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The High-Resolution Rate-Distortion Function under the
Structural Similarity Index

Jan Jstergaarddlember, IEEEMilan S. Derpich,Member, IEEEand Sumohana S. Channappayya

Abstract—In this paper, we show that the structural similarity (SSIM)
index, which is used in image processing to assess the simiiia between
an image representation and an original reference image, cabe formu-
lated as a locally quadratic distortion measure. We furthemore show that
recent results of Linder and Zamir on the rate-distortion function (RDF)
under locally quadratic distortion measures are applicabé to this SSIM
distortion measure. We finally derive the high-resolution SIM-RDF and
provide a simple method to numerically compute an approximéon of
the SSIM-RDF of real images.

Index Terms—Rate distortion theory, high-resolution coding, locally
quadratic, structural similarity index measure

|. INTRODUCTION

In this paper, we present the high-resolution RDF for sairce
with finite differential entropy and under a SSIM index disian
measure. The SSIM-RDF is particularly important for reskars
and practitioners within the image coding area, since itvipies
a lower bound on the number of bits thabty coder, e.g., JPEG
etc., will use when encoding an image into a representatidrich
has an SSIM index no smaller than a pre-specified level. Tius,
allows one to compare the performance of a coding architedtu
the optimum performance theoretically attainable. TheMsRDF
is non convex and does not appear to admit a simple closeu-for
expression. However, when the coding rate is high, i.e.,nmm&ch
pixel of the image is represented by a high number of bits,nsage
than0.5 bpp, then we are able to find a simple expression, which is

VAST majority of the work on source coding with a fidelity asymptotically (as the bit-rate increases) exact. Forefinitd small

criterion (i.e. rate-distortion theory) concentrates ba mean-
squared error (MSE) fidelity criterion. The MSE fidelity efiion
is used mainly due its mathematical tractability. Howevar,ap-
plications involving a human observer it has been noted tlist

bit-rates, our results provides an approximation of the tBSIM-
RDF.

In order to find the SSIM-RDF, we first show that the SSIM
index can be formulated as a locally quadratic distortiorasnee.

tortion measures which include some aspects of human g@wep We then show that recent results of Linder and Zamir [7] on the
generally perform better than the MSE [1]. A great number d®DF under locally quadratic distortion measures are agple and

perceptual distortion measures are non-difference disgtomeasures
and, unfortunately, even for simple sources, their comedmng rate-
distortion functions (RDFs), that is, the minimum bit-ratsgquired
to attain a distortion equal or smaller than some given vaoe not
known. However, in certain cases it is possible to derivér tREFs.

For example, for a Gaussian process with a weighted squared e

criterion, where the weights are restricted to be lineaetinvariant
operators, the complete RDF was first found in [2] and latderiged
by several others [3], [4]. Other examples include the spexzse of
locally quadratic distortion measures for fixed rate vecfoantizers
and under high-resolution assumptions [5], results whieteatended
to variable-rate vector quantizers in [6], [7], and appliegherceptual
audio coding in [8], [9].

In [10], Wang et al. proposed the structural similarity (8l

index as a perceptual measure of the similarity between agém
representation and an original reference image. The SSkiéxin d(z,y)

takes into account the cross-corelation between the imadeita
representation as well as the images first and second ordeents.
It has been shown that this index provides a more accurateagst

finally obtain a closed form expression for the high-resoluSSIM-
RDF. We end the paper by showing how to numerically approtéema
the high-resolution SSIM-RDF of real images.

Il. PRELIMINARIES

In this section we present an important existing result de-ra
distortion theory for locally quadratic distortion meassirand also
present the SSIM index. We will need these elements whenngov
our main results, i.e., Theorems 2 and 3, in Section IIl.

