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1. Introduction

In this paper, we study the concept of weak disconjugacy for linear, time-varying Hamiltonian differential systems. This
notion was introduced in [6], and it was shown there that it is a natural generalization of the classical idea of disconjugacy.
One advantage of weak disconjugacy as opposed to disconjugacy is that it can be studied under a very weak version of the
condition of identical normality, which is often imposed when studying the classical disconjugacy concept [3,7,20].

Our goals are as follows. First, we show that, under the just-mentioned weak version of identical normality, the notion of
weak disconjugacy can be characterized by a nonoscillation condition. Our starting point is the discussion in [6]; we extend
the results given there. As in [6], we use an argument function of Yakubovich ([25,26]; see also Lidskii [17]).

Second, we give conditions sufficient that a weakly disconjugate system admits a principal solution (see also [6]). We
then determine conditions under which the principal solution depends continuously on a parameter. We extend a result
of [14] in this regard; as in [14], our parameter is of Atkinson type [2]. It should be noted that, even in the context of
Hamiltonian linear systems which are disconjugate in the classical sense, the principal solution need not depend continu-
ously on the coefficient matrix. This is true even if the coefficient matrix varies continuously in the topology of uniform
convergence on all R [8].

As an essential part of our discussion of the continuous variation of the principal solution, we obtain a condition un-
der which a weakly disconjugate linear Hamiltonian system can be approximated by a system which has an exponential
dichotomy [4,22].
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A third goal is to state our hypotheses and results for a single linear nonautonomous Hamiltonian system, and not for
an ergodic family of such systems. However, we will avail ourselves of results and methods which are valid in the ergodic
framework [14,6].

This paper is organized as follows. In Section 2 we give basic definitions, then discuss the close relationship between
weak disconjugacy and nonoscillation. In Section 3, we recall how to construct the principal solution of a weakly discon-
jugate system. We review the developments in [6], which are based on arguments of Coppel [3]. We also show that a
large class of weakly disconjugate linear Hamiltonian systems admits approximation by systems which exhibit an expo-
nential dichotomy. Finally, we discuss the continuity of the principal solution under variation of an Atkinson-type spectral
parameter.

We close the Introduction by fixing some notation. Let Mn denote the set of n × n real matrices, and let Mn(C) be the
set of n × n matrices with complex entries. If A ∈ Mn(C), let At denote its transpose, and let A∗ = At denote its adjoint. Of
course A∗ = At if A ∈ Mn . Let 〈 , 〉 denote the Euclidean inner product on R

n , and let ‖ · ‖ be the corresponding norm. We
also use ‖ · ‖ to indicate the usual operator norm on Mn(C).

2. Weak disconjugacy and oscillation

Fix an integer n � 1. We write a vector z ∈ R
2n in the form z = ( x

y

)
where x,y ∈ R

n . Let J be the usual 2n × 2n skew-

symmetric matrix: thus J = ( 0 −In

In 0

)
where In is the n × n identity matrix. One has J t = J−1 = − J .

Let H : R → M2n be a continuous, bounded, 2n × 2n matrix valued function with real entries, whose values are symmet-
ric: H(t)t = H(t) for all t ∈ R. Then H(t) can be written in the block form

H(t) =
(

H11(t) H12(t)
H21(t) H22(t)

)
where H11(t)t = H11(t), H22(t)t = H22(t) and H12(t)t = H21(t) for all t ∈ R. In what follows we will always assume that the
following condition holds:

Hypothesis 2.1. H22(t) � 0 for all t ∈ R.

We introduce the nonautonomous Hamiltonian linear differential system

Jz′ = H(t)z, z ∈ R
2n. (1)

Let Z(t) be a fundamental matrix solution of (1) satisfying Z(0) = In . Then it is well known that Z(t) is an element of the
symplectic group Sp(n,R) for each t ∈ R. More generally, if Z(t) is a 2n × 2n matrix solution of (1) such that Z(0) lies in
Sp(n,R), then Z(t) is symplectic for all t ∈ R. We recall that Sp(n,R) = {Z ∈ M2n | Zt J Z = J }. Thus a 2n × 2n real matrix
Z = ( U1 U2

V 1 V 2

)
lies in Sp(n,R) if and only if the n × n blocks U1, U2, V 1, V 2 satisfy

U t
1 V 1 = V t

1U1, U t
2 V 2 = V t

2U2, U t
1 V 2 − V t

1U2 = In, V t
2U1 − U t

2 V 1 = In. (2)

Definition 2.2. The system (1) is said to be weakly disconjugate if there exists a t∗ > 0 such that, if 0 	= y0 ∈ R
n , z0 = ( 0

y0

)
,

and Z(t)z0 = ( x(t)
y(t)

)
, then x(t) 	= 0 for t � t∗ .

We will relate the weak disconjugacy property to a classical nonoscillation condition on Eq. (1). For this we will use
one of the well-known argument functions of Yakubovich [26]. Such a function can be viewed either as a multi-valued map
from Sp(n,R) to R, or as a real-valued functional defined on continuous curves in Sp(n,R). We will adopt the latter point
of view.

Let I ⊂ R be an interval, and let c : I → Sp(n,R) be a continuous map. Let us write

c(t) =
(

U1(t) U2(t)
V 1(t) V 2(t)

)
where U j, V j : I → Mn , j = 1,2, are continuous and satisfy the relations in (2). Set

W (t) = (
U1(t) − iU2(t)

)−1(
U1(t) + iU2(t)

)
.

Following Lidskii [17], one can show that W (·) takes values in the complex unitary group

U (n) = {
W ∈ Mn(C)

∣∣ W ∗W = In
}
.

Next, let I = [t1, t2] ⊂ R, and let c : I → Sp(n,R) be a continuous map. Define the argument
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Arg(c) = arg det
(
U1(t) + iU2(t)

)∣∣t2

t1
.

This argument functional coincides with the functional Arg3 of Yakubovich [26].
One can describe Arg(c) in another way. According to [15], it is possible to choose continuous functions ρ1(t), . . . , ρn(t)

on I , with values in the unit circle K ⊂ C, such that the set of eigenvalues of W (t) coincides with the unordered n-tuple
{ρ1(t), . . . , ρn(t)}, t ∈ I . Let ϕk : I → R be a continuous function such that ρk(t) = eiϕk(t) , 1 � k � n, t ∈ I . Then

Arg(c) = 1

2

n∑
k=1

[
ϕk(t2) − ϕk(t1)

]
.

Now we specialize the functional Arg to the fundamental matrix solution Z(t) of (1). Let us now write

Z(t) =
(

U1(t) U2(t)
V 1(t) V 2(t)

)
, t ∈ R.

