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Abstract

Beer and Tamaki investigated necessary and sufficient conditions for the uniformizability of
(proximal) A-topologies.

Their proofs involved construction of special Urysohn functions. In this paper we attack the same
problem using as a useful tool a uniform topology with reference to a Hausdorff uniformity patterned
after the one related to the Attouch—Wets topology. We also stiidytopologies, proximaAU -
topologies which are natural generalizations ofthéopology discovered by Costantini and Vitolo.
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1. Introduction

Poppe [19,20] initiated the study of abstract Vietoris-type hyperspace topologies
on CL(X), the family of all nonempty closed subsets of a topological sp@cter),
corresponding to a familyn € CL(X). He was motivated by an attempt to generalize
the Fell topology, in which casg equals the family of all nonempty compact subsets
(see [1] for a comprehensive account where further references will be found). Di Concilio,
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Naimpally and Sharma [10] introduced proximal hypertopologie€anX). Then Beer
and Tamaki [5,6] investigated the uniformizability of (proximal}topologies. In this
paper, we study the same problem using as a useful tool the Attouch—-Wets or AW
uniformities [1,3].

In [7] Costantini and Vitolo introduced a new hypertopology which they calledthe
topologywhich is useful in the study of the infimum of the Hausdorff metric topologies on
CL(X) associated with a metrizable spaceThis topology is finer than the Fell topology
and for the upper part uses the subbfigé: U < t} whereU¢ or clU is compact (see
below for precise definitions). We also studyU-topologies, proximalAU -topologies
which are natural and interesting generalizations.

Let (X, t) be aT1 space§ a compatible LO-proximity oiX andsg the finest compatible
LO-proximity on X defined byAdoB iff cl A Ncl B # @.

Note thatdg is not necessarily EF and it is so if and only( K, 7) is normal (Urysohn’s
theorem).

For eachlU € 7, we use the following notation:

Ut ={EeCLX): ECU},
Ut ={EeCLX): E<sU},

whereE <5 U meansE JU¢ (we will omit reference t@ if this is clear from the context),
U™ ={E eCLX): ENU #9}.

We refer to [1,13,18] for all undefined terms.

We assume thad is a subfamily ofCL(X) which is acoverof X (i.e., A is closed under
finite unions closed hereditaryand contains the singletofsunless otherwise explicitly
stated.

We will do this to display trasparent statements and make theory much simpler, and also
because the most important subfamiliesatisfy the above conditions as we see from the
examples below:

(i) the family K (X) of all nonempty compact subsets Xf
(i) the family of all totally bounded subsets &f (whent is uniformizable);
(i) the family of all d-bounded subsets of a metric sp&de d);
(iv) the family of all finite subsets oX;
(v) the family of all pseudocompact subsetsxgf
(vi) the family of all I"-bounded subsets &f, wherel” ¢ C(X), i.e.,{A € CL(X): for
everyf e I', f(A) is a bounded subset &};
(vii) the family of all countably compact subsets Xf
(viii) the family of all Lindel6f subsets ok ;
(ix) the family of all topologically bounded subsets ¥f i.e.,{A € CL(X): every open
cover of X has a finite subfamily covering} [15];
(x) the family of all subsets ok of measure zero (iK has a measure);
(xi) the family of all subsets ok of finite measure (i has a measure);
(xii) the family of all subsets oX of first category;
(xiii) the family of all nowhere dense subsetsXf
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Definition 1.1. We recall and define various topologies@h(X):

(a) The proximal A-topology o(A,5) has a subbase consisting of tlhper part
{UF: U € A} and thelower part{U~: U € t}. In particular we have:
theproximal topology (§) = o (A, §) (see [4] or [10]) whemA = CL(X);
theproximal Fell topologyw (F, §) = o (A, §) whenA = K(X).

(b) The A-topologyz(A) has a subbase consisting of tgperpart {U*: U¢ € A} and
thelower part{U~: U € t}. (We note that this too can be considered as a proximal
A-topology. In factt (A) = o (A, 8p).)

In particular we obtain:

the Vietoris topologyr (V) = t(A) (see [16]) whem = CL(X);

theFell topologyt (F) = 7(A) (see [14]) whemA = K (X) (note thatr (F) = o (F, §)
if eitheré = &g or 6 is EF (cf. [8])).

(c) Theproximal AU-topologyo (AU, §) has a subbase consistimg’ﬁ: U e A or
clUeA}and{U™: U e1}.

