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Abstract: A base isolation system, aimed to passively control the nonlinear dynamics of an internally
resonant tower, exposed to turbulent wind flow, is studied. A continuous visco-elastic beam, con-
strained at the bottom end by a nonlinear visco-elastic device and free at the top end, is considered.
All the nonlinearities, structural, inertial and aeroelastic, these latter computed via the quasi-static
theory, are accounted in the model. The interaction between self- and parametric excitations, trig-
gered by the mean wind velocity and the turbulent component, respectively, are analyzed. The
Multiple Scale Method is applied to the partial differential equations of motion, to investigate critical
and post-critical behaviors, when two modes in internal 1:3 resonance are involved in the response.
The first mode is found to lead the phenomenon, while the second mode is marginally involved. The
effectiveness of the visco-elastic nonlinear isolation system is assessed, both in increasing the mean
wind bifurcation value and in reducing the limit-cycle amplitude. The contribution of structural
nonlinearities is found to weakly affect the response.

Keywords: aeroelastic nonlinear behavior; turbulent wind; passive control; internal resonances;
perturbation analysis

1. Introduction

Slender structures under wind flow often manifest aeroelastic bifurcation phenom-
ena. Examples are wings [1,2], wind-turbines [3,4], cables [5–7], bridges [8–10], and tall
buildings [11–16]. Depending on the nature of the loads, the different kinds of excitation
can interact, e.g., self vs. parametric excitation [17–20]. This phenomenon, affecting tall
buildings, has received attention in the literature. The galloping response of tall prismatic
structures, subjected to unsteady wind, was analytically studied in [21], where multi har-
monic external and parametric excitation were considered. The parametric, external and
self-excitation of one/two towers under turbulent wind flow were analyzed in [22–24] and
in [25,26], where periodic and quasi-periodic motions were detected.

To passively suppress the aeroelastic instabilities, different kinds of added control
devices have been proposed. In [27] a new aeroelastic device for the wind turbines was
studied, yielding an attenuation of loads. In [28], a single-loop control system was applied
to long-span suspension bridges, by controlling the leading- and trailing-edge flaps by
sensing the main deck pitch angle. In [29], a passive control tool to increase the supersonic
flutter boundary of composite panels, using a multimodal shunted piezoceramic in parallel
topology, was identified. A wide use of the nonlinear energy sinks (NES), applied to
aeroelastic problems, was also made in the literature (see, e.g., [30–35]). Here, the passive
devices, consisting of essentially nonlinear oscillators, were designed to absorb energy
from the main structure. They are able to shift forward the bifurcation point and, moreover,
to reduce the amplitude of the nonlinear vibrations.

Referring to tall buildings, a visco-elastic device, made of an elastic spring in parallel
with a nonlinear dashpot, was applied to the base of a tower, to mitigate the effects of a
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steady [36] and unsteady [37] wind flow, respectively. In particular, in [37] the interaction
between self- and parametrically-excited vibrations was first studied. The wind turbulent
component was found to reduce the galloping velocity, leading to periodic or quasi-periodic
motions. On the other hand, the visco-elastic device provided a beneficial effect, since it
increased the galloping velocity and reduced the amplitudes of both limit-cycles and tori.
To summarize, calibration of the device visco-elastic parameters must account for several
aspects, namely: (i) the purely elastic base-isolation produces a detrimental lowering of
the critical wind velocity, making essential the addition of a (linear) dashpot; (ii) in order
for the linear dashpot to dissipate energy on the base displacement, the isolation system
requires using sufficiently soft spring; (iii) very soft springs, however, should be avoided,
to prevent unwanted large motions; (iv) the linear dashpot mainly shifts the critical wind
velocity, but does not reduce the amplitude of limit-cycles and tori, for which nonlinear
dashpot is also needed.

In [37] only the internally nonresonant case was analyzed, in which the dynamics of
the system was described by just one mode. On the contrary, when internal resonance
case occurs, higher-order modes can significantly affect the response [38–42]. As a few
examples, in [24] internally resonant coupled towers under wind effect were analyzed close
to a double-Hopf bifurcation, and in [43] the system was extended to the case of isolated
bases, tackled in direct approach. In [42], a nonlinear energy sink was used as a passive
control device to reduce the response of a nonlinear elastic string, subjected to primary
external excitation and in internal resonance conditions.