For each t � 0, set ArgZ (t) = arg det(U1(t)+ iU2(t))|t0. Thus, ArgZ equals the functional Arg evaluated at the curve c : [0, t] →
Sp(n,R), s �→ c(s) = ( U1(s) U2(s)

V 1(s) V 2(s)

)
.

Definition 2.3. The system (1) is said to be nonoscillatory if |ArgZ (t)| is bounded on 0 � t < ∞.

The following result will be useful in the sequel.

Proposition 2.4. Assume that Hypothesis 2.1 is valid. Write Z(t) = ( U1(t) U2(t)
V 1(t) V 2(t)

)
and W (t) = (Ui(t)− iU2(t))−1(U1(t)+ iU2(t)). Let

ρ1(t), . . . , ρn(t) be continuous determinations of the eigenvalues of W (t), and let ϕ1(t), . . . , ϕn(t) be angles, i.e., continuous functions
such that ρk(t) = eiϕk(t) , 1 � k � n. Then each ϕk is a nondecreasing function of t.

Proof. This proposition is stated by Yakubovich [26], as he notes the proof is essentially due to Lidskii [17]. For the reader’s
convenience we outline the argument.

First of all, we have already noted that there exist continuous determinations ρ1(t), . . . , ρn(t) of the eigenvalues of W (t).
In fact, according to [15, Theorem II.5.6] they may be chosen to be differentiable functions of t .

Next write φ(t) = U1(t) + iU2(t), so that W (t) = φ(t)−1φ(t). Lidskii [17] shows that

dW

dt
= iR(t)W

where R(t) = 2φ(t)−1 H22(t)(φ(t)−1)∗ . Clearly, R(t) � 0 and R(t)∗ = R(t) for each t ∈ R.
We can write ρk(t) = eiϕk(t) where ϕk : R → R is a continuous (in fact differentiable) function, 1 � k � n. We claim

that ϕk(·) is a nondecreasing function of t . To see this, we use an approximation method. Let I ⊂ R be a bounded open
interval, and let ε > 0. There is a real-analytic function Rε : I → Mn(C), whose values are self-adjoint matrices, such that
supt∈I ‖Rε(t) − R(t)‖ � ε/2. Consider the differential system

dW

dt
= i

(
Rε(t) + ε In

)
W . (3)

Now Rε(t) + ε In is real-analytic and strictly positive definite on I . Let t0 ∈ I , and let W ε(t) be the solution of (3) such that
W ε(t0) = W (t0). Thus, W ε(·) also takes values in the complex unitary group U (n).

Using [15, Theorem II.1.10] together with the constructions in ([15, Section II.4.2]; also Daleckii–Krein [5, Chapter 4]) one
can show that there are analytic families of eigenvalues ρε

1 (t), . . . , ρε
n (t) together with vε

1(t), . . . ,vε
n(t) analytic families of

eigenvectors of W ε(t), t ∈ I . Write ρε
k (t) = eiϕε

k (t) for analytic functions ϕε
k : I → R. If ε is small enough, we can reorder the

ρε
k (·) and adjust the initial values ϕε

k (t0) in such a way that |ϕε
k (t0) − ϕk(t0)| < 1, 1 � k � n. Having done these things, we

now argue as on p. 266 of [26] to show that ϕε
k (t) is strictly increasing on I .

Choose a sequence of positive numbers ε j → 0. Write ρ
j

k (t) = ρ
ε j

k (t) for each 1 � k � n, t ∈ I . The unordered set

{ρ j
1(t), . . . , ρ j

n(t)} converges to the unordered set {ρ1(t), . . . , ρn(t)} uniformly on I when j → ∞. It follows that the contin-
uous branches ϕ1(t), . . . ,ϕn(t) are nondecreasing functions of t . �

Recall now that Hypothesis 2.1 is in force. We will relate the concepts of nonoscillation and weak disconjugacy. It will
turn out that weak disconjugacy implies nonoscillation but that the converse implication does not hold in general. The
converse is true when an additional condition is valid (Hypothesis 2.7 below). This hypothesis can be viewed as a weak
version of the classical condition of identical normality.

Let us now prove that, if the system (1) is weakly disconjugate, then it is nonoscillatory. For this, it is convenient to
introduce the manifold of Lagrange planes in R

2n . Let l ⊂ R
2n be a vector subspace of dimension n such that 〈z1, J z2〉 = 0
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for all z1, z2 ∈ l. Then l is called a Lagrange plane in R
2n . Let L be the Grassmann-type manifold of all Lagrange planes

in R
2n . Then L is a real-analytic manifold of dimension n(n + 1)/2 (see [19]).

Let {e1, . . . ,e2n} be the canonical basis in R
2n and let l0 be the vertical Lagrange plane, i.e., l0 = Span{en+1, . . . ,e2n} ∈ L.

Let C ⊂ L be the set of elements l ∈ L which intersect l0 nontrivially. It turns out that C is a Z2-cycle in L, of codimension 1.
It also turns out that L defines a generator of the first cohomology group H1(L,Z) ∼= Z in a well-known way [1].

Now let l ∈ L, and let z1, . . . , zn be n linearly independent vectors which span l. We associate with l the 2n × n matrix( U
V

)
whose columns are z1, . . . , zn; here U and V are of course n × n real matrices. It turns out that two 2n × n matrices( U

V

)
and

( U1
V 1

)
are associated with the same Lagrange plane l if and only if there exists a real orthogonal n × n matrix O

such that U1 = U O and V 1 = V O . In what follows, we will not always distinguish carefully a Lagrange plane l from an
2n × n matrix

( U
V

)
which is associated to it.

Proposition 2.5. (See [17].) Let Z(t) = ( U1(t) U2(t)
V 1(t) V 2(t)

)
be the fundamental matrix solution of (1) and let W (t) = (U1(t) −

iU2(t))−1(U1(t) + iU2(t)), as before. Then det U2(t) = 0 if and only if 1 is an eigenvalue of W (t). In fact, if z ∈ C
n, then U2(t)z = 0

if and only if W (t)z = z.

Proposition 2.6. If the system (1) is weakly disconjugate then it is nonoscillatory.

