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The High-Resolution Rate-Distortion Function under the
Structural Similarity Index

Jan Østergaard,Member, IEEE,Milan S. Derpich,Member, IEEE,and Sumohana S. Channappayya

Abstract—In this paper, we show that the structural similarity (SSIM)
index, which is used in image processing to assess the similarity between
an image representation and an original reference image, can be formu-
lated as a locally quadratic distortion measure. We furthermore show that
recent results of Linder and Zamir on the rate-distortion function (RDF)
under locally quadratic distortion measures are applicable to this SSIM
distortion measure. We finally derive the high-resolution SSIM-RDF and
provide a simple method to numerically compute an approximation of
the SSIM-RDF of real images.

Index Terms—Rate distortion theory, high-resolution coding, locally
quadratic, structural similarity index measure

I. I NTRODUCTION

A VAST majority of the work on source coding with a fidelity
criterion (i.e. rate-distortion theory) concentrates on the mean-

squared error (MSE) fidelity criterion. The MSE fidelity criterion
is used mainly due its mathematical tractability. However,in ap-
plications involving a human observer it has been noted thatdis-
tortion measures which include some aspects of human perception
generally perform better than the MSE [1]. A great number of
perceptual distortion measures are non-difference distortion measures
and, unfortunately, even for simple sources, their corresponding rate-
distortion functions (RDFs), that is, the minimum bit-raterequired
to attain a distortion equal or smaller than some given value, are not
known. However, in certain cases it is possible to derive their RDFs.
For example, for a Gaussian process with a weighted squared error
criterion, where the weights are restricted to be linear time-invariant
operators, the complete RDF was first found in [2] and later rederived
by several others [3], [4]. Other examples include the special case of
locally quadratic distortion measures for fixed rate vectorquantizers
and under high-resolution assumptions [5], results which are extended
to variable-rate vector quantizers in [6], [7], and appliedto perceptual
audio coding in [8], [9].

In [10], Wang et al. proposed the structural similarity (SSIM)
index as a perceptual measure of the similarity between an image
representation and an original reference image. The SSIM index
takes into account the cross-corelation between the image and its
representation as well as the images first and second order moments.
It has been shown that this index provides a more accurate estimate
of the perceived quality than the MSE [1]. The SSIM index was
used for image coding in [11] and was cast in the framework ofℓ1-
compression of images and image sequences in [12]. The relation
between the coding rate of a fixed-rate uniform quantizer andthe
distortion measured by the SSIM index was first addressed in [13].
In particular, for several types of source distributions and under high-
resolution assumptions, upper and lower bounds on the SSIM index
were provided as a function of the operational coding rate ofthe
quantizer [13].
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In this paper, we present the high-resolution RDF for sources
with finite differential entropy and under a SSIM index distortion
measure. The SSIM-RDF is particularly important for researchers
and practitioners within the image coding area, since it provides
a lower bound on the number of bits thatany coder, e.g., JPEG
etc., will use when encoding an image into a representation,which
has an SSIM index no smaller than a pre-specified level. Thus,it
allows one to compare the performance of a coding architecture to
the optimum performance theoretically attainable. The SSIM-RDF
is non convex and does not appear to admit a simple closed-form
expression. However, when the coding rate is high, i.e., when each
pixel of the image is represented by a high number of bits, saymore
than0.5 bpp, then we are able to find a simple expression, which is
asymptotically (as the bit-rate increases) exact. For finite and small
bit-rates, our results provides an approximation of the true SSIM-
RDF.

In order to find the SSIM-RDF, we first show that the SSIM
index can be formulated as a locally quadratic distortion measure.
We then show that recent results of Linder and Zamir [7] on the
RDF under locally quadratic distortion measures are applicable, and
finally obtain a closed form expression for the high-resolution SSIM-
RDF. We end the paper by showing how to numerically approximate
the high-resolution SSIM-RDF of real images.

II. PRELIMINARIES

In this section we present an important existing result on rate-
distortion theory for locally quadratic distortion measures and also
present the SSIM index. We will need these elements when proving
our main results, i.e., Theorems 2 and 3, in Section III.