A. Rate-Distortion Theory for Locally Quadratic DistortioMea-
sures

Let z € R" be a realization of a source vector process ang let
R™ be the corresponding reproduction vector. A distortion snea
is said to be locally quadratic if it admits a Taylor series
(i.e. it possesses derivatives of all orders in a neighlbmtharound
the points of interest) and furthermore, if the second-orgems
of its Taylor series dominate the distortion asymptoticaky —

of the perceived quality than the MSE [1]. The SSIM index wa$ (corresponding to the high-resolution regime). In otherdso if

used for image coding in [11] and was cast in the framework;ef

d(z,y) is locally quadratic, then it can be written dér, y) = (z —

compression of images and image sequences in [12]. Théorelat?)’ B(%)(z —y) +O(|lz — y||*), where B(x) is an input-dependent

between the coding rate of a fixed-rate uniform quantizer tued
distortion measured by the SSIM index was first addressed3h [
In particular, for several types of source distributiond ander high-
resolution assumptions, upper and lower bounds on the S&deki
were provided as a function of the operational coding ratehef
quantizer [13].
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positive-definite matrix and where fgrclose toz, the quadratic term
(i.e., (z — y)T B(z)(x — y)) is dominating [7]. We use upper case
X when referring to the stochastic process generating azegin
x and useh(X) to denote the differential entropy of, provided
it exists. The determinant of a matri® is denoteddet(B) andE
denotes the expectation operator.

The RDF for locally quadratic distortion measures and simoot
source$ was found by Linder and Zamir [7] and is given by the
following theorem:

1The distribution of image coefficients and transformed imagefficients
of natural images can in general be approximated suffigiemtlll by smooth
models [14], [15].



Theorem 1([7]). Supposel(z,y) and X satisfy some mild technical At this point, we note that the main technical conditionsuieepl
conditiong. Then, for Theorem 1 to be applicable is boundedness in the follgwin
. n sense [7]:h(X) < 00,0 < E||X||? < oo, E[log,(det(B(X)))] <
ngglo [R(D) + §log2(2ﬁeD/n)} - oo, and IE(tEr:aLc)e{B’1(X)}):’/H2 ! oo and E‘urtﬁl(ermc()re( ur)li)f)(lrmly
bounded third-order partial derivatives a{X,Y). The first two
conditions are satisfied by the assumptions of the Theorémm.néxt
where R(D) is the RDF ofX (in bits per block) under distortion two conditions follow since all elements &f(x) are bounde®z (see

. 1)
h(X) + 5Ellog, (det(B(X)))]

d(z,y), and h(X) denotes the differential entropy of. the proof of Theorem 2). Moreover, due to the positive sizdilon
constantsC; and Cs, trace{B(x)}~! is clearly bounded. Finally,

B. The Structural Similarity Index it was established in the proof of Theorem 2 that the thimdor

Let 2,y € R" wheren > 2. We define the following empirical derivatives ofd(X,Y") are uniformly bounded. Thus, the proof now
quantities: the sample mean, £ 2 """ ! 2, the sample variance fllows simply by using (6) in (1). u

24 1 _ T _ _ Tz npy . i . .
0z = 71 (@ — pa) A(CC } pa) = =i~ n-1! and the saumi)le CrOSS A Evaluating the SSIM Rate-Distortion Function

i — 2 — 2y e . . . I

variancessy = oye = 5oy (@ —pa)” (y — py) = 57§ — =270 We In this section we propose a simple method for estimating the

defines, ando; similarily.

_ A ) ) SSIM-RDF in practice based on real images. Conveniently,dwe
The SSIM index studied in [10] is defined as:

not need to encode the images in order to find their corresponding
(2pzpty + C1)(204y + Ca) @) high-resolution RDF. Thus, the results in this section (al \as
(W2 +p2+Cr)(o2+ 02+ Co)’ the results in the previous sections) @mdependenbf any specific

whereC; > 0,7 = 1,2. The SSIM index ranges betweenl and1, coding architecture.

where positive values close to 1 indicate a small perceplisgrtion. N Practice, the source statistics are often not availahte must
We can define a distortion “measure” as one minus the SSIMkjngéherefore be found empirically from the image dataMTowath
that is end, one may assume that the individual vectpr$i)};Z, (where

