x) ·HN +Θ∗(x) ·HN−2 Σµ,

and
V (Σµ,Θ∗) = Ṽ .

Equation (B-20) then precisely states thatV (Σµ,Θ∗) satisfies the mean curvature equa-
tion

H(x) = ∗

(
c(x) ∧ ∗

dJ∗

dµ∗

)
for µ∗-a.e.x in Σµ.

The proof of Theorem 3 is now complete. ut

Appendix C: Compactness

If some additional conditions are imposed on the boundary data, we may obtain compact-
ness properties forwε. In this part, we will assume∫

∂Ω

eε(w) ≤ M0, ‖w‖H1/2(∂Ω) ≤ M0. (C-1)

[There are however many variants of condition (C-1), see [7, 11].]

Proposition C.2. Let1 ≤ p < N/(N − 1). There exists a constantC > 0 depending on
p,M0,Λ0 andΩ but independent ofε such that ifw is a solution of(124)satisfying(24)
and(C-1) then ∫

Ω

|∇w|
p

≤ C.
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Proof. We follow the lines of [7, 11]. Letρ := |w|. From the identity

ρ2
|∇w|

2
= ρ2

|∇ρ|
2
+ |w × ∇w|

2,

and the inequality|∇w| ≥ |∇ρ|, we deduce that

|∇w|
2

= |∇ρ|
2
+ |w × ∇w|

2
+ (1 − |w|

2)(|∇w|
2
− |∇ρ|

2)

≤ |∇ρ|
2
+ |w × ∇w|

2
+ |aε − |w|

2
| |∇w|

2
+Λ0ε

2
|logε| |∇w|

2

≤ |∇ρ|
2
+ |w × ∇w|

2
+ (

√
2ε +Λ0ε

2
|logε|)eε(w).

(C-2)

Hence, since (24) is satisfied,∫
Ω

|∇w|
p

≤ C

[∫
Ω

|∇ρ|
p

+

∫
Ω

|w × ∇w|
p

+ 1

]
, (C-3)

whereC depends only onp,Λ0,M0 andΩ.

Step 1: Estimates for the modulus.Notice thatρ satisfies the equation

−∆ρ2
+ 2|∇w|

2
=

2

ε2
ρ2(aε − ρ2)− (w, ic · ∇w)|logε|. (C-4)

Let us introduce the set

A = {x ∈ Ω : ρ(x) > 1 − ε1/2
}

and the function
ρ̄ = max{ρ,1 − ε1/2

},

so thatρ̄ = ρ onA and 0≤ 1 − ρ̄ ≤ ε1/2 in Ω.
Next let ζε be a function inD(Ω) such that 0≤ ζε ≤ 1 onΩ, ζε ≡ 1 onΩε ≡

{x ∈ Ω : dist(x, ∂Ω) ≥ ε1/2
}, and |∇ζε| ≤ Cε−1/2, whereC depends only onΩ.

By multiplying equation (C-4) byζε(ρ̄2
− 1) (which is compactly supported inΩ), and

integrating overΩ we obtain∫
Ω

∇ρ2
∇ρ̄2ζε +

∫
Ω

2ρ(1 − ρ2)(1 − ρ̄2)

ε2
ζε

=

∫
Ω

(1 − ρ̄2)|∇w|
2
+

∫
Ω

∇ρ2
∇ζε(1 − ρ̄2)

+

∫
Ω

2ρ|logε|2d(x)(1 − ρ̄2)ζε +

∫
Ω

(w, ic · ∇w)(ρ̄2
− 1)ζε|logε|.

It follows that on the setAε = Ωε ∩ A we have∫
Aε

|∇ρ2
|
2

=

∫
Aε

∇ρ2
∇ρ̄2

≤ 2ε1/2
∫
Ω

|∇w|
2
+

C

ε1/2

∫
Ω

|∇ρ| |aε − ρ2
| + CΛ0M0ε|logε|2

≤ 2ε1/2
∫
Ω

|∇w|
2
+ Cε1/2

[∫
Ω

|∇ρ|
2
+

∫
Ω

(aε − ρ2)2

4ε2

]
+ CΛ0M0ε|logε|2.
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Hence, sinceρ ≥ 1 − ε1/2 onAε, we have, forε ≤ 1/4,∫
Aε

|∇ρ|
2

≤ 4
∫
Aε

|∇ρ2
|
2

≤ Cε1/2Eε(w)+ CΛ0M0ε|logε|2 ≤ C. (C-5)

SetWε = Ω \Ωε, B = Ω \ A, so that

Ω = B ∪ Aε ∪Wε.

