A Higher Order Generative Framework for
Weaving Traceability Links into a Code
Generator for Web Application Testing

Piero Fraternali and Massimo Tisi

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. 1-20133 Milano, Italy

{piero.fraternali,massimo.tisi}@polimi.it

Abstract. Model Driven Engineering is extending its reach beyond the
generation of code from Platform Independent Models (PIMs), to all
the phases of the software life-cycle. This paper presents an approach to
exploit PIMs to ease regression testing, whereby developers can record
and replay testing sessions and investigate testing failures on the ap-
plication model, thanks to traceability links automatically inserted in
the generated code. The core of the approach is a modified version of the
model transformation for code generation, obtained by applying a Higher
Order Transformation (HOT), that is a transformation that takes in in-
put a transformation (the original code generator) and produces another
transformation (the augmented code generator). The HOT weaves into
the code generator additional rules producing traceability clues that help
developers link any error to the model features likely to cause it.

1 Introduction

Model Driven Engineering advocates the use of models as the primary artifact of
the software life-cycle. Models incorporate the knowledge about the application
at hand, independently of the technological platform of delivery. The knowledge
embodied in the model is primarily used for forward engineering, that is, the
progressive refinement towards the final implementation code. However, models
have a range of application that goes beyond code generation [31]. They can be
used as documentation, to estimate the size and effort of application development
[][5], and even as a support to testing [QU7I2326128].

In the domain of testing, the use of models mostly concentrates on automat-
ing the production and execution of test cases, while other activities, like model-
based selective regression testing and behavioral result evaluation are less sup-
ported [24]. When testing and debugging an application, developers are used to
think in terms of the functionality at the source code level, and want to trace any
testing failure directly to the source code elements that are most likely to have
caused it. In an MDE environment, the link between the occurrence of a testing
failure and the source code is not there; developers specify the application at a
high level, and the detailed source code is produced by a model transformation.

M. Gaedke, M. Grossniklaus, and O. Diaz (Eds.): ICWE 2009, LNCS 5648, pp. 3401354} 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Higher Order Generative Framework for Weaving Traceability Links 341

When a regression test fails, developers should be able to link the failure not to
the platform-dependent, low-level code, but to the PIM that they have specified.

This paper presents a framework for addressing the problem of letting Model
Driven Engineers manage the testing of their application without exiting the
level of abstraction of MDE. The main contributions of the proposed framework
consist of:

— An Higher-Order-Transformation (HOT'), whereby the model to text trans-
formation that produces the source code of the application from its PIM is
modified, so that model traceability clues are automatically weaved into the
generated code.

— A Navigation Recorder, whereby the developer can implement a test session
as a navigation script. The recorder not only registers the navigation steps
of the user, but also encodes correctness assertions automatically, exploiting
the model traceability clues weaved into the generated code.

— A Test Session Player, embedded within the same IDE used by the developer
for editing the PIM and generating the code, which allows one to modify the
model and generate the code, play any previously recorded regression test
session, and trace failures back to the PIM elements that have caused them.

The rest of the paper is organized as follows: Section [introduces the motiva-
tions of this work and presents a case study used throughout the paper; Section
illustrates the use of Higher Order Transformations for enabling the produc-
tion of model traceability clues in a model-to-code transformation; Section [
presents a browser’s extension for recording testing sessions, enabling the auto-
matic production of correctness assertions, and a plug-in extension of a MDE
development tool, allowing the seamless integration of change management, code
generation and regression testing. Section [briefly discusses the implementation
work; Section [6] compares our contribution to the related work; Section [draws
the conclusions.

2 DMotivation and Case Study

Regression testing is the activity aimed at detecting software regressions, defined
as those situations in which a program functionality that was previously working
ceases to do so, as a consequence of a change in the software.

Regression testing is particularly relevant in modern Web development
methodologies for several reasons: 1) Web applications are often delivered in
short times and are subject to continuous evolution; 2) the enabling technolo-
gies are still in motion, which introduces further source of uncontrolled changes;
3) rapid prototyping in the early phase of development is often used, to help the
stake-holders compare alternative functionalities.

In Web applications, testing sessions can be encoded as scripts that simulate
the user’s navigation. Such scripts operate on the platform-dependent realiza-
tion of the application and reproduce the interaction-evaluation loop typical of
Web browsing: the user inputs or selects values using the interface and assesses

342 P. Fraternali and M. Tisi

the response computed by the system; if this is correct, she proceeds in the
interaction.

