

Available at www.**Elsevier**Mathematics.com

Topology and its Applications 137 (2004) 99-113

Topology and its Applications

www.elsevier.com/locate/topol

Uniformizing (proximal) Δ -topologies

G. Di Maio^{a,*}, E. Meccariello^b, S. Naimpally^c

^a Seconda Università degli Studi di Napoli, Facoltà di Scienze, Dipartimento di Matematica, Via Vivaldi 43, 81100 Caserta, Italy

^b Facoltà di Ingegneria, Università del Sannio Piazza Roma, Palazzo B. Lucarelli, 82100 Benevento, Italy ^c 96 Dewson Street, Toronto, Ontario, M6H 1H3, Canada

Received 27 July 2001; received in revised form 29 May 2002

Abstract

Beer and Tamaki investigated necessary and sufficient conditions for the uniformizability of (proximal) Δ -topologies.

Their proofs involved construction of special Urysohn functions. In this paper we attack the same problem using as a useful tool a uniform topology with reference to a Hausdorff uniformity patterned after the one related to the Attouch–Wets topology. We also study ΔU -topologies, proximal ΔU -topologies which are natural generalizations of the *U*-topology discovered by Costantini and Vitolo. © 2003 Elsevier B.V. All rights reserved.

MSC: 54E05; 54E15; 54B20

Keywords: Proximal Δ -topology; Proximal ΔU -topology; Δ -topology; ΔU -topology; Vietoris topology; Fell topology; Hyperspace; First countability; Second countability; Metrizability; Uniformity; Proximity; hypertopology; Δ -Attouch–Wets topology

1. Introduction

Poppe [19,20] initiated the study of abstract Vietoris-type hyperspace topologies on CL(X), the family of all nonempty closed subsets of a topological space (X, τ) , corresponding to a family $\Delta \subseteq CL(X)$. He was motivated by an attempt to generalize the Fell topology, in which case Δ equals the family of all nonempty compact subsets (see [1] for a comprehensive account where further references will be found). Di Concilio,

Corresponding author.

E-mail addresses: giuseppe.dimaio@unina2.it (G. Di Maio), meccariello@unisannio.it (E. Meccariello), sudha@accglobal.net (S. Naimpally).

^{0166-8641/\$ –} see front matter @ 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0166-8641(03)00202-5

Naimpally and Sharma [10] introduced proximal hypertopologies on CL(X). Then Beer and Tamaki [5,6] investigated the uniformizability of (proximal) Δ -topologies. In this paper, we study the same problem using as a useful tool the Attouch–Wets or AW uniformities [1,3].

In [7] Costantini and Vitolo introduced a new hypertopology which they called the *U*-topology which is useful in the study of the infimum of the Hausdorff metric topologies on CL(X) associated with a metrizable space X. This topology is finer than the Fell topology and for the upper part uses the subbase $\{U^+: U \in \tau\}$ where U^c or cl U is compact (see below for precise definitions). We also study ΔU -topologies, proximal ΔU -topologies which are natural and interesting generalizations.

Let (X, τ) be a T_1 space, δ a compatible LO-proximity on X and δ_0 the finest compatible LO-proximity on X defined by $A\delta_0 B$ iff $\operatorname{cl} A \cap \operatorname{cl} B \neq \emptyset$.

Note that δ_0 is not necessarily EF and it is so if and only if (X, τ) is normal (Urysohn's theorem).

For each $U \in \tau$, we use the following notation:

$$U^{+} = \left\{ E \in CL(X): E \subset U \right\},\$$
$$U_{\delta}^{++} = \left\{ E \in CL(X): E \ll_{\delta} U \right\}$$

where $E \ll_{\delta} U$ means $E \delta U^c$ (we will omit reference to δ if this is clear from the context),

 $U^{-} = \{ E \in CL(X) \colon E \cap U \neq \emptyset \}.$

We refer to [1,13,18] for all undefined terms.

We assume that Δ is a subfamily of CL(X) which is a *cover* of X (i.e., Δ is *closed under finite unions, closed hereditary* and *contains the singletons*), unless otherwise explicitly stated.

We will do this to display trasparent statements and make theory much simpler, and also because the most important subfamilies Δ satisfy the above conditions as we see from the examples below:

- (i) the family K(X) of all nonempty compact subsets of X;
- (ii) the family of all totally bounded subsets of X (when τ is uniformizable);
- (iii) the family of all *d*-bounded subsets of a metric space (X, d);
- (iv) the family of all finite subsets of *X*;
- (v) the family of all pseudocompact subsets of *X*;
- (vi) the family of all Γ -bounded subsets of X, where $\Gamma \subset C(X)$, i.e., $\{A \in CL(X): \text{ for every } f \in \Gamma, f(A) \text{ is a bounded subset of } \mathbb{R}\}$;
- (vii) the family of all countably compact subsets of *X*;
- (viii) the family of all Lindelöf subsets of *X*;
- (ix) the family of all topologically bounded subsets of X, i.e., $\{A \in CL(X): \text{ every open cover of } X \text{ has a finite subfamily covering } A\}$ [15];
- (x) the family of all subsets of X of measure zero (if X has a measure);
- (xi) the family of all subsets of X of finite measure (if X has a measure);
- (xii) the family of all subsets of X of first category;
- (xiii) the family of all nowhere dense subsets of X.

Definition 1.1. We recall and define various topologies on CL(X):

- (a) The proximal Δ-topology σ(Δ, δ) has a subbase consisting of the upper part {U⁺⁺_δ: U^c ∈ Δ} and the lower part {U⁻: U ∈ τ}. In particular we have: the proximal topology σ(δ) = σ(Δ, δ) (see [4] or [10]) when Δ = CL(X); the proximal Fell topology σ(F, δ) = σ(Δ, δ) when Δ = K(X).
- (b) The Δ-topology τ(Δ) has a subbase consisting of the upper part {U⁺: U^c ∈ Δ} and the lower part {U⁻: U ∈ τ}. (We note that this too can be considered as a proximal Δ-topology. In fact τ(Δ) = σ(Δ, δ₀).) In particular we obtain: the Vietoris topology τ(V) = τ(Δ) (see [16]) when Δ = CL(X); the Fell topology τ(F) = τ(Δ) (see [14]) when Δ = K(X) (note that τ(F) = σ(F, δ) if either δ = δ₀ or δ is EF (cf. [8])).
- (c) The proximal ΔU -topology $\sigma(\Delta U, \delta)$ has a subbase consisting $\{U_{\delta}^{++}: U^{c} \in \Delta \text{ or } cl \ U \in \Delta\}$ and $\{U^{-}: U \in \tau\}$.

If $\Delta = K(X)$, then $\sigma(\Delta U, \delta)$ is the proximal U-topology $\sigma(U, \delta)$.

(d) The ΔU -topology $\tau(\Delta U)$ has a subbase consisting $\{U^+: U^c \in \Delta \text{ or } cl U \in \Delta\}$ and $\{U^-: U \in \tau\}$.

If $\Delta = K(X)$, then $\tau(\Delta U)$ is the *U*-topology $\tau(U)$ (see [7]); furthermore $\tau(U) = \sigma(U, \delta)$ if either $\delta = \delta_0$ or δ is EF (cf. [8]).