Guided by these results, the analysis of [37] is extended in this paper to account for
internally resonance. The study is aimed at investigating whether the passive control
system, designed when just one mode contributes to the response, is still efficient when
two modes are involved in the internal resonance phenomenon. However, an important
aspect of modeling needs to be addressed. It is well-known that, based on multiple scale
analysis, when just one mode is involved in galloping, the structural nonlinearities, both
of geometric and inertial nature, are negligible, since they only affect the phase but not
the amplitude modulation of motion. When, in contrast, two or more internally resonant
modes contribute to the aeroelastic response, it can be shown that structural nonlinearities
do enter to the amplitude equations, by the way of the internal coupling terms. Therefore,
at least potentially, structural nonlinearities can play a non-negligible role on nonlinear
dynamics, which deserves to be investigated. Accordingly, the model of [37] is extended,
in which: (a) the structural nonlinear geometric and inertial effects are fully taken into
account; (b) the stiffness of the elastic spring at the base is adjusted to tune the two lower
natural frequencies into the 1:3 resonant ratio.

The paper is organized as follows. In Section 2 the equations of motion of the system
are presented (detailed formulation is given in Appendix A) and the modal properties of
the associated linear problem are assessed, as well as the internal resonance conditions; in
Section 3 the perturbation analysis of the nonlinear problem is addressed; in Section 4 the
numerical results are shown; in Section 5 some conclusions are drawn.

2. Model
2.1. Nonlinear Aeroelastic Model

The aeroelastic behavior of a base-isolated tall building, with a square cross-section
and subjected to a turbulent wind flow, is investigated. The system is similar to the one
proposed in [37], but here the structural model, besides the aerodynamic one, is assumed
to be nonlinear as well. The building is modeled by a planar visco-elastic Euler-Bernoulli
beam (Figure 1), obeying the Kelvin-Voigt constitutive law. The beam is free at the top, and
constrained at ground by a visco-elastic device, consisting of a rheological model made
of a linear elastic spring of stiffness κ in-parallel with a nonlinear dashpot. This last is
characterized by a linear viscosity coefficient ζ1 and a nonlinear (van der Pol-like) viscosity
coefficient ζ3. The wind velocity U(t) is assumed to be uniform in space and equal to:

U(t) = Ū + û cos Ωt (1)
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in which Ū is the (leading) steady-state wind velocity, and û (� Ū) the amplitude and
Ω the fundamental frequency of the turbulent component (the higher harmonics being
neglected). The flow induces aerodynamic loads pa(s, t) nonlinearly depending on the
structural velocity v̇(s, t), described by the quasi-steady theory [44].

l
v(s,t)

ap (s,t)

s

A

B

U(t)

m, EI, 

,

Figure 1. Base-isolated beam model under transverse uniform turbulent wind flow.

The relevant equations of motion and boundary conditions are derived in Appendix A,
extending those obtained in [45] to the case of Kelvin-Voigt material and base isolation.
Introduction of the following positions is done:

v∗ :=
v
l

, s∗ :=
s
l
, t∗ := tωr, Ω∗ :=

Ω
ωr

, ωr :=
1
l2

√
EI
m

,

η∗ := ηωr, c∗e := ce
ωrl4

EI
, b∗i := bi

ω2
r l5

EI
, Ū∗ :=

Ū
ωrl

, û∗ :=
û

ωrl
,

κ∗ := κ
l3

EI
, ζ∗1 := ζ1

l3ωr

EI
, ζ∗3 := ζ3

l5ωr

EI

(2)

where v(s, t) is the transverse displacement at the abscissa s ∈ [0, l] and time t ∈ [0, ∞),
with l the length of the beam; EI is the flexural stiffness of the beam; m is the mass per unit
length; η is the internal viscous damping coefficient; ce is the external damping coefficient,

accounting for dissipation of the beam in motionless air; bi :=
1
2

$aDAi (for i = 1, 3) where
$a is the air mass density and Ai are dimensionless aerodynamic coefficients, depending
on the cross-section shape, of which D is a characteristic length; ωr is a reference frequency;
prime and dot denote differentiation with respect to the non-dimensional abscissa and
time, respectively.