Proof. Let t∗ > 0 be the positive time in the definition of weak disconjugacy. If t > t∗ and 1 � k � n, then the angle ϕk(t)
must take values in some interval (2πmk,2π(mk + 1)) where mk ∈ Z. This follows from Proposition 2.5. In fact, if the
stated condition does not hold, then 1 is an eigenvalue of W (t) for some t > t∗ . But in this case, there exists a nonzero
vector y0 ∈ R

n such that U2(t)y0 = 0, and then z(t) = Z(t)
( 0

y0

)
lies in l0. This contradicts the assumption that (1) is weakly

disconjugate. We conclude that ArgZ (t) = 1
2

∑n
k=1[ϕk(t) − ϕk(0)] is bounded and the system (1) is nonoscillatory. �

We turn to the converse statement. It is clear that nonoscillation is not in itself sufficient to guarantee that system (1) is
weakly disconjugate (just set H(t) ≡ 0). So we introduce an appropriate

Hypothesis 2.7. Let 0 	= y0 ∈ R
n , z0 = ( 0

y0

) ∈ R
2n , and

( x(t)
y(t)

) = Z(t)z0, t ∈ R. There is a sequence tn ↑ ∞ (which may depend
on y0) such that x(tn) 	= 0.

Proposition 2.8. Suppose that Hypotheses 2.1 and 2.7 are valid. If system (1) is nonoscillatory, then it is weakly disconjugate.

Proof. We introduce continuous determinations ρ1(t), . . . , ρn(t) of the eigenvalues of W (t), and continuous functions
ϕ1, . . . ϕn : R → R such that ρk(t) = eiϕk(t) , 1 � k � n. By Proposition 2.4, the angles ϕ1, . . . , ϕn are nondecreasing func-
tions of t . By assumption, the quantity ArgZ (t) = 1

2

∑n
k=1[ϕk(t) − ϕk(0)] is bounded as t → ∞. Therefore, the limits

limt→∞ ϕk(t) = ϕ(∞) exist and are finite, 1 � k � n. It follows from Proposition 2.5 that there exists t0 > 0 such that,
if t � t0, then the dimension dim[Z(t)l0 ∩ l0] equals a constant p which does not depend on t . If p = 0, then the system (1)
is weakly disconjugate. So we assume for contradiction that p � 1.

We will show that there is a fixed vector subspace m0 ⊂ l0, of dimension p, such that Z(t)l0 ∩ l0 = Z(t)m0 for all t � t0.
Let us assume for the moment that this has been done. Then, if 0 	= z0 = ( 0

y0

) ∈ m0, the vector z0 does not satisfy the
condition imposed in Hypothesis 2.7. Hence the proof that system (1) is weakly disconjugate will be complete when we
have proved the existence of a subspace m0 ⊂ l0 which satisfies the above conditions.

We turn to the proof of the existence of m0. As before, we write the fundamental matrix solution of (1) in the form
Z(t) = ( U1(t) U2(t)

V 1(t) V 2(t)

)
. Let us identify R

n with l0 via the map y → ( 0
y

)
, then define m(t) ⊂ l0 to be the subspace of eigenvectors

of U2(t) which correspond to the eigenvalue zero, t � t0. We now apply Proposition 2.5: m(t) can be identified with the
space of real eigenvectors of W (t) = (U1(t) − iU2(t))−1(U1(t) + iU2(t)) which correspond to the eigenvalue 1; moreover
the 1-eigenspace of W (t) in C

n equals the complexification of m(t). (The last statement also follows from the symmetry of
W (t) [17].) We have in particular that dim m(t) = p for all t � t0.

Using results of [15], we conclude that the orthogonal projection Pt : R
n → m(t) is C1 as a function of t ∈ [t0,∞). We

can and will view m(t) as an element of the Grassmannian manifold Grp,n of p-dimensional vector subspaces of R
n . Then

t �→ m(t) : [t0,∞) → Grp,n is a C1-map. Let us consider the following

Condition C. If I ⊂ [t0,∞) is a nondegenerate interval, and if f : I → R
n is a C1 map such that f (t) 	= 0 and f (t) ∈ m(t) for

all t ∈ I , then f ′(t) ∈ m(t) for all t ∈ I .
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First we show that, if Condition C holds, then m(t) is constant on [t0,∞). Let t∗ > t0 and let I ⊂ [t0,∞) be an open
interval containing t∗ with the following property: there exist C1 functions b1, . . . ,bk : I → R

n such that {b1(t), . . . ,bk(t)} is
a basis of m(t) for each t ∈ I . By Condition C, b′

1(t) ∈ m(t), . . . ,b′
k(t) ∈ m(t) for each t ∈ I . Thus

b′
i(t) =

k∑
j=1

ci j(t)b j(t), t ∈ I, 1 � i � k,

where ci j : I → R is continuous, 1 � i, j � k. Let C(t) = (ci j(t))k
i, j=1 and consider the differential system

x′ = C(t)x, x ∈ R
k.

Let Φ(t) = (φi j(t))k
i, j=1 be the fundamental matrix solution of this system with Φ(t∗) = Ik . By uniqueness of solutions we

deduce that

bi(t) =
k∑

j=1

Φi j(t)b j(t∗), t ∈ I,

and m(t) = Span{b1(t), . . . ,bk(t)} = Span{b1(t∗), . . . ,bk(t∗)} for all t ∈ I . But then it follows immediately from the definition
of m(t) that m(t0) = m(t) = Z(t)l0 ∩ l0 for all t � t0. So the subspace m0 = m(t0) ⊂ l0 satisfies the condition we require.

We proceed to show that Condition C is indeed valid. Let f : I ∈ R
n be a C1-map such that f (t) 	= 0 and f (t) ∈ m(t) for

all t ∈ I . There is no loss of generality in assuming that ‖ f (t)‖ = 1, t ∈ I . We have U2(t) f (t) = 0 for t ∈ I , so

U2 f ′ = −U ′
2 f = −H22 g where g = V 2 f

for all t ∈ I .
There is a fixed set { j1, . . . , jp} of indices in {1, . . . ,n} such that ρ jk (t) = 1 for t � t1, 1 � k � p. For each j ∈ { j1, . . . , jp}

we can view f as a C1 family of eigenvectors of the family W , which corresponds to the eigenvalue ρ j = ρ j(t) = 1. Then
W (t) f (t) = f (t) = eiϕ j(t) f (t) where we can set ϕ j(t) = 0, t ∈ I . Hence

0 = ϕ̇ j(t) = 〈
R(t) f (t), f (t)

〉
where as before R = 2φ−1 H22(φ−1)∗ and φ = U1 + iU2; see the proof of Proposition 2.4.

We claim that (φ−1)∗ f = g . This uses calculations of Lidskii [17] which we repeat. First of all, Z is symplectic, so
U t

1 V 2 − V t
1U2 = In and U t

2 V 2 = V t
2U2, t ∈ I . Hence U t

1 V 2 f = f + V t
1U2 f and U t

2 V 2 f = V t
2U2 f = 0, so

f = (
U t

1 + iU t
2

)
V 2 f = (U1 − iU2)

∗ g, t ∈ I.