If A=K (X),theno (AU, §) is theproximal U-topology (U, 3).

(d) The AU-topologyz(AU) has a subbase consistifig*™: U¢ € A or clU € A} and
{U™: Uert}.

If A= K(X),thent(AU) is the U-topologyt(U) (see [7]); furthermore (U) =
o (U, d) if either§ = §p or § is EF (cf. [8]).
Moreover, if X is a uniformizable space, we have:

(e) TheHausdorff uniformityi/z on CL(X) corresponding to a uniformi/ on X has
a basgWg: W e U} whereWy = {(A1, A2) € CL(X) x CL(X): A1 C W(A2) and
Az C W(A1)}. (Some authors call this the Bourbaki uniformity.)

(f) The A-Attouch—Wets topology(AAW). For eachD € A andW e U set[D, W] =
{(A1, A2) € CL(X) x CL(X): AxND C W(A2) andA>N D C W(A1)}.

The family{[D, W]: D € A andW < U/} is a base for a filtek/, on CL(X) called the
A-Attouch—Wets filte/, induces the topology(U{4) (cf. [2,3]).

The following result is well known [10]:

Theorem 1.2. If § is a compatible EF-proximity on a Tychonoff spacé 7), then the
corresponding proximal topology (§) on CL(X) is always Tychonoff. In fact, it is the
topology induced on QIX) by the Hausdorff uniformiti/,,z which is derived from the
unique totally bounded uniformity,, on X compatible withs.

Definition 1.3. Let (X, ) be aT; space with a compatible LO-proximity and A C
CL(X).

(a) A iss-Urysohniff foreach D € A andA € CL(X) with D§A, there is anS € A such
thatD <5 S <5 A° (see also [9]).

(b) A is Urysohniff for each D € A andA € CL(X) with DN A =@, thereis anS € A
such thatD cintS c § c A€ (or equivalentlyA is §p-Urysohn).

(c) A is local iff for each x € X andV € t with x € V there is aD € A such that
xeintDcDcCV.
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Remark 1.4. Note that if A is (§-) Urysohn, then it is also local sinca contains the
singletons.

By imitating the construction of the coarsest EF-proxindityn a locally compact space
(whereA§ B iff AjoB and either cl or clB € K (X)) we give the following definition:

Definition 1.5. Let (X, t) be aTy space with a compatible LO-proximisyandA € CL(X)
bes-Urysohn. The relatiod’ on the power set ok defined by

AY'B iff either clA€ AorclBe AandAyB (*)

is called thea-Wallman proximity associated 8

Theorem 1.6. Let (X, t) be aT1 space with a compatible LO-proximidy Let A C CL(X)
bes-Urysohn ands’ the A-Wallman proximity associated 8 Then

(a) &' is a compatible EF-proximity oX coarser thans;
(b) A is§-Urysohn iff it isé’-Urysohn.

Proof. We prove (a). To show is an EF-proximity only two axioms need verification viz:

(i) Ay’B andAy§’'C impliesAy’ (B U C) (union axiom and
(ii) wheneverA§’B, there exists ait ¢ X suchthatA¢’E andE€¢’ B (EF axion).

To verify (i) supposeA§’ B andA§'C.

(i1) Ifcl A€ A, thenA¢B andAJC and soAJ(B U C). By (x) A§’(BUC).

(i2)IfclA¢ A, thenclBe A, clC € AandAJB andAJC. Then clBUC) € A and
AJ(BUC) and hence fromw) A§’ (B U C).

To verify (ii) supposed ¢’ B. We may assume @ € A andA§B, i.e., A <; B°. Since
A is §-Urysohn, then there is ai € A with A <5 E <s B¢. By (x) Ay’E“ andE§'B.

Observe that’ is a compatible proximity sinca contains the singletons and it is clearly
coarser tha@.

To show (b) note that fromx, wheneverD € A and A € CL(X), DJA if and only
if D§’A. HenceS € A with D «5 S <5 A€ is equivalent toS € A with D <5 S <5
A¢. O

Remarks 1.7. (a) In the caseS = §p, the local compactness of the spake(which
guarantees tha; is EF) is equivalent tcA = K (X) be local. So, in the construction of
8’ we have replaced (X) by A and local compactness by assumifigo be ¢-) Urysohn
and so local by Remark 1.4.