Accounting for Equation (2) and omitting the asterisks, the nondimensional form of
the partial differential equation is found to be:

v̈ + (ce + b1Ū)v̇ +

[
v′′
(

1 +
v′2

2

)
+ η

[
v′′
(

1 +
v′2

2

)]•]′′
+

[
(v′′ + ηv̇′′)′

v′2

2

]′
+

v′

2

[∫ s

0
v′2(ξ)dξ

]••
+

v′′

2

∫ s

1

[∫ ξ

0
v′2(ζ)dζ

]••
dξ

+
b3

Ū
v̇3 +

(
b1v̇− b3

Ū2 v̇3
)

û cos(Ωt) = 0

(3)

with boundary conditions:
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v′A = 0[
v′′A

(
1 +

v′2A
2

)
+ η

[
v′′A

(
1 +

v′2A
2

)]•]′
+ (v′′′A + ηv̇′′′A )

v′2A
2

+ κvA + ζ1v̇A + ζ3v̇Av2
A = 0

−
[

v′′B

(
1 +

v′2B
2

)
+ η

[
v′′B

(
1 +

v′2B
2

)]•]′
− (v′′′B + ηv̇′′′B )

v′2B
2

= 0

v′′B

(
1 +

v′2B
2

)
+ η

[
v′′B

(
1 +

v′2B
2

)]•
+ (v′′B + ηv̇′′B)

v′2B
2

= 0

(4)

2.2. Modal Proprieties

First, free dynamics of the undamped and unloaded beam, constrained at ground by
the elastic spring κ, are addressed, to evaluate the natural frequencies and modes. To this
aim, by letting v(s, t) = ϕ(s)eiωt and substituting it in Equations (3) and (4), the following
boundary value problem is derived, when retaining linear terms and neglecting structural
and aerodynamic damping:

ϕ′′′′ −ω2 ϕ = 0

ϕ′A = 0

ϕ′′′A + κϕA = 0

−ϕ′′′B = 0

ϕ′′B = 0

(5)

with (ω, ϕ(s)) a real eigenpair. The solution reads:

ϕ(s) = c1 sin(αs) + c2 cos(αs) + c3 sinh(αs) + c4 cosh(αs) (6)

with α :=
√

ω a root of the transcendental characteristic equation:

α3 tan(α)
κ

+
α3 tanh(α)

κ
= sec(α) sech(α) + 1 (7)

The system natural frequencies, therefore, depend on the stiffness κ of the base elastic
spring. Aimed to investigate possible internal resonances, the ratio ω2/ω1 between the
second and the first root of Equation (7) is evaluated by varying the stiffness κ, see Figure 2.
It is observed that, for κ = 6.5, a 1:3 internal resonance occurs.

��
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Figure 2. The ratio between second and first natural frequency vs the elastic spring stiffness. Red
marker denotes the internally resonant case.

The relevant frequencies ω1 and ω2 of the two first natural modes, and the coefficients
of the associated modal shapes ϕ1(s) and ϕ2(s), normalized according to ϕ(1) = 1, are
reported in Table 1, for both the uncontrolled (κ → ∞) and controlled (κ = 6.5) systems. The
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modal shapes are also shown in Figure 3. They show that the chosen spring stiffness allows
quite large (but again acceptable) displacements at the base, according which the isolation
system is effective (in the linear field). Therefore, this particular internally resonant case
deserves to be analyzed.

Table 1. Frequencies and coefficients of the natural modes 1 and 2 of both uncontrolled and controlled
system; the modes are normalized according to ϕ(1) = 1. Internally resonant case for κ = 6.5.

Uncontrolled (U) Controlled (C)

Mode 1 Mode 2 Mode 1 Mode 2

ω 3.52 22.03 2.17 6.51
c1 0.37 −0.51 0.52 −0.15
c2 −0.50 0.50 −0.17 −0.70
c3 −0.37 0.51 −0.52 0.15
c4 0.50 0.50 0.68 −0.07

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

-0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 3. (a) First natural mode; (b) Second natural mode. Gray and black lines indicate the uncon-
trolled and controlled system, respectively. Internally resonant case for κ = 6.5.

