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a b s t r a c t

The large scale deployment of electric vehicles in urban environment will play a key-role over the next
decades to reduce air-pollutants in densely populated areas, but it will also require the development of
an adequate recharge infrastructure. The purpose of this paper is to demonstrate how driving patterns
databases and data mining can be used to appropriately design this infrastructure. This application fo-
cuses on the Italian province of Firenze, involving about 12,000 conventional fuel vehicles monitored
over one month, estimating a fleet share shift from conventional fuel vehicles to battery electric vehicles
ranging from 10% to 57%, and a mileage share shift from 1.6% to 36.5%. The increase of electric energy
demand from electric vehicles ranges from 0.7% to 18% of the total demand in the province, with a
number of charging spots three-to-six times higher than the number of circulating electric vehicles.
Additionally the results show that a Vehicle-to-Grid interaction strategy can contribute to reduce from
5% to 50% the average daily electric energy demand in specific locations. This paper provides a
description of the developed model and focuses on the valuable potential of the proposed methodology
to support future policies for designing alternative fuel infrastructure in urban areas.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The large scale deployment of EVs (Electric Vehicles) in cities
will play a key-role in order to improve air quality in densely
populated areas, limiting the negative effects of human exposure to
air pollution from transport and reducing the GHGs (Greenhouse
Gases) emissions.

The health risks related to air-pollutants are largely addressed in
literature [1,2]. As far as pollutants from transport are concerned,
the World Health Organisation highlights that drivers, pedestrians
and people who live near roads characterised by heavy traffic flows
are exposed to exhaust gaseous emissions and PM (Particulate
Matter) levels three times higher than background levels, showing
that tens of thousands of deaths per year can be attributed to
transport-related air pollution, similar to the death toll from traffic
x: þ39 0332 786627.
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accidents [3]. In addition, epidemiology and toxicology literature
reviews derive that there is a causal relationship between human
exposure to traffic-related primary and secondary gaseous emis-
sions and exacerbation of respiratory and cardiovascular diseases
for people living within 500 m frommajor roads [4]. These findings
are confirmed by a large number of similar studies, from different
regions of the world, such as [5e8], including the severe problems
which are arising in Chinese megalopolis [9].

As far as the GHGs are concerned, it is estimated that road
transport contributes to about one-fifth of the total carbon dioxide
(CO2) emissions in Europe, growing by nearly 23% between 1990
and 2010 [10]. In the European area, transport is the only major
sector where CO2 emissions are still increasing [10], and the EU
(European Union) is committed reducing them by 20% below 1990
levels by 2020, and by 80e95% by 2050, in order to make a
contribution to keep the global temperature increase below 2 �C,
under the Kyoto protocol [11,12]. This will imply a whole revision of
the mobility plans in Europe, following the guidelines outlined by
EC White Paper 2011 [13]. In particular the White Paper identifies
ten goals to achieve a 60% reduction target of GHGs emissions from
transport below 1990 levels by 2050, including, among the others,
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Acronyms
AC Alternating Current
BEV Battery Electric Vehicle
DC Direct Current
EPA Environmental Protection Agency
EU European Union
EV Electric Vehicle
GIS Geographic Information Systems
GHG Greenhouse Gas
GPS Global Positioning System
G2V Grid-to-Vehicle
HEV Hybrid EV
ICE Internal Combustion Engine
KPI Key Performance Indicator
IEC International Electrotechnical Commission
PHEV Plug-in Hybrid Electric Vehicles
PM Particulate Matter
POI Point of Interest
SOC State of Charge
SUV Sport Utility Vehicle
V2G Vehicle-to-Grid
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halving the conventional fuel vehicles in urban areas by 2030, and
phasing them out in the cities by 2050.

Such reduction of conventional fuel vehicles in cities will imply,
on one hand, a shift of people's transportation choices to other
solutions (i.e. modal-shift to the public transportation), whereas, on
the other, the adoption of low-carbon vehicle technologies, such as
Hybrid and Battery EVs (HEVs and BEVs) [14]. According to previ-
ous studies, the rate of adoption of these new technologies will
depend on several factors, such as socio-economic boundary con-
ditions [15], public incentives [16,17], and vehicles' usability
[18e20]. However, although financial aids might play a key-role for
the early-adoption of EVs (which are still an expensive technology
compared to conventional fuel vehicles), these studies also under-
line the importance of the availability of a suitable infrastructure
capable to support the shift of the energy demand from the oil-
sector to the electric energy utilities. The design of this infra-
structure is an open topic, and it is fundamental to identify the
appropriate approaches in order to optimise public and private
investments in this field.

The recent European Commission communication on clean po-
wer for transport [21] identifies the development of an alternative
fuel infrastructure as a priority, including the electric energy dis-
tribution grid as an option for short-range road passengers' and
freight transport. Additionally the Proposal for Directive on the
deployment of alternative fuels infrastructure [22], highlights the
main issues to address in order to facilitate low-carbon vehicles
widespread, providing the initial legal framework to promote the
deployment of the recharge network for EVs on a European basis.

The development of this infrastructure can be determined by
coupling the electric energy demand from electrified vehicles with
the electric energy offer. Several studies in literature address the
electric energy demand from EVs. For example Kim and Rahimi
suggest to model electricity loads from the large scale deployment
of PHEVs (Plug-in Hybrid Electric Vehicles) [23], Dhong and
Zhenhong, and Smith et al. propose to monitor electrified vehicles
using GPS (Global Positioning System) [24,25], whereas Mu et al.
propose using Monte Carlo simulation to predict the energy load
from EVs over time [26].

As far as network studies are concerned, Xu et al. analyse the
statistical trend of network development in cities by deriving an
exponential dependence on the activity [27] and Ortega et al.
propose to monitor the network development by means of GIS
(Geographic Information Systems) technologies [28]. Additionally
survey data might be also used to support infrastructural studies
[29], exploring intelligent grid management solutions [30], to
address the impact on power system operation, market and secu-
rity policies for BEVs (Battery Electric Vehicle) [31e34] as well as
their integration within renewable energy systems [35,36] and
their use as flexible loads [37], contributing to the development of
methods to enhance the stability of the electricity grid together
with intelligent V2G (Vehicle-to-Grid) and G2V (Grid-to-Vehicle)
energy management systems, (x 13 of the EC Proposal for Directive
[22]).

Although these studies provide useful insights into the topic of
the electricity network design and integration with electric
mobility, they all provide general results, without going into a
detailed analysis of the energy demand-offer events, which is the
basis to design an intelligent, customer-driven recharge infra-
structure network for EVs.

Based on this consideration, the purpose of this paper is to
provide the scientific community with the results of a model
capable to design and size the recharge infrastructure for EVs in
high detail, based on a large database of real-world driving pat-
terns. The novelty of this approach consists in using, for the first
time, real-world driving and parking events coupled with data
mining to identify suitable locations for charging spots based on
existing POIs (Points of Interest) databases and a minimum-
distance criterion. The developed approach identifies a KPI (Key
Performance Indicator) and a repetitiveness index per each
considered location, and derives the number of charging spots and
the electric power to be installed to meet the potential customers'
demand.

