
G-Reactive Systems as Coalgebras

Filippo Bonchi, Ugo Montanari 1

Department of Computer Science
University of Pisa

Abstract

The semantics of process calculi has traditionally been specified by labelled transition systems (LTSs),
but with the development of name calculi it turned out that definitions employing reduction semantics
are sometimes more natural. Reactive Systems à la Leifer and Milner allow to derive from a reduction
semantics definition an LTS equipped with a bisimilarity relation which is a congruence. This theory has
been extended to G-Reactive Systems by Sassone and Sobocinki in order to properly handle structural
equivalence.
Universal Coalgebra provides a categorical framework where bisimilarity can be characterized as final se-
mantics, i.e., each LTS can be mapped to a minimal realization identifying bisimilar states. Moreover,
it is often possible to lift coalgebras to an algebraic setting (yielding bialgebras by Turi and Plotkin or,
slightly more generally, structured coalgebras by Corradini, Heckel and Montanari) with the property that
bisimilarity is compositional with respect to the lifted structure. The existence of minimal realizations is
of theoretical interest, but it is even more of practical interest whenever LTSs are employed for finite state
verification.
In this paper we show that for every G-Reactive System we can build a coalgebra. Furthermore, if bisimi-
larity is compositional in the Reactive System, then we can lift this coalgebra to a structured coalgebra.

Keywords: Process calculus, labelled transition system, reactive systems, G-reactve systems, universal
coalgebra

1 Introduction

The operational semantics of process calculi is usually given in terms of transition

systems labeled with actions, which, when visible, represent both observations and

interactions with the external world. The abstract semantics is given in terms

of behavioral equivalences, which depend on the action labels and on the amount

of branching structure considered. Behavioral equivalences are often congruences

with respect to the operations of the language, and this property, which depends

on how actions are combined and transformed by the operations, expresses the

compositionality of the abstract semantics.

A simpler approach, inspired by classical formalisms like λ-calculus, Petri nets,

term and graph rewriting, and pioneered by the Chemical Abstract Machine [4],

1 Research partially supported by the IST 2004-16004 SEnSOria, and the MIUR PRIN 2005015824 ART.

Electronic Notes in Theoretical Computer Science 203 (2008) 3–17

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.10.040
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

defines operational semantics by means of structural axioms and reduction rules.

Process calculi representing complex systems, in particular those able to generate

and communicate names, are often defined in this way, since structural axioms give

a clear idea of the intended structure of the states while reaction rules, which are

often non conditional, give a direct account of the possible steps. Transitions caused

by reaction rules, however, are not labeled, since they represent evolutions of the

system without interactions with the external world. Thus reduction semantics in

itself is neither abstract nor compositional.

To enhance the expressiveness of reduction semantics, Leifer and Milner pro-

posed in [14] the theory of Reactive Systems: a systematic method for deriving a

labeled transition system from reduction rules. The main idea is the following: a

process p can do a move with label C[−] and become p′ iff C[p] � p′. Roughly a

Reactive System is a syntactical category equipped with a set of rewriting rules. In

the category, arrows represents terms and contexts while arrows composition mod-

els the insertion of terms into contexts. Rewriting rules are pairs of terms, and the

reduction relation � is defined by closing the rules under contexts composition.

Leifer and Milner introduced also the categorical notions of relative pushout

(RPO) and idem relative pushout (IPO) in order to specify a/the minimal context

that allows the state to react with a given rule. This construction leads to labelled

transition systems (LTS) that use only contexts generated by IPOs, as labels. Bisim-

ilarity, as well as trace and failure equivalence, on this LTS is a congruence whenever

the syntactical category underlying the Reactive Systems has RPOs.

Sassone and Sobociński have pointed out that usually syntactical categories quo-

tiented w.r.t. structural axioms have not RPOs (Example 2.2.2 in [19]). Moreover

considering terms up to structural equivalence usually makes to derive wrong la-

beled transition system (Example 2.2.1 in [19]). Thus they extend the theory to G-

Reactive Systems that are standard Reactive Systems, but defined on G-categories,

i.e., categories where arrows are terms not quotiented w.r.t. structural axioms, and

between structurally equivalent arrows there are 2-cells, that represent proofs of

structural equivalence.

The concepts of RPO and IPO, previously defined by Leifer and Milner, corre-

sponds in G-category to groupoidal relative pushout (GRPO) and to groupoidal

idem pushout (GIPO). Instead of generating the LTS by IPOs, Sassone and

Sobociński use GIPOs and prove that bisimilarity is a congruence whenever the

base G-category has GRPOs. In [18], the same authors have shown that the theory

of G-Reactive Systems exactly subsumes Borrowed Contexts Rewriting [10].

The aim of this paper is to recast G-Reactive Systems as structured coalgebras.

The use of coalgebras for the specification of dynamical systems with a hidden state

space is receiving more and more attention in the last years, as a valid alternative to

algebraic methods based on observational equivalences [15]. Given an endofunctor

F on a category C, a coalgebra is an arrow f : X → F(X) of C and a coalgebra

morphism from f to f ′ is an arrow h : X → X ′ of C with h ; f ′ = f ;F(h). Under

certain conditions on C and F, a category of coalgebras admits a final object,

which can be considered informally as the minimal realization of the union of all

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–174

the coalgebras in the category.