This proves the claim. We conclude that g(t) = V 2(t) f (t) lies in the kernel of H22(t) for each t ∈ I . This means that f ′(t)
lies in the kernel of U2(t) for each t ∈ I; that is, f ′(t) ∈ m(t), t ∈ I . This completes the proof. �

We close this section with an example which illustrates the significance of Hypothesis 2.7. In fact one might conjecture
that, if H22(t) � 0 for all t � 0, and if Hypothesis 2.7 holds, then there is a sequence tk → ∞ such that Z(tk)l0 ∩ l0 = {0}.
This conjecture is indeed true if n = 1, but need not be true if n = 2, as we now illustrate.

Example 2.9. Consider the 4-dimensional differential system

J z′ =
(

0 B
C 0

)
z = H(t)z (4)

where z = ( x
y

)
, x, y ∈ R

2, and B , C are real diagonal 2 × 2 matrices. In the previous notation we have H22 ≡ 0.
We introduce piecewise-continuous, 2π -periodic matrix functions B(·), C(·) as follows:

B(t) =
{(−1 0

0 0

)
, 0 � t < π,( 0 0

0 −1

)
, π � t < 2π,

C(t) =
{( 1 0

0 0

)
, 0 � t < π,( 0 0

0 1

)
, π � t < 2π.

Let z3(t) be the solution of (4) such that z3(0) = e3 = (0,0,1,0)t . Then z3(t) rotates through an angle of π radians in the
e1–e3 plane as t varies between 0 and π . On the other hand, the solution z4(t) of (4) such that z4(0) = e4 = (0,0,0,1)t

rotates through an angle of π radians in the e2–e4 plane as t varies between π and 2π . One can check that Hypothesis 2.7
is valid for system (4). However Z(t)l0 ∩ l0 	= {0} for all t � 0. In geometric terms, the curve t �→ Z(t)l0 : R → L remains in
the Maslov cycle C for all t � 0, in fact for all t ∈ R.

It is clear that one can modify H(·) in such a way that H is continuous and π -periodic, Hypotheses 2.1 and 2.7 hold,
and Z(t)l0 ∈ C for all t ∈ R. One can make further modification so as to ensure that the above conditions hold, and also
H22(t) > 0 for some (but not all) t ∈ [0,2π ].

Note that the system (4) is not weakly disconjugate, so by Proposition 2.8, ArgZ (t) must be unbounded.
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3. The principal solution

It is well known that a disconjugate linear Hamiltonian system admits a principal solution, in other words a minimal
isotropic solution. On the other hand, simple examples show that a weakly disconjugate system (1) need not admit a
principal solution.

In this section, we show that, roughly speaking, if the hypotheses imposed in Section 2 are required to hold uniformly
with respect to translations of the argument t of the coefficient matrix H(t), then (1) admits a principal solution. In fact,
each system in the topological hull of (1) is weakly disconjugate and admits a principal solution.

We then introduce a perturbation of (1) which depends on an Atkinson-type spectral parameter λ. We show that, un-
der the uniformity conditions mentioned above, the perturbed system is weakly disconjugate and admits an exponential
dichotomy for negative values of λ. In particular, it admits a principal solution for λ < 0. We show that, as λ → 0− , the
principal solution of the perturbed system converges to that of the original system (1).

We begin the discussion by returning to the linear Hamiltonian system (1)

Jz′ = H(t)z, z ∈ R
2n,

where H : R → M2n is bounded, continuous, and assumes symmetric values. We write H = ( H11 H12
H21 H22

)
where Ht

11 = H11,

Ht
22 = H22 and Ht

12 = H21. Let Z(t) be the fundamental matrix solution of (1).
To avoid interruption of the later discussion, we formulate two basic results concerning the system (1).

Lemma 3.1. Assume that the system (1) satisfies Hypotheses 2.1 and 2.7. This means that H22(t) � 0 for all t � 0, and that each

solution z(t) = ( x(t)
y(t)

) = Z(t)z0 of (1) such that 0 	= z0 = ( 0
y0

)
admits a sequence tk ↑ ∞ such that x(tk) 	= 0.

(a) Let Ψ (t) be the fundamental matrix solution of x′ = H21(t)x. There exist numbers T > 0, δ > 0 such that, if y0 ∈ R
n, then

T∫
0

∥∥H22(t)Ψ
t(t)−1y0

∥∥2
dt � δ‖y0‖2. (C)

(b) There exist numbers T > 0, δ > 0 with the following property. If z0 ∈ R
2n and if

( x(t)
y(t)

) = Z(t)z0 , then

T∫
0

∥∥x(t)
∥∥2

dt � δ‖z0‖2. (A)

Proof. (a) Suppose for contradiction that there exist sequences tk ↑ ∞ and {yk} ⊂ R
n such that ‖yk‖ = 1 and

tk∫
0

∥∥H22(t)Ψ
t(t)−1yk

∥∥2
dt � 1

k
.

Passing to a subsequence if necessary, we can assume that yk → y0 ∈ R
n , where of course ‖y0‖ = 1. Then

∫ ∞
0 ‖H22(t)×

Ψ t(t)−1y0‖2 dt = 0, and H22(t)Ψ t(t)−1y0 = 0 for each t � 0. Set z0 = ( 0
y0

)
, then set z(t) = ( x(t)

y(t)

) = Z(t)z0. One has x′ =
H21x + H22y, y′ = −H12y − H11x, and hence z(t) = ( 0

Ψ t (t)−1y0

)
. This clearly contradicts Hypothesis 2.7.

(b) If the thesis is false, then there exist sequences tk ↑ ∞ and {zk} ⊂ R
2n with the following property: if

( xk(t)
yk(t)

) = Z(t)zk ,

then
∫ tk

0 ‖xk(t)‖2 dt � (1/k)‖zk‖. Assume without loss of generality that ‖zk‖ = 1 for k � 1, and that zk → z0 ∈ R
2n . Let( x0(t)

y0(t)

) = Z(t)z0. Then

∞∫
0

∥∥x0(t)
∥∥2

dt = 0 ⇒ x0(t) = 0 (t � 0).