Moreover, if *X* is a uniformizable space, we have:

- (e) The *Hausdorff uniformity* \mathcal{U}_H on CL(X) corresponding to a uniformity \mathcal{U} on X has a base $\{W_H: W \in \mathcal{U}\}$ where $W_H = \{(A_1, A_2) \in CL(X) \times CL(X): A_1 \subset W(A_2) \text{ and} A_2 \subset W(A_1)\}$. (Some authors call this the Bourbaki uniformity.)
- (f) The Δ -Attouch–Wets topology $\tau(\Delta AW)$. For each $D \in \Delta$ and $W \in \mathcal{U}$ set $[D, W] = \{(A_1, A_2) \in CL(X) \times CL(X): A_1 \cap D \subset W(A_2) \text{ and } A_2 \cap D \subset W(A_1)\}$. The family $\{[D, W]: D \in \Delta \text{ and } W \in \mathcal{U}\}$ is a base for a filter \mathcal{U}_Δ on CL(X) called the Δ -Attouch–Wets filter. \mathcal{U}_Δ induces the topology $\tau(\mathcal{U}_\Delta)$ (cf. [2,3]).

The following result is well known [10]:

Theorem 1.2. If δ is a compatible EF-proximity on a Tychonoff space (X, τ) , then the corresponding proximal topology $\sigma(\delta)$ on CL(X) is always Tychonoff. In fact, it is the topology induced on CL(X) by the Hausdorff uniformity U_{wH} which is derived from the unique totally bounded uniformity U_w on X compatible with δ .

Definition 1.3. Let (X, τ) be a T_1 space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$.

- (a) Δ is δ -*Urysohn* iff for each $D \in \Delta$ and $A \in CL(X)$ with $D \not \otimes A$, there is an $S \in \Delta$ such that $D \ll_{\delta} S \ll_{\delta} A^{c}$ (see also [9]).
- (b) Δ is *Urysohn* iff for each $D \in \Delta$ and $A \in CL(X)$ with $D \cap A = \emptyset$, there is an $S \in \Delta$ such that $D \subset \text{int } S \subset S \subset A^c$ (or equivalently Δ is δ_0 -Urysohn).
- (c) Δ is *local* iff for each $x \in X$ and $V \in \tau$ with $x \in V$ there is a $D \in \Delta$ such that $x \in int D \subset D \subset V$.

Remark 1.4. Note that if Δ is (δ -) Urysohn, then it is also local since Δ contains the singletons.

By imitating the construction of the coarsest EF-proximity δ_1 in a locally compact space (where $A \delta_1 B$ iff $A \delta_0 B$ and either cl A or cl $B \in K(X)$) we give the following definition:

Definition 1.5. Let (X, τ) be a T_1 space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ be δ -Urysohn. The relation δ' on the power set of X defined by

 $A \delta' B$ iff either cl $A \in \Delta$ or cl $B \in \Delta$ and $A \delta' B$ (*)

is called the Δ -Wallman proximity associated to δ .

Theorem 1.6. Let (X, τ) be a T_1 space with a compatible LO-proximity δ . Let $\Delta \subseteq CL(X)$ be δ -Urysohn and δ' the Δ -Wallman proximity associated to δ . Then

- (a) δ' is a compatible *EF*-proximity on *X* coarser than δ ;
- (b) Δ is δ -Urysohn iff it is δ' -Urysohn.

Proof. We prove (a). To show δ' is an EF-proximity only two axioms need verification viz:

- (i) $A\delta' B$ and $A\delta' C$ implies $A\delta' (B \cup C)$ (*union axiom*) and
- (ii) whenever $A \delta' B$, there exists an $E \subset X$ such that $A \delta' E$ and $E^c \delta' B$ (*EF axiom*).

To verify (i) suppose $A\delta' B$ and $A\delta' C$.

(*i*₁) If cl $A \in \Delta$, then $A \not \otimes B$ and $A \not \otimes C$ and so $A \not \otimes (B \cup C)$. By $(\star) A \not \otimes' (B \cup C)$.

(*i*₂) If cl $A \notin \Delta$, then cl $B \in \Delta$, cl $C \in \Delta$ and $A \notin B$ and $A \notin C$. Then cl($B \cup C$) $\in \Delta$ and $A \notin (B \cup C)$ and hence from (\star) $A \notin' (B \cup C)$.

To verify (ii) suppose $A \delta' B$. We may assume $cl A \in \Delta$ and $A \delta B$, i.e., $A \ll_{\delta} B^{c}$. Since Δ is δ -Urysohn, then there is an $E \in \Delta$ with $A \ll_{\delta} E \ll_{\delta} B^{c}$. By (\star) $A \delta' E^{c}$ and $E \delta' B$.

Observe that δ' is a compatible proximity since Δ contains the singletons and it is clearly coarser than δ .

To show (b) note that from (*), whenever $D \in \Delta$ and $A \in CL(X)$, $D \not \otimes A$ if and only if $D \not \otimes' A$. Hence $S \in \Delta$ with $D \ll_{\delta} S \ll_{\delta} A^c$ is equivalent to $S \in \Delta$ with $D \ll_{\delta'} S \ll_{\delta'} A^c$. \Box

Remarks 1.7. (a) In the case $\delta = \delta_0$, the local compactness of the space *X* (which guarantees that δ_1 is EF) is equivalent to $\Delta = K(X)$ be local. So, in the construction of δ' we have replaced K(X) by Δ and local compactness by assuming Δ to be (δ -) Urysohn and so local by Remark 1.4.

(b) Note that even if the starting proximity δ is just LO, the new proximity δ' is compatible and it is always EF as above theorem shows. As a byproduct of this result, we have that if the base space X admits a proximity δ and a family Δ which is a cover of X and δ -Urysohn, then it is automatically completely regular. Thus, in this case we restrict our attention to Tychonoff spaces. We point out that Tychonoff spaces admit compatible LO-proximities which are not EF: a prototype is the proximity δ_0 which is EF if and only

102

if X is normal. So, we have a procedure that allow us to construct an EF-proximity on a Tychonoff space X by using as a seed a given LO-proximity.

Now we return to the hypertopologies $\sigma(\Delta, \delta)$, $\sigma(\Delta U, \delta)$, $\tau(\Delta)$ and $\tau(\Delta U)$. From Definition 1.1 it follows that $\sigma(\Delta, \delta) \leq \sigma(\Delta U, \delta)$ as well as $\tau(\Delta) \leq \tau(\Delta U)$.

We characterize coincidence when Δ is assumed just closed under finite unions.

Theorem 1.8. Let (X, τ) be a Tychonoff space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ closed under finite unions. Then the following are equivalent:

- (a) either X has no open set V with cl V ∈ Δ or for each open set V with cl V ∈ Δ and each A ∈ CL(X) with A ≪_δ V there exists an S ∈ Δ with A ≪_δ S^c ⊂ V and hence X ∈ Δ;
- (b) $\sigma^+(\Delta U, \delta) \leq \sigma^+(\Delta, \delta)$ on CL(X);
- (c) $\sigma^+(\Delta U, \delta) = \sigma^+(\Delta, \delta)$ on CL(X).