Navigation can be recorded using a state-of-the-practice Record & Play tool.
Several such tools exist (e.g. Selenium [29] and TestGendWeb [30]), which imple-
ment an event-handler that listens to the events occurring inside the browser and
then generate a test script (usually in XML format) that contains one or more
assertions to be verified after each navigation step. An example of interaction
that could be recorded as a test script is:

Go to the Google home page

Verify that the page title is “Google”

Fill the input form with the string “WebTest”

Press the “I'm Feeling Lucky” button

Assert that the string “WebTest” must appear in the returned page

G W=

Specifying an assertion requires an extension of the browser. The test scripts
generated by the navigation recorder can then be executed, using one of sev-
eral Web test environments available, e.g., Canoo WebTest [12], Cactus [32],
HTMLUnit [I9] and JWebUnit [21], which replay the test session and verify the
assertions, highlighting failures.

The problem of this approach is that the evaluation of the testing session
breaks the MDE abstraction level, because the testing sessions are defined in
terms of the platform-specific realization of the application, and not at the level
of the platform-independent models produced by the designers. This semantic
mismatch hampers the task of linking failures back to the model elements that
are likely to cause them. Furthermore, the testing sessions based on the real-
ization of the system may depend on technological details and not only on the
application functions: for example, an assertion on the page content may be sen-
sible to the specific markup used for rendering the application look & feel. After a
change of the presentation, such an assertion would fail, even if the functionality
and content of the page are still valid.

The present work aims at supporting the definition and evaluation of test
sessions in a MDE context, by:

— providing a (possibly automatic) way to preserve the elements of the con-
ceptual model in the definition of the platform-dependent testing session;

— allowing the user to translate the use cases into navigation sessions without
worrying about the presence of the models in the background;

— supporting the execution of regression testing from the replay of navigation
sequences, with the possibility for the modeler to inspect the failures and
trace their possible causes to the model elements.

The proposed approach is illustrated with respect to an exemplary MDE
methodology, based on a Domain Specific Language targeted to Web
application development, called WebML [13]. We use WebML to model a sim-
plified Web application, derive testing sessions, generate the code with model-
to-implementation traceability links, and perform regression testing with the
support of the application model. As a case study, we consider a Product Cata-
log Web application, for publishing and managing content about furniture. The

A Higher Order Generative Framework for Weaving Traceability Links 343

{3 Combination

(3 category @ OID: integer

2 OID: integer (@ cade: integer

(@ Category: string (3 Product

_ (@ descripkion: text
N\ £ OIDy inkeger
(@ name: string

(3 store 1| @ code: inkeger
(@ price: floak
(31 OID: inkeger (@ description: bext f’N_F
= — . M (@ phota: blab
(@ address: string (8 name: string
_ (@ start date: date
@ email: url (@ price: float
_ (@ end date: date
(& map: blob (@ thumbnail: blob
_ (@ highlighted: boolean
(@1 highlighted: boolean

(@ phota: blob /
Y,

(3 TechRecord (3 BigImage
A1 OID: inkeger A 0ID: integer
(@ colors: blob @ description: text
@ dimensions: string @ picture: blab

Fig. 1. Data model of the Product Catalog Application

home page contains the product and offer of the day, with a link to access their
details, and a form for logging in. From the home page, several other pages are
reachable, which allow one to browse the content of the catalog.

Figure [I shows the data model of the case study, using the simplified E-R
notation of WebML; the Product, Combination, and Store constitute the core
entities of the data schema; products are clustered in Categories and associated
with Images and a Technical Record.

A Web application is specified on top of a data model by means of one or more
site views, comprising pages, possibly clustered into areas, and containing vari-
ous kinds of data publishing components (content units in the WebML jargon)
connected by links.

Figure [2 shows a fragment of the site view for publishing the content of the
Product Catalog application. The Home page contains two data publishing com-
ponents (data units), which display selected attributes of a product and of a
combination object, and one entry unit, which denotes a data entry form. The
units have outgoing links, which enable navigation and parameter passing. For
example, the ProductOfTheDay data unit has an outgoing link that permits the
user to reach the Product Page, where all the details of the product displayed
in the home page are shown. The Product page contains further content units,
connected to the Product details data unit by transport links (represented as
dashed arrows), which only allow parameter passing and are not rendered as
navigable anchors.