From (24) we deduce
∫
B
(1 − ρ2)2 ≤ 4M0ε

2
|logε| and hence, since 1− ρ ≥ ε1/2 onB,

it follows that|B| ≤ 4M0ε|logε|. Thus∫
B

|∇ρ|
p

≤

(∫
Ω

|∇ρ|
2
)p/2

|B|
1−p/2

≤ C|logε|p/2(ε|logε|)1−p/2,

i.e. ∫
B

|∇ρ|
p

≤ Cε1−p/2
|logε|. (C-6)

Finally, we turn toWε. Clearly, by construction|Wε| ≤ Cε1/2. Hence∫
Wε

|∇ρ|
p

≤

(∫
Ω

|∇ρ|
2
)p/2

|Wε|
1−p/2

≤ Cε1/2−p/4
|logε|p/2. (C-7)

Combining (C-5)–(C-7) we get the estimate for the modulus:∫
Ω

|∇ρ|
p

≤ C, (C-8)

whereC does not depend onε.

Step 2: Estimates for the pre-Jacobian.Consider the Hodge–de Rham decomposition
of w × ∇w:

w × ∇w = dϕ + d∗ψ, (C-9)

where the functionϕ satisfiesϕ = 0 on ∂Ω and the 2-formψ satisfiesdψ = 0 onΩ
andψ> = 0 on∂Ω. Applying respectively the operatorsd∗ andd to (C-9) we obtain the
equation forϕ (resp.ψ):{

∆ϕ = c · ∇(|w|
2
− 1)|logε| in Ω,

ϕ = 0 on∂Ω,
(C-10)

and {
∆ψ = 2Jw in Ω,

ψ> = 0, (d∗ψ)> = (w × dw)> on ∂Ω.
(C-11)

From (24), (C-1), (C-11) and Proposition III.1 in [11] we infer that∫
Ω

|∇ψ |
p

≤ C. (C-12)
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Indeed, the estimate (C-12) is valid even without assuming thatw is a solution of (124)
(see [11]). Notice, however, that the constantC may depend onΩ; in the proof of The-
orem 4 we will see how to use the extra information thatw satisfies (124) to obtain
estimates independent of the domain.

Concerningϕ, multiplying equation (C-10) byϕ and integrating overΩ we get∫
Ω

|∇ϕ|
2

= |logε|
∫
Ω

div((|w|
2
− 1)c)ϕ

= |logε|
∫
Ω

(|w|
2
− 1) c · ∇ϕ

≤ CΛ0ε|logε|

(∫
Ω

(1 − |w|
2)2

4ε2

)1/2(∫
Ω

|∇ϕ|
2
)1/2

≤ CΛ0(M0 + 1)ε|logε|3/2
(∫

Ω

|∇ϕ|
2
)1/2

, (C-13)

so that ∫
Ω

|∇ϕ|
p

≤

(∫
Ω

|∇ϕ|
2
)p/2

|Ω|
1−p/2

≤ C, (C-14)

whereC does not depend onε. Combining (C-8), (C-12) and (C-14) we get the desired
conclusion from (C-3). ut

Proof of Theorem 4.Recall thatwε is a solution of (11) onΠn such that (24) and (31)
are satisfied. For simplicity, we omit the subscriptsε below, i.e. we setw ≡ wε.

Step 1: Extracting the “bad” balls. From Theorem 2, we infer that there existsη > 0
andR0 > 0 such that for eachx ∈ Sε,

Eε(x, R0) ≥ η|logε|. (C-15)

It follows from Vitali’s covering theorem that there exist an at most countable family
(yi,ε)i∈I of points inSε such that

Sε ⊂
⋃
i∈I B(yi,ε,5R0)

and
B(yi,ε, R0) ∩ B(yj,ε, R0) = ∅ if i 6= j.