2 + 1) (200 + Ch) z(i) denotes theth NxN subblock of the image and/ denotes
T j_“u;:_ o 1)( > :_y 5 +QC 5 (3) the total number of subblocks in the image) of the image dmmst
HE T My P9z T Ty 2 approximately independent realizations of a vector pracés this

which ranges betweeland?2 and where a value close toindicates case, we can approximate the expectation by the empiriithhzetic
a small distortion. The SSIM index is locally applied dxN-blocks mean, i.e.,

of the image. Then, all block indexes are averaged to yigd38IM M
index of the entire image. We treat each block assaimensional E[log, (det(B(X)))] ~ — > (n—1)log,(a(x(i))
M
=1

SSIM (z,y) £

d(m7y) 2 1-

@)

vector wheren = N2,

+ log, (a(z(i)) + b(=(i))n)],
wherea(z(7)) andb(z(7)) indicates that the functionsandb defined
in (4) and (5) are used on thiéh subblockz(i). Several estimates of
~E[log,(det(B(X)))] + log,(N) using (7) are shown in Table I,
for various images commonly considered in the image praogss

I1l. RESULTS

In this section we present the main theoretical contrilmstiof this
paper. We will first show thatl(z, y) is locally quadratic, and then
use Theorem 1 to obtain the high-resolution RDF for the SSidléx.

Theorem 2. d(z,y), as defined in (3), is locally quadratic. literature.
Proof: See the appendix. u Image | N=4 N=8 N=16
. . Bab -4.57 -4.77 -5.00
Theorem 3. The high-resolution RDER(D) for the sourceX under pngg:] 3.16 351 412
the distortion measuré(z,y) defined in (3) and wherg(X) < oo Boat -3.66 -3.99 -4.45
and0 < E||X||*> < oo, is given by Lena 313 -3.49 -4.08
n F16 -2.83 -3.14 -3.65
gglo [R(D) + 3 log,(2meD)| = h(X) TABLE |
1 n ESTIMATED %I[E[log2 (det(B(X)))] + logy(IN) VALUES FOR SOME
+§E[(n - 1)log2(a(X))+log2(a(X)+b(X)n)]+5 log,(n), 512x512 8-BIT GREY IMAGES AND BLOCK SIZESn = N2, N = 4,8, 16.
wherea(X) and b(X) are given by
1 1
a(X) = n_1 202+ Cs’ (4) In order to obtain the high-resolutiqn RDE of the image, aditw
1 1 1 1 to Theorem 3, we also need the differential entrdgyX) of the

(X)=—="- — . . (5) image, which is usually not known a-priori in practice. Thwe need
) n? 2+ G on(n—1) 205+ Co to numerically estimaté:(X), e.g., by using the average empirical
Proof: Recall from Theorem 2 that(z, y) is locally quadratic. differential entropy over all blocks of the image. In orderdo this,
Moreover, the weighting matri¥3(X) in (1), which is also known we apply the two-dimensional KLT on each of the subblocks of

as asensitivitymatrix [5], is given by (15), see the Appendix. Inthe image in order to reduce the correlation within the sotis®
the Appendix it is also shown thaB(x) is positive-definite since Then we use a nearest-neighbor entropy-estimation approac
a(x) > 0,a(z) + b(z)n > 0,Vz, wherea(z) and b(z) are given approximate the marginal differential entropies of theveats within
by (4) and (5), respectively. From (16), it follows that a subblock [16]. Finally, we approximate(X) by the sum of the
E[log,(det(B(X)))] = E[(n — 1) log,(a(X)) marginal differential entropies, which yields the valugesented in

(6) Table Il
+ log, (a(X) + b(X)n)].
3Since the KLT is an orthogonal transform, this operation wit affect
2See conditions) — g)in Section II-A in [7]. the differential entropy.



g];%%in J\;zszl Nezg N 20136 get to the high-resolution SSIM-RDF by evaluating the openal

Pepper 475 455 4.49 performance of, for example, the baseline JPEG. Figure®yslthe

Boat 5.10 4.92 4.88 operational RDF for the JPEG coder used on the Lena image and

Lena 4.63 441 4.38 using block sizes o8 x 8. For comparison, we have also shown the

F16 432 414 4.13 SSIM-RDF. It may be noticed that the operational curve is a2 t
TABLE I bpp above the corresponding SSIM-RBF.