The WebML PIMs can be automatically translated into a running application,
by means of the WebRatio tool suite [3]. The WebRatio code generator produces
all the implementation artifacts for the Java2EE deployment platform, exploiting
the popular MVC2 Struts presentation framework and the Hibernate persistence
layer. In particular, the View components can utilize any rendition platform

344 P. Fraternali and M. Tisi

Home Page ﬁ;_[

Adrministration Login

Product of the day

Offer of the day. Please Login {i
Product Rt
c
[highlighted = true] ighighted = true] '°

| L

]
Products 'II

Product Page

Combinations of produck

rpe—
Product details —
- Combinaticon

vy
i [Fraduct_2_Combination]

Product ...
[0 =7 7™ Technical record

TechRecord
[Product_2_TechRecord]

Fig. 2. Site view of the Product Catalog Application

(e.g., HTML, FLASH, Ajax), because the code generator is designed to be ex-
tensible: the generative rules producing the components of the View adopt a
template-based style and thus can incorporate examples of layout for the var-
ious WebML elements (pages and content units) coded in arbitrary rendition
languages.

In the case study, a testing session is expressed at high level using the concepts
that appear in the application model. In the subsequent Sections, we will use
the following example:

1. Go to the Home Page of the Product Catalog
2. Check that the ProductOfTheDay data unit displays the ‘Aladdin’ item
3. Navigate the outgoing link of the ProductOfTheDay unit

Despite its simplicity, the above test can reveal several bugs. Step 1 checks that
the Home page is correctly generated and that the communication between the
client and the Web server works properly. Step 2 verifies that the item extracted
from the database is correct. Step 3 tests the navigation from the Home Page
to another Web page, verifying that the link in the Home Page exists and has
proper parameters and that that the destination page is computed properly.

With an implementation-oriented approach, an equivalent case must be en-
coded manually, by navigating the generated HTML pages and asserting condi-
tions on the HTML content (e.g. images, input forms, strings, etc.). Furthermore,
the resulting script depends on the graphical layout. For example, step (3) re-
quires evaluating an XPath expression over the page markup: the evaluation
of some XPath expressions may change if the page layout is updated (even if
functionality does not change).

A Higher Order Generative Framework for Weaving Traceability Links 345

3 HOT for Weaving Traceability Links into the Code
Generation Transformation

One way of circumventing the semantic gap between the application model and
the implementation subjected to regression testing is enhancing the implemen-
tation with traceability clues, which have no functional meaning but can help
linking the occurrence of a failure to the model elements more likely to bear
responsibility.

In the context of MDE, this task can be achieved by a Higher Order Trans-
formation, that is, a transformation that acts on the transformation used for
generating the code.

Figure Bl pictorially illustrates the HOT framework: the code generation pro-
cess can be seen as a model-to-model transformation (T1 in Figure[3)) that maps
an input model at level M1 (the WebML model of the application) into a an
executable model (the Java2EE code). T1 is normally a lossy transformation:
since its purpose is to produce the code to be actually executed, no extra in-
formation is added to the output model and the links between the input and
output artifacts are lost.

Adding traceability to the generative framework of Figure[3 requires preserv-
ing the relationship between the elements of the input model and the elements
of the output model derived from them. Traceability links can be stored: 1) in
the input model; 2) in the output model; 3) in a separate ad-hoc model.

In this paper, we have opted for the second solution, but in our case the trans-
formation T2, which produces an output model comprising the needed traceabil-
ity links, is dynamically generated from T1. In this way, T1 can still be used to
produce the concise and efficient code needed for application execution, but the
traceability links needed for regression testing can be obtained by using T2.

With this solution, the major problem is to ensure the consistency between
T2 and T1, so that the code produced for testing is exactly equivalent to the
production code, modulo the presence of traceability links.

