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Abstract: The capacity of a structure can be assessed using inelastic analysis, requiring sophisticated
numerical procedures such as pushover and incremental dynamic analyses. A simplified method
for the evaluation of the seismic performance of steel moment resisting frames (MRFs) to be used
in everyday practice has been recently proposed. This method evaluates the capacity of buildings
employing an analytical trilinear model without resorting to any non−linear analysis. Despite the
methodologies suggested by codes, the assessing procedure herein described is of easy application,
also by hand calculation. Furthermore, it constitutes a suitable tool to check the capacity of the
buildings designed with the new seismic code prescriptions. The proposed methodology has been
set up through a large parametric analysis, carried out on 420frames designed according to three
different approaches: the theory of plastic mechanism control (TPMC), ensuring the design of
structures showing global collapse mechanism (GMRFs), the one based on the Eurocode 8 design
requirements (SMRFs), and a simple design against horizontal loads (OMRFs) without specific seismic
requirements. In this paper, some examples of the application of this simplified methodology are
proposed with references to structures supposed to exhibit global, partial and soft storey mechanism.

Keywords: TPMC; pushovers; capacity; performances; vulnerability; simplified methods

1. Introduction

The safeguard of the built heritage is gaining an increasing interest in structural and
seismic engineering [1,2]. The knowledge of the seismic response of the structures plays a
fundamental role in the evaluation of the seismic vulnerability of existing structures [3–6]
and in the prediction of the expected losses [7–9]. The designer, to achieve a correct safety
evaluation in terms of the capacity demand ratio, must resort to non−linear models and
non−linear analyses [10–13], which, even though they are described in the codes, are very
prone to being misinterpreted. The implementation of a non−linear model needs adequate
experience and, first of all, an adequate knowledge of the condition of the building to be
modelled in terms of geometry, loads, structural details, materials and degradation [14–18].
In the perspective of a seismic classification of the built heritage, it is necessary to define
a standardizable, unique and user−friendly methodology [19–22]; therefore, recently, a
simplified assessment approach has been developed concerning steel moment resisting
frames (MRFs) [23] based on a trilinear model that needs only the elastic structural analysis
and the rigid-plastic analysis and does not require any static or dynamic non−linear effort.
Rigid plastic analysis has generally been used as an assessment tool against vertical and
horizontal loads. The novelty point of the procedure is to use the rigid plastic and elastic
analysis joined with a performance-based evaluation aimed at easily assessing the seismic
performance of existing buildings, also ensuring a rapid mapping of the built heritage in
terms of seismic vulnerability.
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This assessment procedure is herein applied to some study cases to support their ease
of application. It mainly consists of the definition of a trilinear capacity curve by some
characteristic points that define three branches [24,25]. These points correspond to different
limit states. It is important to mention that the code assessment approach does not provide
the definition of specific performance points on the pushover curve, thus entrusting the
designer to the definition of required target limits which are provided by codes in terms of
member chord rotation.

The method has been set up by performing several parametric analyses, in terms of
pushovers, on 420 frames, designed according to three different approaches, i.e., without
any seismic detailing (O−MRFs), by Eurocode 8 (S−MRFs) and by the theory of plastic
mechanism control (G−MRFs). It is usually observed that structures designed without any
seismic provision exhibit a soft storey mechanism while the structures designed according
to the modern approach of Eurocode 8 can achieve more robust performances even if the
global mechanism can be assured only by the TPMC approach. The results belonging
to the pushover analyses performed on the structures have been used to calibrate the
assessment relationships, ensuring a wide application of the method. The comparison in
terms of capacity and demand can be made according to two alternative approaches: the
one proposed by Eurocode 8 [26] and the one proposed by Nassar and Krawinkler [27].
The former exploits the concept of ADRS spectrum while the latter has the benefit of being
of more easily applicable because it does not single out between low and high periods of
vibration. In the following, the main model equations are reported and described.