A. Rate-Distortion Theory for Locally Quadratic Distortion Mea-
sures

Let x ∈ R
n be a realization of a source vector process and lety ∈

R
n be the corresponding reproduction vector. A distortion measure

d(x, y) is said to be locally quadratic if it admits a Taylor series
(i.e. it possesses derivatives of all orders in a neighborhood around
the points of interest) and furthermore, if the second-order terms
of its Taylor series dominate the distortion asymptotically as y →
x (corresponding to the high-resolution regime). In other words, if
d(x, y) is locally quadratic, then it can be written asd(x, y) = (x−
y)TB(x)(x− y)+O(‖x− y‖3), whereB(x) is an input-dependent
positive-definite matrix and where fory close tox, the quadratic term
(i.e., (x − y)TB(x)(x − y)) is dominating [7]. We use upper case
X when referring to the stochastic process generating a realization
x and useh(X) to denote the differential entropy ofX, provided
it exists. The determinant of a matrixB is denoteddet(B) andE

denotes the expectation operator.
The RDF for locally quadratic distortion measures and smooth

sources1 was found by Linder and Zamir [7] and is given by the
following theorem:

1The distribution of image coefficients and transformed image coefficients
of natural images can in general be approximated sufficiently well by smooth
models [14], [15].
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Theorem 1 ([7]). Supposed(x, y) andX satisfy some mild technical
conditions2. Then,

lim
D→0

[

R(D) +
n

2
log2(2πeD/n)

]

=

h(X) +
1

2
E[log2(det(B(X)))],

(1)

whereR(D) is the RDF ofX (in bits per block) under distortion
d(x, y), andh(X) denotes the differential entropy ofX.

B. The Structural Similarity Index

Let x, y ∈ R
n wheren ≥ 2. We define the following empirical

quantities: the sample meanµx , 1
n

∑n−1
i=0 xi, the sample variance

σ2
x , 1

n−1
(x− µx)

T (x− µx) =
xT x
n−1

−
nµ2

x

n−1
, and the sample cross

varianceσxy = σyx , 1
n−1

(x−µx)
T (y−µy) =

xT y
n−1

−
nµxµy

n−1
. We

defineµy andσ2
y similarily.

The SSIM index studied in [10] is defined as:

SSIM(x, y) ,
(2µxµy + C1)(2σxy +C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2)

whereCi > 0, i = 1, 2. The SSIM index ranges between−1 and1,
where positive values close to 1 indicate a small perceptualdistortion.
We can define a distortion “measure” as one minus the SSIM index,
that is

d(x, y) , 1−
(2µxµy + C1)(2σxy +C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3)

which ranges between0 and2 and where a value close to0 indicates
a small distortion. The SSIM index is locally applied toN×N -blocks
of the image. Then, all block indexes are averaged to yield the SSIM
index of the entire image. We treat each block as ann-dimensional
vector wheren = N2.

III. R ESULTS

In this section we present the main theoretical contributions of this
paper. We will first show thatd(x, y) is locally quadratic, and then
use Theorem 1 to obtain the high-resolution RDF for the SSIM index.

Theorem 2. d(x, y), as defined in (3), is locally quadratic.

Proof: See the appendix.

Theorem 3. The high-resolution RDFR(D) for the sourceX under
the distortion measured(x, y) defined in (3) and whereh(X) < ∞
and 0 < E‖X‖2 < ∞, is given by

lim
D→0

[

R(D) +
n

2
log2(2πeD)

]

= h(X)

+
1

2
E[(n− 1)log2(a(X))+log2(a(X)+b(X)n)]+

n

2
log2(n),

wherea(X) and b(X) are given by

a(X) =
1

n− 1
·

1

2σ2
x + C2

, (4)

b(X) =
1

n2
·

1

2µ2
x + C1

−
1

n(n− 1)
·

1

2σ2
x + C2

. (5)

Proof: Recall from Theorem 2 thatd(x, y) is locally quadratic.
Moreover, the weighting matrixB(X) in (1), which is also known
as asensitivitymatrix [5], is given by (15), see the Appendix. In
the Appendix it is also shown thatB(x) is positive-definite since
a(x) > 0, a(x) + b(x)n > 0,∀x, wherea(x) and b(x) are given
by (4) and (5), respectively. From (16), it follows that

E[log2(det(B(X)))] = E[(n− 1) log2(a(X))

+ log2(a(X) + b(X)n)].
(6)

2See conditionsa) – g) in Section II-A in [7].