(b) Note that even if the starting proximi#y is just LO, the new proximitys’ is
compatible and it is always EF as above theorem shows. As a byproduct of this result,
we have that if the base spa&eadmits a proximitys and a familyA which is a cover of
X andé-Urysohn, then it is automatically completely regular. Thus, in this case we restrict
our attention to Tychonoff spaces. We point out that Tychonoff spaces admit compatible
LO-proximities which are not EF: a prototype is the proximigywhich is EF if and only
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if X is normal. So, we have a procedure that allow us to construct an EF-proximity on a
Tychonoff spaceX by using as a seed a given LO-proximity.

Now we return to the hypertopologieg A, §), o (AU, §), 1(A) and t(AU). From
Definition 1.1 it follows thatr (A, §) < o (AU, §) as well asr (A) < t(AU).
We characterize coincidence whans assumed just closed under finite unions.

Theorem 1.8. Let (X, 7) be a Tychonoff space with a compatible LO-proxinditand
A C CL(X) closed under finite union3hen the following are equivalent

(a) either X has no open set with clV € A or for each open se¥ with clV € A and
eachA € CL(X) with A «;s V there exists arf € A with A «5 §¢ C V and hence
X e A;

(b) o+ (AU, 8) <ot(A4,8) on CL(X);

(€) 6T (AU,8) =07(A, ) on CL(X).

Proof. Only (a)= (b) and (b)= (a) need some comments, since €)(c) it is obvious.

We start with (a)= (b). LetA € CL(X) andV; " ao* (AU, §)-neighbourhood a#i.
Then eitherV“ e AorclV e AandA§Ve.

If V¢ e A, then we are done (sindg"™ " itis also a0 ™ (A, §)-neighbourhood at).

IfclVeAandAyVe, thenA <5 V and by assumption there is 8ne A with A <5
S¢ C V. Hence(s)i * isaot (4, §)- neighbourhood att with A € (5§ c V.

(b) = (a). LetV be an open set with & € A and letA € CL(X) with A <5 V.
ThenV;™ is aoc™ (AU, §)-neighbourhood att. By assumption there existsoa (4, 8)
neighbourhoodt = (5¢){* (for somesS € A) at A with A € (5¢) c V;*. ClearlyDy's
and itis easy to check th&t c S.

HenceX =clV U S € A, sinceA is closed under finite unions.O

Corollary 1.9. Let (X, t) be a Tychonoff space amtlC CL(X) closed under finite unions
Then the following are equivalent

(a) either X has no open se¥ with clV € A or for each open se¥ with clV € A and
eachA € CL(X) with A C V there existsals € Awith A € S C V andhence&X € A;

(b) tH(AU,8) < tH(A4,8) on CLX);

(€) T (AU, 8§) =17(A,5) on CL(X).

Proof. Use above theorem with=3§9. O

Remark 1.10. Note that if in the above theorem or corollary is also local, then
o (AU, 8) =a(A,8) (respectivelyt(AU) = t(4)) if and only if X € A and for each
V € v with clV € A and eachA € CL(X) with A «s V there exists arf§ € A with
A K5 8¢ C V (respectivelyX € A and for eacl € t with clV € A and eachA € CL(X)
with A C V there exists a§ € A with A C §¢ C V).
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A prototype of corollaries that we can deduce from Theorem 1.8, Corollary 1.9 and
Remark 1.10 is the following.

Corollary 1.11. Let (X, t) be a locally compact Hausdorff spaands a compatible LO-
proximity onX), then thelU-topologyz (U) (the proximalU -topologys (U, §)) on CL(X)
equals the Fell topology(F) (the proximal Fell topology (F, 8)) iff X is compact.

The interested reader can easily deduce corollaries corresponding to each example
(i)—(xii) listed previously.

We point out that whem is local and acover of X, thent(AU) = 7(A) (resp.
o(AU,8) =o0(A4,8)) if and only if A = CL(X), i.e., coincidence occurs when thd/-
topology (AU) (resp. the proximaAU-topology o (AU, §)) is the Vietoris topology
(V) (resp. the proximal topology(§)) on CL(X).

2. Uniformizing (proximal) A-topologiesand (proximal) AU-topologies

We recall that if(X, t) is a Tychonoff space with a compatible EF-proximitythen a
uniformity &/ on X is calledcompatible w.r.t§ iff the proximity relations ({) defined by
ASU)Biff ANU[B] # ¢ foreachU € U equals (see [18])5 admits a unique compatible
totally bounded uniformity/,, (§) [18] and we will omit reference 19 if this is clear from
the context.