Ordinary labeled transition systems (with finite or countable branching) can be

represented as coalgebras for a suitable functor on Set. Furthermore, the unique

morphism to the final coalgebra induces an equivalence which turns out to be exactly

bisimilarity. Thus a first (rather straightforward) result of this paper is to show that

the labeled transition systems derived from Reactive Systems can be considered as

coalgebras and that their bisimilarity can be characterizes as final semantics.

However, this representation forgets about the algebraic structure of Reactive

Systems, i.e., the possibility of contexualizing a term. As a consequence, the prop-

erty that bisimilarity is a congruence, which is essential for making abstract seman-

tics compositional, is not reflected in the structure of the model.

The problem of integrating coalgebras and algebras obtaining a model equipped

with both structures has been tackled in [20], and an alternative but equivalent ap-

proach based on structured coalgebras is presented in [7,8]. Here, the endofunctor de-

termining the coalgebraic structure is lifted from Set to the category of Γ-algebras,

for some algebraic theory Γ. Morphisms between coalgebras in this category are

both Γ-homomorphisms and coalgebra morphisms, and thus the unique morphism

to the final coalgebra, which always exists, induces a (coarsest) bisimulation con-

gruence on any coalgebra.

It turns out that the conditions that guarantee the compositionality of bisimi-

larity in the theory of G-Reactive Systems (i.e., the existence of GIPOs) imply the

existence of a structured coalgebras equivalent to the distilled LTS. Thus a second

result of the paper is to provide a different understanding of why bisimilarity is a

congruence in the derived LTS. Namely the derived transition system is functorial,

i.e., it preserves arrows composition. Here the decomposition property of GIPO’s

is pivotal and it remembers us the decomposition property of tile systems [11] that

guarantees compositionality of tile bisimilarity.

In [6], we have provided a coalgebraic characterization of standard Reactive

Systems à la Leifer and Milner. Thus the present paper have to be understood

as an extension of [6] to G-Reactive Systems. We will show that the extension is

straightforward: instead of using the decomposition property of IPOs, we use the

decomposition property of GIPOs.

The paper is structured as follow. In Section 2, we introduce some basic notions

on 2-categories and G-categories that are fundamental in order to introduce G-

Reactive Systems in Section 3. In Section 4 we introduce coalgebras and structured

coalgebra. Section 5 defines a colagebra for the LTS derived from the Reactive Sys-

tem and Section 6 proves that, if the base category has GRPOs, then the coalgebra

previously defined is a structured coalgebra, i.e., bisimilarity is a congruence.

2 Basic facts on 2-categories

In this section we introduce the basic concepts of 2-categories and G-categories.

This will be fundamental in order to introduce the theory of G-Reactive Systems in

the next section. For a more detailed introduction on the topic, we refer the reader

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 5

to [13].

In the following we use C[X,Y] to denote the homset X,Y , i.e., the collection

of arrows of C from X to Y . Given two arrows f, g ∈ C[X,Y], α : f ⇒ g is called

a 2-cells with source f and target g.

A 2-category is a category where every homset is the class of objects of some

category C[X,Y] and whose composition functions C[X,Y] × C[Y,Z] → C[X,Z]

are functors associative and with identity. Explicitly, a 2-category is a category

enriched with 2-cells, such that:

• For every arrow f ∈ C[X,Y] there is an identity 2-cell 1f : f ⇒ f .

• For every pair of 2-cells α : f ⇒ g and β : g ⇒ h is defined α • β : f ⇒ h.

Moreover • is associative and with identity.

• For every pair of 2-cells α : f ⇒ f ′ and β : g ⇒ g′ such that f, f ′ ∈ C[X,Y] and

g, g′ ∈ C[Y,Z] is defined α ◦ β : f ; g ⇒ f ′; g′. Moreover ◦ is associative and has

as identity 1idX
.

• For every f : X → Y and g : Y → Z we have that 1f ◦ 1g = 1f ;g.

• For every f, f ′, f ′′ ∈ C[X,Y], g, g′, g′′ ∈ C[Y,Z], α : f ⇒ f ′, α′ : f ′ ⇒ f ′′,

β : g ⇒ g′ and β′ : g′ ⇒ g′′, we have that (α • α′) ◦ (β • β′) = (α ◦ β) • (α′ ◦ α).

The first two points just say that every homset is a category, i.e., there exists the

identity arrows (that, in this case, are 2-cells) and there is a composition operation

between arrows that is associative and with identity. This operation is called vertical

composition and denoted by •.

1f

��
X

f

��

f

��Y
α
��

X

f

��

h

��g ��
β
��

Y α•β

��
X

f

��

h

��Y

The last three points just correspond to say that the composition functions are

functors. Here we denote by ; the composition between arrows (i.e., objects of the

homsets) and by ◦ the horizontal composition of 2-cells.

α

��

β

��
X

f

��

f ′

��Y

g

��

g′

��Z α◦β

��
X

f ;g

��

f ′;g′

��Z

The last point is called middle four interchange law. It states that in 2-categories the

order of composition of 2-cells is not important. Indeed it can be shown that in any

possible diagram, all the possible different ways to combine together vertical and

horizontal composition, yield the same composite 2-cell. This primitive operation

is called pasting.