At this point, we note that the main technical conditions required
for Theorem 1 to be applicable is boundedness in the following
sense [7]:h(X) < ∞, 0 < E‖X‖2 < ∞,E[log2(det(B(X)))] <
∞, and E(trace{B−1(X)})3/2 < ∞ and furthermore uniformly
bounded third-order partial derivatives ofd(X,Y ). The first two
conditions are satisfied by the assumptions of the Theorem. The next
two conditions follow since all elements ofB(x) are bounded∀x (see
the proof of Theorem 2). Moreover, due to the positive stabilization
constantsC1 and C2, trace{B(x)}−1 is clearly bounded. Finally,
it was established in the proof of Theorem 2 that the third-order
derivatives ofd(X,Y ) are uniformly bounded. Thus, the proof now
follows simply by using (6) in (1).

A. Evaluating the SSIM Rate-Distortion Function

In this section we propose a simple method for estimating the
SSIM-RDF in practice based on real images. Conveniently, wedo
not need to encode the images in order to find their corresponding
high-resolution RDF. Thus, the results in this section (as well as
the results in the previous sections) areindependentof any specific
coding architecture.

In practice, the source statistics are often not available and must
therefore be found empirically from the image data. Towardsthat
end, one may assume that the individual vectors{x(i)}Mi=1 (where
x(i) denotes theith N×N subblock of the image andM denotes
the total number of subblocks in the image) of the image constitute
approximately independent realizations of a vector process. In this
case, we can approximate the expectation by the empirical arithmetic
mean, i.e.,

E[log2(det(B(X)))] ≈
1

M

M
∑

i=1

(n− 1) log2(a(x(i)))

+ log2(a(x(i)) + b(x(i))n)],

(7)

wherea(x(i)) andb(x(i)) indicates that the functionsa andb defined
in (4) and (5) are used on theith subblockx(i). Several estimates of
1
2n

E[log2(det(B(X)))] + log2(N) using (7) are shown in Table I,
for various images commonly considered in the image processing
literature.

Image N = 4 N = 8 N = 16
Baboon -4.57 -4.77 -5.00
Pepper -3.16 -3.51 -4.12
Boat -3.66 -3.99 -4.45
Lena -3.13 -3.49 -4.08
F16 -2.83 -3.14 -3.65

TABLE I
ESTIMATED 1

2n
E[log2(det(B(X)))] + log2(N) VALUES FOR SOME

512×512 8-BIT GREY IMAGES AND BLOCK SIZESn = N2, N = 4, 8, 16.

In order to obtain the high-resolution RDF of the image, according
to Theorem 3, we also need the differential entropyh(X) of the
image, which is usually not known a-priori in practice. Thus, we need
to numerically estimateh(X), e.g., by using the average empirical
differential entropy over all blocks of the image. In order to do this,
we apply the two-dimensional KLT on each of the subblocks of
the image in order to reduce the correlation within the subblocks.3

Then we use a nearest-neighbor entropy-estimation approach to
approximate the marginal differential entropies of the elements within
a subblock [16]. Finally, we approximateh(X) by the sum of the
marginal differential entropies, which yields the values presented in
Table II.

3Since the KLT is an orthogonal transform, this operation will not affect
the differential entropy.
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Image N = 4 N = 8 N = 16
Baboon 6.18 6.06 6.03
Pepper 4.75 4.55 4.49
Boat 5.10 4.92 4.88
Lena 4.63 4.41 4.38
F16 4.32 4.14 4.13

TABLE II
ESTIMATED 1

n
h(x) (IN BITS/DIM . OR EQUIVALENTLY BITS PER PIXEL

(BPP)) FOR DIFFERENT512×512 8-BIT GREY IMAGES AND BLOCK SIZES

n = N2, N = 4, 8, AND 16.