Theorem 2.1. Let (X, t) be a Tychonoff space with a compatible EF-proxinity,, the
unique totally bounded uniformity which inducgeand A C CL(X) a cover ofX. Then the
following are equivalent

(a) Ais3-Urysohn
(b) (1) the A-Attouch—Wets filtets,, o (cf. (f) in Definition1.1)is a Hausdorff uniformity
(2) the proximalA-topologyo (A, §) equalst Uy ).

Proof. (a) = (b) We start showing (1). It suffices to show that the subbase fiitet
{ID,U]: D e AandU €U} of Uy, where[D, U] = {(A1, A2) € CL(X) x CL(X): A1N
D c U(Ap) andA> N D C U(A1)}, is a subbase for a Hausdorff uniformity Gh.(X).

Without loss of generality we may assume thdtentouragesU € U,, are open and
symmetric

We claim that whenevefD, U] € ¥, there is somdS, V] € ¥ such that[S, V] o
[S,V]cCI[D,Ul].

So, let[D,U] e ¥. ThenD € A and U € U,,. Without loss of generality, we may
assume that/ (D) # X. SetA = [U(D)]°. ThenA¢D. By assumption there is afic A
such thatD «5 S C A¢. Let V e U, be such thalV o V C U andV (D) c S. Clearly,
[S,V]ew. We claim that[S,V]o [S,V] C[D,U]. So, let(E1, E2) and (E2, E3) €
[S, V1. We have to consider two cases:

(i) bothE1N D =@ andE3zN D =0;
(i) eitherExND # P or E3ND # (.
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If (i) occurs, then clearlyE1, E3) € [D, U]. So, suppose (ii) occurs and et E1 N D.
SinceV (D) Cc S and E1 N S C V(E2) there exists & € E» such thaty e Eo N S and
y € V(x). Again, sinceV(D) Cc S and E>2 N S C V(E3) there exist & € E3 such that
z€V(y).ButVoV cUandsox € U(E3). Thus,E1 N D C U(E3). Similarly, we have
E3zN D C U(E1). SO,Uy 4 is a uniformity.

Then, let A1, Az € CL(X) with A1 % A2 and without loss of generality assume
a1 € A1\ Az. LetU e Uy, with a1 ¢ U(A2). By assumptior; € A. Clearly,[a1, U] € &
and(A1, A2) ¢ [a1, U] and sdA,, 4 is Hausdorff, too.

Now, we prove (2). So, le#; be a net converging ta w.r.t. the topologyr Uy 4).

() If AeV~, whereV € 1, then there exist € ANV and aW e U, such that
W(a) C V. SinceA € [{a}, WI(A) C V, A, € [{a}, W](A) C V—, eventually.

(i) If Ae(D9)S", whereD € A, thenD <5 A¢ and hence there is afie A such
that D <5 S <5 A¢. Hence there is & € U,, such thatW(A) N S = @. Eventually
A; €[S, WI(A), i.e., Ay € (D). Thuso (A, 8) < TUa).

On the other hand, let; be a net converging td w.r.t. the topology (A, $), D € A
andW €U,. LetV € U,, such thatV2 c W. We have to consider two cases:

(i) Ae(D;". Then eventually; € (D);* and obviously,
P=A,NDC WA andd=ANDC W(Ay).
(i) Ag¢ (DSt . ThenV(A)ND #Q.

SinceV is totally bounded, there ang € A, 1< j < n, suchthatd C U;le Vixj) C
V2(A). SinceA N V(x;) # @ for eachj, eventuallyA; N V(x;) # ¥ and sax; € V(A,).
Hence,

n
ANDcC | JV(xj) cV3(A) CW(Ay), eventually
j=1

We note thatD N V(A)°) € A andA € (D° U V(A){ T €o(A4,8). So,A;, € (DU
V(AT eventually.

ThereforeA, N D =[A, N DN V(A)] C W(A), eventually. ThusA; converges tA
in the topologyr Uy ).

Hence,r Uya) < o (A, ). Combining the earlier part we getif,4) = o (A4, §).