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–176

α
��

β
��

X

f

��

f ′′

��f ′ ��
α′

��
Y

g

��

g′′

��g′ ��
β′

��
Z

The canonical example of 2-category is Cat the category of categories, functors and

natural transformations [12].

A G-Category is a 2-category where all the 2-cells are isomorphisms.

3 The Theory of G-Reactive Systems

Reactive System à la Leifer and Milner [14] are defined on a (Lawvere like) cat-

egory C that represents the syntax of some formalism. Arrows of C are terms

and contexts, while objects are types. More precisely, every arrows represents a

class of structurally equivalent terms (or contexts), i.e., all terms are considered up

to structural equivalence (≡). The theory allows to derive from reduction rules a

labeled transition system, and if C has a special colimit, called relative pushout

(RPO), then bisimilarity is a congruence. Sassone and Sobociński have shown that

quotienting the syntax up to structural equivalence usually brings to a category

where there are not RPOs (Example 2.2.2 in [19]). Moreover considering terms up

to structural equivalence usually makes to derive wrong labeled transition system

(Example 2.2.1 in [19]).

For these reasons Sassone and Sobociński introduced G-Reactive Systems [17]

that are Reactive Systems à la Leifer and Milner but defined on a G-category. Here,

every arrows is a single term (not up to ≡) and between two arrows representing

structurally equivalent terms, there is a 2-cells that represents a proof of equivalence

of the two terms.

As an example, suppose to have a set of constants N and a binary operator ⊗

that is associative and commutative. Let C be the Lawvere category where the

operator is just associative. Arrows of C[0, 1] are strings on N . Thus the string

a⊗ a⊗ b ≡ a⊗ b⊗ a, but they are two different arrows in the category C. However

we can construct a G-category, where the 2-cells are permutations of constants on

N . For example there exist the 2-cells α, β : a⊗a⊗ b ⇒ a⊗ b⊗a as depicted below.

a

��

a

��
��

��
��

�

��
��

��
�

α

b

�� �
��
��
��

��
��
��
�

0
��
		 1

a b a

a

β

��

��
��

��
�

��
��

��
��

� a

�� �
��
��
��

��
��
��
� b

�� �
��
��
��

��
��
��
�

0
��
		 1

a b a

The theory is centered on the concepts of term, context and reaction rules: contexts

are arrows of a G-category, terms are arrows having as domain 0 (a special object

that denotes no holes), and reaction rules are pairs of terms.

Definition 3.1 (G-Reactive System) A G-Reactive System R consists of:

(i) a G-category C;

(ii) a distinguished object 0 ∈ |C|;

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 7

α ��

d

��

β

l

��p

��

r

�� q

�� I4

I2

C[−]

���������
α �� I3

d

���������

0

p

���������� l

����������

(i) (ii)

Fig. 1. (i) Reaction; (ii)Redex Square

(iii) a collection D of arrows of C called reactive contexts; this is closed under 2-cells

and reflect composition;

(iv) a set of pairs R ⊆
⋃

I∈|C| C[0, I] × C[0, I] of reaction rules.

The reactive contexts are those in which a reaction can occur. By composition-

reflecting we mean that d; d′ ∈ D implies d, d′ ∈ D, while the closure property

means that given d ∈ D and α : d ⇒ d′ then d′ ∈ D. The latter corresponds to

the natural requirement that the class of reactive contexts have to be closed under

structural equivalence.

Note that the rules have to be ground, i.e., left-hand and right-hand sides have

to be terms without holes and, moreover, with the same codomain.

From reaction rules one generates the reaction relation by closing them under

all reactive contexts. Formally the reaction relation is defined by taking p � q if

there is 〈l, r〉 ∈ R and d ∈ D such that there exist α : p ⇒ l; d and β : q ⇒ r; d.

This is depicted in Fig. 1(i).

Thus the behaviour of a Reactive System is expressed as an unlabelled transition

system. On the other hand many useful behavioural equivalences are only defined

for LTSs. In order to obtain an LTS, we can plug a term p into some context C[−]

and observe if a reaction occurs. In this case we have that p
C[−]
→ . Categorically

speaking this means that there exists α : p;C[−] ⇒ l; d for some rule 〈l, r〉 ∈ R

and some reactive context d. This situation is formally depicted by diagram (ii) in

Figure 1: a commuting diagram like this is called a redex square.

Definition 3.2 (context transition system) The context transition system

(CTS for short) is defined as follows:

• states: arrows p : 0 → I in C, for arbitrary I;

• transitions: p
C[−]
→ q iff C[p] � q.

Note that this labelled transition system is often infinite-branching since all contexts

that allow reactions may occur as labels. Another problem of CTS is that it has

redundant transitions. For example, consider the term a.0 of CCS. The observer

can put this term into the context a.0 | − and observe a reaction. This corresponds

to the transition a.0
a.0|−
→ 0|0. However we also have a.0

p|a.0|−
→ p | 0 | 0 as a

transition, yet p does not contribute to the reaction. Hence we need a notion of

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–178

I4

I2

c

���������
α �� I3

d

���������

I1

a

��������� b

���������

I4

γ ��
��

�
��

�

I2

c

���������
e

�� I5

g

��

δ

����� ���
I3f

��

d

���������

β ��

I1

a

��������� b

���������

I6

φ
��

��
�
��

�

I2

e′

���������
e

�� I5

h

��

ψ

����� ���
I3f

��

f ′

���������

I4

I6

g′
��������� τ			 			

��			 			

I5

g

��

h
��

(i) (ii) (iii) (iv)

Fig. 2. RPO

“minimal context that allows a reaction”. Leifer and Milner define idem pushouts

(IPOs) to capture this notion. Here we introduce the corresponding G-categorical

notion as defined by Sassone and Sobociński.