Proof. Only (a) \Rightarrow (b) and (b) \Rightarrow (a) need some comments, since (b) \Leftrightarrow (c) it is obvious. We start with (a) \Rightarrow (b). Let $A \in CL(X)$ and V_{δ}^{++} a $\sigma^+(\Delta U, \delta)$ -neighbourhood at A. Then either $V^c \in \Delta$ or cl $V \in \Delta$ and $A \& V^c$.

If $V^c \in \Delta$, then we are done (since V_{δ}^{++} it is also a $\sigma^+(\Delta, \delta)$ -neighbourhood at *A*). If $\operatorname{cl} V \in \Delta$ and $A \otimes V^c$, then $A \ll_{\delta} V$ and by assumption there is an $S \in \Delta$ with $A \ll_{\delta} V$

 $S^c \subset V$. Hence $(S^c)^{++}_{\delta}$ is a $\sigma^+(\Delta, \delta)$ - neighbourhood at A with $A \in (S^c)^{++}_{\delta} \subset V^{++}_{\delta}$.

(b) \Rightarrow (a). Let V be an open set with $cl V \in \Delta$ and let $A \in CL(X)$ with $A \ll_{\delta} V$. Then V_{δ}^{++} is a $\sigma^{+}(\Delta U, \delta)$ -neighbourhood at A. By assumption there exists a $\sigma^{+}(\Delta, \delta)$ neighbourhood $\mathcal{A} = (S^{c})_{\delta}^{++}$ (for some $S \in \Delta$) at A with $A \in (S^{c})_{\delta}^{++} \subset V_{\delta}^{++}$. Clearly $D \notin S$ and it is easy to check that $V^{c} \subset S$.

Hence $X = \operatorname{cl} V \cup S \in \Delta$, since Δ is closed under finite unions. \Box

Corollary 1.9. Let (X, τ) be a Tychonoff space and $\Delta \subseteq CL(X)$ closed under finite unions. *Then the following are equivalent:*

- (a) either X has no open set V with $\operatorname{cl} V \in \Delta$ or for each open set V with $\operatorname{cl} V \in \Delta$ and each $A \in CL(X)$ with $A \subset V$ there exists an $S \in \Delta$ with $A \subset S^c \subset V$ and hence $X \in \Delta$;
- (b) $\tau^+(\Delta U, \delta) \leq \tau^+(\Delta, \delta)$ on CL(X);
- (c) $\tau^+(\Delta U, \delta) = \tau^+(\Delta, \delta)$ on CL(X).

Proof. Use above theorem with $\delta = \delta_0$. \Box

Remark 1.10. Note that if in the above theorem or corollary Δ is also local, then $\sigma(\Delta U, \delta) = \sigma(\Delta, \delta)$ (respectively, $\tau(\Delta U) = \tau(\Delta)$) if and only if $X \in \Delta$ and for each $V \in \tau$ with $\operatorname{cl} V \in \Delta$ and each $A \in CL(X)$ with $A \ll_{\delta} V$ there exists an $S \in \Delta$ with $A \ll_{\delta} S^{c} \subset V$ (respectively, $X \in \Delta$ and for each $V \in \tau$ with $\operatorname{cl} V \in \Delta$ and each $A \in CL(X)$ with $A \subset V$ there exists an $S \in \Delta$ with $A \subset S^{c} \subset V$).

A prototype of corollaries that we can deduce from Theorem 1.8, Corollary 1.9 and Remark 1.10 is the following.

Corollary 1.11. Let (X, τ) be a locally compact Hausdorff space (and δ a compatible LOproximity on X), then the U-topology $\tau(U)$ (the proximal U-topology $\sigma(U, \delta)$) on CL(X)equals the Fell topology $\tau(F)$ (the proximal Fell topology $\sigma(F, \delta)$) iff X is compact.

The interested reader can easily deduce corollaries corresponding to each example (i)–(xii) listed previously.

We point out that when Δ is local and a *cover* of X, then $\tau(\Delta U) = \tau(\Delta)$ (resp. $\sigma(\Delta U, \delta) = \sigma(\Delta, \delta)$) if and only if $\Delta = CL(X)$, i.e., coincidence occurs when the ΔU -topology $\tau(\Delta U)$ (resp. the proximal ΔU -topology $\sigma(\Delta U, \delta)$) is the Vietoris topology $\tau(V)$ (resp. the proximal topology $\sigma(\delta)$) on CL(X).

2. Uniformizing (proximal) Δ -topologies and (proximal) ΔU -topologies

We recall that if (X, τ) is a Tychonoff space with a compatible EF-proximity δ , then a uniformity \mathcal{U} on X is called *compatible w.r.t.* δ iff the proximity relation $\delta(\mathcal{U})$ defined by $A\delta(\mathcal{U})B$ iff $A \cap U[B] \neq \emptyset$ for each $U \in \mathcal{U}$ equals δ (see [18]). δ admits a unique compatible totally bounded uniformity $\mathcal{U}_w(\delta)$ [18] and we will omit reference to δ if this is clear from the context.

Theorem 2.1. Let (X, τ) be a Tychonoff space with a compatible EF-proximity δ , \mathcal{U}_w the unique totally bounded uniformity which induces δ and $\Delta \subseteq CL(X)$ a cover of X. Then the following are equivalent:

- (a) Δ is δ -Urysohn;
- (b) (1) the Δ-Attouch–Wets filter U_{wΔ} (cf. (f) in Definition 1.1) is a Hausdorff uniformity;
 (2) the proximal Δ-topology σ(Δ, δ) equals τ(U_{wΔ}).

Proof. (a) \Rightarrow (b) We start showing (1). It suffices to show that the subbase filter $\Psi = \{[D, U]: D \in \Delta \text{ and } U \in \mathcal{U}\}$ of $\mathcal{U}_{w\Delta}$, where $[D, U] = \{(A_1, A_2) \in CL(X) \times CL(X): A_1 \cap D \subset U(A_2) \text{ and } A_2 \cap D \subset U(A_1)\}$, is a subbase for a Hausdorff uniformity on CL(X).

Without loss of generality we may assume that all entourages $U \in U_w$ are open and symmetric.

We claim that whenever $[D, U] \in \Psi$, there is some $[S, V] \in \Psi$ such that $[S, V] \circ [S, V] \subset [D, U]$.

So, let $[D, U] \in \Psi$. Then $D \in \Delta$ and $U \in \mathcal{U}_w$. Without loss of generality, we may assume that $U(D) \neq X$. Set $A = [U(D)]^c$. Then $A \not D$. By assumption there is an $S \in \Delta$ such that $D \ll_{\delta} S \subset A^c$. Let $V \in \mathcal{U}_w$ be such that $V \circ V \subset U$ and $V(D) \subset S$. Clearly, $[S, V] \in \Psi$. We claim that $[S, V] \circ [S, V] \subset [D, U]$. So, let (E_1, E_2) and $(E_2, E_3) \in [S, V]$. We have to consider two cases:

- (i) both $E_1 \cap D = \emptyset$ and $E_3 \cap D = \emptyset$;
- (ii) either $E_1 \cap D \neq \emptyset$ or $E_3 \cap D \neq \emptyset$.