(b) = (a). By assumption tha -Attouch—Wets topology associateditg is Tychonoff
and it coincides with the proximal-topologyo (A, 8). So,0 (A, §) is regular and by using
Theorem 4.4.5 in [1] the claim. O

Theorem 2.2. Let (X, t) be a Tychonoff space with a compatible LO-proxinditand
A C CL(X) a cover ofX. If A is §-Urysohn, then the relatiod’ on the power set ok
defined by

(x) Ay'BiffeitherclAe AorclBe AandAJB

is a compatible EF-proximity o coarser thats. Further, we have
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(a) The proximalA-topologieso (A, §) anda (A, §") and the topology (4 4) induced
by the A-Attouch—Wets uniformityf,, », wherel,, is the unique totally bounded
uniformity onX compatible w.r.t§’, all coincide. Thusr (A, §) is Tychonoff.

(b) The proximal AU -topology o (AU, §) equals the proximal topology (8’). Thus
o (AU, §) is Tychonoff.

Conversely, if eithes (A, §) or o (AU, §) is Tychonoff, them is local ands-Urysohn.

Proof. By Theorem 1.6’ defined as inX) is a compatible EF-proximity coarser than
as well asA is §’-Urysohn. LetA,, (§') = U, the unique totally bounded uniformity which
inducess’.

To show (a) note:

(1) By Theorem 2.1 the correspondizgAttouch—\Wets topology (U, 1) is Tychonoff
and it equals the proximal-topologyo (A, §').

(2) From ) it follows that whenevet/ € r andU° € A, for E C X, E§U€ if and only if
EJ'UC. So,(US{ " = U] andthusr (4, 8) equalss (A, §).

Combining (1) and (2) we get(A, §) = o (A4, §") = t(Uya) and hence the claim.

To show (b) it suffices to consider the upper parts.

LetA e U T €0 (AU, 8). Then eithetlU¢ € A andA§U® or clU € A andAJU*.

If U¢ e A, thenU t =US " €0(8).

If clU € A, thenA € A (since A is closed hereditary) and §U¢. By (x) Ay’ U°.
Since A is alsoé’-Urysohn there is aif € A with A <5 S <5 U By (x) we have also
A <5 S <sU.Clearly,A € (59} €o(8") and(59)}* C U *. Thuso (AU, §) < o (8).

On the other hand, let € U5 ™ € 0(8'). Then eithe/* € A andA§U* or U¢ ¢ A but
AeAandA§Uc.

If U¢ e A, thenU;* = U™,

If U°¢ A and A € A, then (sinced’ satisfies the EF-axiom) there is &ne CL(X)
such thatA <y S <y U. By (x) we haveS € A and A <5 S <5 U. Clearly, A €
(int$)y T c U™ and (intS){ ™ € 0(AU, 8), showing therebyr (8') < o (AU, §) and
henceo (8') = o (AU, §).

Sinceo (§") is Tychonoff (cf. Theorem 1.2y (AU, 8) is Tychonoff.

For the converse we just study the case\U, §) is Tychonoff, since the case(A, §)
has been considered in [9].

So, leto (AU, §) be Tychonoff. We claimA is a §-Urysohn family. LetA € CL(X),
D € A and A¢D. By assumption there exists @(AU, §)-basic neighbourhoo® =
UST N, Vi~ of A such thatd € V C cly(ap,5 (V) C (D€){". Then, there are two
cases:

(i) AgUC with U¢ € A.
(i) AU withclU € A andU° ¢ A.

If (i) occurs, then takeS = U and using similar argument as in [9] (cf. (&} (a) in
Theorem 4.9) we havP <5 § <5 A°.
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If (ii) occurs, thenA € A, AYU“ andD C U°. By assumption there existsd AU, §)-
neighbourhoodV = W+ n N7y H; at U¢ such thatU® € W C cly(av,5 W) C
(A9, HenceU¢¢W. We claim thatW® € A. Assume not, then &/¢ € A and hence
U° € A; acontradiction withU¢ ¢ A. HenceU¢§ W andW¢ € A. So, puttingS = W€ we
haveA «s S «s U (Theorem 4.9 in [9]). Sinc& C D¢ we haveA «s S «s D¢. O

Corollary 2.3. Let (X, t) be a Tychonoff andi € CL(X) a cover ofX which is Urysohn.
Then the relatiord’ on the power set aX defined by

(xx) AJ'BiffeitherclAe AorclBe AandAy,B
is a compatible EF-proximity oX with 8’ < 8g. Further we have

(@) t(A)=0(A4,8) andif U, is the unique totally bounded uniformity ghcompatible
with §’, then theA-topologyr (A) is the topologyt (U4, 1) induced by theA-Attouch—
Wets uniformity4,» and hence is Tychonoff.

(b) T(AU) equalso (8'). Thust (AU) is Tychonoff.