We deduce from (24), (C-15) and the previous equality that

] I ≤ l := M0/η.

We claim that there exists a constant 10≤ κ ≤ C(] I) (whereC(] I) depends only on
] I ) andq pointsx1,ε, . . . , xq,ε ∈ Πn (q ≤ l) such that, withR := κR0,

Sε ⊂
⋃q

i=1B(xi,ε, R) and dist(xi,ε, xj,ε) ≥ 10R if i 6= j.

Indeed, setR1 := 10R0. If dist(yi,ε, yj,ε) ≥ 10R1 there is nothing to prove. If not, con-
sider the equivalence relation

yi,ε ∼ yj,ε if dist(yi,ε, yj,ε) ≤ 10R1,
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and denoteCj , j ∈ J the different equivalence classes. We defineB(zj , R2,j ) for each
j ∈ J as the smallest ball such that⋃

yi,ε∈Cj B(yi,ε, R1) ⊂ B(zj , R2,j ),

and we setR2 := maxj R2,j . If dist(zj,ε, zk,ε) ≥ 10R2 for eachj 6= k we are done, other-
wise we repeat inductively the previous growing argument. Since at each step, the number
of equivalence classes decreases at least by one, the process finishes after at most] I steps.

Step 2: Choosing a good unfolding of the torus.Since (24) and (31) are satisfied, we
infer from Lemma 2.1 that there exists a good unfolding of the torusΠn such that∫

∂Ωn

eε(w) ≤
2N−1M0|logε|

n
≤ C, (C-16)

whereC does not depend onn or ε. In particular,‖w‖H1(∂Ωn)
is uniformly bounded.

Step 3: Uniform W
1,p
loc estimates. Let x0 ∈ Ωn and 1≤ p < N/(N − 1) be given. As

in the proof of Proposition C.2 (C-3) we obtain∫
B(x0,1)

|∇w|
p

≤ C

[∫
B(x0,1)

|∇ρ|
p

+

∫
B(x0,1)

|w × ∇w|
p

+ 1

]
, (C-17)

whereρ := |w| andC depends only onp, Λ0 andM0. The estimate for the modulus is
also obtained as in Proposition C.2 by replacingΩ byB(x0,1); we have∫

B(x0,1)
|∇ρ|

p
≤ C, (C-18)

whereC does not depend onn or ε.
Consider the Hodge–de Rham decomposition ofw × ∇w in Ωn:

w × ∇w = dϕ + d∗ψ, (C-19)

where the functionϕ satisfiesϕ = 0 on∂Ωn and the 2-formψ satisfiesdψ = 0 onΩn
andψ> = 0 on∂Ωn. Applying respectively the operatorsd∗ andd to (C-19) we obtain
the equation forϕ (resp.ψ) :−∆ϕ = c(ε)

∂

∂x1
(|w|

2
− 1)|logε| in Ωn,

ϕ = 0 on∂Ωn,
(C-20)

and {
−∆ψ = 2Jw in Ωn,

ψ> = 0, (d∗ψ)> = (w × dw)> on ∂Ωn.
(C-21)

Again the estimate forϕ follows as in Proposition C.2, and we obtain∫
B(x0,1)

|∇ϕ|
p

≤ C, (C-22)

whereC does not depend onn or ε (andC → 0 asε → 0).
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The estimate forψ is more delicate since the embedding constants used in the proof
of Proposition C.2 heavily depend onn. We will overcome this difficulty by taking ad-
vantage of the confinement ofJw described in Step 1. Let̃w be defined by

w̃(x) :=

{
2w(x) if |w(x)| ≤ 1/2,

w(x)/|w(x)| if |w(x)| ≥ 1/2.

Notice thatEε(w̃) ≤ 4M0|logε| and thatJ w̃ is supported inSε. We also define, for
1 ≤ i ≤ q, the 2-forms

ωi := 2J w̃ B(xi,ε, R).