IV. SIMULATIONS

In this section we use the JPEG codec4 on the images and measure
the corresponding SSIM values of the reconstructed images.Then
we compare these operational results to the information theoretic
estimated high-resolution SSIM RDF obtained as described in the
previous section. We are interested in the high-resolutionregion,
which corresponds to smalld(x, y) values (i.e., values close to zero)
or equivalently large SSIM values (i.e., values close to one). Figure 1
shows the high-resolution SSIM-RDF ford(x, y) values below0.27,
corresponding to SSIM values above0.73. Notice that the rate
becomes negative at large distortions (i.e., small rates),which happens
because the high-resolution assumption is clearly not satisfied and the
approximations are therefore not accurate. Thus, it does not make
sense to evaluate the asymptotic SSIM-RDF of Theorem 3 at large
distortions.
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Fig. 1. High-resolution RDF under the similarity measured(x, y) = 1 −
SSIM(x, y) for different images and using an8×8 block size.

V. D ISCUSSION

The information-theoretic high-resolution RDF characterized by
Theorem 3 constitutes a lower bound on the operationally achievable
minimum rate for a givem SSIM distortion value. As discussed
in [17], achieving the high-resolution RDF could require the use
of optimal companding, which may not be feasible in some cases.
Thus, the questions of whether the RDF obtained in Theorem 3 is
achievable, and how to achieve it, remain open. Nevertheless, we can
obtain a loose estimate of how close a practical coding scheme could

4We are using the baseline JPEG coder implementation available via the
imwrite function in MatlabR©.

get to the high-resolution SSIM-RDF by evaluating the operational
performance of, for example, the baseline JPEG. Figure 2, shows the
operational RDF for the JPEG coder used on the Lena image and
using block sizes of8× 8. For comparison, we have also shown the
SSIM-RDF. It may be noticed that the operational curve is up to 2
bpp above the corresponding SSIM-RDF.5
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SSIM−JPEG
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Fig. 2. Operational RDF using the JPEG coder on the Lena imageunder
the similarity measured(x, y) = 1− SSIM(x, y) for block size8×8. For
comparison we have also shown the high-resolution SSIM-RDF(thin line).

The gap between the SSIM-RDF and the operational RDF based on
JPEG encoding as can be observed in Figure 2, can be explainedby
the following observations: First, the JPEG coder aims at minimizing
a frequency weighted MSE rather than maximizing the SSIM index.
Second, JPEG is a practical algorithm with reduced complexity and
is therefore not rate-distortion optimal even for the weighted MSE.
Third, the differential entropy as well as the expectation of the log
of the determinant of the sensitivity matrix are empirically found —
based on a finite amount of image data. Thus, they are onlyestimates
of the true values. Finally, the SSIM-RDF becomes exact in the
asymptotic limit where the coding rate diverges towards infinity (i.e.,
for small distortions). At finite coding rates, it is an approximation.
Nevertheless, within these limitations, the numerical evaluation of
the SSIM-RDF presented here suggests that significant compression
gains could be obtained by an SSIM-optimal image coder, at least
at high rate regimes. To obtain further insight into this question, the
corresponding RDF under MSE distortion (MSE-RDF) for the Lena
image is shown in Figure 3. We can see that the excess rate of JPEG
with respect to the MSE-RDF at high rates is not greater than 1.4
bpp. This suggests that a JPEG-like algorithm aimed at minimizing
SSIM distortion could reduce at least a fraction of the bit-rate gap
seen in Figure 2.

It is interesting to note that in the MSE case, we haveB(x) = I ,
which implies thatlog2(|det(B(x))|) = 0. Thus, the difference
between the SSIM-RDF and the MSE-RDF, under high-resolution
assumptions, is constant (e.g., independent of the bit-rate). In fact, if
the MSE is measured per dimension, then the rate difference is given
by the values in Table I, i.e.,1

2n
E[log2(det(B(X)))] + log2(N).

It follows that the SSIM-RDF is simply a shifted version of the
MSE-RDF at high resolutions. Moreover, the gap between the curves
illustrates the fact that, in general, a representation of an image which
is MSE optimal is not necessarily also SSIM optimal.