Conversely, if eithet (A) or T(AU) are Tychonoff, them is Urysohn.

Corollary 2.4. Let (X, T) be a Hausdorff space. The following are equivalent

(a) X is locally compagt

(b) the U-topologyr (U) is uniformizable

(c) t(U) is the proximal topology (81), wheres; is the proximity induced by the one-
point-compactification ok (see Remari.4).

3. First and second countability of (proximal) AU-topologies

We start with the following lemma and remark and point out thas just a subfamily
of CL(X) containing the singletons.

Lemma 3.1 (cf. Lemma 5.3 in [11]).Let (X, ) be aTy space with a compatible LO-
proximitys and A C CL(X). If (CL(X), 7(AU)) (respectivel(CL(X), 0 (AU, §))) is first
countable, then every € CL(X) is separable.

Remark 3.2. If (X, 1) is aTy space with a compatible LO-proximityand A € CL(X),
thent (AU) (respectively (AU, §)) is admissible; i.e., the assignmemnt> {x} is a topo-
logical embedding oX into (CL(X), t(AU)) (respectively ofX into (CL(X), 0 (AU, 8))).

Now, we assume thatt is also a ring, i.e., it is closed under finite unions and finite
intersection, unless otherwise explicitly stated.
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Definition 3.3. Let (X, t) be aT1 space with a compatible LO-proximiy; A a closed
nonempty subset of andA € CL(X) aring. Then:

(@) Afamily A’y C A is a (proxima) local AU-baseat A, A # X, if wheneverA Cc U
(A <5 U)with U¢ or clU € A, there is aV with V¢ orclV e A, andACV C U
(A5 V CU).

(b) Afamily A’ C A is a (proximal) AU-baseif for eachA C U (A <« U), A # X, with
UcorclU € AandA € CL(X), there is aV with V€ orclVe A andAcCcV cU
(A5 V CU).

Theorem 3.4. Let (X, t) be aT1 space with a compatible LO-proximidyand A € CL(X)
aring. The following are equivalent

(@) (CL(X),0(AU,$é)) is first countable
(b) X isfirst countable, every closed seis separable and every € CL(X), A # X, has
a countable proximal locahU-baseA’, at A.

Proof. (a) = (b). By Remark 3.2 is first countable and by Lemma 3.1 every closed set
A is separable. Now, leAd € CL(X), A # X. The first countability of CL(X), o (AU, §))

at A means that there is a countable famidy, of sets of the fornﬂjej(Kj);H N
Nier(HDFTNMie; Vi, with I, T andJ finite subsets oN, H,, K; andV; € 7, A <s Hj,
ALsKj, H e Aand clK; € A.

SetA’, = {H¢: H occurs in the presentation of some element jj U {cl K: K occurs
in the presentation of some elementdn}.

Without loss of generality we may assumg is a ring.

It is a routine exercise to verify that/, is nonempty and thus countable. We prove that
A’ is a proximal localAU base atA.

So, letU € t with A <5 U andU* or clU € A. Hence, there i, = (), ; (K ;)7 7 N
Nier(HD3 T NNie; Vi~ € La such thatd € L ¢ U, . SinceA # X, we may assume
that alsoU # X. Clearly, in the expression df, eitherT or J is nonempty (in fact, if
T =@ andJ = @, then by choosing € U° N clU we have thatF = (A U {x}) € L but
F ¢ US*; a contradiction).

If T # @, then the following subcases occur.

(I) J =9. Then
L= \H)F n(\Vi cus™.
teT iel

Let S =,y Hf and setV = §°. ThusV¢ e A’, andA <5 V (becaused € L). With a
similar argument as in Theorem 5.4 in [11] we havvegs V C U.

(I J #0. Then
L=&Kpitn(HF (Vi cu;™.
jelJ teT iel

Let B/ = K; N[,y H: for eachj e J. Therefore, cB/ € A, because &k € A, B/ C
KjandA, is aring. ClearlyA <s B/ (in fact AY[K} U,y H] becaused € L). Set
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V =, B/, thenclV € A/, (becaus& C K, clK; € A, andA, is aring) andA <
V (see Theorem (1.18) in [17]). We claim that if eitiéf € A or clU € A, thenV C U.
Assume not, then there exists are V N U€. SinceV is open and € V, thenx§ Ve.
Soxd[Ujes K§UU,er Hf 1 because’ =, Kj N(\,er Hil. SetF = AU {x}, then
it easy to check thaf € CL(X), F € L butF ¢ U;""; a contradiction becaudec U, *.
If J # @, then the following two subcases may occur.
(I") T # @. But this is the above subcase (lI).
")y T =¢. Then

L= \&pitn(V cu;™.
jeJ iel
SetV =(1;c; Kj, then clV € A, and A <5 V (see Theorem (1.18) in [17]). As in
case (I), we have that if eithéf € A or clU € A,thenA <5V C U.