This result can be attained by deriving T2 automatically from T1 by means
of a HOT, as depicted in Figure @l

The input of the HOT is the M2M transformation that produces the imple-
mentation code. This transformation can be seen as a model, represented by the

conforms-to Meta- conforms-to
LEVEL M3 ____—"| Meta-Model [*—u___ "~
(Ecore)
WebML Java2EE
LEVEL M2 Meta-Model Meta-Model
conforms-to T1:M2M
TRANSFORMATION
[Web
LEVEL M1 WebML Application
meodel H OT{; (Java2EE code)
(Java2EE code +
T2: M2M traceability links)
TRANSFORMATION

Fig. 3. Using HOT to weave traceability links into the code generator transformation

346 P. Fraternali and M. Tisi

Metametamodel ﬁ

(Ecore)

Groovy Groovy
metamodel metamodel
T code HOT genzzr:at(i:oond:AZT
generation transformation

M2T with traceability
transformation rules

Fig. 4. Input and Output Models of the HOT

chosen transformation language (Groovy, in our case study). The output is an-
other transformation, derived by extending the input model with extra elements
(additional code generation rules and templates) for producing the traceability
links in the implementation code.

FigureBlshows the internal structure of the input model of the HOT (i.e., the
original Groovy code generation transformation).

The transformation is organized into three sub-transformations.

The Layout Transformation generates a set of JSP pages (one for each page
of the WebML model) and miscellaneous elements required by the target plat-
form: Struts configuration (i.e. the controller in the Struts MVC architecture),
localization bundles, and form validators.

The Business Logic Transformation generates a set of XML files (logic de-
scriptors) describing the run-time behavior of the elements of the source model,
mainly pages, links, and units. In addition, this transformation produces sec-
ondary artifacts, such as the access/authentication logic.

The Persistence Transformation produces the standard Hibernate artifacts:
Java Beans and configuration mapping (one for each entity of the source model)
as well as the overall database configuration.

The sub-transformations are based on Groovy. Being the output a set of struc-
tured XML and JSP/HTML files, the Groovy generators use a template-based

- JSP pages
T1: M2M - Struts Configuration
TRANSFORMATION " Vocateation bundies

- Page/Link/Unit Logic
- Access and
authentication logic

WebML

T1.2: i i
model 1.2: Business logic

T1.3: Persistence

- Java Beans (*.java)

- Configuration (*.hbm)
- Mapping (*.cfg)

- HQL Queries

Fig. 5. Structure of T1 transformation

A Higher Order Generative Framework for Weaving Traceability Links 347

approach: each sub-transformation comprises templates similar to the expected
output (e.g., XML or HTML) enriched with scriptlets for looking-up the needed
elements of the source model.

The HOT must apply to the relevant original transformation rules and pro-
duce extended rules such that: 1) they generate the same output elements as the
original rules; 2) they add the needed traceability links to the output.

The design of the HOT requires deciding where to store the traceability links
in the output model (the Java2EE code) and what information to use for the
trace links. In the present version of the HOT, the following design decisions
have been taken:

— The traceability link information amounts to the id, name and published
values of the content units appearing within the pages of the WebML model,
and to the id, name and parameters of navigable links.

— Such traceability links are stored into the View elements of the output model,
so that they can be easily added to the recording of the user’s navigation.

The above-mentioned design choices entail that the HOT takes only the layout
sub-transformation in input, because this is the only one that produces the
View elements. The traceability links are stored within presentation-neutral,
transparent elements (e.g., HTML DIV elements) added to the View artifacts of
the output model (namely, the JSP pages).

An example can help illustrate the modified behavior of T2 with respect to

T1.
The ProductOfTheDay data unit of Figure 2 can be represented by the fol-
lowing fragment of the input model:

<DataUnit id="daul6" name="Product of the day">
<Selector id="daul6sel">
<AttributesCondition attributes="att23"
name="highlight"/>
</Selector>
</DataUnit>

Transformation T1 (for an XHTML implementation of the View) maps the
data unit into JSP code that produces the following mark-up fragment, for a
specific product named “Aladdin”:

<table>

<tr> <td>Aladdin</td> </tr>

<tr> <td>1500</td> </tr>

<tr> <td></td> </tr>
</table>

Transformation T2, derived from T1, maps the data unit into JSP code that
produces a mark-up fragment enhanced with traceability links:

<div id="testUnit id:daul6 name:Product of the day">
<table>
<tr> <td><div id="testAttribute id:att10 name:name
type:string unitName:Product of the day">
Aladdin
</div></td> </tr>

1 ' WebML has both a visual notation and an XML syntax, and is also equipped with
a MOF metamodel; for simplicity, in the example, we use the XML syntax.