This contradicts Hypothesis 2.7 and finishes the proof. �
We remark that Lemma 3.1(a) states that the control system x′ = H21x + H22u is null controllable, while Lemma 3.1(b)

states that the (2n-dimensional) control system z′ = −Ht J z + ( In 0
0 0

)
u is null controllable. See, e.g., [16]. Condition (A) is to

be viewed as an Atkinson condition, of which more later.
Next we define the concept of principal solution of the system (1).
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Definition 3.2. Let
( U (t)

V (t)

)
be a 2n × n matrix solution (1) which defines a Lagrange plane l(t) for each t ∈ R, that is,

( U (t)
V (t)

)
is isotropic (also called conjoined solution). We say that

( U (t)
V (t)

)
is a principal solution of (1) if the following conditions are

satisfied. First, det U (t) 	= 0 for all t ∈ R. Second, the matrix J (t) = ∫ t
0 U (s)−1 H22(t)U t(s)−1 ds is strictly positive definite for

all sufficiently large t > 0. Third, limt→∞ J (t)−1 = 0.

Let us note that the first condition in Definition 3.2 states that l(t) lies off the Maslov cycle C for all t ∈ R.
Our first goal is to introduce sufficient conditions under which system (1) admits a principal solution. To this end, we

introduce certain hypotheses which regard the family of Hamiltonian systems obtained by translating the argument of H(·).
For each s ∈ R consider

Jz′ = H(s + t)z, z ∈ R
2n. (1s)

Clearly Zs(t) = Z(t + s)Z(s)−1 is the fundamental matrix solution of (1s). For each s ∈ R, Zs(t) gives rise to an argument
function Args(t) = ArgZs

(t); see Section 2.
We introduce the following hypotheses, which will hold throughout Section 3. Notice that the second, third, and fourth

hypotheses are uniform versions of those imposed in Section 2, while the first merely repeats Hypothesis 2.1.

Hypothesis 3.3.

(0) H22(t) � 0 for all t ∈ R.
(i) H(t) is a uniformly continuous (and uniformly bounded) function of t ∈ R.

(ii) For each 0 	= y0 ∈ R
n there exist numbers T0 > 0, δ0 > 0 (which may depend on y0) with the following property: if

s ∈ R and
( x(t)

y(t)

) = Zs(t)
( 0

y0

)
, then there is a time ts ∈ [0, T0] such that ‖x(ts)‖ � δ0.

(iii) Eq. (1) admits a 2n × n isotropic matrix solution
( U (t)

V (t)

)
such that det U (t) 	= 0 for all t ∈ R and V (t)U (t)−1 is bounded

on R.

Let us explain the significance of Hypothesis 3.3(ii). It follows from Hypothesis 2.7 that there exists T0 > 0 such that,
if 0 	= y0 ∈ R

n and
( x(t)

y(t)

) = Z(t)
( 0

y0

)
, then x(t0) 	= 0 for some t0 ∈ [0, T0]. So it is clear that Hypothesis 3.3(ii) uniformizes

Hypothesis 2.7 with respect to s ∈ R.
As for Hypothesis 3.3(iii), it implies that, for each s ∈ R, Eq. (1s) admits the 2n × n matrix solution

( Us(t)
V s(t)

) = ( U (t+s)
V (t+s)

)
where det Us(t) 	= 0 for all t ∈ R. Using Theorem 4 of [3], one see that Args(t) is bounded for each s ∈ R. In fact a bit more
work shows that there exists a fixed M > 0 such that 0 � Args(t) � M for all s ∈ R, t � 0. In this sense, Hypothesis 3.3(iii)
uniformizes the nonoscillation condition imposed in the statement of Proposition 2.8.

Now we introduce the topological hull Ω = ΩH of the bounded uniformly continuous function H . We review the
construction of Ω . Let BC = C(R,M2n) be the space of bounded continuous functions form R to M2n . Give BC the
compact-open topology. Introduce the Bebutov (translation) flow on BC : if c ∈ BC , set τt(c)(·) = c(· + t), t ∈ R. Define
Ω = ΩH = cls{τt(H) | t ∈ R}. Then Ω is compact because H is uniformly continuous. Clearly Ω is invariant with respect to
the flow {τt | t ∈ R}.

One can extend H to Ω in the following way. Set H̃(ω) = ω(0), ω ∈ Ω . Then H̃ : Ω → M2n is continuous. Let us
write H(·) = ω0 ∈ Ω . We observe that H̃(τt(ω0)) = H(t), t ∈ R. Let us abuse notation, and write H instead of H̃ . Then the
system (1) is an element of the family of nonautonomous linear Hamiltonian systems

Jz′ = H
(
τt(ω)

)
z, z ∈ R

2n, ω ∈ Ω. (5ω)

In fact, we recover Eq. (1) by setting ω = ω0, i.e., (1) = (5ω0 ). We write H(ω) = (Hij(ω))1�i, j�2, and observe that
H22(ω) � 0 for all ω ∈ Ω . Let Zω(t) be the fundamental matrix solution of (5ω), ω ∈ Ω .

The next result show that Hypotheses 3.3 also hold for the family of systems (5ω).

Proposition 3.4. Assume that Hypotheses 3.3 hold. Then

(i) Hypothesis 2.7 holds for each Eq. (5ω), i.e., if 0 	= y0 ∈ R
n and if

( x(t)
y(t)

) = Zω(t)
( 0

y0

)
then x(tn) 	= 0 for a sequence tn ↑ ∞.

(ii) Eq. (5ω) admits a 2n × n isotropic matrix solution
( Uω(t)

Vω(t)

)
such that det Uω(t) 	= 0 for all t ∈ R.

Proof. (i) Assume on the contrary that there is a ω̃ ∈ Ω and a solution
( x(t)

y(t)

) = Zω̃(t)
( 0

y0

)
such that x(t) = 0 for each t � 0.

Let T0 and δ0 be the constants of Hypothesis 3.3(ii) for y0. Since ω̃ = limτtk (ω0) for some sequence {tk}k∈N , we deduce

that x(t) = limk→∞ xk(t) on [0, T0], where
( xk(t)

yk(t)

) = Ztk (t)
( 0

y0

)
. However, from Hypothesis 3.3(ii), for each k there is an

sk ∈ [0, T0] such that ‖xk(sk)‖ � δ0, which contradict that x ≡ 0 in [0, T0].
(ii) Fix ω ∈ Ω . Then ω = limτtk (ω0) for some sequence {tk}k∈N . By Hypothesis 3.3(iii), there is a 2n × n isotropic matrix

solution
( U (t) ) such that det U (t) 	= 0 for all t ∈ R and M(t) = V (t)U (t)−1 is bounded on R. Now M(t) is a symmetric n × n
V (t)
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matrix valued solution of the Riccati equation

M ′ + H11(t) + H12(t)M + M H21(t) + M H22(t)M = 0.