The work relies on previous studies from the authors [38e40],
and is carried out for the Italian province of Firenze, over an area of
approximately 9600 km2, currently served by the most developed
recharge infrastructure in Italy [40]. The analyses involve approxi-
mately 15 million kilometres from about 12,000 conventional fuel
vehicles, monitored for a period of one month by means of on-
board GPS devices. The results present the layout of the derived
recharge infrastructure network, by considering three different
types of EVs, four different recharging strategies and different fleet
scenarios. Additionally a V2G interaction strategy has been imple-
mented at the charging stations level, to explore the potential of
sharing small amount of energy from the battery of the parked
vehicles to shave localised peaks of electric energy demand. The
results are compared with the indications from Refs. [21,22].

This paper provides a full description of the developed model,
focussingon the valuablepotential of suchmethodology to support an
intelligent and customer-driven planning, design and size of the
recharge infrastructure network for EVs, representing a new insight
towards futurealternative fuel infrastructures for low-carbonvehicles.

2. Background information and methodology

2.1. Driving patterns database and electric vehicles recharging
behavioural models

This study relies on a large driving patterns database from the
Italian province of Firenze, an area with nearly one million in-
habitants and 684,000 registered vehicles [38]. The database con-
tains mobility data of 40,459 conventional fuel vehicles, equal to



Table 1
Summary of the considered BEVs.

Vehicle type Curb
weight [kg]

Electric
motor
[kW]

Battery
size
[Wh]

Energy consumption
from driving tests
[Wh/km]

Small size vehicle 1080 47 16,000 185
Medium size vehicle 1520 80 24,000 210
Medium size vehicle

(high performance)
1815 125 32,000 205
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the 5.9% of the fleet registered in this province. These vehicles have
been equipped with an acquisition device that recorded time, GPS
coordinates, engine status, instantaneous speed and cumulative
distance. This data enables to derive the duration, length and
average speed of the sequence of trip and parking events of the
vehicles over a period of one month (i.e. May 2011) with no in-
terruptions. Approximately 91% of the analysed vehicles are owned
by private persons, whereas the remaining vehicles are owned by
companies active in different commercial sectors. The data acqui-
sition campaign has been carried out by Octotelematics [41], and
the sample of vehicles has been chosen to represent the typical age
distribution in this specific geographical area.

The GPS-logged data has been preliminary processed by filtering
out the vehicles which made more than 50% of the trips out of the
province boundaries, reducing the databases to approximately one-
third of their original size. This was made to focus only on those
vehicles which predominantly show urban driving behaviour, be-
ing the short-to-midterm deployment of EVs most likely going to
happen in urban areas. The data was then submitted to a cleansing
procedure, in order to remove possible errors from the records, due,
for example, to the poor quality of the GPS signal. The final database
reduces to 12,422 vehicles (i.e. 1.8% of the registered fleet in the
province), equivalent to 32 million GPS records, 15.0 million kilo-
metres and 1.87 million trips. All the analyses presented in this
article refer to this sample.

These data has been processed with a customised data mining
model developed in MATLAB® [42] and used for a number of
different analyses, involving driving patterns characterisation [38],
EVs' potential to replace conventional fuel vehicles [39], and
emissions simulation [43]. The results presented in this paper are
based on the electric vehicles and behavioural models developed
and presented in Ref. [39], and here briefly summarised.

The model is based on the assumption that the urban driving
patterns would not change with the transition from conventional
fuel vehicles to BEVs. Six different BEVs models have been
considered: a light quadri-cycle, a small size vehicle (typical city-
car, four passengers), two medium size vehicles (a typical family
car and a high-performance family car, five passengers) and two
large size vehicles (a Sport Utility Vehicle, SUV, and a sport sedan),
all equipped with Lithium-ion batteries. Each BEV model is applied
to each trip and parking sequence contained in the database,
replicating the driving behaviour of the conventional fuel cars over
the analysed period. The vehicles start with a fully charged battery
Table 2
Summary of the recharging strategies.

Strategy ID e name Recharge constraints

1 e Long-Stop Random AC Parking � 120 min and random parameter � 0.6
2 e Short-Stop Random DC Parking � 20 min and random parameter � 0.6
3 e Smart AC Off-peak AND 4 h (±2 h) time window around the m
4 e Mixed Time AC/DC Stop � 120 min &

If 10 p.m. < parking time � 7 a.m.: AC
If 7 a.m. < parking time � 10 p.m.: DC
at the beginning of the month and each trip is associated to an
energy consumption, whereas each parking to a recharge oppor-
tunity, which takes place if the recharging constraints are met. The
applied energy consumption rate is assumed to be constant and is
derived from real drive tests performed by the US EPA (Environ-
mental Protection Agency) [44] (including the average consump-
tion of auxiliaries [45]), whereas the recharging constraints vary
according to fifteen different strategies [39]. These are designed in
order to represent different charging behaviours (i.e. opportunistic/
non-opportunistic), grid loads (i.e. on-peak/off-peak recharge) and
infrastructure scenarios (i.e. Alternating Current, AC, single/tri-
phase recharge and Direct Current, DC, recharge).

This paper presents the results of only three among the six BEVs
models, and four among the fifteen recharging strategies. The
chosen vehicles are the most representative BEVs technology
currently available on the market, whereas the chosen strategies
are considered representative of the behaviours of the early
adopters of BEVs, and hence more relevant to address the infra-
structure design at an early stage. The analysed vehicles are a small
size vehicle and two medium size vehicles (Table 1), whereas the
recharging strategies are labelled as Long-Stop Random AC, Short-
Stop Random DC, Smart-AC and Mixed-Time AC/DC, (Table 2).

These strategies apply different constraints to the recharge,
based on parking duration (i.e. long/short stops), beginning time of
the parking event, recharge infrastructure (i.e. AC/DC) and sto-
chastic variables. In detail:

- Strategy 1 (Long-Stop Random AC) represents a scenario that
requires a long stop of the vehicle (i.e. longer than 120 min) to
enable the recharge of the battery. This is applied with a con-
ventional Italian recharge infrastructure (i.e. AC, single-phase at
3.3 kW, IEC 62196 Mode 1/2 [46]), and it is representative of a
recharge that can take place at home or wherever the vehicle is
parked for long time (e.g. offices, shopping malls, airports,
parking lots, etc.). The recharging power is scaled down to a
constant value of 2 kW to account for the recharging profile (i.e.
power modulation applied from the vehicle [39]), and the
recharge is subject to a random-generated threshold parameter.
Each time a vehicle meets the recharge time-constraint a
random number generator algorithm produces a value between
0 and 1. Each value in this interval can be generated with the
same probability and only if this number is higher than 0.6 (i.e.
40% of the probabilities) the recharge occurs. This random
threshold represents two possible situations: the recharge sta-
tion is not available at the parking lot or the driver forgets/does
not want to recharge.