348 P. Fraternali and M. Tisi

<tr> <td><div id="testAttribute id:attll name:price
type:float unitName:Product of the day">
1500
</div></td> </tr>
<tr> <td><div id="testAttribute id:att12 name:thumbnail
type:blob unitName:Product of the day">

</div></td> </tr>
</table>
</div>

The trace clues, inserted in rendition-neutral DIV elements, link the output
model (e.g., an XHTML table cell containing the string ‘Aladdin”) to the input

model (e.g., the name attribute published by the ProductOfTheDay data unit).

To show how the HOT is implemented in a generic way, we illustrate the
creation of the traceability link for a content unit. The HOT locates the following
instruction in T1:

</printRaw(executeTemplate(templateFile.absolutePath,
["params" : unitLayout.parameters,
"templateType" : "unit"])) %>

The instruction is an explicit call to the Groovy transformation rules for the
unit content. It will be translated by the HOT to a new version in T2 that
contains an additional DIV element:

<div id="testUnit_id:<%=unitId%>_name:<%=unitName%>_">
<YprintRaw(executeTemplate (templateFile.absolutePath,
["params" : unitLayout.parameters,
"templateType" : "unit"])) %>
</div>

This translation is achieved by the following HOT rule:

rule UnitLink {
from
matched : GroovyMM!Scriptlet (
matched.statements->recursiveExists(p
p.oclIsKindOf (GroovyMM!MethodInvocation) and s.name=’printRaw’ and
s.arguments->exists(e | e.oclIsKindOf (’GroovyMM!MethodInvocation’) and
e.name=’executeTemplate’ and
e.arguments->at (2) .oclIsKindOf (’GroovyMM!Map’) and
e.arguments->at (2) .elements->exists(t |
t.key=’templateType’ and
t.value.oclIsKindOf (’GroovyMM!String’) and t.value.value=’unit’)
to
div : GroovyMM!Tag (
name <- ’div’, attributes <- Sequence{id}, children <- Sequence{c}),
id : GroovyMM!TagAttribute (
name <- ’id’, value <-’testUnit_id:<Y=unitId%>_name:<}=unitName’>_’
)
c : GroovyMM!Scriptlet (
statements <- matched.statements

)

The HOT rule matches any Groovy scriptlet that prints the result of an exe-
cuteTemplate call to a unit template, i.e. a call with a parameter template Type
= "unit’. The output pattern of the rule is a Tag named div containing a TagAt-
tribute named id representing an encoding of the traceability link. The matched
scriptlet is finally copied as a child of this Tag.

A Higher Order Generative Framework for Weaving Traceability Links 349

4 Test Session Recording and Execution

The modified T2 transformation produces traceability links in the generated
code, so that the resulting application can be exploited to record model-aware
testing sessions.

For recording the test sessions, a Test Session Recorder has been designed,
by extending the TestGendWeb Firefox add-on [30], so to recognize the trace
links in the page rendition and save them in the final test script automatically,

without any user’s intervention.

As an example, consider the testing session of Section 2l Once the recording
is stopped, the navigation is saved in an XML file compliant with the syntax of
Canoo WebTest, shown below:

/*step 1%/

<testInfo type="trace" info="pagel"/>

<echo message="Go to the URL: http://www.acme.com"/>
<wrInvoke url="http://www.acme.com"/>

/*step 2%/
<verifyXPath text=".*Aladdin.x*"
xpath="//div[@id=’testUnit_id:daul6
name:Product of the day’]
//div[@id=’testAttribute_id:att10
_name:name_type:string
unitName:Product of the day’]"/>

/*step 3%/
<testInfo type="input" info="Aladdin"/>
<testInfo type="trace" info="1n30"/>
<wrClicklink fieldIndex="0"
label="More.." exactmatch="true"
description="Click the link labeled More.."/>

The test script contains, besides the usual Canoo tags, additional information
coming from the trace links.

Each step is annotated by the ID of the model element involved (e.g, as in
<testInfo type="trace" info="pagel">). Assertion steps, e.g., step (2), are ex-
pressed by means of XPath expressions that do not depend on the graphical
layout, but only on the identifiers of the model elements. If the code is regener-
ated with a different style or layout, the assertion remains valid.

Trace links are also enhanced with dynamic information about the objects
appearing in the navigated page. For instance, step (3) shows the case of the
navigation of a link, where the <testInfo type="input" info="Aladdin"> anno-
tation stores the name of the object that is associated with the navigated link
as a parameter. In this way, session recording can take advantage of the dy-
namic information coming from the objects of the data model, and blend it with
the information on the user’s interactions with the page widgets (e.g, single or
multiple selections from indexes, selections from combo boxes, and so on).