If (i) occurs, then clearly $(E_1, E_3) \in [D, U]$. So, suppose (ii) occurs and let $x \in E_1 \cap D$. Since $V(D) \subset S$ and $E_1 \cap S \subset V(E_2)$ there exists a $y \in E_2$ such that $y \in E_2 \cap S$ and $y \in V(x)$. Again, since $V(D) \subset S$ and $E_2 \cap S \subset V(E_3)$ there exist a $z \in E_3$ such that $z \in V(y)$. But $V \circ V \subset U$ and so $x \in U(E_3)$. Thus, $E_1 \cap D \subset U(E_3)$. Similarly, we have $E_3 \cap D \subset U(E_1)$. So, $\mathcal{U}_{w\Delta}$ is a uniformity.

Then, let $A_1, A_2 \in CL(X)$ with $A_1 \neq A_2$ and without loss of generality assume $a_1 \in A_1 \setminus A_2$. Let $U \in \mathcal{U}_w$ with $a_1 \notin U(A_2)$. By assumption $a_1 \in \Delta$. Clearly, $[a_1, U] \in \Psi$ and $(A_1, A_2) \notin [a_1, U]$ and so $\mathcal{U}_{w\Delta}$ is Hausdorff, too.

Now, we prove (2). So, let A_{λ} be a net converging to A w.r.t. the topology $\tau(\mathcal{U}_{w\Delta})$.

(i) If $A \in V^-$, where $V \in \tau$, then there exist $a \in A \cap V$ and a $W \in \mathcal{U}_w$ such that $W(a) \subset V$. Since $A \in [\{a\}, W](A) \subset V^-$, $A_{\lambda} \in [\{a\}, W](A) \subset V^-$, eventually.

(ii) If $A \in (D^c)^{++}_{\delta}$, where $D \in \Delta$, then $D \ll_{\delta} A^c$ and hence there is an $S \in \Delta$ such that $D \ll_{\delta} S \ll_{\delta} A^{c}$. Hence there is a $W \in \mathcal{U}_{w}$ such that $W(A) \cap S = \emptyset$. Eventually $A_{\lambda} \in [S, W](A)$, i.e., $A_{\lambda} \in (D^c)^{++}_{\delta}$. Thus $\sigma(\Delta, \delta) \leq \tau(\mathcal{U}_{w\Delta})$.

On the other hand, let A_{λ} be a net converging to A w.r.t. the topology $\sigma(\Delta, \delta), D \in \Delta$ and $W \in \mathcal{U}_w$. Let $V \in \mathcal{U}_w$ such that $V^2 \subset W$. We have to consider two cases:

- (i) $A \in (D^c)^{++}_{\delta}$. Then eventually $A_{\lambda} \in (D^c)^{++}_{\delta}$ and obviously, $\emptyset = A_{\lambda} \cap D \subset W(A)$ and $\emptyset = A \cap D \subset W(A_{\lambda})$.

(ii) $A \notin (D^c)^{++}_{\delta}$. Then $V(A) \cap D \neq \emptyset$.

...

Since V is totally bounded, there are $x_j \in A$, $1 \leq j \leq n$, such that $A \subset \bigcup_{i=1}^n V(x_i) \subset V(x_i)$ $V^2(A)$. Since $A \cap V(x_i) \neq \emptyset$ for each j, eventually $A_{\lambda} \cap V(x_i) \neq \emptyset$ and so $x_i \in V(A_{\lambda})$. Hence.

$$A \cap D \subset \bigcup_{j=1}^{n} V(x_j) \subset V^2(A_{\lambda}) \subset W(A_{\lambda}),$$
 eventually.

We note that $(D \cap V(A)^c) \in \Delta$ and $A \in (D^c \cup V(A))^{++}_{\delta} \in \sigma(\Delta, \delta)$. So, $A_{\lambda} \in (D^c \cup V(A))^{++}_{\delta}$ V(A)⁺⁺_{δ}, eventually.

Therefore $A_{\lambda} \cap D = [A_{\lambda} \cap D \cap V(A)] \subset W(A)$, eventually. Thus, A_{λ} converges to A in the topology $\tau(\mathcal{U}_{w\Delta})$.

Hence, $\tau(\mathcal{U}_{w\Delta}) \leq \sigma(\Delta, \delta)$. Combining the earlier part we get $\tau(\mathcal{U}_{w\Delta}) = \sigma(\Delta, \delta)$.

(b) \Rightarrow (a). By assumption the Δ -Attouch–Wets topology associated to \mathcal{U}_w is Tychonoff and it coincides with the proximal Δ -topology $\sigma(\Delta, \delta)$. So, $\sigma(\Delta, \delta)$ is regular and by using Theorem 4.4.5 in [1] the claim. \Box

Theorem 2.2. Let (X, τ) be a Tychonoff space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ a cover of X. If Δ is δ -Urysohn, then the relation δ' on the power set of X defined by

(*) $A \delta' B$ iff either $cl A \in \Delta$ or $cl B \in \Delta$ and $A \delta B$

is a compatible EF-proximity on X coarser that δ . Further, we have:

- (a) The proximal Δ -topologies $\sigma(\Delta, \delta)$ and $\sigma(\Delta, \delta')$ and the topology $\tau(\mathcal{U}_{w\Delta})$ induced by the Δ -Attouch–Wets uniformity $\mathcal{U}_{w\Delta}$, where \mathcal{U}_w is the unique totally bounded uniformity on X compatible w.r.t. δ' , all coincide. Thus $\sigma(\Delta, \delta)$ is Tychonoff.
- (b) The proximal ΔU -topology $\sigma(\Delta U, \delta)$ equals the proximal topology $\sigma(\delta')$. Thus $\sigma(\Delta U, \delta)$ is Tychonoff.

Conversely, if either $\sigma(\Delta, \delta)$ or $\sigma(\Delta U, \delta)$ is Tychonoff, then Δ is local and δ -Urysohn.

Proof. By Theorem 1.6 δ' defined as in (\star) is a compatible EF-proximity coarser than δ as well as Δ is δ' -Urysohn. Let $\mathcal{U}_w(\delta') = \mathcal{U}_w$ the unique totally bounded uniformity which induces δ' .

To show (a) note:

- (1) By Theorem 2.1 the corresponding Δ -Attouch–Wets topology $\tau(\mathcal{U}_{w\Delta})$ is Tychonoff and it equals the proximal Δ -topology $\sigma(\Delta, \delta')$.
- (2) From (*) it follows that whenever $U \in \tau$ and $U^c \in \Delta$, for $E \subset X$, $E \not \in U^c$ if and only if $E \delta' U^c$. So, $(U^c)^{++}_{\delta} = (U^c)^{++}_{\delta'}$ and thus $\sigma(\Delta, \delta)$ equals $\sigma(\Delta, \delta')$.

Combining (1) and (2) we get $\sigma(\Delta, \delta) = \sigma(\Delta, \delta') = \tau(\mathcal{U}_{w\Delta})$ and hence the claim. To show (b) it suffices to consider the upper parts.