- Strategy 2 (Short-Stop Random DC) is very similar to strategy 1,
but the time threshold is set to 20 min (i.e. short-stop) and the
recharge is applied in DC (55 kW, IEC 62196 Mode 4 [46]). The
random threshold is the same as above. It is representative of
the recharge which could take place in parking lots equipped
with fast-charging devices. In this case the recharge power is
scaled down to a constant value of 40 kW, to account for the
recharging profile.
Power [kW] Recharge model inputs

2 Parking duration and random parameter
40 Parking duration and random parameter

inimum 2 Parking duration and smart recharge window
e Parking duration and starting time of the parking
2

40



Fig. 1. (a) e Example of how a parking event associated to a recharge (i.e. blue P) is linked to three possible POIs. Black lines represent the main geo-grid, whereas dashed grey lines
represent the staggered geo-grid. (b) e Italian map of POIs adopted, as retrieved from the web [49]. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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- Strategy 3 (Smart AC) applies a recharge only if the vehicle is
parked in a specific time window of 4 h (±2 h) around the
minimum of the electric energy grid load recorded in Italy in
May 2011. This minimum occurs approximately at 04.00 in the
morning from Monday to Saturday and at 07.00 in the morning
on Sunday [47], meaning that the vehicles are allowed to
recharge from 02.00 to 06.00 and from 05.00 to 09.00
respectively. The recharge is applied in AC single-phase
(3.3 kW, IEC 62196 Mode 1/2 [46]) and the power scaled
down to a constant value of 2 kW as in strategy 1. This strategy
is representative of a scenario where the recharge takes place
only overnight, filling the electric energy demand valley, as per
x 13 of the EC Proposal for Directive [22], and associated to a
discounted electricity fee.

- Strategy 4 (Mixed Time AC/DC) applies a differentiation of the
recharging infrastructure between AC and DC depending on the
parking time. The vehicle is recharged in DC (55 kW, IEC 62196
Mode 4 [46]) during the day (i.e. between 7 a.m. and 10 p.m.)
and in AC (3.3 kW, IEC 62196 Mode 1/2 [46]) during the night
(i.e. between 10 p.m. and 7 a.m.). In both cases the recharge
takes place only if the parking duration is longer than 120 min,
the DC power is scaled down to 40 kW and the AC power is
scaled down to 2 kW, as per the strategies above. This strategy
considers, in a simple way, the availability of different charging
stations around the city and at home, observing that EV users
will unlikely use DC stations for overnight recharge.

The charging efficiency is always assumed constant and equal to
95% (i.e. typical recharge efficiency, as shown in Ref. [45]), and the
allowed SOC (State of Charge) is limited between 20% and 95% of
the nominal energy capacity of the battery (reported in Table 1) to
preserve the integrity of the cells.
2.2. Geo-mapping of the energy demand, layout of the recharge
infrastructure and implementation of V2G interaction strategy

The model described in Section 2.1 provides as output the
sequence of trip and parking events, with the SOC time history over
the analysed period for each vehicle. From this result is possible to
determine which vehicles would not be capable of covering all their
trips if they were replaced by a BEV (i.e. the SOC level goes below the
20% threshold). These vehicles are then filtered out, in order to focus
the analysis only on the remaining vehicles that could be replaced by
an electric car being the sequence of their driving patterns not
interrupted (i.e. early BEVs adopters). The energy and power de-
mands from these vehicles, during the parking events associated to a
recharge, have been calculated to derive the impact on the electric
energy distribution grid for the different deployment scenarios of
BEVs, with the vehicles reported in Table 1. Additionally, being the
GPS coordinates of the parking events known, the energy demand
has been geo-referenced and dynamically linked to digital maps
retrieved from the web [40,48]. This allows mapping the electric
energy demand over the province area and deriving a customer-
driven layout of the recharge infrastructure.

The spatial analysis is carried out over a geo-grid based on a
rectangular windowwhich embeds the province area. This window
covers the area from 43.40 to 44.30 deg of latitude north, and from
10.60 to 11.80 of longitude east, accounting for 9631 km2 divided in
squared terrain tiles of 0.25 km2 (500 m per edge, resulting in
approximately 38,500 tiles for the province of Firenze). This geo-
grid (black lines in Fig. 1) is used to associate each recharge into a
specific tile (identified by indexes i-th and j-th), whereas a second
geo-grid (i.e. staggered grid, dashed grey lines in Fig. 1-(a)), whose
nodes are located in correspondence of the centroids of the main
grid's tiles, is used to store the results per tile.
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Having defined the geo-grid, this has been interfaced with a
POIs (Points of Interest) database. The POIs are sets of enriched GPS
coordinates which contain coordinates and description of locations
of interest (i.e. restaurants, hotels, train stations, etc.). These data-
bases are normally used in a number of commercial GPS devices,
and they can be retrieved from websites to update the navigation
software for mobile applications. In this study five databases has
been retrieved from Ref. [49]: airports, petrol stations, shopping
malls, car parking and bus parking lots. They refer to Italy, as shown
in Fig. 1-(b), accounting for 35,590 POIs, among which 632 located
in the province of Firenze, as per Table 3. These databases are not
considered exhaustive; however they are a dense geo-referenced
network of locations which might be selected to host public
recharge facilities for EVs.

On the basis of the GPS coordinates of the parking locations, the
electricity demand from BEVs' recharging events is correlated to
the POIs, with a distance-based criterion. The distance between the
recharging event and the neighbour POIs is calculated, approxi-
mating the Earth geoid to a smooth sphere with a radius of
6371 km. If this distance is below 100 m, i.e. the parking location is
very close to a specific POI, it is likely to assume that this POI might
be chosen for parking and charging the vehicle, therefore a
Geographic Key Performance Indicator (i.e. GeoKPI) equal to 1 is
associated to the POI. On the contrary if this distance is more than
1 km, it is likely to assume that this specific POI is not a candidate
for the recharge (too far away from the original parking location),
and the GeoKPI is set to 0. If the distance is between 100m and 1 km
the GeoKPI associated to the specific POI is linearly scaled from 1 to
0. Any time the GeoKPI is more than 0 (i.e. distance below 1 km) the
energy request from the vehicle is also associated to that specific
POI location.

An example of how this algorithmworks is provided in Fig.1-(a).
The parking event from the database, i.e. the blue spot in the terrain
tile (i-th, jþ 1-th), is associated to an energy request of 2.3 kWh
and, in this example, it has three neighbour POIs. POI1 is located at
300 m, therefore it could be considered as a good candidate to host
the recharge with a GeoKPI of 0.78. POI2, located at 800 m, is also a
candidate, but with a lower GeoKPI (i.e. equal to 0.11), whereas POI3,
located at 1.2 km, is not a candidate and it has a GeoKPI equal to 0.
The energy demand of 2.3 kWh associated to this specific recharge
event is transferred to both POI1 and POI2, which are market
competitors to deliver the recharge, whereas POI3 is excluded. This
algorithm is applied to all parking events associated to a recharge,
according to the results of the model described in Section 2.1.

This methodology enables to derive in each POI location, a
sequence of charging events, each of them associated to a GeoKPI
and to a certain amount of energy requested in a specific time
window. Therefore each POI location is characterised by:

� An average GeoKPI, calculated as algebraic average of the GeoKPIs
of all charging events. This GeoKPI can be considered as the
Table 3
Summary of the POIs adopted for the current analysis.