2. Fundamental Equations of the Trilinear Model

The simplified trilinear model needs only the elastic structural analysis and the rigid-
plastic analysis [28–31] not requiring any static or dynamic non-linear analyses. Therefore,
the user can quickly obtain the capacity curve through the intersection of three linear
branches (Figure 1), computed using simple relationships proposed in the following.
Referring to the proposed model, the first branch of the curve can be approximated by
the elastic response curve; the horizontal one is defined using the maximum load-bearing
capacity given by the calibrated Merchant−Rankine formula, while, the softening branch
is given by the collapse mechanism equilibrium curve of the structure, influenced by the
second-order effects [32–36]. The definition of the third branch is linked to the concept of
the mechanism equilibrium curve. In particular, the equation of the third branch can be
obtained by equating the virtual internal work of the dissipative zones with the virtual
external work of the structure, accounting for second-order effects.
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The equations of the three identified branches in the α−δ plane (horizontal force
multiplier—top sway displacement) are reported below:

• Elastic response curve:
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α =
1
δ1

δ (1)

• Maximum load-bearing capacity curve according to the modified Merchant−Rankine
formulation [23,37,38]

α = αmαx =
α0

1 + Ψα0γsδ1
(2)

where:
Ψ = α + bξ (3)

ξ =
∑ EIb

Lb

∑ EIc
Lc

(4)

The use of Equation (3) is proposed by assuming for the coefficient Ψ with the follow-
ing relation:

Ψ = 0.28488 − 0.14042 ξ (5)

• The mechanism equilibrium curve according to rigid-plastic analysis [37]:

α = α0 − γs
(
δ − δy

)
(6)

Characteristic performance points (points A, B, C, D of Figure 2) have been identified
on the trilinear model. The points are associated with specific limit states [35], provided by
codes, identifying a target performance level [34,39–41].
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Figure 2. Characteristic performance points.

• Point A—“Fully Operational”

αA =
1
δ1

δA (7)

where δA is the displacement corresponding to the minimum between the displacement in
the service conditions and δy is the displacement corresponding to the formation of the
first plastic hinge.

• Point B—“Operational”

αB = αmαx ; δB = αmαxδy (8)

where αmax is the maximum multiplier defined according to the Equation (2).

• Point C—“Life Safety”
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αC = αmax ; δC = δmecc =
α0 − αmax

γS
+ δy (9)

This point derives from the intersection of the horizontal branch of equation α = αmαx
with the softening branch, representative of the collapse mechanism equilibrium curve, of
equation α = α0 − γS(δ − δy).

• Point D—“Near Collapse”

αD = αmax − γs(δD − δC) ; δD = δC +
(
ϑρ.µ − ϑρ.mecc

)
H0 (10)

The chord rotation at yielding ϑy is defined as a property of the member. For ductile
elements and brittle elements involved into soft-storey mechanisms, are given by:

ϑy =
γov Mp.mlm

6EIm
(11)

while for brittle elements involved in partial and global mechanisms:

ϑy =
γov Mp.mlm

4EIm
(12)

For the evaluation of plastic rotations occurring in the critical members, an analytical
formulation is proposed, based on a “shear−type” single−storey portal with different
plastic moments at the top and base of the columns. The relationships for the evaluation of
the plastic rotation demand corresponding to the development of the collapse mechanism
are reported as follows:

θp.mec H0

nsδy
=

Ψ1

Ψ2
Ψ3

(
αmax

αy
− 1

)Ψ4 1 − Ψ5γs

1 − Ψ6γs
(13)

θp.mec H0

nsδy
=

Ψ′1
Ψ′2

Ψ3

(
αmax

αy
− 1

)Ψ′4 1 − Ψ′5γs

1 − Ψ′6γs
(14)

In particular, the coefficient with the apex refers to the element achieving the collapse
(i.e., the critical element), with those without the apex to the element developing the first
yielding.

The Ψi coefficients to be used in Equations (13) and (14), are given by the following
equations whose parameters are reported in Table 1:

Ψ1 = α1 + b1nb Ψ′1 = α′1 + b′1nb (15)

Ψ2 = α2 + b2ns Ψ′2 = α′2 + b′2ns (16)

Ψi = αi + biξ i = 3, . . . , 6 Ψ′i = α′i + b′iξ i = 3, . . . , 6 (17)

Table 1. Regression coefficients for the evaluation of plastic rotation demand for the development of
the collapse mechanism.