Let $A \in U_{\delta}^{++} \in \sigma(\Delta U, \delta)$. Then either $U^c \in \Delta$ and $A \not \in U^c$ or cl $U \in \Delta$ and $A \not \in U^c$. If $U^c \in \Delta$, then $U^{++}_{\delta} = U^{++}_{\delta'} \in \sigma(\delta')$.

If $cl U \in \Delta$, then $A \in \Delta$ (since Δ is closed hereditary) and $A \not \in U^c$. By $(\star) A \not \in U^c$. Since Δ is also δ' -Urysohn there is an $S \in \Delta$ with $A \ll_{\delta'} S \ll_{\delta'} U$ By (*) we have also $A \ll_{\delta} S \ll_{\delta} U. \text{ Clearly, } A \in (S^{c})_{\delta'}^{++} \in \sigma(\delta') \text{ and } (S^{c})_{\delta'}^{++} \subset U_{\delta}^{++}. \text{ Thus } \sigma(\Delta U, \delta) \leqslant \sigma(\delta').$ On the other hand, let $A \in U_{\delta'}^{++} \in \sigma(\delta')$. Then either $U^{c} \in \Delta$ and $A \not \otimes U^{c}$ or $U^{c} \notin \Delta$ but

 $A \in \Delta$ and $A \delta U^c$.

If $U^c \in \Delta$, then $U_{\delta'}^{++} = U_{\delta}^{++}$.

If $U^c \notin \Delta$ and $A \in \Delta$, then (since δ' satisfies the EF-axiom) there is an $S \in CL(X)$ such that $A \ll_{\delta'} S \ll_{\delta'} U$. By (\star) we have $S \in \Delta$ and $A \ll_{\delta} S \ll_{\delta} U$. Clearly, $A \in (\operatorname{int} S)^{++}_{\delta} \subset U^{++}_{\delta'}$ and $(\operatorname{int} S)^{++}_{\delta} \in \sigma(\Delta U, \delta)$, showing thereby $\sigma(\delta') \leq \sigma(\Delta U, \delta)$ and hence $\sigma(\delta') = \sigma(\Delta U, \delta)$.

Since $\sigma(\delta')$ is Tychonoff (cf. Theorem 1.2) $\sigma(\Delta U, \delta)$ is Tychonoff.

For the converse we just study the case $\sigma(\Delta U, \delta)$ is Tychonoff, since the case $\sigma(\Delta, \delta)$ has been considered in [9].

So, let $\sigma(\Delta U, \delta)$ be Tychonoff. We claim Δ is a δ -Urysohn family. Let $A \in CL(X)$, $D \in \Delta$ and $A \not \in D$. By assumption there exists a $\sigma(\Delta U, \delta)$ -basic neighbourhood $\mathcal{V} =$ $U_{\delta}^{++} \cap \bigcap_{i=1}^{n} V_{i}^{-}$ of A such that $A \in \mathcal{V} \subset cl_{\sigma(\Delta U,\delta)}(\mathcal{V}) \subset (D^{c})_{\delta}^{++}$. Then, there are two cases:

(i) $A \delta U^c$ with $U^c \in \Delta$.

(ii) $A \not \otimes U^c$ with $\operatorname{cl} U \in \Delta$ and $U^c \notin \Delta$.

If (i) occurs, then take $S = U^c$ and using similar argument as in [9] (cf. (d) \Rightarrow (a) in Theorem 4.9) we have $D \ll_{\delta} S \ll_{\delta} A^{c}$.

If (ii) occurs, then $A \in \Delta$, $A \notin U^c$ and $D \subset U^c$. By assumption there exists a $\sigma(\Delta U, \delta)$ neighbourhood $\mathcal{W} = W_{\delta}^{++} \cap \bigcap_{j=1}^m H_j^-$ at U^c such that $U^c \in \mathcal{W} \subset \operatorname{cl}_{\sigma(\Delta U, \delta)}(\mathcal{W}) \subset (A^c)_{\delta}^{++}$. Hence $U^c \notin \mathcal{W}$. We claim that $W^c \in \Delta$. Assume not, then $\operatorname{cl} W^c \in \Delta$ and hence $U^c \in \Delta$; a contradiction with $U^c \notin \Delta$. Hence, $U^c \notin \mathcal{W}$ and $W^c \in \Delta$. So, putting $S = W^c$ we have $A \ll_{\delta} S \ll_{\delta} U$ (Theorem 4.9 in [9]). Since $U \subset D^c$ we have $A \ll_{\delta} S \ll_{\delta} D^c$. \Box

Corollary 2.3. Let (X, τ) be a Tychonoff and $\Delta \subseteq CL(X)$ a cover of X which is Urysohn. Then the relation δ' on the power set of X defined by

(**) $A \delta' B$ iff either $\operatorname{cl} A \in \Delta$ or $\operatorname{cl} B \in \Delta$ and $A \delta_0 B$

is a compatible EF-proximity on X with $\delta' \leq \delta_0$. Further we have:

- (a) $\tau(\Delta) = \sigma(\Delta, \delta')$ and if \mathcal{U}_w is the unique totally bounded uniformity on X compatible with δ' , then the Δ -topology $\tau(\Delta)$ is the topology $\tau(\mathcal{U}_{w\Delta})$ induced by the Δ -Attouch– Wets uniformity $\mathcal{U}_{w\Delta}$ and hence is Tychonoff.
- (b) $\tau(\Delta U)$ equals $\sigma(\delta')$. Thus $\tau(\Delta U)$ is Tychonoff.

Conversely, if either $\tau(\Delta)$ or $\tau(\Delta U)$ are Tychonoff, then Δ is Urysohn.

Corollary 2.4. Let (X, τ) be a Hausdorff space. The following are equivalent:

- (a) X is locally compact;
- (b) the U-topology $\tau(U)$ is uniformizable;
- (c) $\tau(U)$ is the proximal topology $\sigma(\delta_1)$, where δ_1 is the proximity induced by the onepoint-compactification of X (see Remark 1.4).

3. First and second countability of (proximal) ΔU -topologies

We start with the following lemma and remark and point out that Δ is just a subfamily of CL(X) containing the singletons.

Lemma 3.1 (cf. Lemma 5.3 in [11]). Let (X, τ) be a T_1 space with a compatible LOproximity δ and $\Delta \subseteq CL(X)$. If $(CL(X), \tau(\Delta U))$ (respectively $(CL(X), \sigma(\Delta U, \delta))$) is first countable, then every $A \in CL(X)$ is separable.

Remark 3.2. If (X, τ) is a T_1 space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$, then $\tau(\Delta U)$ (respectively $\sigma(\Delta U, \delta)$) is admissible; i.e., the assignment $x \to \{x\}$ is a topological embedding of X into $(CL(X), \tau(\Delta U))$ (respectively of X into $(CL(X), \sigma(\Delta U, \delta))$).

Now, we assume that Δ is also a ring, i.e., it is closed under finite unions and finite intersection, unless otherwise explicitly stated.