(b) = (a). LetA € CL(X). The cased = X is standard.

So, letA # X andA’, be a proximal localU-base atA.

Let{as,ap,...,a,,...} be a countable dense setAn S(a;) i =1,2,...,n,...) be a
countable base of neighbourhoodgatSetS = {S(g;): i =1, 2,...,n,...} and consider
the family £ 4 of all subsets of the forrfi) ;. , (V;); N, U7, with 7, J finite subsets
of N, V; € A/, andU; € S. We claim thatZ 4 is a countable local base of openAU, §)-
neighbourhoods at. It suffices to show thaf 4 is a local base for a subbasi€¢AU, §)-
neighbourhoods system at

Case (1). Letd € H " NN, O; with I finite subset of integers); € t for each
iel, Het andH € A. ThenA «s H and for eachi € I let U; € S be such that
U; C Q;. By assumption there exists & € 7 with V¢ e A/, andA <5 V C H. Set
L=V NN, U, thenitis easy to check thdte £, andL C H;"* NN, O .

Case (2). Suppos# € K, 7 N (;; Q; with I finite subset of integer®; € t for
eachie I, K et and clK € A. ThenA «;s K and for each € I let U; € S be such that
U; C Qi. By hypothesis there existsla e r with clV € A’, and such tha#d «s V C K.
SetL' =Vt NN, U7 andnotethal’ € £, andL’' C Kyt NN, Q7 O
Corollary 3.5. Let (X,7) be a Ty space andA € CL(X) a ring. The following are
equivalent

() (CL(X), t(AU)) is first countable
(b) X isfirst countable, every closed seis separable and every € CL(X), A # X, has
a countable locaAU-baseA’, at A.

Now, we analyse the second countability.

Theorem 3.6. Let (X, ) be aTy space with a compatible LO-proximidyand A € CL(X)
aring. The following are equivalent

() (CL(X),0(AU,$¢)) is second countabje
(b) X is second countable and there is a countable subg A which is a proximal
AU-base.
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Proof. (a) = (b). By Remark 3.2X is second countable. L&t be a countable base of
o (AU, §). Every elementi. € £ has the form

L=(Y&py n(YEH;F NV,

jeJ teT iel

with 7, T and/J finite subsets oN, H;, U; andV; e 7, Hf e Aand clK; € A.

SetA’ = {H*: H occurs in the presentation of some elemenf}ru {cl K: K occurs
in the presentation of some elementlh

Clearly, A’ C A is countable and by using arguments as in above Theorem 3.4 it is a
proximal AU -base.

(b) = (a). Let V be a countable base of. It is easy to verify that the family
L=, (K)5T N er(H)y T NNie Vi, with J, T and 1 finite subsets of, K,
H; andV; open suchthatd; € A", Hf € A" andV; € V respectively, is a countable base
foro(AU,$8). O

Corollary 3.7. Let (X, t) be a Ty space andA C CL(X) a ring. The following are
equivalent

() (CL(X), t(AU)) is second countabje
(b) X is second countable and there is a countable subrhg A which is aAU-base.

4. Metrizability of (proximal) AU -topologies

Definition 4.1. Let (X, 7) be aTy space with a compatible LO-proximisyandA € CL(X)
be a nonempty subfamily €L(X). A subfamily A" of A is calledrelatively §-Urysohn
w.r.t. A if the following condition is fulfilled:

() foreveryD € A with D # X and everyV € t with D < V, there is anS € A" with
DL S<KsV.

A subfamily A’ of A is calledrelatively Urysohn w.r.tA provided:

(xx) for everyD € A with D # X and everyV € T with D C V, there is anS € A" with
DcScV.