GMRFs SMRFs OMRFs

a1 2.7747755 2.982417 19.542818
b1 0.0207354 −0.14356 −1.372652
a2 1.817070 1.370201 −144.9099
b2 −0.07731 0.652663 123.8454
a3 0.0844528 0.964755 −0.028950
b3 1.616165 1.802312 0.1820582
a4 −0.112433 0.737624 −1.840828
b4 1.4966937 −0.51209 3.0361764
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Table 1. Cont.

GMRFs SMRFs OMRFs

a5 1.0606602 0.976295 97.159963
b5 0.6787599 1.027818 25.416893
a6 1.0528759 0.975839 1.8666626
b6 0.7200734 1.030732 −0.429104
a’1 1.1674452 3.415537 19.508374
b’1 0.0575325 −0.07355 −0.637701
a’2 6.0112325 0.251316 −89.8716
b’2 0.3665074 1.394603 73.87363
a’3 1.0944684 3.860496 −0.044146
b’3 −1.169347 −0.09045 0.3181349
a’4 −2.322765 1.415893 −2.345411
b’4 7.462743 −1.18406 3.917804
a’5 0.993180 0.968454 −17.06279
b’5 0.95649 1.11087 95.899727
a’6 1.0150939 0.976968 1.5715063
b’6 0.7912074 1.069351 −0.053770

3. Assessment Procedure in Terms of Spectral Accelerations According to ADRS
Spectrum

The capacity-demand assessment procedure can be expressed through the ADRS
spectrum [12,26]. For each limit state, the spectrum Sα − SDe is defined by the means of the
relationship SDe(T) = Sα(T)(T/2π)2. As regards the capacity, it is necessary to represent the
characteristic points of the behavioral curve of the structure, in the ADRS plane. Of these
points, it is necessary to know the abscissa, which is the displacement d∗LS = dLS/Γ.

It is necessary to distinguish between cases T* > TC and T* < TC. If T* > TC 41,
the capacity in terms of spectral acceleration relative to the limit state considered can be
obtained through the following relationship:

SaSL = d∗LSω∗0
2 (18)

The demand is represented by the spectral acceleration provided by the code, for the
specific limit state, in the case of the equivalent SDOF system with the equivalent period of
vibration T*.

For the assessment procedure, the inequality Sαls ≥ Sα(T*) must be satisfied.
If T* < TC and q > 1, according to the equality energy criterion, there is a different

procedure to evaluate the capacity that leads to the anelastic spectrum whose parameters
are listed below:

F∗lS =
m∗Sa(T∗)

qlS
(19)

qlS = 1 + (µlS − 1)
T∗

TC
(20)

SaSL = qlS
F∗lS
m∗

(21)

If T* < TC and q ≤ 1, it results:

F∗SL = m∗Sa(T∗) (22)

SaSL =
F∗lS
m∗

(23)

m∗ =
n

∑
k=1

mkFk (24)

The checking is verified when the inequality Sαls ≥ Sα(T*) is satisfied.
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4. Assessment Procedure in Terms of Spectral Accelerations According to Nassar and
Krawinkler

In the framework of capacity-demand checking [27,37–43], an equivalent SDOF system
replaces the MDOF actual system by means of the modal participation factor Γ. Multiplying
the multiplier α with the design base shear, the capacity curve is reported in an Fb—dc plane.
The capacity curve must be reduced through the modal participation factor and represented
in an F*—d* plane. The demand is estimated through the period T* and the equivalent
mass m* according to European codes. The capacity in terms of spectral acceleration for
the points A, B, C, and D is given as follows:

• Point A—“Fully Operational”

SaFO(T∗) =
F∗FO
m∗

(25)

• Point B—“Operational”

SaO(T∗) =
F∗O
m∗

(26)

• Point C—“Life Safety”

SaLS(T∗) =
F∗LS
m∗

qLS (27)

qLS = q0(µ, T, γ = 0) = [c(µLS − 1) + 1]1/c (28)

where c = T∗
1 + T∗ + 0.42

T∗ and µLS = dLS∗
d0∗ .