Definition 3.3. Let (X, τ) be a T_1 space with a compatible LO-proximity δ , A a closed nonempty subset of X and $\Delta \subseteq CL(X)$ a ring. Then:

- (a) A family $\Delta'_A \subset \Delta$ is a (*proximal*) local ΔU -base at $A, A \neq X$, if whenever $A \subset U$ $(A \ll_{\delta} U)$ with U^c or $cl U \in \Delta$, there is a V with V^c or $cl V \in \Delta'_A$ and $A \subset V \subset U$ $(A \ll_{\delta} V \subset U)$.
- (b) A family Δ' ⊂ Δ is a (proximal) ΔU-base if for each A ⊂ U (A ≪_δ U), A ≠ X, with U^c or cl U ∈ Δ and A ∈ CL(X), there is a V with V^c or cl V ∈ Δ' and A ⊂ V ⊂ U (A ≪_δ V ⊂ U).

Theorem 3.4. *Let* (X, τ) *be a* T_1 *space with a compatible LO-proximity* δ *and* $\Delta \subseteq CL(X)$ *a ring. The following are equivalent:*

- (a) $(CL(X), \sigma(\Delta U, \delta))$ is first countable;
- (b) X is first countable, every closed set A is separable and every A ∈ CL(X), A ≠ X, has a countable proximal local ΔU-base Δ'_A at A.

Proof. (a) \Rightarrow (b). By Remark 3.2 *X* is first countable and by Lemma 3.1 every closed set *A* is separable. Now, let $A \in CL(X)$, $A \neq X$. The first countability of $(CL(X), \sigma(\Delta U, \delta))$ at *A* means that there is a countable family \mathcal{L}_A of sets of the form $\bigcap_{j \in J} (K_j)^{++}_{\delta} \cap \bigcap_{t \in T} (H_t)^{++}_{\delta} \cap \bigcap_{i \in I} V_i^-$, with *I*, *T* and *J* finite subsets of \mathbb{N} , H_t , K_j and $V_i \in \tau$, $A \ll_{\delta} H_t$, $A \ll_{\delta} K_j$, $H_t^c \in \Delta$ and cl $K_j \in \Delta$.

Set $\Delta'_A = \{H^c: H \text{ occurs in the presentation of some element in } \mathcal{L}_A\} \cup \{cl K: K \text{ occurs in the presentation of some element in } \mathcal{L}_A\}.$

Without loss of generality we may assume Δ'_A is a ring.

It is a routine exercise to verify that Δ'_A is nonempty and thus countable. We prove that Δ'_A is a proximal local ΔU base at A.

So, let $U \in \tau$ with $A \ll_{\delta} U$ and U^c or cl $U \in \Delta$. Hence, there is $L = \bigcap_{j \in J} (K_j)_{\delta}^{++} \cap \bigcap_{i \in I} V_i^- \in \mathcal{L}_A$ such that $A \in L \subset U_{\delta}^{++}$. Since $A \neq X$, we may assume that also $U \neq X$. Clearly, in the expression of L, either T or J is nonempty (in fact, if $T = \emptyset$ and $J = \emptyset$, then by choosing $x \in U^c \cap \text{cl } U$ we have that $F = (A \cup \{x\}) \in L$ but $F \notin U_{\delta}^{++}$; a contradiction).

If $T \neq \emptyset$, then the following subcases occur.

(I) $J = \emptyset$. Then

$$L = \bigcap_{t \in T} (H_t)^{++}_{\delta} \cap \bigcap_{i \in I} V_i^- \subset U^{++}_{\delta}.$$

Let $S = \bigcup_{t \in T} H_t^c$ and set $V = S^c$. Thus $V^c \in \Delta'_A$ and $A \ll_{\delta} V$ (because $A \in L$). With a similar argument as in Theorem 5.4 in [11] we have $A \ll_{\delta} V \subset U$.

(II) $J \neq \emptyset$. Then

$$L = \bigcap_{j \in J} (K_j)^{++}_{\delta} \cap \bigcap_{t \in T} (H_t)^{++}_{\delta} \cap \bigcap_{i \in I} V_i^- \subset U_{\delta}^{++}.$$

Let $B^j = K_j \cap \bigcap_{t \in T} H_t$ for each $j \in J$. Therefore, cl $B^j \in \Delta'_A$ because cl $K_j \in \Delta'_A$, $B^j \subset K_j$ and Δ'_A is a ring. Clearly, $A \ll_{\delta} B^j$ (in fact $A \not [K_j^c \cup \bigcup_{t \in T} H_t^c]$ because $A \in L$). Set

 $V = \bigcap_{j \in J} B^j$, then cl $V \in \Delta'_A$ (because $V \subset K_j$, cl $K_j \in \Delta'_A$ and Δ'_A is a ring) and $A \ll_{\delta} V$ (see Theorem (1.18) in [17]). We claim that if either $U^c \in \Delta$ or cl $U \in \Delta$, then $V \subset U$.

Assume not, then there exists an $x \in V \cap U^c$. Since *V* is open and $x \in V$, then $x \notin V^c$. So $x \notin [\bigcup_{j \in J} K_j^c \cup \bigcup_{t \in T} H_t^c]$ because $V = [\bigcap_{j \in J} K_j \cap \bigcap_{t \in T} H_t]$. Set $F = A \cup \{x\}$, then it easy to check that $F \in CL(X)$, $F \in L$ but $F \notin U_{\delta}^{++}$; a contradiction because $L \subset U_{\delta}^{++}$.

If $J \neq \emptyset$, then the following two subcases may occur.

(I') $T \neq \emptyset$. But this is the above subcase (II).

(II') $T = \emptyset$. Then

$$L = \bigcap_{j \in J} (K_j)^{++}_{\delta} \cap \bigcap_{i \in I} V_i^- \subset U^{++}_{\delta}.$$

Set $V = \bigcap_{j \in J} K_j$, then $\operatorname{cl} V \in \Delta'_A$ and $A \ll_{\delta} V$ (see Theorem (1.18) in [17]). As in case (I), we have that if either $U^c \in \Delta$ or $\operatorname{cl} U \in \Delta$, then $A \ll_{\delta} V \subset U$.

(b) \Rightarrow (a). Let $A \in CL(X)$. The case A = X is standard.

So, let $A \neq X$ and Δ'_A be a proximal local ΔU -base at A.

Let $\{a_1, a_2, \ldots, a_n, \ldots\}$ be a countable dense set in A, $S(a_i)$ $(i = 1, 2, \ldots, n, \ldots)$ be a countable base of neighbourhoods at a_i . Set $S = \{S(a_i): i = 1, 2, \ldots, n, \ldots\}$ and consider the family \mathcal{L}_A of all subsets of the form $\bigcap_{j \in J} (V_j)_{\delta}^{++} \cap \bigcap_{i \in I} U_i^-$, with I, J finite subsets of \mathbb{N} , $V_j \in \Delta'_A$ and $U_i \in S$. We claim that \mathcal{L}_A is a countable local base of open $\sigma(\Delta U, \delta)$ -neighbourhoods at A. It suffices to show that \mathcal{L}_A is a local base for a subbasic $\sigma(\Delta U, \delta)$ -neighbourhoods system at A.