No. of POIs (Italy) No. of POIs
(province of Firenze)

Legend

Airports 551 4

Petrol stations 28,144 404

Shopping malls 1507 49

Car parking lots 4688 153

Bus parking lots 700 22

Total 35,590 632 e
averaged indicator of the ability of the POI to meet urban ve-
hicles' charging request, in term of convenience of geographic
location.

� A repetitiveness index (i.e. R), representative of the ability of the
POI tomeet the needs of a small or large share of customers. This
is defined according to (1), where Nvehicles is the number of
different vehicles recharging in that specific POI, and Nrecharges is
the total number of charging events. Therefore if
Nvehicles ~ Nrecharges, R will be close to 0 (i.e. low repetitiveness,
each vehicle charges at that specific POI nearly once), whereas if
Nvehicles<<Nrecharges, R will be close to 1 (i.e. high repetitiveness,
each vehicle charges at that specific POI several times).

R ¼ 1� Nvehicles
Nrecharges

(1)

� A plug-demand curve (i.e. number of vehicles plugged-in at the
same time and at the same POI) and a power demand curve over
the analysed month, providing the number of plugs and the
electric energy demanded to the POI over time.

The latter result is used to dimension the recharge infrastructure
network in a specific POI and to develop the V2G interaction
strategy. The infrastructure can be designed on the basis of the daily
number of plugs required, whereas the power line can be designed
on the basis of the daily energy request. According to these results,
the design can be carried out according to two criteria:

� the maximum number of plugs/energy load registered in the
average day, in order to be able to cope with the expected peak
demand;

� the average number of plugs/energy load registered in the
average day, in order to serve the average demand and design a
smaller and cheaper infrastructure.

The second criterion is adopted in this work.
On the top of this, a V2G interaction strategy has been imple-

mented. It considers each parking which is not associated to a
recharge (according to the constraints set by the recharge stra-
tegies in Table 2), as a potential event during which the parked
vehicle can release a small amount of the energy stored in its
battery back to the grid to serve the neighbour vehicles which are
charging. This application has been developed per POI, meaning
that the average daily electric power offer from the parked vehi-
cles is calculated in each POI location and compared to the average
daily electric power demand in the same POI, to estimate the
potential of the V2G in shaving localised peaks of electric energy
demand. The energy that can be shared by each parked vehicle is
set to 2% of the nominal battery capacity (according to the values
given in Table 1), with a discharge power of 2 kW (AC single-
phase, as per the recharge strategies set above) and a discharge
efficiency of 95%.
3. Results and discussion

3.1. Mobility and energy demand results

The mobility results obtained by applying the method described
in Section 2.1 have been exhaustively presented in previous works
from the authors, see Refs. [38e40,43], and only the key aspects
needed to apply the developed infrastructural model and interpret
the results presented in Sections 3.2 and 3.3 are provided here.



Table 4
Fleet, trips and mileage shares for BEVs and HEVs (province of Firenze).

EV type Strategy

Trips and mileage shares

Str. 1 Str. 2 Str. 3 Str. 4
Long-Stop R-AC Short-Stop R-DC Smart AC Mixed Time AC/DC

Small size vehicle BEV fleet 10.00% 16.78% 16.90% 30.05%
HEV fleet 90.00% 83.22% 83.10% 69.95%
BEV trips 0.77% 2.78% 2.04% 8.66%
HEV trips (electric) 75.15% 81.55% 77.47% 73.22%
HEV trips (ICE) 24.08% 15.67% 20.49% 18.13%
BEV mileage 1.55% 4.43% 4.29% 12.94%
HEV mileage (electric) 49.09% 60.79% 51.42% 58.94%
HEV mileage (ICE) 49.36% 34.78% 44.28% 28.12%

Medium size vehicle BEV fleet 14.90% 25.57% 22.76% 41.79%
HEV fleet 85.10% 74.43% 77.24% 58.21%
BEV trips 1.39% 4.97% 2.92% 12.97%
HEV trips (electric) 75.47% 76.06% 72.81% 62.82%
HEV trips (ICE) 23.14% 18.97% 24.27% 24.21%
BEV mileage 3.35% 9.43% 6.89% 22.36%
HEV mileage (electric) 53.90% 63.37% 50.29% 55.82%
HEV mileage (ICE) 42.75% 27.20% 42.83% 21.81%

Medium size vehicle (high performance) BEV fleet 23.22% 39.47% 31.24% 56.94%
HEV fleet 76.78% 60.53% 68.76% 43.06%
BEV trips 2.52% 8.47% 4.28% 18.58%
HEV trips (electric) 73.09% 64.59% 67.11% 48.29%
HEV trips (ICE) 24.39% 26.95% 28.61% 33.13%
BEV mileage 7.30% 19.30% 11.46% 36.53%
HEV mileage (electric) 58.05% 61.56% 50.41% 48.57%
HEV mileage (ICE) 34.65% 19.14% 38.13% 14.90%
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As described in Section 2.1, the developed model reproduces the
sequence of the trip/parking events per each vehicle in the data-
base, associating each trip to an energy consumption event and
each parking to a recharge event, if the constraints given by the
recharging strategy are met. One of the outcomes of this model is
the fleet, trips and mileage shares which can be covered by a BEV,
given a vehicle type and a recharge strategy. These values are
derived considering the vehicles that can cover all the trips in the
databases without any trip failure, i.e. the trip cannot be done
because not enough energy is available in the battery.

The results of this analysis are reported in Table 4, which shows
that a fleet share ranging from 10% to 57% can be converted to
BEVs (i.e. BEV fleet), depending on the vehicle type and the
recharge strategy. The remaining part can be switched to HEVs
(i.e. HEV fleet), being their driving patterns only partially
compatible with the characteristics of the electric vehicles. The
BEV fleet shares corresponds approximately to a range from 0.8%
to 19% of the trips shares (i.e. BEV trips), and from 1.6% to 36.5% of
the mileage shares (i.e. BEV mileage). From this we can estimate
that, approximately one-third of the current urban fleet can be
converted to BEVs, representative of approximately one-fifth of
the total fleet mileage.
Table 5
Electric energy demand per month [GWh] derived by considering the fleet share capable o
scaled-up to the fleet size of the province. The values in parenthesis represent the percent
per [50].

EV type Strategy

Vehicles monthly energy demand in
monthly domestic energy demand [

Str. 1 Str. 2
Long-Stop R-AC Shor

Small size vehicle 2.45 (0.67%e3.60%) 7.0
Medium size vehicle 5.96 (1.63%e8.76%) 16.9
Medium size vehicle (high performance) 12.78 (3.50%e18.76%) 34.6
The trips and mileage shares are also reported in Table 4 for the
HEV fleet, where the additional split in trips and mileage done in
electric mode and done with the ICE (Internal Combustion Engine)
is reported.

Table 5 provides the monthly electric energy demand derived by
considering the fleet share capable of driving only electric, given the
vehicle type and the recharge strategy. The results are scaled-up to
the fleet size of the province, and referred to the total and domestic
electric energy demand of the province. The domestic electric energy
demand is the share of the demand from private households only,
whereas the total energy demand also includes industries and ter-
tiary sector. The results show that the impact in terms of electric
energy demand fromBEVs ranges from approximately 0.7%e18.0% of
the total electric energy demand in the province (i.e. from 3.6% to
96.4% of the domestic demand), as per [50].