Definition 3.3 (GRPO) Let the diagrams in Figure 2 be in some G-category C.

Any tuple 〈I5, e, f, g, β, γ, δ〉 as illustrated in diagram (ii) such that (1a ◦ γ) • (β ◦

1g) • (1b ◦ δ) = α is called a candidate for (i). In other words, the 2-cells β, γ, δ

paste together to give α. A groupoidal relative pushout (GRPO) is the smallest such

candidate. More formally, it satisfies the universal property that given any other

candidate 〈I6, e
′ : I2 → I6, f

′ : I3 → I6, g
′ : I6 → I4, β

′ : a; e′ ⇒ b; f ′, γ′ : c ⇒

e′; g′, δ′ : f ′; g ⇒ d〉, there exists a mediating morphism, i.e., a tuple 〈h : I5 → I6, φ :

e′ ⇒ e;h, ψ : f ;h ⇒ f ′, τ : h′; g′ ⇒ g〉 illustrated in diagram (iii) and (iv) such that:

(i) γ = γ′ • (φ ◦ 1g′) • (1e ◦ τ);

(ii) δ = (idf ◦ τ−1) • (ψ ◦ idg′) • δ′;

(iii) β′ = (ida ◦ φ) • (β ◦ 1h) • (idb ◦ ψ).

Moreover it must be essentially unique, i.e., for any other mediating morphism

〈h′, φ′, ψ′τ ′〉 there must exist a unique 2-cell ε : h ⇒ h′ which makes the two

mediating morphisms compatible, i.e.:

(i) φ′ = φ • (ide ◦ ε);

(ii) ψ′ = (idf ◦ ε−1) • ψ;

(iii) τ = (ε ◦ idg′) • τ ′.

Definition 3.4 (GIPO) A commuting square such as diagram (i) of Figure 2 is

called idem pushout (GIPO) if 〈I4, c, d, idI4 , α, 1c, 1d〉 is its GRPO.

We say that a Reactive System has GRPOs if, in the underlying category, for each

α : a; c ⇒ b; d there exists a GRPO, while we say that it has redex GRPOs, if for

each redex square there exists a GRPO.

Definition 3.5 (GIPO LTS) The GIPO LTS (GLTS for short) is defined as fol-

lows:

• states: p : 0 → I in C, for arbitrary I;

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 9

• transitions: p
C[−]
→G r; d iff there exist d ∈ D, 〈l, r〉 ∈ R and α : p;C[−] ⇒ l; d such

that diagram (ii) in Figure 1 is a GIPO.

In other words, if inserting p into the context C[−] matches l; d, and C[−] is the

“smallest” such context (according to the GIPO condition), then p transforms to

r; d with label C[−], where r is the reduct of l. The GLTS is called concrete LTS

in [17], since they introduce also an abstract version, where states and labels are

quotiented up to ≡. In this paper we provide a coalgebraic characterization only of

the concrete LTS, since the abstract version is completely analogous.

Bisimilarity on GLTS is referred to as concrete bisimilarity (denoted by ∼G).

Sassone and Sobociński have shown that if the Reactive System has redex GRPOs,

then it is a congruence (i.e., it is preserved under all contexts).

Proposition 3.6 Let R be a Reactive System having redex GRPOs, then ∼G is a

congruence.

4 Coalgebras and Structured Coalgebras

In this section we first introduce the standard way to represent labeled transition

systems as coalgebras for a suitable powerset functor [15], and then we discuss how

this encoding can be lifted to a more structured framework, where the coalgebraic

representation keeps the relevant algebraic structure of the states and transition of

the encoded system. Let us start introducing the formal definition of coalgebra for

a functor.

Definition 4.1 (coalgebras) Let B : C → C be an endofunctor on a category C.

A coalgebra for B or B-coalgebra is a pair 〈A, a〉 where A is an object of C and

a : A → B(A) is an arrow. A B-cohomomorphism f : 〈A, a〉 → 〈A′, a′〉 is an arrow

f : A → A′ of C such that

f ; a′ = a;B(f). (1)

The category of B-coalgebras and B-cohomomorphisms will be denoted by CoalgB.

The underlying functor U : CoalgB → C maps an object 〈A, a〉 to A and an arrow

f to itself.

Let PL : Set → Set be the functor defined as X �→ P(L × X) where L is a fixed

set of labels and P denotes the powerset functor. Then coalgebras for this functor

are one-to-one with labeled transition systems over L [15].

Definition 4.2 (labeled transition systems) Let L be a fixed set of labels. A

(nondeterministic) labeled transition system (over L), briefly LTS, is a structure

TS = 〈S,−→TS〉, where S is a set of states, and −→TS⊆ S × L × S is a labeled

transition relation. As usual, we write s
l

−→TS s′ for 〈s, l, s′〉 ∈−→TS .