Since M is bounded the sequence of functions {M(·+ tk)} is bounded and equicontinuous on each compact subinterval of R.
Using the theorem of Arzelà–Ascoli we can find a bounded solution of the Riccati equation

M ′ + H11
(
τt(ω)

) + H12
(
τt(ω)

)
M + M H21

(
τt(ω)

) + M H22
(
τt(ω)

)
M = 0.

Using Lemma 7 in Chapter 2 of [3], we conclude that Eq. (5ω) admits a 2n × n isotropic matrix solution
( Uω(t)

Vω(t)

)
such that

det Uω(t) 	= 0 for all t ∈ R and Vω(t)Uω(t)−1 is bounded on R. �
Lemma 3.5. Assume that Hypotheses 3.3 are valid. There exist positive numbers T and δ with the following property. Let Ψω(t) be the
fundamental matrix solution of

x′ = H21
(
τt(ω)

)
x, x ∈ R

n.

Let y0 ∈ R
n. Then

T∫
0

∥∥H22
(
τt(ω)

)
Ψ t

ω(t)−1y0
∥∥2

dt � δ‖y0‖2. (Cω)

Proof. One uses well-known arguments to pass from the statement of Lemma 3.1(a) to that of Lemma 3.5. For the reader’s
convenience we sketch these arguments.

First note that the thesis of Lemma 3.1(a) is valid for each system (5ω) because from Proposition 3.4 it satisfies Hypoth-
esis 2.7, and therefore there exist positive numbers Tω , δω such that the controllability condition (Cω) holds with Tω in
place of T and δω in place of δ for each ω ∈ Ω .

Recall that a subset M ⊂ Ω is called minimal if it is invariant and, for each ω ∈ M , the orbit {τt(ω) | t ∈ R} is dense
in M . Using [10], one can show that the condition (Cω) holds uniformly on M in the sense that constants Tω , δω can be
chosen to be independent of ω ∈ M .

Now one applies Lemma 2.5 of [12] to show that there exist positive constants T and δ, which do not depend on ω ∈ Ω ,
such that the controllability condition (Cω) is valid with these values of T , δ, for all ω ∈ Ω . This completes the proof. �

The next result shows that, under Hypotheses 3.3, the systems of the family (5ω) are uniformly weakly disconjugate in
the sense that the constant of the Definition 2.2 of weak disconjugacy does not depend on ω ∈ Ω .

Proposition 3.6. Assume that Hypotheses 3.3 are valid and let T be the positive constant of Lemma 3.5. If 0 	= y0 ∈ R
n, and

( x(t)
y(t)

) =
Zω(t)

( 0
y0

)
, then x(t) 	= 0 for all t � T , and thus, the family of systems (5ω) is uniformly weakly disconjugate.

Proof. First, although it is not necessary for the proof, we show how to deduce that each system is weakly disconjugate
with the nonoscillation techniques from the previous section. Fix ω ∈ Ω . Let Argω(t) = ArgZω

(t) be the argument function
of Eq. (5ω). Using Hypothesis 3.3(iii) and the succeeding discussion, one checks that 0 � Argω(t) � M for all t � 0, and
system (5ω) is nonoscillatory. Moreover, from Proposition 3.4, Hypothesis 2.7 holds for (5ω), and by Proposition 2.8 we
conclude that the system (5ω) is weakly disconjugate.

Next we show that the constant of Definition 2.2 of weak disconjugacy coincides with the constant T in Lemma 3.5,
and hence it does not depend on ω ∈ Ω . Let

( x(t)
y(t)

) = Zω(t)
( 0

y0

)
be a nontrivial solution of (5ω). From Proposition 3.4 each

Eq. (5ω) admits a 2n × n isotropic matrix solution
( Uω(t)

Vω(t)

)
such that det Uω(t) 	= 0 for all t ∈ R. We assume that Uω(0) = In .

Let us set

J (t,ω) =
t∫

0

Uω(s)−1 H22
(
τs(ω)

)
U t

ω(s)−1 ds. (6)

We use the controllability condition (Cω) and the proof of [3, Proposition 2, p. 38] to see that J (t,ω) is strictly positive
definite for each t � T . Moreover, it is easy to check that

x(t) = Uω(t) J (t,ω)y0,

y(t) = [
Vω(t) J (t,ω) + U t

ω(t)−1]y0,

and we conclude that x(t) 	= 0 for each t � T , as stated. �
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We can now prove the existence and uniqueness of the principal solution. We explain the meaning of uniqueness in

this context. Let
( U (t)

V (t)

)
resp.

( Ũ (t)
Ṽ (t)

)
be two principal solutions of (5ω); then the Lagrange planes l(t) resp. l̃(t) which they

determine are equal for all t ∈ R. Note that, when this uniqueness condition holds, the symmetric matrix n × n matrix
N = V (0)U−1(0) is independent of the chosen principal solution. So we can regard N as a parametrization of the set of
principal solutions of (5ω). In fact, we can also regard N as a parametrization of the uniquely defined Lagrange plane l(0)

which corresponds to the set of principal solutions of (5ω). Notice that N depends on ω. In the sequel we will denote N(ω)

when needed.

Theorem 3.7. Suppose that system (1), which coincides with system (5ω0 ), satisfies Hypotheses 3.3. Then for each ω ∈ Ω , the sys-
tem (5ω) admits a unique principal solution.

Proof. Some of the arguments used in this proof follow well-known lines, so we only sketch them.
From Proposition 3.4 we know that Eq. (5ω) admits a 2n ×n isotropic matrix solution

( Uω(t)
Vω(t)

)
such that det Uω(t) 	= 0 for

all t ∈ R. As in Proposition 3.6, if T denotes the positive number of Lemma 3.5, the matrix J (t,ω) defined on (6) is strictly
positive definite for each t � T , and { J (t,ω)−1}t�T is nonincreasing in t . Thus, there exists the limit L0 = limt→∞ J (t,ω)−1.

We claim that In − J (t,ω)L0 is invertible for each t ∈ R. If t � T

In − J (t,ω)L0 = J (t,ω)
[

J (t,ω)−1 − L0
]

which is a product of invertible matrices because from J (t,ω) < J (t + T ,ω) we deduce that J (t,ω)−1 − L0 > J (t + T ,ω)−1 −
L0 � 0.

Let 0 � t � T . We have In − J (t,ω)L0 = lims→∞(In − J (t,ω) J (s,ω)−1). The matrices In − J (t,ω) J (s,ω)−1 and
In − J (s,ω)−1/2 J (t,ω) J (s,ω)−1/2 have the same eigenvalues and

In − J (s,ω)−1/2 J (t,ω) J(s,ω)−1/2 > In − J (s,ω)−1/2 J (t + T ,ω) J(s,ω)−1/2.