3.2. Recharge infrastructure layout results

This section presents the results of the recharge infrastructure
layout algorithm, described in Section 2.2. The results only refer to
the fleet share that could be converted to BEVs, according to the
data reported in Table 4. Given the sequence of recharges of these
f driving only electric (BEV fleet share in Table 4, province of Firenze). The results are
age of the energy demand with respect to the total energy demand of the province as

the province [GWh] (percentage of the: monthly total energy demand [%] e
%])

Str. 3 Str. 4
t-Stop R-DC Smart AC Mixed Time AC/DC

7 (1.94%e10.38%) 6.88 (1.88%e10.11%) 21.12 (5.78%e31.01%)
9 (4.65%e24.95%) 12.40 (3.40%e18.20%) 41.19 (11.28%e60.48%)
5 (9.49%e50.88%) 20.04 (5.49%e29.43%) 65.67 (17.99%e96.43%)



Fig. 2. GeoKPI per POI, over the province area ((a), the blue line indicates the province border), and zoom on the city of Firenze (b). Repetitiveness index R per POI, over the province
area (c), and zoom on the city of Firenze (d). Medium size vehicle, recharge strategy 1 (i.e. Long-Stop Random AC). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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vehicles and their locations versus the POIs network, it is possible
to associate each recharge event to one or more POIs. This allows to
derive the compatibility of the different POIs to the demanded re-
charges (i.e. averaged GeoKPI), the recurrence of the load/usage
patterns (i.e. repetitiveness index R), and the average daily electric
energy demand profile.

Fig. 2 reports an example of the derived GeoKPI and R maps for
the medium size vehicle and the recharge strategy 1. Left pictures
(i.e. (a) and (c)) depict an overview of the results over the entire
province area (identified with the blue line), whereas right pictures
(i.e. (b) and (d)) the zoom on the city of Firenze. The shape of the
markers indicates the type of POI (according to the classification
reported in Table 3), whereas the grey scale gives the magnitude of
the reported quantity. As we can see from the picture the GeoKPI
assumes average values (i.e. between 0.2 and 0.4 and between 0.4
and 0.6) in the city area Firenze (themost densely populated area in



Fig. 3. Number of charging spots per POI based on the average electric energy demand (the results are scaled-up to the province fleet size). The type of charging spot (i.e. AC/DC) is
given by the recharge strategy, according to Section 2.1. The results refer to the small size vehicle, province of Firenze.



Fig. 4. Number of charging spots per POI based on the average electric energy demand (the results are scaled-up to the province fleet size). The type of charging spot (i.e. AC/DC) is
given by the recharge strategy, according to Section 2.1. The results refer to the medium size vehicle, province of Firenze.



Fig. 5. Number of charging spots per POI based on the average electric energy demand (the results are scaled-up to the province fleet size). The type of charging spot (i.e. AC/DC) is
given by the recharge strategy, according to Section 2.1. The results refer to the medium size (high performance) vehicle, province of Firenze.
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the province, see Fig. 2-(b)), whereas assumes very high values in
some isolated spots in rural areas outside the main districts (see
black spots in Fig. 2-(a)). This means that each vehicle has several
possibilities to recharges (i.e. several neighbour POIs) in the densely
populated areas, whereas these possibilities are significantly lower
in rural areas.

Similarly the repetitiveness assumes a value between 60% and
80% for most of the POIs located in the inner city area of Firenze,
whereas it tends to assume higher values (i.e. between 80% and
90%) in residential areas as Sesto Fiorentino or Scandicci (see Fig. 2-
(d)). Also in this case some black spots (repetitiveness above 90%)
are visible in rural areas in the province (see Fig. 2-(c)), confirming
that isolated spots with high GeoKPI are characterised by high
repetitiveness too, and therefore by a small number of potential
customers.

However, although the GeoKPI and R together provide a key-
information to characterise the POIs in terms of potential energy
market and customers' pool, the real demand is determined by the
forecast of the electric power load at the POI and by the total
amount of charging spots needed to deliver the requested energy.
Hence the full set of data (i.e. GeoKPI, R, time-dependent power load
and total amount of energy requested) is needed to completely
characterise the POI, suggesting if and to which extent it could be
considered a candidate to install charging stations, howmany spots
are needed and how much profitable the investment can be.

Figs. 3e5 depict the derived recharge infrastructure layout, for
the small, medium and medium high performance size vehicle. The
shape of the marker indicates the type of POI, the colour of the
marker indicates the required electric energy per day (according to
the legend), and the numbers reported at the top-left corner of the
markers indicate the number of charging spots to be installed ac-
cording to the average daily plug-demand at the POI.

Table 6 summarises these results for the analysed province area,
per vehicle type and per recharge strategy. The first column in-
dicates the number of vehicles that can be converted to BEVs (as
described in Section 3.1), scaled-up to the fleet size of the province,
whereas the second column indicates the average number of re-
charges per day that can be associated to these vehicles, given the
recharging constraints set by the different strategies.

The labels “demand” and “offer” respectively refer to the num-
ber of recharges demanded by the electric vehicles and to the po-
tential number of the recharges offered by the POIs (i.e. events
compatible with the POIs layout, as per constraints defined in
Section 2.2). The number of offered recharges is higher than the
number of demanded recharges because a single charging event
might be typically compatible with several POIs, based on the
choice criteria described in Section 2.2.

The third and the fourth columns give respectively the absolute
and the percentage number of POIs involved in the recharges and
the average daily demanded and offered electric energy (cumula-
tive value over the entire POIs database). The last two columns
indicate the offer/demand ratio (i.e. ratio between the offered and
demanded average daily electric energy at the POI) and the cu-
mulative number of charging spot demand in the province, given a
vehicle type and the recharge strategy (AC, DC or both, according to
the case).

This table provides the reader with an overview of the recharge
infrastructure, giving quantitative key information of the electric
energy demand and offer, the competitiveness framework (i.e. each
vehicle can chose a number of different POIs to recharge) and the
number of charging spots that might be needed for each scenario
considered.

It is interesting to highlight that the energy offer/demand ratio
ranges between five and eight, and that the derived number of
charging spots is approximately three times higher than the
number of vehicles for the recharge strategies 1 and 2, whereas it
increase to five-to-six times higher than the number of vehicles for
the recharge strategies 3 and 4. This difference can be ascribed to
the time and stochastic filters applied for the recharge strategies 1
and 2, which limit the number of events compatible with the
recharge.

These results can be compared with the guidelines for the
deployment of alternative fuels infrastructures, under the Europe
2020 strategy [22]. This proposal recommends that recharging
points must be built with sufficient coverage, at least twice the
number of the circulating EVs, and located in accessible points, such
as parking lots, residential areas or business blocks, with a share of
at least 10% located in publicly accessible areas. The proposal gives
also some indicative numbers per EU member state, with 1.2
million charging spots for Italy per approximately 600,000 circu-
lating EVs by 2020.