The final element of the proposed regression testing environment is the Re-
gression Testing Plug-in, a component of the WebRatio tool suite that allow
modelers to perform regression testing from within the same tool they use for
design and code generation.

350 P. Fraternali and M. Tisi

The Regression Testing Plug-in executes the recorded scrips using the Canoo
WebTest platform and collects the outcome of the execution, linking each step
to the model elements it refers to.

The plug-in exploits the information stored inside the test script by the Navi-
gation Recorder to reflect the user’s navigation onto the WebML model, thanks
to the identifier of the elements; the plug-in can replay a session visually and
can overlay the dynamic information on the navigated objects over the model
elements, as shown in Figure [6l

Product details Product of the da
i <<Aladdin>> i
<}
Product) Praduct
[0ID="7?] [highlighted = true]

Fig. 6. Visual replay of the testing session with dynamic information overlaid on the
WebML model

The replay of a testing session from within the WebRatio IDE is achieved by
a client/server connection between the WebRatio Regression Testing Plugin and
the Canoo test environment.

The WebRatio plug-in acts as a server and starts the test environment as a
client. The client, in turn, opens a new socket to communicate with the server
sending to it the testing session trace. Once the test execution ends, the server
collects all the identifiers of the WebML elements that have been reached during
the test execution together with the information on the outcome of each step.
The WebRatio plug-in presents the regression test results in a tabular pane (see
Figure 7)), where each row displays the identifiers of the WebML elements, their
input and a description in natural language of the current step.

Using the provided visualizations, developers can monitor the regression steps
and correlate them to the involved elements of the WebML model. In the case
of a test failure, the plug-in also catches the exceptions launched from the test

Step # | ‘WebML Element I Input] De_imrptim I

pagel Go to the URL: http:/flocalhost: 3080/ Acme/pagel.do
In30 Aladdin Click on the label More. ., of Aladdin

pageld Click on the label By price

In44 Lucid Click on the label Details of Lucid

pagel Go to the URL: httpi/flocalhost:8080/Acme/pagel .do
In30 Aladdin Click an the label Mare. .. of Aladdin

] Description | Error |

Go ko the URL: hitp:/flocalhost:8080/Acnejpage] do
Click on label Mare. .. of Aladdn label More... not found

Fig. 7. Tabular representation of a test: success (top) and failure (bottom)

A Higher Order Generative Framework for Weaving Traceability Links 351

environment, and reports the cause of the errors in the debugging pane (as shown
in the bottom part of Figure [7).

5 Implementation

The HOT has been implemented using the ATL language and the AmmA [10]
framework. To integrate the Groovy language in the transformation framework,
a Groovy metamodel has been developed extending the JavaAbstractSyntax
metamodel provided by the MoDisco project [1].

The Test Session Recorder has been implemented extending the Firefox Test-
GendWeb add-on, using XUL and Javascript. In particular, the Javascript mod-
ule that generates the output has been modified to produce XML files compliant
with Canoo WebTest. Furthermore, its code has been refactored to manage every
type of assertions in a separate sub-module.

The WebRatio Regression Testing Plug-in has been implemented by means of:
1) a a Java component that runs the Canoo WebTest environment, taking the test
script as input, and elaborates the information received from the test execution;
2) an Eclipse view that visualizes the execution outcome. The communication
between the test execution platform and WebRatio is regulated using auxiliary
Groovy tags inserted in the test script by the Test Session Recorder.

6 Related Work

The task of optimizing the regression testing phase has been addressed in liter-
ature especially from the point of view of selective regression testing [27], i.e. of
optimizing the regression test set removing superfluous tests. The importance
of model-based specifications, for generating and selecting test cases, is already
recognized [15]. The HOT framework presented in this paper, as a general ap-
proach to embed high-level information in low level code, can be naturally used
to address these concerns. In this paper we presented also an original application
of the method that facilitates the manual development of regression test cases.
Our application makes use of traceability links to connect the generated im-
plementation with model-based specifications. The concept of traceability links
has been widely investigated in literature. A first classification of traceability
has been made between traceability in the small and traceability in the large
[8]. The former is intended to handle the trace information between model ele-
ments, i.e. information about how different elements of source and target models
are linked together; the latter traces information between models in the whole,
in order to have information about relationships between distinct models. In
some approaches the traceability mechanism is implicitly embedded in the tool’s
algorithms [I1],[25], while other approaches represent traceability relationships
explicitly, e.g., [I8]. In this latter case, the location where the links are stored,
can be the source and/or target model, or separate (e.g, by means of a GUIDE
in each model element and traceability information separate from the source

352 P. Fraternali and M. Tisi

and target models). Our approach realizes traceability in the small representing
explicitly the traceability links in the target model.