Letψ0,i be the solution of the problem{
−∆ψ0,i = ωi in Ωn,

ψ0,i = 0 on∂Ωn
(C-23)

(note the different kind of boundary conditions here). Letψ1 be the solution of{
−∆ψ1 = 2(Jw − J w̃) in Ωn,

(ψ1)> = 0, (d∗ψ2)> = 0 on∂Ωn,
(C-24)

andψ2 the solution of
−∆ψ2 = 0 inΩn,

(ψ2)> = 0, (d∗ψ2)> = (w × dw)> −

q∑
i=1

(d∗ψ0,i)> on ∂Ωn.
(C-25)

Clearly,

ψ =

q∑
i=1

ψ0,i + ψ1 + ψ2.

We also set

U i1 := B(x0,1) ∩ (Ωn \ B(xi,ε,2R)), U i2 := B(xi,ε,2R).

Estimate forψ0,i . From the Green formula

ψ0,i(x) =

∫
supp(ωi )

〈ωi(x),GΩn(x, y)〉 dy (C-26)

we deduce that
‖ψ0,i‖Ck(U i1)

≤ C(k)‖ωi‖[C0,α(U i1)]
∗ ≤ C(k). (C-27)

Indeed, for anyx in U i1 andy ∈ supp(ωi) one has

min(dist(x, ∂Ωn),dist(y, ∂Ωn),dist(x, y)) ≥ R,

so that (C-27) follows from standard estimates on the Green functions (which is even
explicit in the case of the cubeΩn).
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ForU i2, consider the solutioñψ0,i of{
−∆ψ̃0,i = ωi in B(xi,ε,3R),

ψ̃0,i = 0 on∂B(xi,ε,3R).
(C-28)

Following the lines of Proposition C.2 we obtain∫
B(xi,ε,3R)

|∇ψ̃0,i |
p

≤ C(R)‖ωi‖[C0,α ]∗ ≤ C(R,M0). (C-29)

On the other hand, forx ∈ U i2 we have

ψ̃0,i(x)− ψ0,i(x) =

∫
supp(ωi )

〈ωi(y), [RB(xi,ε,3R)(x, y)− RΩn(x, y)]〉 dy,

whereRΩn stands for the regular part of the Green functionGΩn and similarly for
B(xi,ε,3R). Note that for allx ∈ U i2 and for ally ∈ supp(ωi),

min(d(x, ∂Ωn),d(y, ∂Ωn),d(x, ∂B(xi,ε,3R)),d(y, ∂B(xi,ε,3R))) ≥ R,

so that again using standard estimates

‖ψ̃0,i − ψ0,i‖Ck(U i2)
≤ C(k)‖ωi‖[C0,α ]∗ ≤ C(R,M0). (C-30)

Combining (C-27), (C-29) and (C-30) we obtain∫
B(x0,1)

|∇ψ0,i |
p

≤ C,

whereC does not depend onn or ε.

Estimate forψ1. From standard elliptic estimates we have

‖ψ1‖W1,p
0 (Ωn)

≤ C‖Jw − J w̃‖
[W1,p′

0 (Ωn)]∗
, (C-31)

whereC does not depend onn (indeed the previous inequality is invariant under scaling
of the domain and of the corresponding equation). On the other hand,

‖Jw − J w̃‖
[W1,p

0 (Ωn)]∗
= sup
h∈W

1,q
0 (Ωn,Λ2RN ),‖h‖=1

∫
Ωn

〈Jw − J w̃, h〉,

and∫
Ωn

〈Jw − J w̃, h〉 =

∫
Ωn

〈w × dw − w̃ × dw̃, d∗h〉

≤ C

(∫
Ωn

|∇h|q
)1/q

·

(∫
Ωn

|w × dw − w̃ × dw̃|
p

)1/p

. (C-32)

OnSε,
|w × dw − w̃ × dw̃| ≤ C|w| · |∇w|
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so that since|Sε| ≤ Cε2
|logε|,(∫