3. Perturbation Analysis

The perturbation analysis is carried out here to evaluate the bifurcation equations and
analyze in detail the post-critical solutions, into a small region of the parameter space. It is
performed using the Multiple Scale Method in direct approach [46], i.e., directly applying
the method to the PDE of motion (3) and (4), on the same line followed in [37], where
a 1:2 resonance between the first mode of the beam and the turbulence excitation term
is considered. However, here the procedure is extended to the concurrent 1:3 internal
resonance condition between the first two modes of the beam, and taking into account the
structural nonlinear contributions as well.

Introducing a small and positive bookkeeping parameter ε, the following scaling of
variable is chosen:

v = ε1/2v̂ (8)

consistently with systems with cubic nonlinear terms; for the parameters, the scaling is:

ce = εĉe, η = εη̂, b1 = εb̂1, ζ1 = εζ̂1, ζ3 = O(1), b3 = O(1) (9)

which brings linear damping and wind effect to the highest perturbation order here considered.
Time scales are introduced, as t0 = t, t1 = εt, and time-derivatives consistently become:

∂

∂t
= ∂0 + ε∂1,

∂2

∂t2 = ∂2
0 + 2ε∂0∂1 (10)
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where ∂j =
∂

∂tj
, j = 0, 1. Moreover, series expansion of the dependent variable is applied:

v̂ = v̂0 + εv̂1 (11)

Resonance conditions read:

Ω = 2ω1 + εσe

ω2 = 3ω1 + εσi
(12)

where σe, σi are the external and internal detuning parameters, respectively.
Substituting Equations (8)–(11) in Equations (3) and (4), dividing by ε1/2 and collecting

terms multiplying ε0 and ε1, respectively, the following perturbation equations are obtained
(omitting hat):

∂2
0v0 + v′′′′0 = 0

v′0 = 0

v′′′0 + κv0 = 0

}
at s = 0

−v′′′0 = 0

v′′0 = 0

}
at s = 1

(13)

and

∂2
0v1 + v′′′′1 = −2∂0∂1v0 − [v′0(v

′
0v′′0 )

′]′ − η∂0v′′′′0 −
v′0
2

∂2
0

[∫ s

0
v′20 (ξ)dξ

]
−

v′′0
2

∫ s

1
∂2

0

[∫ ξ

0
v′20 (ζ)dζ

]
dξ − (ce + b1U)∂0v0 −

b3

U
(∂0v0)

3

−
(

b1U∂0v0 −
b3

U2 (∂0v0)
3
)

û cos(Ωt)

v′1 = 0

v′′′1 + κv1 = −v′0(v
′
0v′′0 )

′ − η∂0v′′′0 − ζ1∂0v0 − ζ3∂0v0v2
0

}
at s = 0

−v′′′1 = v′0(v
′
0v′′0 )

′ + η∂0v′′′0

v′′1 = −v′20 v′′0 − η∂0v′′0

}
at s = 1

(14)

Equation (13) provides the generating solution:

v0 = A1(t1)eiω1t0 ϕ1(s) + A2(t1)eiω2t0 ϕ2(s) + c.c. (15)

where, due to the presence of damping, only internally resonant modes are retained, with
A1(t1), A2(t1) slow time varying complex amplitudes to be determined, c.c. standing
for complex conjugate and i for the imaginary unit. Substitution of Equation (15) in
Equation (14), with use of Equation (12), provides:

v′′′′1 − ∂2
0v1 = q1(s, t1)eiω1t0 + q2(s, t1)eiω2t0 + N.R.T

v′1 = 0

v′′′1 + κv1 = Q1(0, t1)eiω1t0 + Q2(0, t1)eiω2t0 + N.R.T

}
at s = 0

−v′′′1 = Q1(1, t1)eiω1t0 + Q2(1, t1)eiω1t0 + N.R.T

v′′1 = C1(1, t1)eiω1t0 + C2(1, t1)eiω1t0 + N.R.T

}
at s = 1

(16)

where qj, Qj, Cj, j = 1, 2, having the meaning of distributed loads, point-forces and couples,
respectively, collect resonant terms and N.R.T. stands for non-resonant terms. For the sake
of brevity, definition of qj, Qj, Cj is omitted here.