From this we can compare the eigenvalues of In − J (t,ω)L0 with those of In − J (t + T ,ω)L0 which are strictly positive and
conclude that In − J (t,ω)L0 is also invertible. The case t � 0 is completely analogous.

Next write

Ũω(t) = Uω(t)
[
In − J (t,ω)L0

]
,

Ṽω(t) = Vω(t)
[
In − J (t,ω)L0

] − U t
ω(t)−1L0

for t ∈ R. Then
[ Ũω(t)

Ṽω(t)

]
is a 2n × n matrix valued solution of (5ω), which determines a Lagrange plane l̃ω(t) and satisfies

det Ũω(t) 	= 0 for each t ∈ R. Therefore

J̃ (t,ω) =
t∫

0

Ũω(s)−1 H22
(
τs(ω)

)
Ũ t

ω(s)−1 ds

is strictly positive definite for each t � T , and as in [3] it can be shown that J̃ (t,ω)−1 = J (t,ω)−1 − L0 and
limt→∞ J̃ (t,ω)−1 = 0.

Let
[ Û (t,ω)

V̂ (t,ω)

]
be a second 2n × n matrix valued solution of (5ω), which parametrizes a Lagrange plane l̂ω(t) such that

det Ûω(t) 	= 0 for each t ∈ R and

lim
t→∞

( t∫
0

Ûω(s)−1 H22
(
τs(ω)

)
Û t

ω(s)−1 ds

)−1

= 0.

Then, arguing as in p. 42 of [3] one shows that
[ Ũω(t)

Ṽω(t)

] = [ Ûω(t)M
V̂ω(t)M

]
for each t ∈ R and some invertible matrix M . Hence, the

Lagrange planes l̃ω(t) and l̂ω(t) coincide for all t ∈ R and a unique principal solution is obtained. �
Moreover, as in the disconjugate case, see p. 44 of [3] and p. 1060 of [13], the principal solutions can be constructed in

the following way:

Proposition 3.8. Assume that Hypotheses 3.3 hold. The principal solution of (5ω) can be constructed as(
U (t)
V (t)

)
= lim

r→∞

(
Ur(t)
Vr(t)

)
,

where
( Ur (t) ) is a 2n × n nontrivial matrix solution of (5ω) with Ur(r) = 0 irrespective of a given fixed value of Vr(r).
Vr(t)
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As a consequence of Theorem 3.7 and comparison theorems for Riccati equations, we obtain an extension to linear
Hamiltonian systems of Sturm’s comparison theorem, similar to the one obtained in [3] for disconjugate systems, as well as
a comparison result for the corresponding Lagrange planes obtained from the principal solutions.

Proposition 3.9. Consider two families of linear Hamiltonian systems satisfying Hypotheses 3.3(0)–(ii),

Jz′ = H1(τt(ω)
)
z, ω ∈ Ω, (7ω)

Jz′ = H2(τt(ω)
)
z, ω ∈ Ω, (8ω)

with H1(ω) � H2(ω). Then if (8ω) satisfies Hypothesis 3.3(iii) so do the systems (7ω). In particular, they are weakly disconjugate and
denoting by N1(ω) and N2(ω) the symmetric n × n matrix-valued functions obtained from the respective principal solutions we have

N1(ω) � N2(ω).

Proof. From Theorem 3.7, we can consider the n × n symmetric matrices N2(ω) defined in terms of the principal solution( U2(t)
V 2(t)

)
for (8ω) by N2(ω) = V 2(0)U−1

2 (0). Let M satisfy N2(ω) � M and let M1(t) be the solution of the Riccati equation

M ′ + H1
11 + H1

12M + M H1
21 + M H1

22M = 0

with initial condition M1(0) = M . From Proposition 9, p. 52 of [3], M1(t) is defined for each t ∈ R and N2(τt(ω)) � M1(t) for
t � 0. This implies that system (7ω) admits a solution

( U1(t)
V 1(t)

)
which determines a Lagrange plane and satisfies det U1(t) 	= 0

for all t ∈ R. Hence, from Theorem 4 of [26] we deduce that systems (7ω) are nonoscillatory and from Proposition 2.8
we conclude that they are weakly disconjugate. The rest of the proof is completely similar to the one of the Corollary to
Theorem 8, p. 54 of [3]. �

Now we recall the definition of exponential dichotomy, first for the single equation (1) = (5ω0 ), see [4], and then for the
family (5ω), see [21].

One says that Eq. (1) has an exponential dichotomy (ED for short) if there exist positive numbers K and δ together with
a projection P : R

2n → R
2n such that∥∥Z(t)P Z(s)−1

∥∥ � K e−γ (t−s), t � s,∥∥Z(t)(In − P )Z(s)−1
∥∥ � K eγ (t−s), t � s.

One says that the family (5ω) admits an ED (over Ω) if there are positive numbers K and δ, together with a continuous
family of projections ω → Pω = P 2

w : Ω → M2n such that∥∥Zω(t)Pω Zω(s)−1
∥∥ � K e−γ (t−s), t � s,∥∥Zω(t)(In − Pω)Zω(s)−1

∥∥ � K eγ (t−s), t � s.

Note that the orbit {τt(ω0) | t ∈ R} is dense in Ω . This implies that the system (1) admits an ED if and only if the family of
systems (5ω) admits an ED over Ω .

It is time to introduce the following Atkinson-type spectral problem:

Jz′ =
[

H(t) + λ

(
In 0
0 0

)]
z, z ∈ R

2n, (1λ)

where 0 denotes the n-dimensional zero matrix. The parameter λ will take on real values. We will show that, if λ < 0, then
the system (1λ) is weakly disconjugate and admits an ED. Actually, it will be no harder to work with the family

Jz′ =
[

H
(
τt(ω)

) + λ

(
In 0
0 0

)]
z, z ∈ R

2n, ω ∈ Ω. (5ω,λ)

We will show that the family (5ω,λ) is weakly disconjugate, and it admits an ED over Ω when λ < 0. The first step in
proving these assertions is to show that the Atkinson condition (A) holds for each ω ∈ Ω . In fact,

Proposition 3.10. There are positive constants T and δ, which do not depend on ω ∈ Ω , such that for each ω ∈ Ω

T∫
0

∥∥∥∥(
In 0
0 0

)
Zω(t)z0

∥∥∥∥2

dt � δ‖z0‖2. (Aω)
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Proof. Let us first note that, as shown in the proof of Proposition 3.4, Hypothesis 2.7 holds for each system (5ω). Therefore
we can apply the argument used in proving Lemma (3.1)(b) to each system (5ω). We conclude that, for each fixed ω ∈ Ω ,
there are positive constants Tω and δω such that

Tω∫
0

∥∥∥∥(
In 0
0 0

)
Zω(t)z0

∥∥∥∥2

dt � δω‖z0‖2

for all z0 ∈ R
2n .