Sε

|w × dw − w̃ × dw̃|
p

)1/p

≤ C

(∫
Sε

|∇w|
2
)1/2

·

(∫
Sε

|w|
s

)1/s

≤ C|logε|1/2(ε2
|logε|)1/s,

wheres := 2p/(2 − p) ≥ 2. OutsideSε, we have

|w × dw − w̃ × dw̃| =

∣∣∣∣ |w|
2
− 1

|w|2
w × dw

∣∣∣∣ ≤ 4
∣∣|w|

2
− 1

∣∣ · |∇w|

so that(∫
Ωn\Sε

|w × dw − w̃ × dw̃|
p

)1/p

≤ C

(∫
Ωn\Sε

|∇w|
2
)1/2

·

(∫
Ωn\Sε

(|w|
2
− 1)s

)1/s

≤ Cε2/s
|logε|1/2

(∫
Ωn\Sε

(|w|
2
− 1)2

ε2

)1/s

≤ Cε2/s
|logε|1/2|logε|1/s ≤ C. (C-33)

Combining these two estimates with (C-31) we thus obtain∫
B(x0,1)

|∇ψ1|
p

≤ C,

whereC does not depend onn or ε.

Estimate forψ2. We deduce from Step 2 that

‖(w × dw)>‖L2(∂Ωn)
≤ C.

On the other hand, since dist(∂Ωn, supp(ωi)) ≥ R we have

‖∇ψ0,i‖L∞(∂Ωn) ≤ C

(this again follows from standard estimates on the Green function for the cubeΩn). Since
ψ2 is harmonic onΩn, we thus obtain

‖ψ2‖Ck(B(x0,1)) ≤ C,

whereC depends onk but not onn or ε.
Combining the estimates forψ0,i ,ψ1 andψ2 with (C-17) and (C-18) we conclude that∫

B(x0,1)
|∇w|

p
≤ C. (C-34)

This establishes claim (i) of the Theorem.
Next, we prove estimate (ii) of the Theorem, i.e. provide uniform energy bounds away

from the bad balls. Here, we will work directly onΠn (as a manifold). Therefore, the
Hodge–de Rham decomposition will involve also harmonic forms. The next step will be
useful to control these forms.
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Step 4: Degree estimate.Since|w|≥1/2 off Sε, we may writew(x)=ρ(x)exp(iϕ(x))
off Sε, whereϕ(x) ∈ S1. Moreover, since

Ω̃n := Ωn \
⋃q

i=1B(xi,ε, R)

is simply connected, the phaseϕ(x) can be lifted as a function from̃Ωn to R. If the
coordinates(y2, . . . , yN ) are such that

[−n, n] × (y2, . . . , yN ) ∩
⋃q

i=1B(xi,ε, R) = ∅

then the degree of the maps 7→ ϕ(s, y2, . . . , yn), i.e.

d := deg(s 7→ ϕ(s, y2, . . . , yn))

is well defined. Clearly it follows from the invariance of the degree under homotopy that
d does not depend on the particular choice of an admissible(y2, . . . , yN ).

We claim thatd = 0 (an elementary way to rephrase this is that the lifted phaseϕ

takes the same values on opposite faces ofΩn). Indeed, from Step 1 we infer that the set
of admissible(y2, . . . , yN ) ∈ [−n, n]N−1 has measure larger thannN−1 for n sufficiently
large (and thusε sufficiently small).

On the other hand, ifd 6= 0 we obtain for each admissible(y2, . . . , yN ),∫ n

−n

|∇w(s, y2, . . . , yN )|
2 ds ≥

1

4

∫ n

−n

∣∣∣∣ ∂ϕ∂x1
(s, y2, . . . , yN )

∣∣∣∣2 ds ≥ 2n
1

4

(
2π

2n

)2

=
π2

2n
,

so that by Fubini’s theorem,∫
Ωn

|∇w|
2

≥ nN−1π
2

2n
=
π2

2
nN−2

≥ 2(M0 + 1)|logε|.

This contradicts hypothesis (24) and proves the claim. Obviously the corresponding de-
gree computed with respect to the other coordinates is also zero.

Step 5: Local uniform energy estimates.Let x ∈ Ωn andr > 0 be such thatB(x, r) ⊂

Ωn \ Sε. As in the previous step, we writew(x) = ρ(x)exp(iϕ(x)) in B(x, r), and we
have

div(ρ2
∇ϕ) = c|logε|

∂

∂x1
(ρ2

− 1).