• Point D—“Near Collapse”

SaNC(T∗) =
F∗NC
m∗

qNC (29)

qNC =
q0

ϕ
(30)

q0(µ, T, γ = 0) = [c(µLS − 1) + 1]1/c (31)

where c = T∗
1 + T∗ + 0.42

T∗ and µNC = dNC∗
do∗ .

ϕ =
1 + 0.62(µNC − 1)1.45γ

(1 − γ)
(32)

The coefficient ϕ is a function of the ductility µ and the non-dimensional slope of the
equilibrium curve γ.

5. Numeric Example

The assessment procedure described above is applied to evaluate the capacity of a
seven-storey and four-span steel moment resisting frame. The permanent loads Gk are equal
to 3.5 kN/m2 while the live loads Qk equal 3 kN/m2. For the evaluation of gravitational
loads on the beams, a frame tributary length of 6.00 m has been set. The steel used is S275.
In Figure 3a, a flowchart of the procedure is reported.
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5.1. Ordinary Moment Resisting Frame

Ordinary moment resisting frames are designed without any seismic prescription.
The beams and column sections are reported in Figure 4.
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and seismic forces.

The trilinear capacity curve is shown in Figure 5, which also shows the characteristic
performance points of the model.
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Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.06305 m
• k = 15.8605 m−1

• δA = δy = 0.2602 m
• αA = αy = kδy = 4.128

Parameters obtained from the rigid-plastic analysis:

• α0 = 5.219
• γs = 3.729 m−1

• α = α0 − γS(δ − δy)→ α = 5.219 − 3.729(δ − 0.2602)
• α(δ = 0) = α0 + γsδy = 6.1888
• H0 = 3.5 m(collapse mechanism Type 3, im = 3)

Evaluation of the maximum multiplier using the calibrated Merchant−Rankine for-
mula:

•
αmαx =

α0

1 + Ψα0γsδ1
= 4.2025

where:

Ψ = 0.28488 − 0.14042 ξ = 0.1970 with ξ =
∑ EIb

Lb

∑ EIc
Lc

= 0.6255

and consequently δB = αmax
k = 0.265 and δc = δmecc = α0 − αmax

γs
+ δy = 5.219 − 4.2025

3.729 +
0.2602 = 0.5326 m.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the first plasticized element (first storey beams):

•

θp.mec =
nsδy

H0

[
Ψ1

Ψ2
Ψ3

(
αmax

αy
− 1

)Ψ4 1 − Ψ5γs
1 − Ψ6γs

]
= 0.06612 rad

The calculation of the corresponding capacity provides a final plastic rotation value of
8θy = 8 × 0.008257 = 0.06605 rad.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the critical element (the mechanism is partial type 3 im = 3, so the
critical element is a third storey column):
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•

θp.mec =
nsδy

H0

[
Ψ′1
Ψ′2

Ψ′3

(
αmax

αy
− 1

)Ψ′4 1 − Ψ′5γs

1 − Ψ′6γs

]
= 0.07693 rad

The calculation of the corresponding capacity, in the case of the third storey columns,
provides a value of the ultimate plastic rotation equal to 8θy = 8 × 0.005568 = 0.04454 rad.
Therefore, the ultimate conditions are governed by the columns of the third storey.

Considering the plastic rotation capacity, the ultimate displacement is given by:

δu = δC +
(
δp.u − δp.mecc

)
H0 = 0.5326 + (0.04454 − 0.07693) × 3.5 = 0.4192 m

Since the plastic rotation capacity of the third storey columns is lower than that
necessary for the complete development of the kinematic mechanism, the points C and
D corresponding to the limit states “Life Safety” and “Near Collapse” are coincident and
correspond to the aforementioned last displacement (δu).

All the verification procedures considered the use of the transformation of the MDOF
system into an equivalent SDOF system using the participation coefficient of the main
vibration mode Γ. For this reason, it is necessary to define:

• The eigenvector F = {F1, F2, F3, F4, F5,F6}that, assuming Fk = Fk
Fn

, is:

F1 = 0.134 F2 = 0.267 F3 = 0.401

F4 = 0.535 F5 = 0.669 F6 = 0.802 F7 = 1.000

The modal participation factor Γ:

Γ =
∑n

k=1 mkFk

∑n
k=1 mkFk

2 = 1.4381

being:

m1 = 57.98 × 103 kg m2 = 57.98 × 103 kg m3 = 57.98 × 103 kg

m4 = 57.98 × 103 kg m5 = 57.98 × 103 kg m5 = 57.98 × 103 kg m7 = 61.94 × 103 kg

The dynamic parameters of the equivalent SDOF system are reported in Table 2.