Now we interpret condition (Aω) as the controllability condition for the control system

z′ = −Ht(τt(ω)
)

Jz +
(

In 0
0 0

)
u, ω ∈ Ω.

Arguing as in the proof of Lemma 3.5, we can determine positive constants T and δ, which do not depend on ω ∈ Ω , such
that the Atkinson condition (Aω) holds for all ω ∈ Ω . This completes the proof. �
Theorem 3.11. Suppose that system (1), which coincides with system (5ω0 ), satisfies Hypotheses 3.3 and let λ < 0. Then for each ω ∈ Ω

the linear Hamiltonian system (5ω,λ) is weakly disconjugate. Moreover, the family of systems (5ω,λ), ω ∈ Ω , admits an exponential
dichotomy over Ω .

Proof. From Proposition 3.9 we deduce that system (5ω,λ) is weakly disconjugate whenever ω ∈ Ω and λ < 0. Moreover, it
turns out that the controllability condition (Cω) holds also for λ ∈ R, with the same values of T and δ as in Lemma 3.5.
Therefore, from Proposition 3.6 the family (5ω,λ) is uniformly weakly disconjugate with constant T .

Let ν(dt) be the spectral matrix of the Atkinson problem{
Jz′ − H(τt(ω))z = λ

( In 0
0 0

)
z,

z(−∞) = z(∞) = 0.

This object is defined in Chapter 9 of [2]. In the present circumstances, it can be defined to be the weak-∗ limit
limr→∞ νr(dt), where νr(dt) is the spectral matrix of the boundary value problem{

Jz′ − H(τt(ω))z = λ
( In 0

0 0

)
z, z = ( x

y

) ∈ R
2n,

x(−r) = x(r) = 0.
(9ω)

It is shown in [11] that, if λ ∈ R and if z(t) is a nonzero bounded solution of the system (5ω,λ), then the spectral matrix
ν(dt) is not constant in any neighborhood of λ. That is, if ε > 0, then

∫ λ+ε
λ−ε ν(dt) 	= 0.

On the other hand, suppose that λ < 0. Since, as explained above, the family of systems (5ω,λ) is uniformly weakly
disconjugate with constant T , the following statement is true. Let r > T /2; then the boundary value problem (9ω) admits
no nontrivial solution. This means that, if I ⊂ (−∞,0) is an open interval, and if r > T /2, then the spectral matrix νr(dt)
vanishes on I .

We have shown that, if ω ∈ Ω and λ < 0, then the system (5ω,λ) admits no nontrivial bounded solution. We can now
show that, if λ < 0, then the family (5ω,λ) admits an ED over Ω .

To do this, fix λ < 0. Let M be a minimal subset of Ω . If ω ∈ Ω , then the system (5ω,λ) admits no nontrivial bounded
solutions. According to a theorem of Sacker and Sell ([21]; also Selgrade [23]), the family (5ω,λ) admits an ED over M . Let
ω ∈ M , and let Pω be the corresponding projection. It was shown in [9] that dim Im Pω = n, which of course does not
depend on the choice of the minimal set M . Using another result of Sacker and Sell [22], we conclude that the family (5ω,λ)
admits an ED over Ω . This completes the proof of Theorem 3.11. �

We complete the discussion with a proposition concerning the left continuity of the principal solution of Eq. (5ω,λ) as
λ → 0+ . Before doing so, we make the following remarks.

First, let λ < 0. Then each system (5ω,λ) is weakly disconjugate and admits a principal solution. Also, the family (5ω,λ)

admits an ED over Ω . Let
( U (t)

V (t)

)
be the principal solution of (5ω,λ) for some ω ∈ Ω . Then one can show that the Lagrange

plane l(t) determined by
( U (t)

V (t)

)
is the image of the dichotomy projection Pτt (ω) .

Second, if λ < 0, then the Lagrange plane l(ω) = Im Pω varies continuously with ω ∈ Ω . This sort of continuity need
not hold if λ = 0. More precisely, let

( U (t)
V (t)

)
be the principal solution of Eq. (5ω) = (5ω,0). Let l(ω) be the Lagrange plane

determined by
( U (0)

V (0)

)
. Then the map ω → l(ω) need not be continuous. Examples for which ω → l(ω) is discontinuous can

be constructed using a method of Millionščikov ([18], also Vinograd [24]). See [8] for the details.
Having made these remarks, we return to our one-sided continuity result. Fix ω ∈ Ω and λ � 0. Let

( U (t)
V (t)

)
be the

principal solution of Eq. (5ω,λ) and let l(ω,λ) be the Langrange plane determined by
( U (0)

V (0)

)
. Then l(ω,λ) is uniquely

determined by the n × n symmetric matrix N(ω,λ) = V (0)U−1(0).
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Proposition 3.12. With the notation as above: for each ω ∈ Ω , one has

lim
λ→0− l(ω,λ) = l(ω,0)

where the convergence is in the Grassmann sense.

Proof. The same proof of point (ii) in [14, Theorem 4.4] applies here. We include it for completeness. It is enough to check
that

lim
λ→0− N(ω,λ) = N(ω,0).

From Proposition 3.9 we deduce that for λ � λ′ , N(ω,λ) � N(ω,λ′). Therefore, there exist the limits

lim
λ→0− N(ω,λ) = N0(ω)

and they are finite. In order to show the coincidence of N0(ω) with N(ω,0), as in Proposition 3.8 it can be shown that

N(ω,λ) = lim
r→∞ Mr(ω,λ),

where Mr(ω,λ) = Vr(0,ω,λ)U−1
r (0,ω,λ) � N(ω,λ) and

( Ur (t,ω,λ)

Vr(t,ω,λ)

)
is the solution of (5ω,λ) with initial conditions

Ur(r,ω,λ) = 0, Vr(r,ω,λ) = In . Hence

N(ω,0) = lim
r→∞ Mr(ω,0),

N(ω,0) � N0(ω),

N(ω,0) � Mr(ω,0) � Mr(ω,λ), λ � 0, r > 0.

Thus,

0 � N0(ω) − N(ω,0) � N0(ω) − Mr(ω,0)

� N0(ω) − N(ω,λ) + N(ω,λ) − Mr(ω,λ),

and, since N(ω,λ) ↑ N0(ω) as λ → 0− and Mr(ω,λ) ↑ N(ω,λ) as r → ∞, we conclude that N(ω,0) = N0(ω). �
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