Let ϕ̃ be the solution ofdiv(ρ2
∇ϕ̃) = c|logε|

∂

∂x1
(ρ2

− 1) in B(x, r),

ϕ̃ = 0 on∂B(x, r).
(C-35)

Multiplying (C-35) byϕ̃ and integrating by parts leads to∫
B(x,r)

|∇ϕ̃|
2

≤ Cε2
|logε| ≤ C. (C-36)

On the other hand,̄ϕ := ϕ − ϕ̃ satisfies

div(ρ2
∇ϕ̄) = 0 onB(x, r). (C-37)
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Sinceϕ is defined up to a constant multiple of 2π , we may assume without loss of gen-
erality that

1

|B(x, r)|

∫
B(x,r)

ϕ̄ ∈ [0,2π). (C-38)

Combining (C-37) with (C-38) and theW1,p
loc estimates in Step 4 we obtain, using standard

elliptic regularity theory, ∫
B(x,r/2)

|∇ϕ̄|
2

≤ C, (C-39)

so that finally by (C-36), ∫
B(x,r/2)

|∇ϕ|
2

≤ C. (C-40)

Next, letξ ∈ D(B(x, r/2)), 0 ≤ ξ ≤ 1, be such thatξ ≡ 1 onB(x, r/4). Multiplying
the equation

∆ρ − ρ|∇ϕ|
2
+

1

ε2
ρ(1 − ρ2) = −c|logε|ρ

∂ϕ

∂x1
(C-41)

by (1 − ρ2)ξ2 and integrating by parts we obtain∫
B(x,r/2)

(
2ρ|∇ρ|

2ξ2
+ ρ

(1 − ρ2)2

ε2

)
=

∫
B(x,r/2)

2ξ(1 − ρ2)∇ρ · ∇ξ

+

∫
B(x,r/2)

(
ρ(1 − ρ2)ξ2

|∇ϕ|
2
− c|logε|ρ

∂ϕ

∂x1
(1 − ρ2)ξ2

)
. (C-42)

On the other hand, we have∫
B(x,r/2)

2ξ(1 − ρ2)∇ρ · ∇ξ ≤
1

10

∫
B(x,r/2)

|∇ρ|
2ξ2

+ 10
∫
B(x,r/2)

(1 − ρ2)2|∇ξ |2,

and from (C-40), ∫
B(x,r/2)

ρ(1 − ρ2)ξ2
|∇ϕ|

2
≤ C

and∫
B(x,r/2)

c|logε|ρ
∂ϕ

∂x1
(1 − ρ2)ξ2

≤ C

(∫
B(x,r/2)

|∇ϕ|
2
)1/2(∫

B(x,r/2)

(1 − ρ2)2

ε2

)
ε|logε| ≤ C.

Hence, from (C-42) and sinceρ ≥ 1/2 onB(x, r),∫
B(x,r/4)

(
|∇ρ|

2
+
(1 − ρ2)2

4ε2

)
≤ C, (C-43)

which, combined with (C-40) leads to∫
B(x,r/4)

eε(w) ≤ C. (C-44)
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Step 6: Proof of estimate (ii). In order to conclude the proof of Theorem 4 it remains to
show that ∫

Ωn\
⋃q

i=1B(xi,ε,R)

eε(w) ≤ C.

As in Proposition C.2, we have∫
Πn\

⋃q

i=1B(xi,ε,R)

|∇w|
2

≤ C

(
1 +

∫
Πn\

⋃q

i=1B(xi,ε,R)

(|∇ρ|
2
+ |w × dw|

2)

)
. (C-45)

Here we consider the Hodge–de Rham decomposition ofw×∇w inΠn (as a manifold):

w × ∇w = dϕ + d∗ψ +

N∑
i=1

αidxi, (C-46)

where the 2-formψ satisfiesdψ = 0 onΠn, eachαi is a real number and thedxi repre-
sent the canonical harmonic 1-forms onΠn. Applying respectively the operatorsd∗ and
d to (C-46) we obtain the equation forϕ (resp.ψ):

−∆ϕ = c(ε)
∂

∂x1
(ρ2

− 1)|logε| in Πn (C-47)

and
−∆ψ = 2Jw in Πn. (C-48)

Again the estimate forϕ follows as in Proposition C.2 (C-13), and we obtain∫
Πn

|∇ϕ|
2

≤ C, (C-49)

whereC does not depend onn or ε (andC → 0 asε → 0).
The estimate forψ has to be slightly adapted with respect to Step 3. Letw̃ be defined

by

w̃(x) :=


w(x) if x ∈

⋃q

i=1B(xi,ε, R/2),

(4s/R − 2)w(x)+ (3 − 4s/R)w(x)/|w(x)|

if s := dist(x,
⋃
i{xi,ε}) ∈ (R/2,3R/4),

w(x)/|w(x)| otherwise.