Table 2. Dynamic parameters of the equivalent SDOF system.

m* k* ω* T*

[kg 103] [kN/m] [rad/s] [s]
224.76 4302.8 4.3753 1.436

Therefore, the characteristic points of the capacity curve are defined in the planes α −
δ, Fb − dc, F* − D*, Sα − SD assessing the capacity in terms of accelerations for the Nassar
and Krawinkler approach and ADRS spectrum approach. In Table 3, the results based on
the use of the ADRS spectrum, and in Table 4, the results based on the use of the Nassar and
Krawinkler formulation, are reported. The numbers in bold identify the values of spectral
acceleration and displacement to be used in the capacity-demand assessment procedure.
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Table 3. ADRS spectrum approach.

FO O LS NC

F [kN] 1119.90 1140.12 1140.12 1140.12
F* [kN] 778.72 792.78 792.78 792.78
d [m] 0.2602 0.265 0.4192 0.4192
d* [m] 0.181 0.184 0.291 0.291

Sa* [g] 0.353 0.359 0.569 0.569

Table 4. Nassar and Krawinkler approach.

FO O LS NC

F [kN] 1119.90 1140.12 1140.12 1140.12
F* [kN] 778.72 792.78 792.78 792.78
d [m] 0.2602 0.265 0.4192 0.4192
d* [m] 0.181 0.184 0.291 0.291
µ [m] − − 1.582 1.582
Sa* [g] 0.353 0.359 0.575 0.575

Seismic performance verification requires that, for each limit state, the inequality
Sα.ls(T*)capacity ≥ Sα.ls(T*)demand is satisfied.

5.2. Special Moment Resisting Frame

Special moment resisting frames are designed to fulfil the Eurocode 8 seismic provi-
sions. The selected case study with the definition of the beam and column dimension is
reported in Figure 6.
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Figure 6. Diagram of the frame constituting the numeric example with the indication of beams,
columns and seismic forces.

The trilinear capacity curve is shown in Figure 7, which also shows the characteristic
performance points of the model.
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Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.03814 m
• k = 15.8605 m−1

• δA = δy = 0.1802 m
• αA = αy = kδy = 4.736

Parameters obtained from the rigid-plastic analysis:

• α0 = 7.989
• γs = 1.006 m−1

• α = α0 − γs(δ − δy)→ α = 7.989 − 1.006(δ − 0.1802)
• α(δ = 0) = α0 + γsδy = 8.1704
• H0 = 14.0 m (collapse mechanism Type 1, im = 4)

Evaluation of the maximum multiplier using the calibrated Merchant−Rankine for-
mula:

•
αmαx =

α0

1 + Ψα0γsδ1
= 7.4056

where:

Ψ = 0.28488 − 0.14042 ξ = 0.2572 with ξ =
∑ EIb

Lb

∑ EIC
Lc

= 0.1971

and consequently δB = αmax
k = 0.2824 and δC = δmecc = α0 − αmax

γs
+ δy = 7.989 − 7.4056

1.006 +
0.1802 = 0.7605 m.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the first plasticized element (first storey beams):

•

θp.mec =
nsδy

H0

[
Ψ1

Ψ2
Ψ3

(
αmax

αy
− 1

)Ψ4 1 − Ψ5γs
1 − Ψ6γs

]
= 0.03043 rad

The calculation of the corresponding capacity provides a final plastic rotation value of
8θy = 8 × 0.008257 = 0.06605 rad.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the critical element (the mechanism is partial type 1 im = 4, so the
critical element is a first storey column):
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•

θp.mec =
nsδy

H0

[
Ψ′1
Ψ′2

Ψ′3

(
αmax

αy
− 1

)Ψ′4 1 − Ψ′5γs

1 − Ψ′6γs

]
= 0.04587 rad

The calculation of the corresponding capacity, in the case of the third storey columns,
provides a value of the ultimate plastic rotation equal to 8θy = 8 × 0.004212 = 0.033699 rad.
Therefore, the ultimate conditions are governed by the columns of the first storey.