By scaling these numbers down to the size of the province of
Firenze, we can consider that the 684,000 vehicles registered in this
province accounts for approximately 1.8% of the Italian fleet [38],
and hence approximately 11,000 of the 600,000 EVs envisaged in
Italy will be registered in this province, with nearly 22,000 charging
spots. Although these numbers suggest a still limited EVs deploy-
ment compared to the scenarios presented in this work, we can
notice how the proportion resembles, to a certain extent, the re-
sults presented in Table 6. In particular, it is interesting to notice
how the model prediction of having a ratio of charging spots and
BEVs approximately equal to three for the recharge strategies 1 and
2 is very close to the Proposal for Directive's indication of having
the charging spots twice the number of the circulating EVs, and
how this finding comes from different background data. In fact, the
Proposal for Directive is likely based on European averaged ur-
banistic data, whereas the model is based on matching real-world
conventional fuel vehicles driving patterns and POIs locations.
Therefore, the benefit of the model, in view of the future imple-
mentation of the directive, is that it provides a detailed layout of the
infrastructure that can be used for steering future public and pri-
vate investments in this sector.

On the other hand, the recharging strategies 3 and 4 foresee a
significantly higher charging spots-to-BEVs ratio, representing
different scenarios with respect to that of the Proposal for Directive.
Additionally we may also notice that the higher proportions found
can also be partially ascribed to the POIs datasets adopted (Table 3).
In fact the analyses presented include petrol stations (i.e. two-
thirds of the POIs considered), implicitly assuming a partial re-
conversion of this infrastructure to e-mobility, whereas the Pro-
posal for Directive does not refer to petrol stations as locations for
installing charging spots. The scenarios presented in this work can
represent the mid-to-long term perspective for BEVs' deployment
in cities, and can support the short-term scenario (i.e. 2020) from
the Proposal for Directive.

3.3. V2G results

This section presents the results of the V2G interaction strategy,
described in Section 2.2. It is important to notice that it is designed
to work with on-peak recharge strategies, meaning that its appli-
cation makes sense in a scenario characterised by many vehicles
that are parked at the same time, where some of them recharge
whereas some others don't (e.g. they do not meet recharge re-
quirements, i.e. minimum parking duration, random threshold
etc.). For this reason, the current section presents only the results of
the recharge strategies 1, 2 and 4 (see Section 2.1), being the
recharge strategy 3 (i.e. off-peak Smart AC) not relevant for this
application. The vehicles that are parked and do not recharge
represent the electric energy offer, whereas those that are parked



Table 6
Summary of the results about the recharge infrastructure network layout (province of Firenze).

No. of
vehicles

Average no.
of recharges/day

No. of working POIs
(% tot. POIs)

Electric
energy/day [MWh]

Energy offer/demand
ratio

No. of charging
spots (AC/DC)

Small size vehicle Str. 1 Demand 17,712 7630 598 (94.6%) 22 7.9 54,100
(AC)Offer 59,680 174

Str. 2 Demand 32,644 28,115 611 (96.7%) 68 6.7 87,017
(DC)Offer 194,150 458

Str. 3 Demand 30,525 19,039 613 (98.6%) 58 7.3 169,480
(AC)Offer 146,010 425

Str. 4 Demand 60,119 87,170 624 (98.7%) 199 5.8 50,848e282,970
(AC) (DC)Offer 549,800 1156

Medium size vehicle Str. 1 Demand 27,119 13,740 611 (96.7%) 55 7.1 74,306
(AC)Offer 98,283 388

Str. 2 Demand 50,932 50,449 619 (97.9%) 166 6.3 124,880
(DC)Offer 325,710 1040

Str. 3 Demand 41,492 27,367 617 (97.6%) 106 6.8 219,680
(AC)Offer 199,080 723

Str. 4 Demand 84,203 130,550 625 (98.9%) 388 5.4 67,458e367,460
(AC) (DC)Offer 771,950 2097

Medium size Vehicle
(high-perf.)

Str. 1 Demand 43,915 24,837 617 (97.6%) 118 6.5 114,340
(AC)Offer 168,170 768

Str. 2 Demand 79,831 86,072 624 (98.7%) 333 5.6 177,800
(DC)Offer 511,890 1869

Str. 3 Demand 57,169 39,840 617 (97.6%) 170 6.6 289,240
(AC)Offer 279,940 1116

Str. 4 Demand 115,290 186,920 627 (99.2%) 620 5.1 89,543e483,980
(AC) (DC)Offer 1,065,500 3174
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and recharge represent the electric energy demand. Synchronising
the offer and the demand is the key to implement the V2G inter-
action that is capable of shaving the peak of the electric energy load
in a specific location.

Fig. 6 depicts the time-dependant demand and offer average
daily electric power curve for the three most loaded POIs (i.e. the
POIs that, according to the results from each recharge strategy,
exhibit the higher daily cumulative energy demand). The black
curves indicate the electric power demand from parked and
recharging BEVs, the grey curves indicates the electric power offer
from parked and not recharging BEVs, whereas the dashed curves
indicate their difference. The results are scaled-up to the province
fleet size and refer to the medium size vehicle and recharge stra-
tegies 1, 2 and 4 ((a), (b) and (c) respectively). The results show how
the electric power can be substantially decreased by the V2G
electric power offer, and that, in some cases the offer can also be
larger than the demand, resulting in the release of electricity back
to the grid (see Fig. 6-(a)).

Additionally it can be highlighted that, regardless the different
recharge strategies depicted in Fig. 6-(a), (b) and (c), there is a
recurrence in the identification of the most loaded POIs. For
instance, POI ID-31372 (i.e. a shopping mall) appears to be the most
loaded POI for strategy 1 (i.e. Fig. 6-(a)), the third most loaded POI
for strategy 2 (i.e. Fig. 6-(b)) and the second most loaded POI for
strategy 4 (i.e. Fig. 6-(c)). Similarly, the POI ID-29010 (i.e. a car
parking lot) appears in all the strategies, among the three most
loaded POIs. This suggests that, regardless the recharge behaviours
and infrastructure, some POIs behave as hubs, playing the role of
pivotal nodes for the electric energy offer/demand matching.

Fig. 7 depicts the average daily electric energy offer versus de-
mand (i.e. integral of the power curves from Fig. 6); the left pictures
depict the absolute value whereas the right pictures depict the
relative percentage value (i.e. electric energy offer/demand ratio).
Each black dot represents a POI and the results are scaled-up to the
province fleet size and refer to the medium size vehicle and
recharge strategies 1, 2 and 4 ((a), (b) and (c) respectively).

This figure provides an overall overview of the V2G potential
impact, showing how the electric energy load decrease from V2G
varies according to the different recharge strategies. In particular
the recharge strategy 1 shows to have the higher potential for the
V2G, being most of the POIs' average daily electric energy offer
between 30% and 50% of the respective demand, whereas strategy 2
and strategy 4 reduce this contribution to a range from 20% to 30%
and from 5% to 10% respectively. Although the recharge strategy 1
presents the higher potential for V2G, it must be noticed that it is
also the recharge strategy that exhibits the lowest number of
vehicle that can be converted to BEVs (i.e. approximately 27,000
vehicles compared to the 41,000 and 84,000 of the strategies 2 and
4, referring to the medium size vehicle in Table 6). This results in a
lower electric energy demand on the POIs (i.e. up to approximately
2 MWh/day compared to the peak values of 6 MWh/day and
40 MWh/day predicted for recharge strategies 2 and 4, as shown in
Fig. 7) and consequently in a higher relative impact of the V2G
electric energy offer. Additionally it must be noticed that, being the
V2G energy offer always operated at a nominal discharge power of
2 kW (see the V2G model assumptions in Section 2.2), its relative
weight decreases when compared with recharge strategies based
on DC recharges operating at 40 kW (i.e. strategies 2 and 4).