Transformation frameworks can address traceability during the design of
transformations [I4], either by providing dedicated support for traceability (e.g.,
Tefkat [22], QVT [2]), or by encoding traceability as any other link between the
input and output models (e.g., VIATRA [33], GreAT [6]). Traceability links may
be encoded manually in the transformation rules (e.g., [22]), or inserted automat-
ically (e.g., [2]). The HOT-based approach that we propose can be used to add
traceability support to languages like groovy, that do not provide any built-in
support to automatic or manual traceability links.

With respect to hard-coding the traceability mechanism when developing the
transformation, our use of a HOT favors reusability and extension, because the
feature to be weaved into the transformation is managed separately.

A general traceability system using HOTs is already implemented in [20],
where the HOT adds to each original transformation rule the production of a
traceability link in an external ad-hoc traceability model (conforming to a small
traceability metamodel). In other analogous solutions, such as [I7], the trace-
ability links are represented by an ad-hoc extension of a standard metamodel
for modeling correspondences, the Atlas Weaving Metamodel [I6]. Our approach
differs from these in merging traceability links within the target metamodel, i.e.
the generated implementation code. We showed how this technique is useful in
the Web domain to derive model-based test cases from hypertext navigations.

Finally Aspect Oriented Development can be considered as a particular case
of HOT. Using a generic transformation language for defining the HOT, our
approach has a higher expressing power and flexibility, allowing the definition of
complex HOT rules.

7 Conclusions

In this paper we have presented a framework for supporting regression testing in
MDE environment. The framework supports the phases of: 1) recording a test-
ing session with a conventional Record & Play tool; 2) replaying the recorded
session from within the same IDE that is used for application modeling and
code generation; 3) tracing the failures of a test session to the model elements
most related to them. The core of the approach is the connection between the
conceptual model, which the developer uses to specify and build the applica-
tion, and the generated code, which is exploited to record and play the testing
session. Such a connection is established by traceability links between the in-
put model and the generated code, automatically inserted by a modified version
of the code generator. This modified version is itself produced automatically,
by exploiting the powerful paradigm of Higher Order Transformation (HOT),
which are transformations that operate on other transformation. The resulting
framework enables MDE developers to perform regression testing in an effective
way, without breaking the level of abstraction entailed by the use of models as
the principal artifact of design.

A Higher Order Generative Framework for Weaving Traceability Links 353

The ongoing and future work will focus on: 1) Extending the HOT to obtain a
code generator capable of producing application code instrumented for the step-
by-step debugging of the sequences of operations, which are now executed as black
boxes; 2) Structuring the HOT in a modular way, so that it is possible to weave dif-
ferent orthogonal aspects in the code generator, e.g., the insertion of performance
verification code or of security code (e.g. alternative URL encoding and encryption
policies). 3) Supporting selective regression testing [24]: when a change is made,
the collaborative work function of WebRatio can be used to identify the list of
differences between the original and modified model and to select a minimal set
of sessions to execute. From an analysis of differences, it could also be possible to
launch the extended code generator and session recorder to automatically synthe-
size the sessions needed for covering the new parts of the model.

Acknowledgment. We wish to thank Alessandro Baffa for the implementation
work and the WebRatio Team for the evaluation of the testing framework.

References

. MoDisco home page, http://www.eclipse.org/gmt/modisco/

. QVT 1.0., http://www.omg.org/spec/QVT/1.0/

. WebRatio, http://www.webratio.com

. Abrahao, S., Pastor, O.: Measuring the functional size of web applications. Int. J.