Considering the plastic rotation capacity, the ultimate displacement is given by:

δu = δC +
(
ϑp.u − ϑp.mecc

)
H0 = 0.76 + (0.033699 − 0.04587) × 14.0 = 0.5901 m

Since the plastic rotation capacity of the third storey columns is lower than that
necessary for the complete development of the kinematic mechanism, the points C and
D corresponding to the limit states “Life Safety” and “Near Collapse” are coincident and
correspond to the aforementioned last displacement (δu).

All the verification procedures considered the use of the transformation of the MDOF
system by means of the participation coefficient of the main vibration mode Γ. For this
reason, it is necessary to define:

The eigenvector F = {F1, F2, F3, F4, F5, F6}that, assuming Fk = Fk
Fn

, is:

F1 = 0.134 F2 = 0.267 F3 = 0.401

F4 = 0.535 F5 = 0.669 F6 = 0.802 F7 = 1.000

The modal participation factor Γ:

Γ =
∑n

k=1 mkFk

∑n
k=1 mkFk

2 = 1.4381

being:

m1 = 57.98 × 103 kg m2 = 57.98 × 103 kg m3 = 57.98 × 103 kg

m4 = 57.98 × 103 kg m5 = 57.98 × 103 kg m5 = 57.98 × 103 kg m7 = 61.94 × 103 kg

The dynamic parameters of the equivalent SDOF system are reported in Table 5.

Table 5. Dynamic parameters of the equivalent SDOF system.

m* k* ω* T*

[kg 103] [kN/m] [rad/s] [s]

224.76 7113.36 5.6257 1.117

Therefore, the characteristic points of the capacity curve are defined in the planes α −
δ, Fb − dc, F* − D*, Sα − SD assessing the capacity in terms of accelerations for the Nassar
and Krawinkler approach and ADRS spectrum approach. In particular, in Table 6, the
results based on the use of the ADRS spectrum, and in Table 7, the results based on the use
of the Nassar and Krawinkler formulation, are reported.

Table 6. ADRS spectrum approach.

FO O LS NC

F [kN] 1284.84 2009.08 2009.08 2009.08
F* [kN] 893.41 1397.01 1397.01 1397.01
d [m] 0.1802 0.2824 0.5901 0.5901
d* [m] 0.1253 0.1964 0.4103 0.4103
Sa* [g] 0.404 0.634 1.324 1.324
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Table 7. Nassar and Krawinkler approach.

FO O LS NC

F [kN] 1284.84 2009.08 2009.08 2009.08
F* [kN] 893.41 1397.01 1397.01 1397.01
d [m] 0.1802 0.2824 0.5901 0.5901
d* [m] 0.1253 0.1964 0.4103 0.4103
µ [m] – – 2.089 2.089
Sa* [g] 0.405 0.634 1.353 1.353

Seismic performance verification requires that, for each limit state, the inequality
Sα.ls(T*)capacity ≥ Sα.ls(T*)demand is satisfied.

5.3. Global Moment Resisting Frame

Global moment resisting frames are designed according to the TPMC. The design
results are reported in Figure 8.
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columns and seismic forces.

The trilinear capacity curve is shown in Figure 9, which also shows the characteristic
performance points of the model.

Parameters obtained from the elastic analysis:

• δ1(α = 1) = 0.02684 m
• k = 37.2606 m−1

• δA = δy = 0.1602 m
• αA = αy = kδy = 5.999

Parameters obtained from the rigid-plastic analysis:

• α0 = 10.149
• γs = 0.53 m−1

• α = α0 − γs(δ − δy)→ α = 10.149 − 0.53(δ − 0.1602)
• α(δ = 0) = α0 + γsδy = 10.234
• H0 = 24.5 m (Global collapse mechanism)
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Evaluation of the maximum multiplier using the calibrated Merchant−Rankine for-
mula:

•
αmαx =

α0

1 + Ψα0γsδ1
= 9.7594

where:

Ψ = 0.28488 − 0.14042 ξ = 0.2763 with ξ =
∑ EIb

Lb

∑ EIc
Lc

= 0.06129

and consequently δB = αmax
k = 0.2619 and δC = δmecc = α0 − αmax

γs
+ δy = 10.149 − 9.7594

0.53 +
0.1602 = 0.8946 m.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the first plasticized element (first storey beams):

•

θp.mec =
nsδy

H0

[
Ψ1

Ψ2
Ψ3

(
αmax

αy
− 1

)Ψ4 1 − Ψ5γs
1 − Ψ6γs

]
= 0.01886 rad

The calculation of the corresponding capacity provides a final plastic rotation value of
8θy = 8 × 0.008257 = 0.06605 rad.

Evaluation of the plastic rotation demand corresponding to the development of the
collapse mechanism for the critical element (the mechanism is global, so the critical element
is one of the first storey columns):

•

θp.mec =
nsδy

H0

[
Ψ′1
Ψ′2

Ψ′3

(
αmax

αy
− 1

)Ψ′4 1 − Ψ′5γs

1 − Ψ′6γs

]
= 0.01774 rad

The calculation of the corresponding capacity, in the case of the third storey columns,
provides a value of the ultimate plastic rotation equal to 8θy = 8 × 0.003714 = 0.02971 rad.
Therefore, the ultimate conditions are governed by the columns of the first storey.

Considering the plastic rotation capacity, the ultimate displacement is given by:

δu = δC +
(
ϑp.u − ϑp.mecc

)
H0 = 0.8946 + (0.02971 − 0.01774) × 24.5 = 1.188 m

All the verification procedures considered the use of the transformation of the MDOF
system by means of the participation coefficient of the main vibration mode Γ. For this
reason, it is necessary to define:
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• The eigenvector F = {F1, F2, F3, F4, F5, F6} that, assuming Fk = Fk
Fn

, is:

F1 = 0.134 F2 = 0.267 F3 = 0.401

F4 = 0.535 F5 = 0.669 F6 = 0.802 F7 = 1.000

• The modal participation factor Γ:

Γ =
∑n

k=1 mkFk

∑n
k=1 mkFk

2 = 1.4381

being:

m1 = 57.98 × 103 kg m2 = 57.98 × 103 kg m3 = 57.98 × 103 kg

m4 = 57.98 × 103 kg m5 = 57.98 × 103 kg m5 = 57.98 × 103 kg m7 = 61.94 × 103 kg

The dynamic parameters of the equivalent SDOF system are reported in Table 8.

Table 8. Dynamic parameters of the equivalent SDOF system.

m* k* ω* T*

[kg 103] [kN/m] [rad/s] [s]

224.76 10108.5 6.7063 0.9369

Therefore, the characteristic points of the capacity curve are defined in the planes α −
δ, Fb − dc, F* − D*, Sα − SD assessing the capacity in terms of accelerations for the Nassar
and Krawinkler approach and ADRS spectrum approach. In particular, in Table 9, the
results based on the use of the ADRS spectrum, and in Table 10, results based on the use of
the Nassar and Krawinkler formulation, are reported.

Table 9. European code approach.

FO O LS NC

F [kN] 1627.71 2647.66 2647.66 2647.51
F* [kN] 1131.83 1841.05 1841.05 1840.94
d [m] 0.1602 0.2619 0.8946 1.1879
d* [m] 0.1114 0.1821 0.6220 0.8260
Sa* [g] 0.511 0.835 2.852 3.787

Table 10. Nassar and Krawinkler approach.

FO O LS NC0

F [kN] 1627.71 2647.66 2647.66 2776.3
F* [kN] 1131.83 1841.05 1841.05 1930.53
d [m] 0.1602 0.2619 0.8946 1.1879
d* [m] 0.1114 0.1821 0.6220 0.8260
µ [m] – – 3.415 4.535
Sa* [g] 0.513 0.835 2.958 3.988

Seismic performance verification requires that, for each limit state, the inequality
Sα.ls(T*)capacity ≥ Sα.ls(T*)demand is satisfied.