5A similar behavior is observed for the other four images in the test set.
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Fig. 3. Operational RDF using the JPEG coder on the Lena imageunder
the MSE distortion measure. For comparison we have also shown the high-
resolution MSE-RDF (thin line). The horizontal axes on the top and the bottom
show the PSNR and MSE, respectively.

VI. CONCLUSIONS

We have shown that, under high-resolution assumptions, theRDF
for a range of natural images under the commonly used SSIM
index, has a simple form. In fact, the RDF only depends upon the
differential entropy of the source image as well as the expected
value of a function of thesensitivitymatrix of the image. Thus, it is
independent of any specific coding architecture. Moreover,we also
provided a simple method to estimate the SSIM-RDF in practice for
a given image. Finally, we compared the operational performance
of the baseline JPEG image coder to the SSIM-RDF and showed
by approximate numerical evaluations that potentially significant
perceptual rate-distortion improvements could be obtained by using
SSIM-optimal encoding techniques.

APPENDIX

PROOF OFTHEOREM 2

We need to show that the second-order terms of the Taylor series
of d(x, y) are dominating in the high-resolution limit wherey → x.
In order to do this, we show that the Taylor series coefficients of
the zero- and first-order terms vanish whereas the coefficients of the
second- and third-order terms are non-zero. Then we upper bound the
remainder due to approximatingd(x, y) by its second-order Taylor
series. This upper bound is established via the third-orderpartial
derivatives ofd(x, y). We finally show that the second-order terms
decay more slowly towards zero than the remainder asy tends tox.

Let us definef ,

(

2µxµy+C1

µ2
x+µ2

y+C1

)

andg ,

(

2σxy+C2

σ2
x+σ2

y+C2

)

and let

h = fg. It follows thatd(x, y) = 1−h and we note that the second-
order partial derivatives with respect toyi and yj for any i, j, are
given by

∂2h

∂yi∂yj
= g

∂2f

∂yi∂yj
+ f

∂2g

∂yi∂yj
+

∂f

∂yi

∂g

∂yj
+

∂f

∂yj

∂g

∂yi
. (8)

Clearly f |y=x = g|y=x = 1, where (·)|y=x indicates that the

expression(·) is evaluated at the pointy = x. Since∂µy

∂yi
= 1

n
,
∂σ2

y

∂yi
=

2
n−1

(yi − µy), and ∂σyx

∂yi
= 1

n−1
(xi − µx), it is easy to show that

∂f
∂yi

∣

∣

y=x
= ∂g

∂yi

∣

∣

y=x
= 0,∀i. Thus, the coefficients of the zero- and

first-order terms of the Taylor series ofd(x, y) are zero. Moreover, it

follows from (8) that ∂2h
∂yi∂yj

∣

∣

y=x
= ∂2f

∂yi∂yj

∣

∣

y=x
+ ∂2g

∂yi∂yj

∣

∣

y=x
, ∀i, j.

With this, and after some algebra, it can be shown that

∂2h

∂yi∂yj

∣

∣

∣

∣

y=x

=

{

− 2
n2

1
2µ2

x+C1

+ 2
n(n−1)

1
2σ2

x+C2

, if i 6= j,

− 2
n2

1
2µ2

x+C1

− 2
n

1
2σ2

x+C2

, if i = j.
(9)

We now leth(m) denote themth partial derivative ofh with respect
to somem variables and note that from Leibniz generalized product
rule [18] it follows thath(3) = gf (3)+3g(1)f (2)+3g(2)f (1)+g(3)f .
When evaluated aty = x this reduces toh(3)|y=x = f (3)|y=x +
g(3)|y=x, sincef (1)|y=x and g(1)|y=x are both zero. For the third-
order derivatives off , we have:∀i, j, k,

∂3f

∂yi∂yj∂yk

∣

∣

∣

∣

y=x

=
12

n3

µx

(2µ2
x + C1)2

. (10)

Moreover, if i 6= j 6= k and i 6= k we obtain

∂3g

∂yi∂yj∂yk

∣

∣

∣

∣

y=x

= −
4

n(n− 1)2
1

(2σ2
x +C2)2

×

[

(xi − µx) + (xj − µx) + (xk − µx)

]
(11)

whereas if any two indices are equal, e.g.,i 6= j = k, we obtain

∂3g

∂yi∂yj∂yj

∣

∣

∣

∣

y=x

= −
8

n(n− 1)2
xj − µx

(2σ2
x + C2)2

+
4

(n− 1)2
(xi − µx)(1−

1
n
)

(2σ2
x + C2)2

.