Appl. Sci. 2021, 11, 3213 7 of 17

Solvability conditions must be imposed in order to remove resonant terms at the right
hand side of Equation (16). It assumes the form of the Virtual Power Equation, namely:∫ 1

0
q1(s, t1)ϕ1(s)ds + Q1(0, t1)ϕ1(0) + Q1(1, t1)ϕ1(1) + C1(1, t1)ϕ′1(1) = 0∫ 1

0
q2(s, t1)ϕ2(s)ds + Q2(0, t1)ϕ2(0) + Q2(1, t1)ϕ2(1) + C2(1, t1)ϕ′2(1) = 0

(17)

Coming back to the time t and reabsorbing ε, Equation (17) produces the following
Amplitude Modulation Equations (AME):

Ȧ1 =
(

d10 + Ūd̂10

)
A1 +

(
d2

Ū
+ d̂2 + id̃2

)
A2

1 Ā1 + û
d1

Ū
A3

1e−itσe + ûd11 A2eit(σi−σe)

+ ûd12 Ā1eitσe + û
d3

Ū
A1 A2 Ā1eit(σi−σe) + û

d4

Ū
A1 Ā2

1eitσe

+

(
d5

Ū
+ d̂5 + id̃5

)
A2 Ā2

1eitσi + û
d6

Ū
A2

1 Ā2eit(σe−σi)

+

(
d7

Ū
+ d̂7 + id̃7

)
A1 A2 Ā2 + û

d8

Ū
A2

2 Ā2eit(σi−σe)

+ û
d9

Ū
A2 Ā1 Ā2eitσe

Ȧ2 =
(

d22 + Ūd̂22

)
A2 + ûd21 A1eit(σe−σi) +

(
d13

Ū
+ d̂13 + id̃13

)
A3

1e−itσi

+ û
d14

Ū
A2

1 A2e−itσe + û
d15

Ū
A2

1 Ā1eit(σe−σi) +

(
d16

Ū
+ d̂16 + id̃16

)
A1 A2 Ā1

+ û
d17

Ū
A2

2 Ā1eit(σi−σe) + û
d18

Ū
A2 Ā2

1eitσe

+ û
d19

Ū
A1 A2 Ā2eit(σe−σi) +

(
d20

Ū
+ d̂20 + id̃20

)
A2

2 Ā2

(18)

where the coefficients are given in Appendix B. It is worth noting that the structural
geometric and inertial nonlinear terms give rise to the coefficients indicated as d̃j,
j = 2, 5, 7, 13, 16, 20, which contribute as imaginary parts of the relevant terms.

The real form of the AME is obtained using the polar transformation, namely A1(t) =
a1(t)

2 eiϑ1(t) and A2(t) = a2(t)
2 eiϑ2(t), to be substituted in Equation (18). Then, separating

real and imaginary parts and defining the phase differences ψ1(t) = 2ϑ1(t) − σet and
ψ2(t) = ϑ2(t)− 3ϑ1(t) + σit, the real AME become:
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ȧ1 =
(