Case (1). Let $A \in H_{\delta}^{++} \cap \bigcap_{i \in I} Q_i^-$ with *I* finite subset of integers, $Q_i \in \tau$ for each $i \in I$, $H \in \tau$ and $H^c \in \Delta$. Then $A \ll_{\delta} H$ and for each $i \in I$ let $U_i \in S$ be such that $U_i \subset Q_i$. By assumption there exists a $V \in \tau$ with $V^c \in \Delta'_A$ and $A \ll_{\delta} V \subset H$. Set $L = V_{\delta}^{++} \cap \bigcap_{i \in I} U_i^-$, then it is easy to check that $L \in \mathcal{L}_A$ and $L \subset H_{\delta}^{++} \cap \bigcap_{i \in I} Q_i^-$.

 $L = V_{\delta}^{++} \cap \bigcap_{i \in I} U_i^{-}, \text{ then it is easy to check that } L \in \mathcal{L}_A \text{ and } L \subset H_{\delta}^{++} \cap \bigcap_{i \in I} Q_i^{-}.$ Case (2). Suppose $A \in K_{\delta}^{++} \cap \bigcap_{i \in I} Q_i^{-}$ with I finite subset of integers $Q_i \in \tau$ for each $i \in I, K \in \tau$ and $\operatorname{cl} K \in \Delta$. Then $A \ll_{\delta} K$ and for each $i \in I$ let $U_i \in S$ be such that $U_i \subset Q_i$. By hypothesis there exists a $V \in \tau$ with $\operatorname{cl} V \in \Delta'_A$ and such that $A \ll_{\delta} V \subset K$. Set $L' = V_{\delta}^{++} \cap \bigcap_{i \in I} U_i^{-}$ and note that $L' \in \mathcal{L}_A$ and $L' \subset K_{\delta}^{++} \cap \bigcap_{i \in I} Q_i^{-}.$

Corollary 3.5. Let (X, τ) be a T_1 space and $\Delta \subseteq CL(X)$ a ring. The following are equivalent:

- (a) $(CL(X), \tau(\Delta U))$ is first countable;
- (b) X is first countable, every closed set A is separable and every A ∈ CL(X), A ≠ X, has a countable local ΔU-base Δ'_A at A.

Now, we analyse the second countability.

Theorem 3.6. *Let* (X, τ) *be a* T_1 *space with a compatible LO-proximity* δ *and* $\Delta \subseteq CL(X)$ *a ring. The following are equivalent:*

- (a) $(CL(X), \sigma(\Delta U, \delta))$ is second countable;
- (b) X is second countable and there is a countable subring Δ' ⊂ Δ which is a proximal ΔU-base.

Proof. (a) \Rightarrow (b). By Remark 3.2 *X* is second countable. Let \mathcal{L} be a countable base of $\sigma(\Delta U, \delta)$. Every element $L \in \mathcal{L}$ has the form

$$L = \bigcap_{j \in J} (K_j)^{++}_{\delta} \cap \bigcap_{t \in T} (H_t)^{++}_{\delta} \cap \bigcap_{i \in I} V_i^-,$$

with *I*, *T* and *J* finite subsets of \mathbb{N} , H_t , U_j and $V_i \in \tau$, $H_t^c \in \Delta$ and cl $K_j \in \Delta$.

Set $\Delta' = \{H^c: H \text{ occurs in the presentation of some element in } \mathcal{L}\} \cup \{c|K: K \text{ occurs in the presentation of some element in } \mathcal{L}\}.$

Clearly, $\Delta' \subset \Delta$ is countable and by using arguments as in above Theorem 3.4 it is a proximal ΔU -base.

(b) \Rightarrow (a). Let \mathcal{V} be a countable base of X. It is easy to verify that the family $L = \bigcap_{j \in J} (K_j)_{\delta}^{++} \cap \bigcap_{t \in T} (H_t)_{\delta}^{++} \cap \bigcap_{i \in I} V_i^-$, with J, T and I finite subsets of \mathbb{N}, K_j , H_t and V_i open such that $\operatorname{cl} K_j \in \Delta', H_t^c \in \Delta'$ and $V_i \in \mathcal{V}$ respectively, is a countable base for $\sigma(\Delta U, \delta)$. \Box

Corollary 3.7. Let (X, τ) be a T_1 space and $\Delta \subseteq CL(X)$ a ring. The following are equivalent:

- (a) $(CL(X), \tau(\Delta U))$ is second countable;
- (b) *X* is second countable and there is a countable subring $\Delta' \subset \Delta$ which is a ΔU -base.

4. Metrizability of (proximal) ΔU -topologies

Definition 4.1. Let (X, τ) be a T_1 space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ be a nonempty subfamily of CL(X). A subfamily Δ' of Δ is called *relatively* δ -*Urysohn w.r.t.* Δ if the following condition is fulfilled:

(*) for every $D \in \Delta$ with $D \neq X$ and every $V \in \tau$ with $D \ll_{\delta} V$, there is an $S \in \Delta'$ with $D \ll_{\delta} S \ll_{\delta} V$.

A subfamily Δ' of Δ is called *relatively Urysohn w.r.t.* Δ provided:

(**) for every $D \in \Delta$ with $D \neq X$ and every $V \in \tau$ with $D \subset V$, there is an $S \in \Delta'$ with $D \subset S \subset V$.

Theorem 4.2. Let (X, τ) be a T_1 space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ a cover of X. The following are equivalent:

- (a) $(CL(X), \sigma(\Delta U, \delta))$ is metrizable;
- (b) X is Tychonoff and second countable and there is a countable subring Δ' ⊂ Δ which is relatively δ-Urysohn w.r.t. Δ;
- (c) $(CL(X), \sigma(\Delta, \delta))$ is metrizable.

Proof. (a) \Rightarrow (b). If $(CL(X), \sigma(\Delta U, \delta))$ is metrizable, then $\sigma(\Delta U, \delta)$ is second countable and Tychonoff. Thus, X is Tychonoff and second countable. By Theorem 2.2 Δ is δ -Urysohn. Moreover, second countability assures that there is a countable subring Δ' of Δ which is a proximal ΔU base. We claim Δ' fulfills (*) of Definition 4.1. Let $D \in \Delta$ with $D \neq X$, $V \in \tau$ and $D \ll_{\delta} V$. Without loss of generality we may suppose $V \neq X$. Put $A = X \setminus V$. Then $A \in CL(X)$ and $A \not D$. So, using twice the δ -Urysohn condition on the family Δ and Theorem (1.17) in [17] there are R and $T \in \Delta$ such that $D \ll_{\delta} R \ll_{\delta}$ int $T \subset T \ll_{\delta} V$. Hence there exists an open set M with $\operatorname{cl} M \in \Delta'$ that $R \ll_{\delta} M \subset (\operatorname{int} T)$. Set $S = \operatorname{cl} M$. Then $S \in \Delta'$ and $D \ll_{\delta} S \ll_{\delta} V$.

(b) \Rightarrow (a). It is clear that $(CL(X), \sigma(\Delta U, \delta))$ is a Tychonoff space (cf. Theorem 2.2). By assumption there is a countable subring Δ' of Δ which satisfies condition (*). But clearly (*) implies that Δ' is a proximal ΔU base. Thus, by Theorem 3.6 $(CL(X), \sigma(\Delta U, \delta))$ is second countable, too. Therefore, by Urysohn Metrization Theorem $(CL(X), \sigma(\Delta U, \delta))$ is metrizable.