Notice thatEε(w̃) ≤ CM0|logε| and thatJ w̃ is supported in the set
⋃q

i=1B(xi,ε,3R/4).
We also have

w × dw = w̃ × dw̃ on
⋃q

i=1B(xi,ε, R/2). (C-50)

We also define, for 1≤ i ≤ q, the 2-forms

ωi := 2J w̃ B(xi,ε,3R/4),

and denote byψ0,i the Newtonian potential ofωi onΠn (i.e.ψ0,i := Gn∗ωi , whereGn is
the Green function onΠn.) Similarly,ψ1 denotes the Newtonian potential of 2(Jw−J w̃)

onΠn. Clearly,

ψ(x) =

q∑
i=1

ψ0,i(x)+ ψ1(x).
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We claim that

|∇ψ0,i(x)| ≤ C(dist(x, xi,ε))
1−N

∀x ∈ Πn \ B(xi,ε, R), (C-51)

whereC does not depend onn or ε. Indeed, this is a direct consequence of the formula

∇ψ0,i(x) =

∫
Πn

∂G

∂y
(x, y)ωi(y) dy,

of the [C0,α]∗ uniform bound onωi , and of classical estimates onGn.Hence, sinceN ≥ 3,
we obtain ∫

Πn\
⋃q

i=1B(xi,ε,R)

|∇ψ0,i |
2

≤

∫
RN\B(0,R)

C|x|2−2N dx ≤ C. (C-52)

We next turn tothe estimate forψ1. We have

‖∇ψ1‖L2(Πn)
≤ C sup

h∈C∞(Πn,Λ2RN )

{∫
Πn

〈Jw − J w̃, h〉 :
∫
Πn

|∇h|2 = 1

}
.

On the other hand, taking (C-50) into account, we obtain∫
Πn

〈Jw − J w̃, h〉 =

∫
Πn

〈w × dw − w̃ × dw̃, d∗h〉 =

∫
Π̃n

〈w × dw − w̃ × dw̃, d∗h〉

whereΠ̃n := Πn \
⋃q

i=1B(xi,ε, R/2). Notice that|w| ≥ 1/2 in Π̃n, hence∫
Π̃n

〈w × dw − w̃ × dw̃, d∗h〉 ≤ C‖ρ2
− 1‖L∞(Π̃n)

(∫
Π̃n

|∇w|
2
)1/2(∫

Π̃n

|∇h|2
)1/2

.

From Theorem 3 we know that|w| uniformly converges to 1 oñΠn (and actually uni-
formly with respect ton as can be seen by examining Step 2 of the proof of Theorem 3).
Hence, we obtain

‖∇ψ1‖L2(Πn)
≤ C

(
1 + r(ε)

∫
Π̃n

|∇w|
2
)
, (C-53)

wherer(ε) → 0 asε → 0, uniformly inn.
Finally, we turn to the components of the harmonic forms. We claim that

|αi | ≤
C

|Πn|2
.

Indeed, since

αi =
1

|Πn|2

∫
Πn

〈w × dw, dxi〉, (C-54)

it suffices to prove that ∣∣∣∣∫
Πn

〈w × dw, dxi〉

∣∣∣∣ ≤ C.
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LetR′
∈ [R/2, R] andΠ̃ ′

n := Πn \
⋃q

i=1B(xi,ε, R
′). The phaseϕ of w is well defined in

Π̃ ′
n; we extend it as a continuous functionϕ′ onΠn by considering its harmonic extension

inside each ballB(xi,ε, R′). We have∣∣∣∣∫
Πn

〈w × dw, dxi〉

∣∣∣∣ ≤

∣∣∣∣∫⋃q

i=1B(xi,ε,R
′)