ESTIMATED %h(x) (INBITS/DIM. OR EQUIVALENTLY BITS PER PIXEL
(BPP)) FOR DIFFERENT512Xx512 8-BIT GREY IMAGES AND BLOCK SIZES ‘
n= N2 N =4,8 AND 16. —— SSIM-JPEG
45 —6— SSIM-RDF |

IV. SIMULATIONS

In this section we use the JPEG cotlea the images and measure
the corresponding SSIM values of the reconstructed imagesn
we compare these operational results to the informatioorétie
estimated high-resolution SSIM RDF obtained as describethé
previous section. We are interested in the high-resolutiegion,
which corresponds to smallx, y) values (i.e., values close to zero)
or equivalently large SSIM values (i.e., values close to) oRgure 1
shows the high-resolution SSIM-RDF fd(x, y) values below0.27,
corresponding to SSIM values abowe73. Notice that the rate
becomes negative at large distortions (i.e., small rapgsrh happens s

Rate [bpp]

L L
; ; . - 0.05 0.1 0.15 0.2 0.25
because the high-resolution assumption is clearly nafgediand the Distortion: d(x.y) = 1-SSIM(x.y)

approximations are therefore not accurate. Thus, it do¢smake

sense to evaluate the asymptotic SSIM-RDF of Theorem 3 @é larFig. 2. Operational RDF using the JPEG coder on the Lena inager
distortions. the similarity measuré(z,y) =1 — SSIM (z,y) for block size8 x 8. For

comparison we have also shown the high-resolution SSIM-RBIR line).

The gap between the SSIM-RDF and the operational RDF based on
JPEG encoding as can be observed in Figure 2, can be explayned
the following observations: First, the JPEG coder aims atinmizing
a frequency weighted MSE rather than maximizing the SSIM»nd
Second, JPEG is a practical algorithm with reduced comyieaad
is therefore not rate-distortion optimal even for the wéghMSE.
Third, the differential entropy as well as the expectatidrthe log
of the determinant of the sensitivity matrix are empirigdbund —
based on a finite amount of image data. Thus, they areestlynates
of the true values. Finally, the SSIM-RDF becomes exact i th
asymptotic limit where the coding rate diverges towardshityfi(i.e.,
for small distortions). At finite coding rates, it is an apgroation.
Nevertheless, within these limitations, the numericallwton of
the SSIM-RDF presented here suggests that significant essipn
gains could be obtained by an SSIM-optimal image coder, adtle

Rate [bpp]

| —u
0.1 0.15 0.2 0.25

Il
0.05

Distortion: d(x.y) = 1-SSIM(x.y) at high rate regimes. To obtain further insight into this sjiem, the
corresponding RDF under MSE distortion (MSE-RDF) for thenhe
Fig. 1. High-resolution RDF under the similarity measuifer,y) = 1 — image is shown in Figure 3. We can see that the excess ratee@ JP
SSIM (z,y) for different images and using &8 block size. with respect to the MSE-RDF at high rates is not greater thdn 1