(c) \Leftrightarrow (b). Use an argument similar as in Theorem 5.20 in [11]. \Box

Corollary 4.3. Let (X, τ) be a Tychonoff space and $\Delta \subseteq CL(X)$ a cover of X. The following are equivalent:

- (a) $(CL(X), \tau(\Delta U))$ is metrizable;
- (b) X is Tychonoff and second countable and there is a countable subring Δ' ⊂ Δ which is relatively Urysohn w.r.t. Δ;
- (c) $(CL(X), \tau(\Delta))$ is metrizable.

Corollary 4.4. Let (X, τ) be a Tychonoff space with a compatible LO-proximity δ and $\Delta \subseteq CL(X)$ a cover of X.

Then $(CL(X), \sigma(\Delta U, \delta))$ (respectively $(CL(X), \tau(\Delta U))$) is metrizable if and only if $(CL(X), \sigma(\Delta, \delta))$ (respectively $(CL(X), \tau(\Delta))$) is metrizable.

If we focus our attention on the U-topology, we have:

Corollary 4.5. Let (X, τ) be a Tychonoff space. The following are equivalent:

- (a) $(CL(X), \tau(U))$ is second countable;
- (b) *X* is locally compact and second countable;
- (c) $(CL(X), \tau(U))$ is metrizable;
- (d) $(CL(X), \tau(F))$ is metrizable.

Proof. (a) \Rightarrow (b). It follows from (a) \Rightarrow (b) of Corollary 3.7 when $\Delta = K(X)$.

(b) \Rightarrow (c). By assumption, *X* admits a countable base \mathcal{B} such that for each $W \in \mathcal{B}$, cl *W* is compact. Let $\Sigma(\mathcal{B})$ the family of all finite unions and finite intersection of elements in \mathcal{B} . Set $\Delta' = \{ cl S: S \in \Sigma(\mathcal{B}) \}$. Clearly, $\Delta' \subset K(X)$ and Δ' satisfies (**) of Definition 4.1. By Corollary 4.3 the claim holds.

(c) \Rightarrow (a) it is trivial and (b) \Leftrightarrow (d) is nicely dealt with in Theorem 5.1.5 in [1]. \Box

In Theorem 5.7 in [12] the authors have shown that whenever (X, U) is a Hausdorff uniform space, then $(CL(X), \sigma(U))$ is metrizable if and only if there is a totally bounded metric ρ on X compatible with U.

So, we have a complete and attractive solution to the metrization problem for the proximal ΔU -topology $\sigma(\Delta U, \delta)$ with respect to a given LO-proximity on X.

Theorem 4.6. *Let* (X, τ) *be a* T_1 *space with a compatible LO-proximity* δ *and* $\Delta \subseteq CL(X)$ *a cover of* X*. The following are equivalent:*

(a) $(CL(X), \sigma(\Delta U, \delta))$ is metrizable;

(b) there exists a compatible totally bounded metric ρ on X such that $\sigma(\Delta U, \delta) = \sigma(\rho)$.

Proof. (b) \Rightarrow (a). By a result in [3] it is known that $\sigma(\varrho)$ is metrizable. Hence $\sigma(\Delta U, \delta)$ is metrizable.

(a) \Rightarrow (b). By Theorems 1.6 and 2.2 there is a compatible EF-proximity δ' on X such that $\sigma(\Delta U, \delta) = \sigma(\delta')$. Let \mathcal{U}_w be the unique totally bounded uniformity which induces δ' . Then $\sigma(\delta') = \sigma(\mathcal{U}_w)$.

Since $(CL(X), \sigma(\mathcal{U}_w))$ is metrizable, by Theorem 5.7 in [12] there exists a totally bounded metric ρ compatible with respect to \mathcal{U}_w with $\sigma(\mathcal{U}_w) = \sigma(\rho)$. But $\sigma(\Delta U, \delta) = \sigma(\delta') = \sigma(\mathcal{U}_w)$ and hence the claim holds. \Box

Corollary 4.7. Let (X, τ) be a T_1 space and $\Delta \subset CL(X)$ a cover of X. The following are equivalent:

(a) $(CL(X), \tau(\Delta U))$ is metrizable;

(b) there exists a compatible totally bounded metric ρ on X such that $\tau(\Delta U) = \sigma(\rho)$.

Acknowledgement

The authors would like to thank the referee for the detailed criticism and valuable suggestions.

References

- [1] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic, Dordrecht, 1993.
- [2] G. Beer, On the Fell topology, Set-Valued Analysis 1 (1993) 68-80.
- [3] G. Beer, A. Di Concilio, Uniform continuity on bounded sets and the Attouch–Wets topology, Proc. Amer. Math. Soc. 112 (1991) 235–243.
- [4] G. Beer, A. Lechicki, S. Levi, S.A. Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. 162 (1992) 367–381.
- [5] G. Beer, R.K. Tamaki, On hit-and-miss hyperspace topologies, Comment. Math. Uni. Carolinae 34 (1993) 717–728.
- [6] G. Beer, R.K. Tamaki, The infimal value functionals and the uniformization of hit-and-miss hyperspace topologies, Proc. Amer. Math. Soc. 122 (1994) 601–611.

- [7] C. Costantini, P. Vitolo, On the infimum of the Hausdorff metric topologies, Proc. London Math. Soc. 3 (70) (1995) 441–480.
- [8] A. Di Concilio, S.A. Naimpally, Function space topologies on (partial) maps, in: Recent Progress in Function Spaces, Aracne, in: Quaderni di Matematica, vol. 3, 1998, pp. 1–35.
- [9] D. Di Caprio, E. Meccariello, Notes on separation axioms in hyperspaces, Questions and Answers in General Topology 18 (2000) 65–86.
- [10] A. Di Concilio, S.A. Naimpally, P.L. Sharma, Proximal hypertopologies, in: Proceedings of the VI Brasilian Topological Meeting, Campinas, Brazil, 1988 (unpublished).
- [11] G. Di Maio, L. Holá, On hit-and-miss topologies, Rend. Ac. Sc. Fis. Mat. Napoli 62 (1995) 103-124.
- [12] G. Di Maio, L. Holá, E. Meccariello, Notes on hit and-miss topologies, Rostock. Math. Kolloq. 52 (1998) 19–32.
- [13] R. Engelking, General Topology, Revised and Completed Version, Helderman, Berlin, 1989.
- [14] J. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962) 472–476.
- [15] P. Lambrinos, A topological notion of boundedness, Man. Math. 10 (1973) 289–296.
- [16] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152-182.
- [17] C.J. Mozzochi, M. Gagrat, S.A. Naimpally, Symmetric Generalized Topological Structures, Exposition Press, Hicksville, NY, 1976.
- [18] S.A. Naimpally, B. Warrack, Proximity Spaces, Cambridge University Press, Cambridge, 1970.
- [19] H. Poppe, Eine Bemerkung über Trennungsaxiome im Raum der abgeschlossenen Teilmengen eines topologischen Raumes, Arch. Math. 16 (1965) 197–199.
- [20] H. Poppe, Einige Bemerkungen über den Raum der abgeschlossen Mengen, Fund. Math. 59 (1966) 159–169.