d10 + Ūd̂10

)
a1 + ûd12 cos ψ1a1 +

1
4

û
d1

Ū
cos ψ1a3

1 +
1
4

(
d2

Ū
+ d̂2

)
a3

1 +
1
4

û
d4

Ū
cos ψ1a3

1

+ ûd11 cos(ψ1 + ψ2)a2 +
1
4

û
d3

Ū
cos(ψ1 + ψ2)a2

1a2 +
1
4

((
d5

Ū
+ d̂5

)
cos ψ2 − d̃5 sin ψ2

)
a2

1a2

+
1
4

û cos(ψ1 + ψ2)
d6

Ū
a2

1a2 +
1
4

(
d7

Ū
+ d̂7

)
a1a2

2 +
1
4

û
d9

Ū
cos ψ1a1a2

2 +
1
4

û
d8

Ū
cos(ψ1 + ψ2)a3

2

ȧ2 = ûd21 cos(ψ1 + ψ2)a1 +
1
4

((
d13

Ū
+ d̂13

)
cos ψ2 + d̃13 sin ψ2

)
a3

1 +
1
4

û
d15

Ū
cos(ψ1 + ψ2)a3

1

+
(

d22 + Ūd̂22

)
a2 +

1
4

û
d14

Ū
cos ψ1a2

1a2 +
1
4

(
d16

Ū
+ d̂16

)
a2

1a2 +
1
4

û
d18

Ū
cos ψ1a2

1a2

+
1
4

û
d17

Ū
cos(ψ1 + ψ2)a1a2

2 +
1
4

û
d19

Ū
cos(ψ1 + ψ2)a1a2

2 +
1
4

(
d20

Ū
+ d̂20

)
a3

2

a1ψ̇1 = −σea1 − 2ûd12 sin ψ1a1 +
1
2

û
d1

Ū
sin ψ1a3

1 −
1
2

û
d4

Ū
sin ψ1a3

1 + 2ûd11 sin(ψ1 + ψ2)a2

+
1
2

((
d5

Ū
+ d̂5

)
sin ψ2 + d̃5 cos ψ2

)
a2

1a2 +
1
2

û
d3

Ū
sin(ψ1 + ψ2)a2

1a2

− 1
2

û
d6

Ū
sin(ψ1 + ψ2)a2

1a2 −
1
2

û
d9

Ū
sin ψ1a1a2

2 +
1
2

û
d8

Ū
sin(ψ1 + ψ2)a3

2 +
1
2

d̃2a3
1 +

1
2

d̃7a1a2
2

a1a2ψ̇2 = −ûd21 sin(ψ1 + ψ2)a2
1 −

1
4

((
d13

Ū
+ d̂13

)
sin ψ2 − d̃13 sin ψ2

)
a4

1 −
1
4

û
d15

Ū
sin(ψ1 + ψ2)a4

1

+ σia1a2 + 3ûd12 sin ψ1a1a2 −
3
4

û
d1

Ū
sin ψ1a3

1a2 +
3
4

û
d4

Ū
sin ψ1a3

1a2 +
1
4

û
d14

Ū
sin ψ1a3

1a2

− 1
4

û
d18

Ū
sin ψ1a3

1a2 − 3ûd11 sin(ψ1 + ψ2)a2
2 −

3
4

((
d5

Ū
+ d̂5

)
sin ψ2 + d̃5 cos ψ2

)
a2

1a2
2

− 3
4

û
d3

Ū
sin(ψ1 + ψ2)a2

1a2
2 +

3
4

û
d6

Ū
sin(ψ1 + ψ2)a2

1a2
2 +

1
4

û
d17

Ū
sin(ψ1 + ψ2)a2

1a2
2

− 1
4

û
d19

Ū
sin(ψ1 + ψ2)a2

1a2
2 +

3
4

û
d9

Ū
sin ψ1a1a3

2 −
3
4

û
d8

Ū
sin(ψ1 + ψ2)a4

2

− 1
4
(
3d̃2 − d̃16

)
a3

1a2 +
1
4

d̃16a3
1 −

1
4
(
3d̃7 − d̃20

)
a1a2

2

(19)

Equilibrium solutions are sought imposing ȧ1 = ȧ2 = ψ̇1 = ψ̇2 = 0 in Equation (19),
and their stability is evaluated through the sign of the real part of the eigenvalues of the
Jacobian matrix of the same system. More specifically, to evaluate the stability of the
trivial solution, the Cartesian form of Equation (18) is evaluated as well, after substituting
A1(t) = (p1(t) + iq1(t)) exp(itσe/2), A2(t) = (p2(t) + iq2(t)) exp(it(3σe/2 − σi)) and
separating real and imaginary parts. Consequently, the Jacobian matrix evaluated at the
trivial solution reads:

Jc =


d10 + Ūd̂10 + ûd12

σe
2 ûd11 0

− σe
2 d10 + Ūd̂10 − ûd12 0 ûd11

ûd21 0 d22
3
2 σe − σi

0 ûd21 − 3
2 σe + σi d22

 (20)

and the changes in sign of the real parts of its eigenvalues are sought applying the Hurwitz
criterion [47] to the characteristic polynomial det(Jc − λI) = 0, where I is the identity
matrix of dimension 4. It is worth noting that the number of bifurcation parameters to
perform a complete unfolding of system (19) is four (e.g., (Ū, û, σe, σi)), which corresponds
to its codimension.