A transition system morphism f : TS → TS′ is a function f : S → S′ which

“preserves” the transitions, i.e., such that s
l

−→TS t implies f(s)
l

−→TS′ f(t). We

will denote by LTSL the category of finitely-branching LTS over L and correspond-

ing morphisms.

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–1710

Proposition 4.3 (labeled transition systems as coalgebras) Category

CoalgPL
is isomorphic to the sub-category of LTSL containing all its objects, and

all the morphisms f : TS → TS′ which also “reflect” transitions, i.e., such that if

f(s)
l

−→TS′ t then there is a state s′ ∈ S such that s
l

−→TS s′ and f(s′) = t.

It is instructive to spell out the correspondence just stated. For objects, a transition

system 〈S,−→〉 is mapped to the coalgebra 〈S, σ〉 where σ(s) = {〈l, s′〉 | s
l

−→ s′},

and, vice versa, a coalgebra 〈S, σ : S → PL(S)〉 is mapped to the system 〈S,−→〉,

with s
l

−→ s′ if 〈l, s′〉 ∈ σ(s). For arrows, by spelling out condition (1) for functor

PL, we get

∀s ∈ S , {〈l, t〉 | f(s)
l

−→ t} = {〈l, f(s′)〉 | s
l

−→ s′},

and by splitting this set equality in the conjunction of the two inclusions, one can

easily see that inclusion “⊇” is equivalent to s
l

−→ s′ ⇒ f(s)
l

−→ f(s′), showing

that f is a transition system morphism, while the left-to-right inclusion is equivalent

to f(s)
l

−→ t ⇒ ∃s′ . s
l

−→ s′ ∧ f(s′) = t, meaning that f is a “zig-zag” morphism,

i.e., that it reflects transitions.

The property of “reflecting behaviors” enjoyed by cohomomorphisms is pivotal,

for example, in the characterization of bisimulation relations as spans of cohomo-

morphisms, in the relevance of final coalgebras, and in various other results of the

theory of coalgebras [15]. Given two coalgebras 〈A, a〉 and 〈A′, a′〉, a coalgebraic

bisimulation on them is a relation R ⊆ A × A′ such that 〈R, r〉 is a coalgebra and

the projections π : R → A and π′ : R → A′ are cohomomorphisms. Interestingly,

it is easy to check that two states of a labeled transition system S are bisimilar (in

the standard sense) if and only if there is a coalgebraic bisimulation R ⊆ S × S

(regarded as a PL-coalgebra) which relates them.

An even easier definition of categorical bisimilarity can be given if there exists a

final coalgebra. In this case, two elements of the carrier of a coalgebra are bisimilar

iff they are mapped to the same element of the final coalgebra by the unique co-

homomorphism. Unfortunately, due to cardinality reasons, the functor PL used for

the coalgebraic representation of transition systems does not admit a final coalgebra

[15]. One satisfactory, alternative solution consists of replacing the powerset functor

P on Set by the countable powerset functor Pc, which maps a set to the family of its

countable subsets. Then defining the functor Pc
L : Set → Set by X �→ Pc(L × X)

one has that coalgebras for this endofunctor are in one-to-one correspondence with

transition systems with countable degree, i.e., systems where for each state s ∈ S

the set {〈s′, l〉 | s
l

−→ s′} is countable. Unlike functor PL, the functor Pc
L admits

cofree and final coalgebras (Example 6.8 of [15]).

Proposition 4.4 (final and cofree Pc
L-coalgebras) The obvious underlying

functor U : CoalgPc

L
→ Set has a right adjoint R : Set → CoalgPc

L
associat-

ing with each set X a cofree coalgebra over X. As a consequence, the category

CoalgPc

L
has a final object, which is the cofree coalgebra R(1) over a final set 1.

We shall stick to this functor throughout the rest of the paper, and since there is

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 11

no room for confusion the superscript c will be understood.

For Reactive Systems, as well as process algebra and tile rewrite systems, the

coalgebraic representation using functor PL (for a suitable L) introduced in Propo-

sition 4.3 is not completely satisfactory, because by definition the carrier is just a set

and therefore the algebraic structure of states is lost. This calls for the introduction

of structured coalgebras, i.e., coalgebras for an endofuctor on a category AlgΓ of

algebras for a signature (or algebraic specification) Γ which is determined by the

structure of states. Since it is natural to require that the structured coalgebraic

representation of a system is compatible with the unstructured, set-based one, the

following notion will be relevant.

Definition 4.5 (lifting) Given endofunctors B : C → C, B′ : C′ → C′ and a

functor V : C′ → C, B′ is called a lifting of B along V, if B′;V = V;B.

C′

V

��

B′ ��C′

V

��
C

B ��C

In particular, if VΓ : AlgΓ → Set is the underlying set functor, one will consider

typically a functor B′ : AlgΓ → AlgΓ which is a lifting of PL along VΓ.

The structured coalgebraic representation of transition systems has been studied

in [20] for the case of CCS and other process algebra whose operational semantics

is given by SOS rules in the DeSimone format, and in [9] for tile systems. In the

first case the lifting of PL is determined by the SOS rules, while in the second one

it is defined by authors’hand. In both cases, as well as for the case of G-Reactive

Systems addressed in the next sections, the following interesting fact applies [20,7].