〈w × dw, dxi〉

∣∣∣∣+ ∣∣∣∣∫
Π̃ ′
n

ρ2 ∂ϕ

∂x1

∣∣∣∣
≤ C

∫
⋃q

i=1B(xi,ε,R
′)

|∇w| + C

∣∣∣∣∫
Π̃ ′
n

(ρ2
− 1)|∇ϕ|

∣∣∣∣
+ C

∣∣∣∣∫
Πn

∂ϕ′

∂x1

∣∣∣∣+ ∫
⋃q

i=1B(xi,ε,R
′)

|∇ϕ′
|.

From Step 3 we infer that ∫
⋃q

i=1B(xi,ε,R
′)

|∇w| ≤ C.

An averaging argument shows that there existsR′
∈ [R/2, R] such that

∫
⋃q

i=1B(xi,ε,R
′)

|∇ϕ′
| ≤ C

(∫
⋃q

i=1B(xi,ε,R
′)

|∇ϕ′
|
2
)1/2

≤ C

(∫
⋃q

i=1B(xi,ε,R)∩Π̃n

|∇w|
2
)1/2

so that by Step 5, ∫
⋃q

i=1B(xi,ε,R
′)

|∇ϕ′
| ≤ C.

We also have ∣∣∣∣∣
∫
Π̃ ′
n

(ρ2
− 1)|∇ϕ|

∣∣∣∣∣ ≤ Cε|logε| ≤ C

and by Step 4, ∫
Πn

∂ϕ′

∂x1
= 0.

This proves the claim. Coming back tow × dw, combining (C-47), (C-52), (C-53) and
the previous claim, we obtain∫

Πn\
⋃q

i=1B(xi,ε,R)

|w × dw|
2

≤ C

(
1 + r(ε)

∫
Π̃n

|∇w|
2
)
, (C-55)

wherer(ε) → 0 whenε → 0, uniformly inn.
We still needthe estimate for the modulus. Let ξ ∈ D(Π̃n), 0 ≤ ξ ≤ 1, be such that

ξ ≡ 1 onΠn \
⋃q

i=1B(xi,ε, R). Multiplying the equation

∆ρ − ρ|∇ϕ|
2
+

1

ε2
ρ(1 − ρ2) = −c|logε|ρ

∂ϕ

∂x1
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by (1 − ρ2)ξ2 and integrating by parts we obtain∫
Π̃n

2ρ|∇ρ|
2ξ2

+ ρ
(1 − ρ2)2

ε2
=

∫
Π̃n

2ξ(1 − ρ2)∇ρ · ∇ξ

+

∫
Π̃n

(
ρ(1 − ρ2)ξ2

|∇ϕ|
2
− c|logε|ρ

∂ϕ

∂x1
(1 − ρ2)ξ2

)
. (C-56)

Arguing as in Step 5, we deduce from (C-56) that∫
Πn\

⋃q

i=1B(xi,ε,R)

|∇ρ|
2
+
(1 − ρ2)2

4ε2
≤ C

(
1 + r(ε)

∫
Π̃n

|∇w|
2
)
, (C-57)

wherer(ε) → 0 whenε → 0, uniformly inn.
We can now complete the proof. Adding (C-55) to (C-57) we obtain, using (C-45) and

Step 5, ∫
Πn\

⋃q

i=1B(xi,ε,R)

eε(w) ≤ C

(
1 + r(ε)

∫
Π̃n

|∇w|
2
)

≤ C

(
1 + r(ε)

∫
Πn\

⋃q

i=1B(xi,ε,R)

|∇w|
2
)
.

For ε ≤ ε0 sufficiently small,Cr(ε) < 1/2, which yields the desired estimate∫
Πn\

⋃q

i=1B(xi,ε,R)

eε(w) ≤ C.

Forε ≥ ε0 the previous inequality is clearly also satisfied, and the proof is complete.ut
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Poincaŕe Anal. Non Lińeaire12, 243–303 (1995) Zbl 0842.35119 MR 96g:35045

[14] Bethuel, F., Saut, J.-C.: Traveling waves for the Gross–Pitaevskii equation. Ann. Inst. H.
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