(12)

Finally, if i = j = k, we obtain

∂3g

∂yi∂yi∂yi

∣

∣

∣

∣

y=x

=
12

(n− 1)2
(xi − µx)(1−

1
n
)

(2σ2
x + C2)2

. (13)

Let B be ann-dimensional ball of radiusǫ centered atx, let ξ =
y−x, and letT2(ξ) be the second-order Taylor series ofd(x, x+ ξ)
centered atx (i.e., atξ = 0). It follows that

T2(ξ) , −
1

2

∑

i,j

∂2h(x, y)

∂yi∂yj

∣

∣

∣

∣

y=x

ξiξj = ξTB(x)ξ, (14)

whereB(x) is given by half the second-order partial derivatives of
d(x, y), that is (see (9))

B(x) =
1

n2

1

2µ2
x + C1







1 · · · 1
...

. . .
...

1 · · · 1







−
1

n

1

2σ2
x + C2











−1 1
n−1

· · · 1
n−1

1
n−1

−1 · · · 1
n−1

...
...

. . .
...

1
n−1

1
n−1

· · · −1











,

(15)

which has full rank and is well defined for1 < n < ∞. This can be
rewritten as

B(x) = a(x)I + b(x)J, (16)

whereI is the identity matrix,J is the all-ones matrix,

a(x) =
1

n− 1

1

2σ2
x + C2

(17)

and
b(x) =

1

n2

1

2µ2
x +C1

−
1

n(n− 1)

1

2σ2
x +C2

. (18)

Thus,B(x) has eigenvaluesλ0 = a(x)+ b(x)n andλi = a(x), i =
1, . . . , n−1. SinceB(x) is symmetric, the quadratic formξTB(x)ξ
is lower bounded by

ξTB(x)ξ ≥ λmin‖ξ‖
2, (19)
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where λmin = min{λi}
n−1
i=0 = min{a(x) + nb(x), a(x)} > 0,

which implies thatB(x) is positive-definite.
On the other hand, it is known from Taylor’s theorem that for any

y ∈ B, the remainderR2(ξ), where

R2(ξ) , d(x, x+ ξ)− T2(ξ), (20)

is upper bounded by

|R2(ξ)| < φ
∑

i,j,k

|ξiξjξk|, (21)

where

φ ≤ sup
y∈B

∣

∣

∣

∣

∂3h

∂yi∂yj∂yk

∣

∣

∣

∣

, (22)

i.e.,φ is upper bounded by the supremum over the set of third-order
coefficients of the Taylor series ofh. Since for real images, the pixel
values are finite, and sinceCi > 0, i = 1, 2, it follows from (10) –
(13) that the third-order derivatives areuniformly bounded andφ is
therefore finite. Moreover, for allξ such that‖ξ‖2 ≤ ǫ, it follows
using (14), (19), and (21) that

lim
‖ξ‖→0

|R2(ξ)|

|T2(ξ)|
≤ lim

‖ξ‖→0

{

max
i∈{1,...,n}

|ξi|
3

}

n3φ

λmin‖ξ‖2
(23)

≤ lim
‖ξ‖→0

n3φ

λmin

‖ξ‖3

‖ξ‖2
(24)

= lim
‖ξ‖→0

n3φ

λmin
‖ξ‖ = 0, (25)

where (23) follows since|ξiξjξk| ≤ max
i∈{1,...,n}

|ξi|
3 and the sum

in (21) runs over all possible combinations of third-order partial
derivatives of a vector of lengthn, i.e.,

∑

i,j,k 1 = n3. Furthermore,
(24) follows by use of (19) and the fact that|ξi|3 < ‖ξ‖3.
Finally, (25) follows from the fact thatφ is bounded by (22). Since
the limit of (25) exists and is zero, we deduce that the second-order
terms of the Taylor series ofd(x, y) are asymptotically dominating
asy tends tox. This completes the proof.
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