Proposition 4.6 (bisimilarity is a congruence in structured coalgebras)

Let Γ be an algebraic specification, and BΓ
L : AlgΓ → AlgΓ be a lifting of PL :

Set → Set. If 〈S, σ〉 is a BΓ
L-coalgebra and 〈S,−→〉 its corresponding structured

LTS, then bisimilarity on 〈S,−→〉 is a congruence with respect to the operators in

Γ.

The statement follows by the observation that the right adjoint R : Set → CoalgPL

of Proposition 4.4 lifts to a right adjoint RΓ : AlgΓ → CoalgBΓ
L

for the forgetful

functor UΓ, with VΓ;R = RΓ;VΓ
B (see [20]), as shown in the following diagram.

CoalgPL

U

��

FΓ
B ��

CoalgBΓ
L

UΓ

��

VΓ
B

��

Set

R

��

FΓ

AlgΓ

RΓ

!!

VΓ

"

Now, since RΓ and V Γ
B are both right adjoints, CoalgBΓ

L

inherits a final object

RΓ(1) from AlgΓ which is then preserved by V Γ
B . Hence, bisimilarity induced by

the final morphism to RΓ(1) in CoalgBΓ is determined by the underlying sets and

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–1712

functions, that is, its definition does not use the algebraic structure of states and

transitions. Since the final morphisms in CoalgBΓ
L

are Γ-homomorphisms, it follows

that bisimilarity is a congruence.

In other words, a transition system can be represented as a structured coalgebra

only if bisimilarity is a congruence. This property certainly holds, for example,

for specifications in GSOS format, which are considered in [20]. Certain structures

are used there, called bialgebras, which combine aspects of algebras and coalgebras:

bialgebras can be regarded as an alternative, equivalent presentation of structured

coalgebras [7]. A specification in GSOS format is shown to satisfy a certain diagram

called pentagonal law, which ensures the existence both of an algebra of transiton

systems and of an algebraic structure on their states. The pentagonal law also makes

sure that bisimilarity is a congruence, showing that GSOS specifications perfectly

fit in the structured coalgebraic framework.

5 G-Reactive Systems as Coalgebras

In this section we give a coalgebraic characterization of GIPO Labeled Transition

System of G-Reactive Systems through the theory outlined in the previous section.

First of all, we have to define the universe of observations. Since the labels of the

GLTS are arrows of the base G-category C (representing the contexts), we define

the functor as parametric w.r.t. C, and ||C|| (i.e. the class of all arrows of C) is

the universe of labels.

Definition 5.1 Given a G-category C, the functor PC : Set|C| → Set|C| is defined

for each |C|-indexed set S by PC(Sn) = Pc

(⋃
m∈|C| C[n,m] × Sm

)
.

The functor is defined analogously on arrows of Set|C|.

Note that PC is not an endofunctor on Set, as it is the case for the standard PL

discussed in the previous section, but it is defined on Set|C|, i.e., the G-category

of sets indexed by objects of C. The base G-category C induces C, an object of

Set|C| where, for any sort n, the corresponding set is C[0, n]. Here we have implicitly

assumed that C is locally small (i.e., the hom-class between two objects is always

a set and not a proper class), otherwise C[0, n] could be a proper class. Moreover,

in the following definition, we require that ||C|| is a countable set, otherwise the

possible transitions of an element could be uncountable and then not belonging to

PC. Note that this usually holds in those categories where arrows are syntactic

contexts of a formalism.

Definition 5.2 Given a G-Reactive System R = 〈C, 0,D, R〉, the PC-coalgebra

corresponding to its GLTS is 〈C, αC
R〉 where

αC
R(p) = {(c, r; d) s.t. diagram (ii) in Fig. 1 is a GIPO and d ∈ D and 〈l, r〉 ∈ R}.

It is immediate to see that the LTS defined above exactly coincides with the GLTS

(Def. 3.5).

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 13

From the above definition immediately follows a characterization of ∼G as final

semantics. Indeed the category CoalgPC
has a final object 1CoalgP

C
, and thus there

is a unique morphism !R : 〈C, αC
R〉 → 1CoalgP

C
. The whole theory of coalgebra

assures that !R(p) =!R(q) if and only if p ∼G q.

6 Lifting the Categorical Structure

The coalgebraic model defined in the previous section does not take into account the

algebraic structure of the states, i.e., of the possibility of contextualizing a term.

In order to have a richer model we lift that construction to a structured setting

where the base category is not anymore Set|C|, but a category of algebras with

contextualization operations. In the following we assume that the category C has

strict distinguished object, i.e., that the only arrow with target 0 is id0. This is

needed to distinguish between elements and operations of algebras.

specification Γ(R) =

sorts

n ∀n ∈ |C| with n �= 0

operations

d : n → m ∀d ∈ C[n,m] with n �= 0

This specification defines AlgΓ(R) the category of Γ(R)-algebras and Γ(R)-

homomorphisms. The base category C of a Reactive System induces Ĉ ∈ |AlgΓ(R)|.

In Ĉ, for every sort m, the elements of this sort are the arrows of C[0,m]. Every

operation c : m → n is defined for every element p of sort m as the composition of

p; c in C. Note that we removed arrows with source 0 from the operations, otherwise

all the elements of Ĉ must be considered as constants and not as elements.