The expression of the beam displacement v(s, t) is reconstituted through Equation (15),
which becomes:

v(s, t) = a1(t) cos
(

Ω
2

t +
ψ1(t)

2

)
ϕ1(s) + a2(t) cos

(
3
2

Ωt +
3
2

ψ1(t) + ψ2(t)
)

ϕ2(s) (21)

where Equation (12) is used. From Equation (21), equilibra of Equation (19) correspond to
periodic evolution of the displacement of the beam points, whereas periodic solutions in
terms of amplitudes a1, a2 give rise to quasi-periodic evolution of the beam.
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Numerical calculations and parameter-continuation of the solutions of Equation (19),
as well as bifurcation and stability analysis, are carried out within the software AUTO [48],
combined with integration of the same equations in Mathematica [49].

4. Numerical Results

The complete unfolding of the codimension-four bifurcation is out of the scope of this
paper. Here, however, the turbulence amplitude is kept fixed to the value û = 0.1, whereas,
for different values of the internal detuning σi, the critical and post-critical behavior is
analyzed on the plane (σe, Ū). More specifically, the values σi = 0, i.e., perfect internal
resonance, and σi = −0.06, i.e., slightly far from the internal resonance, are alternatively
considered, in order to assess the transition from a resonant to non-resonant case [50]. The
other system parameters assume the following values: κ = 6.5, η = 0.00026, ce = 0.025,
b1 = −0.046, b3 = 0.384, ζ1 = 0.02.

Different configurations of the viscous-elastic device are also addressed, namely the
case of linear controlled beam (LC), i.e., ζ3 = 0, to be compared to the outcomes of the
nonlinear controlled system (NLC), where ζ3 = 50. A further comparison with the uncon-
trolled (UC) case, realized when the base is fixed (κ → +∞), is carried out as well. In the
above mentioned cases, geometric and inertia nonlinear contributions are not considered
(d̃j set to zero), in order to be consistent with the model proposed in [37], where nonlineari-
ties come from aerodynamic and viscous device only and where, however, exclusively the
first mode was considered (NLC-1M). Finally, the effect of structural geometric and inertial
nonlinear contributions is addressed (NLC-NL), through the modification produced by the
coefficients d̃j to the NLC case. The considered cases are summarized in Table 2.

Table 2. Summary of the analyzed cases.

Case Control Device Geometry and Inertia Number of Modes

UC No (Fixed base) Linear 2
LC Linear Linear 2
NLC Nonlinear Linear 2
NLC-1M [37] Nonlinear Linear 1
NLC-NL Nonlinear Nonlinear 2

First, the stability domain of the trivial solution (a1, a2) = (0, 0) is shown in Figure 4
for the uncontrolled and controlled cases, where only the first bifurcations are reported.
The plots are in good agreement with those reported in [37] since, due to the nature of the
considered damping, always the first mode is directly involved in the bifurcation, being the
second one pulled along (as it will be confirmed later). For the same reason, the domains
turn out to be insensitive to σi, however, in dependence on σe, the first bifurcation is of
Hopf type (H, for |σe| < 0.0022) or of Neimark type (N, for |σe| ≥ 0.0022). For |σe| < 0.0022,
second Hopf bifurcations are found as well (SH, upper semi-perimeter of the ellipses). The
control through the viscous-elastic device (black lines) generally induces an increasing of
the critical values of Ū, as expected, whereas the nonlinear terms in the equations do not
affect the domains, they being ruled only by the linear ones.

In Figure 5, the bifurcation diagrams for amplitudes a1, a2 as functions of Ū are shown,
obtained as vertical path in Figure 4 for σe = 0. In particular, solid and dashed lines represent
stable and unstable equilibria, respectively, whereas the filled regions indicate limit cycles
in the amplitudes a1, a2, the former corresponding to (stable and unstable) periodic motions
of the beam and the latter to quasi-periodic evolution. Comparison between controlled and
uncontrolled (grey line, UC) cases shows that the control system pushes forward the first
and second Hopf bifurcation points. Specifically, from the first point a stable branch arises,
whereas from the second one the branch is unstable. Moreover, the NLC case (red line)
shows smaller amplitudes in the post-critical evolution than the LC case (black line). If only
one mode is considered (NLC-1M, blue line), a similar behavior to NLC is found for a1.
Considering the nonlinear geometric and inertia terms (NLC-NL, orange line) modifies very
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slightly the amplitudes of the post-critical branches compared to the NLC case, except for
their nature: periodic motions occur up to Ū = 1.27; then, for increasing Ū, quasi-periodic
solutions are found, even if their modulation amplitudes are small. As a final comments,
amplitude a1 is one order of magnitude larger than a2 and the bifurcated branch arises
perpendicularly to the trivial one for a1, whereas it presents horizontal tangent for a2, as a
confirmation of the pulling along of the second mode by the first one.