The substantial reduction offered by the V2G application in term
of local energy demand per POI, together with the ability to some
POIs to play a hubs for the recharges suggests the valuable potential
of such designed application.

3.4. Extension of the results to other geographical areas

The results presented in this paper refer to the province of
Firenze, and are based on the GPS driving patterns of conventional
fuel vehicles collected in May 2011. The same data is available for
the Italian province of Modena for the same period, and the pre-
sented model has been applied to this data, in order to benchmark
the results of the two provinces.

The province of Modena consists of an area with approximately
700,000 inhabitants and 442,000 registered vehicles [38]. The driving
pattern database includes mobility data of 52,834 conventional fuel
vehicles (i.e. 12.0% of the fleet registered in the province), and the
analysis is carried out on 16,263 vehicles (according to the filtering



Fig. 6. Results of the V2G application on the three most loaded POIs according to the analyses performed. Black curves indicate the averaged electric power demand from parked
and recharging BEVs (AC/DC, according to the specific recharge strategy); grey curves indicate the averaged electric power offer parked and not recharging BEVs; dashed curves give
their difference at a specific POI location. The results are scaled-up to the province fleet size (province of Firenze), and refer to the medium size vehicle and recharge strategies 1, 2
and 4 ((a), (b) and (c) respectively).
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criteriondiscussed inSection2.1). Thespatial analysis is carriedoveran
area from 44.10 to 45.00 deg of latitude north, and 10.40 to 11.40 of
longitude east, equivalent to approximately 7390 km2 [40]. The POIs
databases adopted consists of 423 locations, asper TableA1. Themodel
has been applied to this data with exactly the same assumptions and
hypotheses described in Sections 2.1 and 2.2, (i.e. small, medium and
medium high performance size vehicles and recharge strategies).

The mobility results presented in Table A2 show that a fleet share
from 8% to 59% can be converted to BEVs (i.e. BEV fleet), representa-
tive of approximately a trips share from 0.7% to 20% and a mileage



Fig. 7. Summary of the results of the V2G application. The pictures on the left indicate the average daily electric energy offer from the V2G versus the average daily electric energy
demand, whereas the pictures on the right indicate the percentage value of the offer with respect to the demand. Each black dot represents a POI, the results are scaled-up to the
province fleet size (province of Firenze), and refer to the medium size vehicle and recharge strategies 1, 2 and 4 ((a), (b) and (c) respectively).
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share from 1.3% to 39.7%. The results for HEVs are also reported for
completeness. Table A3 reports the monthly electric energy demand
from these vehicles, showing that they impact from approximately
0.4%e12.6% of the demand of the province (i.e. from 2.1% to 71.5% of
the domestic demand). Fig. A1 depicts the recharge infrastructure
layout, for themediumsize vehicle (zoomon the cityofModena), and
Table A4 reports the summary of the recharge infrastructure results
per vehicle type and per recharge strategy.

The results presented for the province of Modena looks very
similar to those of the province of Firenze, showing how the similar
socio-economic conditions between different areas lead to similar-
ities in the mobility patterns [38e40], and therefore to similar
electric energy demand and recharge infrastructure layout. The only
difference that can be noticed is the lower electric energy offer/de-
mand ratio, which ranges from 3.3 to 4.5, and that can be ascribed to
the lower number of POIs considered in this case (i.e. 423 for the
province of Modena compared to the 632 of the province of Firenze).

However, in spite of the similarities between the results from
Modena and Firenze, different infrastructure layouts are expected
by applying the model in areas characterised by different socio-
economic environment with respect to the two analysed prov-
inces (e.g. US and Asian megalopolis). In particular, the effect of
capillary public transportation systems, restricted traffic zones and
multi-modal transportation choices can be reflected in substan-
tially different results from those depicted in the present study.

In general, the model can be applied to every geographical area
where driving patterns data and databases of POIs are available, and,
at the moment, it does not account for local or regional regulations,
congested areas subjected to particular traffic restrictions or specific
urban policies. However, such features might be implemented by
pre-filtering POIs databases (e.g. processing exclusively POIs where
parking is allowed according to the local regulations) or by applying
time and spatial filtering in the infrastructure layout processing.
However, it is remarkable that the model is able to adapt itself to
different boundary conditions, so it can be used as a valuable tool for
urban transport policies in almost every geographical environment.
As future development of the present study, the authors foresee the
extension of the analyses to different EU countries, addressing the
urbanmobility and electrification of transport on a continental scale.
Appendix

Table A1
Summary of the POIs adopted for the current analysis (province of Modena).

No. of POIs (province of Modena)

Airports 12
Petrol stations 328
Shopping malls 43
Car parking 35
Bus parking 5
TOTAL 423
4. Conclusions

This paper provides the scientific community with the results of
a model capable of designing the layout of the recharge infra-
structure for electric vehicles based on driving patterns data from
conventional fuel vehicles. The presented application focuses on
the province of Firenze, considering mobility data from 12,478
vehicles in a period of one month, accounting for more than 20
million kilometres and 1.87 million trips. Based on this data, the
model investigates the driving patterns of the vehicles in real-
world conditions, deriving the fleet, trip and mileage shares
which can be shifted to battery electric vehicles and the increase of
electric energy demand, given the vehicles performance and
recharge strategies constraints. The scenarios derived are used as
input to design the recharge infrastructure, pivoted on databases of
Points of Interest retrieved from the web. The model considers the
POIs as possible locations for installing charging spots, estimating
in each of them:

� A GeoKPI, which quantifies the ability of the POI to meet urban
vehicles' charging request, in term of convenience of its
geographic location;

� A repetitiveness index, which quantifies the ability of the POI to
meet the needs of a small/large pool of customers;
� Total amount of electric energy delivered per POI, which gives
an indication of the market profitability of a specific location in
terms of energy demand from EVs;

� Time dependent plug-in demand and power demand curve,
which allows estimating the number of charging spots to be
installed in a specific location.

The model also implements a Vehicle-to-Grid interaction
strategy, which estimates in each POI the possible time dependent
electric power offer curve from parked vehicles by sharing the 2% of
the nominal energy capacity of their battery, to investigate the
potential of such application for shaving localised peaks of electric
energy load demand.