Hereafter we will use cX to denote the operation c of the algebra X, and c to mean

both the operation cbC
and the arrow c ∈ ||C||. Moreover we will not specify the

sort of sets and operations, in order to make the whole presentation more readable.

Definition 6.1 The functor F : AlgΓ(R) → AlgΓ(R) is defined as follows.

For each X = 〈X,aX, bX, . . . 〉 ∈ AlgΓ(R), F(X) = 〈PC(X), aF(X), bF(X), . . . 〉

where ∀a ∈ Γ(R), ∀A ∈ PC(X), aF(X)(A) =

{(c, dX(x)) s.t. diagram (i) in Fig. 2 is a GIPO in C, d ∈ D and (b, x) ∈ A}.

On arrows of AlgΓ(R) is defined as PC.

Proposition 6.2 Let VΓ(R) : AlgΓ(R) → Set|C| be the forgetful functor that asso-

ciates to each Γ(R)-algebra its carrier set. Then F is a lifting of PC along VΓ(R).

Proof. For any X ∈ |AlgΓ(R)| with carrier X, VΓ(R)(F(X)) = PC(X). Moreover

VΓ(R)(X) = X and then PC(VΓ(R)(X)) = PC(X).

For any h ∈ ||AlgΓ(R)||, VΓ(R)(F(h)) = PC(h) = PC(VΓ(R)(h)). �

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–1714

Trivially F is a lifting of PC. Then, by Prop. 4.6, CoalgF is a category of bialge-

bras, it has final object 1CoalgF
and bisimilarity abstracts away from the algebraic

structure.

In [20], Turi and Plotkin show that every process algebra whose operational

semantics is given by SOS rules in DeSimone format, defines a bialgebra. In that

approach the carrier of the bialgebra is an initial algebra TΣ for a given algebraic

signature Σ, and the SOS rules in DeSimone format specify how an endofunctor

FΣ behaves with respect to the operations of the signature. Since there exists

only one arrow ?Σ : TΣ → FΣ(TΣ), to give the SOS rules is enough for defining a

bialgebra (i.e., 〈TΣ, ?Σ〉) and then for assuring compositionality of bisimilarity. Our

construction slightly differs from this. Indeed, the carrier of our coalgebra is Ĉ, that

is not the initial algebra of AlgΓ(R). Then there could exist several or no structured

coalgebras with carrier Ĉ. In the following we prove that αC
R : Ĉ → F(Ĉ) is a Γ(R)-

homomorphism. This automatically assures that 〈Ĉ, αC
R〉 is a structured coalgebra

and then bisimilarity is a congruence with respect to the operations of Γ(R).

Theorem 6.3 Let R = 〈C, 0,D, R〉 be a Reactive System with redex-RPOs. If ||C||

is countable and C has strict distinguished object, then 〈Ĉ, αC
R〉 is a F-coalgebra.

Proof. In order to prove that 〈Ĉ, αC
R〉 is a F-coalgebra, we have to prove that αC

R

is a Σ(C)-homomorphism, i.e., that for all a and p, a
F(bC)

(αC
R(p)) = αC

R(abC
(p)).

(1p◦β)•(α◦1g) ��

a;e

������������

d;b

������������

p

������������
l

������������

β ��

e

���������

b

���������

α ��
c����

������
a

���������
d

���������

p

��������� l

���������

(1p◦β)•(α◦1g) ��

e

������������

d;b

������������

p;a

������������
l

������������

(i) (ii) (iii)

Suppose that (e, p′) ∈ a
F(bC)

(αC
R(p)), then there exists two GIPOs as those of

diagram (ii) above, such that p′ = r; d; b for 〈l, r〉 ∈ R and d, b ∈ D. Since the

two inner squares are GIPOs, also the outer square, diagram (iii), is a GIPO (by

composition property of GIPOs, Lemma 2.2.20 of [19]) and then (e, p′) ∈ αC
R(abC

(p)).

Now suppose that (e, p′) ∈ αC
R(abC

(p)), then the diagram (iii) is a GIPO, d; b ∈ D,

〈l, r〉 ∈ R and p′ = r; d; b. Since C has redex-GRPOs, then there exists the GRPO

of diagram (i). Let diagram (ii) be such GRPO, then the lower square is a GIPO.

By decomposition property of GIPOs (Lemma 2.2.20 of [19]) also the upper square

of diagram (ii) is a GIPO. Thus (c, r; d) ∈ αC
R(p) and (e, p′) ∈ c

F(bC)(α
C
R(p)). �

Note that this proof is completely analogous to that of Theorem 1 of [6] that is

the analogous theorem for Reactive System à la Leifer and Milner. Here we use

composition and decomposition of GIPOs, while there we we used composition and

decomposition of IPOs. This makes evidence of the fact that it is not important

what kind of construction we use, but it is important that the construction satisfies

these two property. This is really evident in tile systems [11] where the theory prove

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 15

that decomposition property guarantees that bisimilarity is a congruence.

From the fact that 〈Ĉ, αC
R〉 is a F-coalgebra immediately follows that ∼G is a

congruence with respect to the operations of Γ(R).

7 Conclusions and Future Work

This paper extends [6] to G-Reactive Systems.