Theorem 4.2. Let (X, t) be aT1 space with a compatible LO-proximidyand A € CL(X)
a cover ofX. The following are equivalent

(@) (CL(X),0(AU,$¢)) is metrizable

(b) X is Tychonoff and second countable and there is a countable sulfimgA which
is relativelys-Urysohn w.r.t.A;

(c) (CL(X),0(A4,$8)) is metrizable.
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Proof. (a)= (b). If (CL(X), 0 (AU, §)) is metrizable, them (AU, §) is second countable
and Tychonoff. Thus X is Tychonoff and second countable. By Theorem 22s
8-Urysohn. Moreover, second countability assures that there is a countable subring
of A which is a proximalAU base. We claimA’ fulfills (x) of Definition 4.1. Let
D e Awith D+#X,V et andD «s V. Without loss of generality we may suppose
V#X. PutA=X\V. ThenA € CL(X) and A§D. So, using twice th&-Urysohn
condition on the familyA and Theorem (1.17) in [17] there aReandT € A such that
D <s R <5 iIntT C T <5 V. Hence there exists an open ¢t with clM € A’ that
R<«sM C (intT). SetS=clM.ThenS € A" andD <5 S <5 V.

(b)= (a). Itis clear thatCL(X), o (AU, §8)) is a Tychonoff space (cf. Theorem 2.2). By
assumption there is a countable subritigpf A which satisfies condition«). But clearly
(%) implies thatA’ is a proximalAU base. Thus, by Theorem 3(EL(X), o (AU, §)) is
second countable, too. Therefore, by Urysohn Metrization Thed@X), o (AU, 9)) is
metrizable.

(c) & (b). Use an argument similar as in Theorem 5.20 in [1L].

Corollary 4.3. Let (X, t) be a Tychonoff space and € CL(X) a cover ofX. The
following are equivalent

() (CL(X), t(AU)) is metrizable

(b) X is Tychonoff and second countable and there is a countable sulfimgA which
is relatively Urysohn w.r.tA;

(c) (CL(X), t(A)) is metrizable.

Corollary 4.4. Let (X, t) be a Tychonoff space with a compatible LO-proxinditgnd
A C CL(X) a cover ofX.

Then(CL(X), 0 (AU, $)) (respectively(CL(X), t(AU))) is metrizable if and only if
(CL(X),0(A, 8)) (respectivel(CL(X), T(A))) is metrizable.

If we focus our attention on th&-topology, we have:

Corollary 4.5. Let (X, T) be a Tychonoff space. The following are equivalent

(@) (CL(X), T(U)) is second countabje

(b) X is locally compact and second countable
(c) (CL(X), t(U)) is metrizable

(d) (CL(X), t(F)) is metrizable.

Proof. (a)= (b). It follows from (a)=> (b) of Corollary 3.7 whem = K (X).

(b) = (c). By assumptionX admits a countable ba#ksuch that for eacl € B, clW
is compact. Let’ (B) the family of all finite unions and finite intersection of element8in
SetA’ ={clS: S € X(B)}. Clearly,A’ C K(X) and A’ satisfies ¢x) of Definition 4.1. By
Corollary 4.3 the claim holds.

(c) = (a) itis trivial and (b)< (d) is nicely dealt with in Theorem 5.1.5in [1].O
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In Theorem 5.7 in [12] the authors have shown that whenéXet/) is a Hausdorff
uniform space, theQCL(X), o (/)) is metrizable if and only if there is a totally bounded
metrico on X compatible withi/.

So, we have a complete and attractive solution to the metrization problem for the
proximal AU -topologyo (AU, §) with respect to a given LO-proximity oK.

Theorem 4.6. Let (X, ) be aTy space with a compatible LO-proximidyand A € CL(X)
a cover ofX. The following are equivalent

() (CL(X),0(AU,$¢)) is metrizable
(b) there exists a compatible totally bounded megrion X such thats (AU, §) =0 (0).

Proof. (b) = (a). By a result in [3] it is known thai (o) is metrizable. Hence (AU, §)
is metrizable.

(@) = (b). By Theorems 1.6 and 2.2 there is a compatible EF-proxifiign X such
thato (AU, 8) = o (8'). LetU,, be the unique totally bounded uniformity which induéés
Theno (8') = o Uy).

Since (CL(X), o (U, )) is metrizable, by Theorem 5.7 in [12] there exists a totally
bounded metrip compatible with respect t&x,, with o (Uy) = o(0). But o (AU, §) =
o (8") = o (Uy) and hence the claim holdsO

Corollary 4.7. Let (X, t) be aTy space andA ¢ CL(X) a cover ofX. The following are
equivalent

(@) (CL(X), 1(AU)) is metrizable
(b) there exists a compatible totally bounded megrion X such thatr (AU) = o (o).
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