bpp. This suggests that a JPEG-like algorithm aimed at nimiviign
SSIM distortion could reduce at least a fraction of the htergap
seen in Figure 2.
V. DiscussioN It is interesting to note that in the MSE case, we h@fer) = I,
The information-theoretic high-resolution RDF charaizesl by which implies thatlog, (| det(B(x))|) = 0. Thus, the difference
Theorem 3 constitutes a lower bound on the operationallieaahle between the SSIM-RDF and the MSE-RDF, under high-resalutio
minimum rate for a givem SSIM distortion value. As discussedssumptions, is constant (e.g., independent of the le)-rht fact, if
in [17], achieving the high-resolution RDF could requiree thse the MSE is measured per dimension, then the rate differengén
of optimal companding, which may not be feasible in some sasdy the values in Table |, i.e.;~E[log,(det(B(X)))] + log,(N).
Thus, the questions of whether the RDF obtained in Theorem 3li follows that the SSIM-RDF is simply a shifted version ofeth
achievable, and how to achieve it, remain open. Nevertigles can MSE-RDF at high resolutions. Moreover, the gap between tinges
obtain a loose estimate of how close a practical coding seheould illustrates the fact that, in general, a representatiomafrage which
is MSE optimal is not necessarily also SSIM optimal.

4We are using the baseline JPEG coder implementation aleilda the
imwrite function in MatlalfR). 5A similar behavior is observed for the other four images ia tist set.



585 451 421 403 391 381 373 367 361 PSNR follows from (8) that%b,,. — aféaj;- |y7x+ aj_zgy_ |y,,,7Vi7j.
. . 1YY = Yi90Yj 'y= i9Yj =z
—— MSE-JPEG With this, and after some algebra, it can be shown that
45 —o— MSE-RDF
2 1 2 1 3 -
0’h _ {_77 I T nin1) 224C3” it i # j, )
Ou. |l 2 1 2_ 1 TR
9yi0y; y=z " n22u2+C; n202+C3° ifi=j.

35 We now leth(™ denote thenth partial derivative of: with respect
= to somem variables and note that from Leibniz generalized product
2 rule [18] it follows thath®) = g f® 43¢ 2 1392 O 4 @) f,
g2 When evaluated ay = x this reduces tdv®|,—, = f®|,—. +

9®|y=s, since fV|,—, and gV|,_, are both zero. For the third-
order derivatives off, we have:Vvi, j, k,

- ot | B (10)

0yi0y;Oyk |,_, n* (2u3 + C1)?’

05 Moreover, ifi # j # k andi # k we obtain

839 _ 4 1
Distortion: MSE 3yiayjayk y—s - n(n _ 1)2 (20% + 02)2 (11)
Fig. 3. Operational RDF using the JPEG coder on the Lena invager P P _
the MSE distortion measure. For comparison we have also rshioe high- X (@ = pa) + (@5 = o) + (24 = o)
resolution MSE-RDF (thin line). The horizontal axes on the &nd the bottom . L . . .
show the PSNR and MSE, respectively. whereas if any two indices are equal, eig# j = k, we obtain
&g _ 8 Tj — Mz
Ay:0y;0y; |, _, n(n —1)2 (202 + C2)? (12)
VI. CONCLUSIONS 4 (mi—pe)(1—2)
n
We have shown that, under high-resolution assumptionsRiDie + (n—1)2 (202 + ()2
for a range of natural images under the commonly used SS'MnaIIy if i = j = k, we obtain
index, has a simple form. In fact, the RDF only depends upen th ' ; ' )
differential entropy of the source image as well as the eqguec g _ 12 (zi —pa)(d — H)‘ (13)
value of a function of thesensitivitymatrix of the image. Thus, it is Oyidyidyi|,_, (n—1)* (20%+C2)?

independent_of any specific cod_ing architecture. Morgomr,al;o Let B be ann-dimensional ball of radius centered atr, let £ =

provided a simple method to estimate the SSIM-RDF in pradiic — z, and let73(¢) be the second-order Taylor seriesdgf:, z + €)
. . . . Yy ’ 2 y )

a given image. Finally, we compared the operational ped® oniered at: (i.e., ate = 0). It follows that

of the baseline JPEG image coder to the SSIM-RDF and showed ’ )

by approximate numerical evaluations that potentiallyngigant Ta(€) 2 1 Z 9 h(%y)'

perceptual rate-distortion improvements could be obthimg using 2 0yi0y;

SSIM-optimal encoding techniques.