6. Conclusions

In this paper, some numeric examples explaining the application of a new assessment
method are reported. As can be seen from the given numerical examples, the methodology
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is of easy and rapid application. The methodology is also completely analytical since the
equations of the branches constituting the trilinear model can be obtained uniquely, given
the horizontal seismic actions and the sections of beams and columns of the analyzed
frame. The speed of application and the uniqueness show that this methodology is strongly
indicated for the evaluation of seismic performances in the immediate post-earthquake or
the large-scale assessment of the seismic vulnerability of the built heritage. Furthermore,
it constitutes a suitable tool to check the capacity of the buildings designed with the new
seismic code prescriptions. The reliability of the procedure is testified by the extensive
regression analysis, carried out on 420 frames designed with different approaches. The
feasibility of the procedure is very high and makes it suitable to be applied indiscriminately
to frames belonging to different historical periods.

Table 11 shows a comparison between the results in terms of the percentage scatter
between the values computed from pushover analysis and the proposed method of the
maximum bearing multiplier α and the displacement corresponding to the collapse and
formation of the plastic mechanism. It can be observed that the scatter is always lower
than 10%, thus testifying the accuracy of the proposed formulations. Moreover, the results
achieved by the simplified assessment procedure are on the safe side.

Table 11. Percentage scatter between the pushover analysis and the simplified approach.

αmax δmec δu
[%] [%] [%]

GMRF 0.9 1.9 5.3
SMRF 5.2 9.5 4.8
OMRF 1.8 5.1 7.2

The assessment of structure performances, in terms of comparing capacity-demand,
has been performed using the Nassar and Krawinkler approach, characterized by a wide
generality because it does not discriminate between high and low periods of vibration and
accounts for second-order effects. Finally, is important to note that the discretization of the
trilinear model in characteristic performance points makes it easy to compare the capacity
and demand for each limit state given by codes.
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Notation:

Symbol Description

αy
Multiplier of horizontal forces corresponding to the formation of the first plastic
hinge

α0
Kinematically admissible multiplier of horizontal forces due to first−order
rigid−plastic analysis

Г Modal participation factor.
γs Slope of the mechanism equilibrium curve, evaluated for the specific structure
γ Non−dimensional slope of the mechanism equilibrium curve
γov Overstrength coefficient

δ1
Elastic top sway displacement, corresponding to the design value of the seismic
forces

1/δ1 Slope of the elastic branch
δy Top sway displacement corresponding to the formation of the first plastic hinge

δA
Minimum top−sway displacement between service conditions and formation of the
first plastic hinge

θp.u Plastic hinge capacity assumed equal to 8.0 ϑy according to Eurocode 8−3 [26]

θp.mec
Plastic hinge rotation demand corresponding to the formation of the collapse
mechanism

θy Chord rotation at yielding
µls Ductility for the specific limit state
ξ Sensitivity factor for first storey members
Fk k-th component of the first mode eigenvector
ϕ Stability coefficient

Ψi
Regression coefficient for the first plasticized member—Evaluation of plastic
rotation demand

Ψ′ i
Regression coefficient for the critical member—Evaluation of plastic rotation
demand

αi Regression coefficient
bi Regression coefficient
E Elastic modulus
Fls Base shear force corresponding to the specific limit state
H0 Total height of the storeys involved in the collapse mechanism
Ib Moment of inertia of the beam
Ic Moment of inertia of the column
Lb Length of the beam
Lc Length of the column
lm Length of the member
Im Moment of inertia of the member
Mp.m. Plastic moment of the member
ns Number of storeys

q
The ratio between the maximum structural bearing capacity and the yielding
capacity

Sα.ls Spectral acceleration in terms of capacity linked to the considered limit state
Sα(T*) Spectral acceleration demand, provided by the code, for the specific limit state.

( . . . )*
Properties referred to the equivalent SDOF system—m* (mass); T* (Vibration
period); ω* (Pulse)

Abbreviations
Acronym Description
GMRF Global Moment Resisting Frames
SMRF Special Moment Resisting Frames
OMRFs Ordinary Moment Resisting Frames
TPMC Theory of Plastic Mechanism Control
EC8 Eurocode 8
SDOF Single Degree of Freedom
MDOF Multiple Degree of Freedom
ADRS Acceleration-Displacement Response Spectrum
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