Here we have shown that given a G-Reactive System we can always construct

a coalgebra equivalent to the distilled GIPO Labeled Transition Systems. In such

a way we define a final semantics for Reactive Systems. Moreover if the Reactive

Systems has GRPOs, then we can define a structured coalgebra equivalent to the

distilled LTS, and then bisimilarity is compositional. This can be seen as a gen-

eral, more abstract proof, of compositionality of bisimilarity for Reactive Systems.

However this is not the only aim of the paper.

Indeed [6] coalgebraically characterizes also saturated bisimilarity [5], a coarser

equivalence that take into account not only the minimal contexts but all the possible.

Since all the possible contexts are usually infinite in number, we introduced Nor-

malized Coalgebras that allow to forget about redundant transitions, i.e., transitions

that are not meaningful in the bisimulation game. The relation between minimal

contexts and redundant transitions is deeply studied in [6]. The resulting notion

of bisimulation is asymmetric and recall us open bisimulation [16], asynchronous

bisimulation [1] and large bisimulation [2].

The construction presented in this paper can be easily extended to normalized

coalgebras in order to capture saturated bisimilarity of G-Reactive Systems.

This is particularly interesting in order to check saturated bisimilarity for Bor-

rowed Contexts rewriting [10]. In our opinion, the standard bisimilarity on the

(G)IPO LTS is usually too strict, while saturated seems more appropriate. This is

the case of Logic Programming and Open π-calculus as shown in [5], and of Open

Petri nets as shown in [6].

Another interesting point concerning Borrowed Contexts is the derivation of an

SOS semantics as pointed out in [3]. Indeed reasoning on the derived LTS is usually

hard, and it will be more useful having an SOS specification of it. This paper

can be seen also as a first step in this direction. Indeed, as shown in [20], GSOS

specifications can be seen as the lifting of the endofunctor to the algebraic setting.

The lifting that we have shown in Section 6 describes the following rule

p
b

→G q diagram (i) in Fig. 2 is a GIPO

p; a
c

→G q; d
.

References

[1] Amadio, R. M., I. Castellani and D. Sangiorgi, On bisimulations for the asynchronous pi-calculus., in:
Proc. of CONCUR ’96, LNCS 1119 (1996), pp. 147–162.

[2] Baldan, P., A. Bracciali and R. Bruni, Bisimulation by unification., in: Proc. of AMAST ’02, LNCS
2422 (2002), pp. 254–270.

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–1716

[3] Baldan, P., H. Ehrig and B. König, Composition and decomposition of dpo transformations with
borrowed context., in: ICGT, LNCS 4178, 2006, pp. 153–167.

[4] Berry, G. and G. Boudol, The chemical abstract machine, Theor. Comp. Sci. 96 (1992), pp. 217–248.

[5] Bonchi, F., B. König and U. Montanari, Saturated semantics for reactive systems., in: Proc. of LICS
(2006), pp. 69–80.

[6] Bonchi, F. and U. Montanri, Coalgebraic models for reactive systems, in: Proc. of CONCUR ’07, To
appear in LNCS.

[7] Corradini, A., M. Große-Rhode and R. Heckel, Structured transition systems as lax coalgebras., Electr.
Notes in Theor. Comp. Sci. 11 (1998).

[8] Corradini, A., R. Heckel and U. Montanari, From sos specifications to structured coalgebras: How to
make bisimulation a congruence., Electr. Notes in Theor. Comp. Sci. 19 (1999).

[9] Corradini, A., R. Heckel and U. Montanari, Tile transition systems as structured coalgebras., in: Proc.
of FCT, 1999, pp. 13–38.

[10] Ehrig, H. and B. König, Deriving bisimulation congruences in the DPO approach to graph rewriting.,
in: Proc. of FoSSaCS ’05, LNCS 2987 (2004), pp. 151–166.

[11] Gadduci, F. and U. Montanari, “The tile model,” MIT Press, 1999 .

[12] Godement, R., “Topologie Algbrique et Thorie des Faisceaux,” Hermann, 1958.

[13] Lane, S. M., “Categories for the Working Mathematician,” Springer, 1972.

[14] Leifer, J. J. and R. Milner, Deriving bisimulation congruences for reactive systems., in: Proc. of
CONCUR ’00, LNCS 1877 (2000), pp. 243–258.

[15] Rutten, J. J. M. M., Universal coalgebra: a theory of systems., Theor. Comp. Sci. 249 (2000), pp. 3–80.

[16] Sangiorgi, D., A theory of bisimulation for the pi-calculus., Acta Inf. 33 (1996), pp. 69–97.

[17] Sassone, V. and P. Sobocinski, Locating reaction with 2-categories., Theor. Comp. Sci. 333 (2005),
pp. 297–327.

[18] Sassone, V. and P. Sobociński, Reactive systems over cospans, in: Proc. of LICS (2005), pp. 311–320.

[19] Sobociński, P., “Deriving process congruences from reaction rules.” Ph.D. thesis (2004).

[20] Turi, D. and G. D. Plotkin, Towards a mathematical operational semantics., in: Proc. of LICS (1997),
pp. 280–291.

F. Bonchi, U. Montanari / Electronic Notes in Theoretical Computer Science 203 (2008) 3–17 17

	Introduction
	Basic facts on 2-categories
	The Theory of G-Reactive Systems
	Coalgebras and Structured Coalgebras
	G-Reactive Systems as Coalgebras
	Lifting the Categorical Structure
	Conclusions and Future Work
	References