Web Eng. Technol. 1(1), 5-16 (2003)

5. Abrahdo, S.M., Mendes, E., Gémez, J., Insfran, E.: A model-driven measurement
procedure for sizing web applications: Design, automation and validation. In: MoD-
ELS, pp. 467-481 (2007)

6. Agrawal, A., Karsai, G., Shi, F.: Graph transformations on domain-specific models.
Technical report, ISIS (November 2003)

7. Baerisch, S.: Model-driven test-case construction. In: ESEC-FSE Companion 2007:
6th Joint Meeting on European SE Conf. and the ACM SIGSOFT Symp. on the
Foundations of SE, pp. 587-590. ACM, New York (2007)

8. Barbero, M., Del Fabro, M.D., Bézivin, J.: Traceability and provenance issues in
global model management. In: 3rd ECMDA-Traceability Workshop (2007)

9. Baresi, L., Fraternali, P., Tisi, M., Morasca, S.: Towards model-driven testing of a
web application generator. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS,
vol. 3579, pp. 75-86. Springer, Heidelberg (2005)

10. Bézivin, J., Jouault, F., Touzet, D.: An introduction to the ATLAS model man-
agement architecture. Research Report LINA(05-01) (2005)

11. Briand, L., Labiche, Y., Soccar, G.: Automating impact analysis and regression
test selection based on uml designs. In: IEEE International Conference on Software
Maintenance, p. 252 (2002)

12. Canoo. Canoo Web Test (2008), http://webtest.canoo.com

13. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comali, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, USA (2002)

14. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the Context of MDA (2003)

15. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from

Model-Based specifications. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993.

LNCS, vol. 670, pp. 268-284. Springer, Heidelberg (1993)

=W N

http://www.eclipse.org/gmt/modisco/
http://www.omg.org/spec/QVT/1.0/
http://www.webratio.com
http://webtest.canoo.com

354

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

P. Fraternali and M. Tisi

Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: Amw: a generic
model weaver. In: 1ére Journée sur 'Ingénierie Dirigée par les Modeles (IDM 2005)
(2005)

GMT Project. Amw use case - traceability (February 2008),
http://www.eclipse.org/gmt/amw/usecases/traceability

Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. SIGSOFT
Softw. Eng. Notes 29(4), 129-132 (2004)

HTMLUnit Team. HTMLUnit (2008), http://htmlunit.sourceforge.net/
Jouault, F.: Loosely coupled traceability for atl. In: European Conference on Model
Driven Architecture (ECMDA), workshop on traceability (2005)

JWebUnit Team. JWebUnit (2008), http://jwebunit.sourceforge.net/
Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139-150. Springer, Heidel-
berg (2006)

Li, N., Ma, Q.-q., Wu, J., Jin, M.-z., Liu, C.: A framework of model-driven web
application testing. In: COMPSAC 2006, Washington, DC, USA, pp. 157-162.
IEEE Computer Society, Los Alamitos (2006)

Naslavsky, L., Richardson, D.J.: Using traceability to support model-based regres-
sion testing. In: ASE 2007, pp. 567-570. ACM, New York (2007)

Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.: Automatic test generation: A
use case driven approach. IEEE Transactions on SE 32(3), 155, 140 (2006)
Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537-541. Springer, Heidelberg
(2005)

Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering 22(8), 529-551 (1996)

Saad, M.A., Kamenzky, N., Schiller, J.: Visual scatterUnit: A visual model-driven
testing framework of wireless sensor networks applications. In: Czarnecki, K., Ober,
1., Bruel, J.-M., Uhl, A., Volter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
751-765. Springer, Heidelberg (2008)

Selenium Project. Seleniumhq (2008), http://seleniumhq.org/

Vinay Srini. Testgendweb (2008),
http://developer.spikesource.com/blogs/vsrini/2008/06/

testgendweb update 10 1.html

Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons, Chichester (2006)

The Apache Jakarta Project. Cactus (2008), http://jakarta.apache.org/cactus
Varré, D., Varré, G., Pataricza, A.: Designing the automatic transformation of
visual languages. Sci. Comput. Program. 44(2), 205-227 (2002)

http://www.eclipse.org/gmt/amw/usecases/traceability
http://htmlunit.sourceforge.net/
http://jwebunit.sourceforge.net/
http://seleniumhq.org/
http://developer.spikesource.com/blogs/vsrini/2008/06/testgen4web_update_10_1.html
http://developer.spikesource.com/blogs/vsrini/2008/06/testgen4web_update_10_1.html
http://jakarta.apache.org/cactus

	A Higher Order Generative Framework for Weaving Traceability Links into a Code Generator for Web Application Testing
	Introduction
	Motivation and Case Study
	HOT for Weaving Traceability Links into the Code Generation Transformation
	Test Session Recording and Execution
	Implementation
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