The results showafleet share shift fromconventional fuel vehicles
to battery electric vehicles ranging from10% to 57%, representative of
a mileage share from 1.6% to 36.5%, depending on the scenario. This
corresponds to an electric energy demand increase ranging from0.7%
to 18% of the total electric energy demand in the province, depending
the vehicle type and on the recharge strategy, and it results in a fully
developed infrastructure accounting for a number of charging spots
three-to-six times higher than the number of circulating electric ve-
hicles (i.e. fully developed recharge infrastructure). The results
partially resemble the indications provided by the recent Proposal for
Directive [22] for the deployment of alternative fuel infrastructures.
The V2G application suggests a substantial reduction of the electric
powerpeak load, and, consequently, a reduction from5% to50%of the
average daily load, according to the considered scenarios.

The developed model shows the potential of using driving
patterns databases and datamining to investigate several aspects of
the deployment of battery electric vehicles and recharge in-
frastructures technologies, providing a valuable insight into prac-
tical and technological implications that this technology might
have. Among them, quantifying the capability of BEVs to replace
conventional fuel vehicles, the increase in the regional and national
electric energy demand and the customer-driven planning, design
and size of the recharge infrastructure network are key issues to
formulate effective policy directions and incentives to enable the
large-scale adoption of BEVs and the effective deployment of an
alternative fuel infrastructure. Moreover the results could serve as
basis to quantify the potential of reducing the gaseous pollutants
and GHGs emissions from transport in densely populated areas,
thus providing the background for regional and national policies for
improving the quality of the air and mitigate the climate change.

The results can be extended to different geographical areas, as
shownherewith for theprovinceofModena, and themodel is capable
of adapting itself to different boundary conditions, being in principle
applicable to every urban environment aswell as to different kinds of
infrastructures (e.g. liquefied petroleum gas, compressed natural gas,
biofuels and hydrogen distribution networks). The authors foresee
the extension of the analyses to different EU countries, addressing the
urban mobility and the electrification of transport on a continental
scale, in view of supporting future policies for low-carbon vehicles
deployment and alternative fuel infrastructures.



Table A2
Fleet, trips and mileage shares for BEVs and HEVs (province of Modena).

EV type Strategy

Trips and mileage shares

Str. 1 Str. 2 Str. 3 Str. 4
Long-Stop R-AC Short-Stop R-DC Smart AC Mixed Time AC/DC

Small size vehicle BEV fleet 7.99% 14.81% 14.65% 29.70%
HEV fleet 92.01% 85.19% 85.35% 70.30%
BEV trips 0.68% 2.62% 1.78% 8.87%
HEV trips (electric) 75.74% 82.54% 77.91% 73.34%
HEV trips (ICE) 23.58% 14.84% 20.31% 17.79%
BEV mileage 1.35% 4.29% 3.91% 14.10%
HEV mileage (electric) 51.79% 64.19% 53.80% 60.94%
HEV mileage (ICE) 46.86% 31.51% 42.29% 24.96%

Medium size vehicle BEV fleet 12.98% 25.84% 21.02% 43.71%
HEV fleet 87.02% 74.16% 78.98% 56.29%
BEV trips 1.29% 5.33% 2.70% 13.98%
HEV trips (electric) 76.33% 75.03% 72.86% 61.18%
HEV trips (ICE) 22.38% 19.64% 24.44% 24.84%
BEV mileage 3.14% 10.63% 6.69% 25.15%
HEV mileage (electric) 56.58% 65.17% 51.93% 55.45%
HEV mileage (ICE) 40.29% 24.20% 41.38% 19.39%

Medium size vehicle (high performance) BEV fleet 22.15% 41.42% 30.01% 58.67%
HEV fleet 77.85% 58.58% 69.99% 41.33%
BEV trips 2.57% 9.40% 4.10% 19.69%
HEV trips (electric) 73.12% 61.67% 66.73% 46.01%
HEV trips (ICE) 24.31% 28.93% 29.17% 34.30%
BEV mileage 7.67% 22.32% 11.65% 39.68%
HEV mileage (electric) 59.48% 59.86% 51.08% 45.69%
HEV mileage (ICE) 32.85% 17.81% 37.27% 14.63%

Table A3
Electric energy demand per month [GWh] derived by considering the fleet share capable to drive only with the considered BEVs (BEV fleet share in Table 4, province of
Modena). The results are scaled-up to the fleet size of the province. The values in parenthesis represent the percentage of the energy demand with respect to the total energy
demand of the province as per [50].

EV type Strategy

Vehicles monthly energy demand [GWh] (percentage of the: monthly total energy demand [%] e monthly domestic
energy demand [%])

Str. 1 Str. 2 Str. 3 Str. 4
Long-Stop R-AC Short-Stop R-DC Smart AC Mixed Time AC/DC

Small size vehicle 1.45 (0.37%e2.13%) 4.85 (1.25%e7.12%) 4.26 (1.10%e6.26%) 15.70 (4.05%e23.05%)
Medium size vehicle 3.93 (1.01%e5.77%) 13.36 (3.45%e19.62%) 8.22 (2.12%e12.07%) 31.60 (8.15%e46.40%)
Medium size vehicle (high performance) 9.11 (2.35%e13.38%) 26.53 (6.84%e38.96%) 13.91 (3.59%e20.43%) 48.70 (12.56%e71.52%)

Table A4
Summary of the results recharge infrastructure network layout (province of Modena).

No. of
vehicles

Average no.
of recharges/day

No. of working POIs
(% tot. POIs)

Electric energy/day
[MWh]

Energy offer/demand
ratio

No. of charging
spots (AC/DC)

Small size vehicle Str. 1 Demand 8767 4554 396 (93.6%) 13 4.5 15,334
(AC)Offer 21,531 59

Str. 2 Demand 18,342 18,219 412 (97.4%) 45 4.1 27,750
(DC)Offer 78,248 183

Str. 3 Demand 16,700 11,346 404 (95.5%) 35 4.5 52,442
(AC)Offer 52,309 156

Str. 4 Demand 37,900 61,304 420 (99.3%) 146 3.6 17,992e103,480
(AC) (DC)Offer 237,530 522

Medium size vehicle Str. 1 Demand 14,925 8610 405 (95.7%) 35 4.2 24,242
(AC)Offer 38,170 148

Str. 2 Demand 32,792 37,328 418 (98.8%) 126 3.9 46,959
(DC)Offer 153,030 490

Str. 3 Demand 24,067 17,162 411 (97.1%) 68 4.3 72,050
(AC)Offer 76,072 289

Str. 4 Demand 56,133 96,675 420 (99.3%) 294 3.4 26,667e145,640
(AC) (DC)Offer 360,740 1003

Medium size vehicle
(high-Perf.)

Str. 1 Demand 26,533 17,378 414 (97.9%) 84 3.9 40,284
(AC)Offer 73,014 331

Str. 2 Demand 53,592 65,824 419 (99.1%) 260 3.7 72,509
(DC)Offer 256,130 952

Str. 3 Demand 34,475 25,824 414 (97.9%) 115 4.1 99,900
(AC)Offer 111,140 470

Str. 4 Demand 75,717 136,290 422 (99.8%) 453 3.3 36,242e187,710
(AC) (DC)Offer 491,890 1483
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Fig. A1. Number of charging spots per POI based on the average electric energy demand (the results are scaled-up to the province fleet size). The type of charging spot (i.e. AC/DC) is
given by the recharge strategy, according to Section 2.1. The results refer to the medium size vehicle, province of Modena.
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