&6 =€ Ba)g,  (14)
y=x
where B(z) is given by half the second-order partial derivatives of

APPENDIX d(z,y), that is (see (9))

PROOF OFTHEOREM2 ) ) r -1
We need to show that the second-order terms of the Tayloesseri B(z)= 5 —5——
n? 2u2 4+ C1

of d(z,y) are dominating in the high-resolution Iimit wheye_—>_ z. 1 1

In order to do this, we show that the Taylor series coefficienit 1 1 1 (15)
the zero- and first-order terms vanish whereas the coeffciginthe ool T el

second- and third-order terms are non-zero. Then we upperchbihe 11 n—1 o
remainder due to approximating(x,y) by its second-order Taylor n 202+ Cs : : . :
series. This upper bound is established via the third-opietial D . |

derivatives ofd(z,y). We finally show that the second-order terms ) notoomed )

decay more slowly towards zero than the remaindey &nds toz. which has full rank and is well defined far< n < co. This can be

' A [ 2papy+Cy o 200,40 rewritten as
Let us definef = { oute; | andg = { szioz7c; ) and let B(z) = a(@)] + b(x)J, (16)
h = fg. It follows thatd(x,y) = 1 —h and we note that the second-

. L ’ where [ is the identity matrix,J is the all-ones matrix
order partial derivatives with respect i and y; for any i, j, are y J '

i 1 1
given by S — 17
5 9 9 a(z) n—1202+ Cs (17)
0°h _y o°f ny 0%g of 0dg of Og ©® and

0y 0y, 0y 0y, Oy:idy;  Oyi Oy;  Oy; Oyi b(z) = 1 1 _ 1 1 (18)

Clearly fly== = gly== = 1, where (-)|,— indicates that the n?2uz +C1 n(n—1)202 +C
expressior(-) is evaluated at the point= x. Since2x — 1 27 —  Thus, B(z) has eigenvalueso = a(z) + b(z)n and \; = a(z),i =

Yi n Yi . . . .

2_(y; — 1), and ag;‘z = L (2 — ), it is easy to show that _1, ...,n—1. SinceB(z) is symmetric, the quadratic forg? B(z)¢

97| =911 =,V Thus, the coefficients of the zero- an
Yi ly=x Yi ly=z

first-order terms of the Taylor series éfx, y) are zero. Moreover, it §TB(:c)§ > >\m7ll\§ll27 (29)

ds lower bounded by




where Anin = min{\;}7=) = min{a(z) + nb(z),a(z)} > 0,
which implies thatB(z) is positive-definite.

On the other hand, it is known from Taylor’s theorem that foy a
y € B, the remaindefR2 (&), where

R2(€) £ d(z,z + &) — T2(8), (20)

is upper bounded by
Ra(€)] < 6 3 1658, (21)
* SR | Brauou | 2

i.e., ¢ is upper bounded by the supremum over the set of third-order

coefficients of the Taylor series &f Since for real images, the pixel
values are finite, and singg; > 0,7 = 1,2, it follows from (10) —
(13) that the third-order derivatives amaiformly bounded andp is
therefore finite. Moreover, for alf such that||¢||? < e, it follows
using (14), (19), and (21) that

{Lmax el }oo

[R2(6)]
im ——= < 23
leli=o [T2(&)] ~ neli—o merSIP (23)
3 3
¢ €]l
24
= Jelm>o Ao |\§||2 9
= lim =0, 25
||§H"O )\77LL7L ||€H ( )
where (23) follows sincd&;&;&x| < IIllaX |&;® and the sum

aaaaa

in (21) runs over all possible comblnatlons of thlrd -ordenrtial
derivatives of a vector of length, i.e, >, ;, 1= n®. Furthermore,
(24) follows by use of (19) and the fact thap.{z|3 EE
Finally, (25) follows from the fact thap is bounded by (22). Since
the limit of (25) exists and is zero, we deduce that the secwddr
terms of the Taylor series af(x,y) are asymptotically dominating
asy tends tox. This completes the proof.
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