UC
LC, NLC, NLC-1M, NLC-NL

N H NSH

σe

Ū

Figure 4. Stability diagram of the trivial solution in the (σe, Ū)-plane (N: Neimark bifurcation; H:
Hopf bifurcation).

The combined 3D bifurcation diagram, relevant to the case NCL-NL only, is shown
in Figure 6, where it is evident the initial tangency of the bifurcated branch to the (Ū, a2)
plane, as it is found also in other internally resonant problems [51].

For the same values of parameters, and for Ū = 1.25, the phase plots of the recon-
stituted displacement (Equation (21)) of the beam, at cross-section s = 0.5 and s = 1,
respectively, are shown in Figure 7. It is confirmed the reduction of the limit cycle am-
plitude due to the nonlinear control device. Moreover, slight differences appear between
NLC-NL and: (i) NLC, where structural geometric and inertial nonlinearities are neglected;
(ii) NLC-1M, where the second mode is ignored.

UC
LC
NLC
NLC-1M
NLC-NL

(a) Ū

a1

UC
LC
NLC
NLC-1M
NLC-NL

(b) Ū

a2

Figure 5. Bifurcation diagram for σe = 0, σi = 0: (a) amplitude a1; (b) amplitude a2 (solid line: stable;
dashed line: unstable).
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Ū

a1

a2

Figure 6. Bifurcation diagram for σe = 0, σi = 0, case NCL-NL (solid line: stable; dashed line: unstable).
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The combined 3D bifurcation diagram, relevant to the case NCL-NL only, is shown
in Figure 6, where it is evident the initial tangency of the bifurcated branch to the (Ū, a2)
plane, as it is found also in other internally resonant problems [51].

For the same values of parameters, and for Ū = 1.25, the phase plots of the re-
constituted displacement (Equation (21)) of the beam, at cross-section s = 0.5 and s = 1,
respectively, are shown in Figure 7. It is confirmed the reduction of the limit cycle amplitude
due to the nonlinear control device. Moreover, slight differences appear between NLC-NL
and: (i) NLC, where structural and inertial nonlinearities are neglected; (ii) NLC-1M, where
the second mode is ignored.

UC
LC
NLC
NLC-1M
NLC-NL

(a) Ū

a1

UC
LC
NLC
NLC-1M
NLC-NL

(b) Ū

a2

Figure 5. Bifurcation diagram for σe = 0, σi = 0: (a) amplitude a1; (b) amplitude a2 (solid line: stable;
dashed line: unstable).

Ū

a1

a2

Figure 6. Bifurcation diagram for σe = 0, σi = 0, case NCL-NL (solid line: stable; dashed line: unstable).

(a) v(0.5, t)

v̇(0.5, t)

(b) v(1, t)

v̇(1, t)

UC
LC
NLC
NLC-1M
NLC-NL

Figure 7. Phase plot for the beam for Ū = 1.25, σe = 0, σi = 0: a) at s = 0.5; b) at s = 1.Figure 7. Phase plot for the beam for Ū = 1.25, σe = 0, σi = 0: (a) at s = 0.5; (b) at s = 1.

When σe = 0.003 is considered, the bifurcation diagram for amplitudes a1, a2 as
functions of Ū are shown in Figure 8. The major difference with respect to the perfect
resonant case of Figure 5 is related to the different kind of bifurcation point, which is on
Neimark type. Indeed, filled regions indicate that quasi-periodic solutions arise, however
with modulation amplitudes which appear quite small. Furthermore, periodic motions are
found for the UC and LC cases for larger values of Ū, in some regions even coexisting with
quasi-periodic evolution (LC).

UC
LC
NLC
NLC-1M
NLC-NL

(a) Ū

a1

UC
LC
NLC
NLC-1M
NLC-NL

(b) Ū

a2

Figure 8. Bifurcation diagram for σe = 0.003, σi = 0: (a) amplitude a1; (b) amplitude a2 (solid line:
stable; dashed line: unstable).
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Quite far from internal resonance, Figure 9 shows the bifurcation diagram for amplitudes
a1, a2 as functions of Ū at σi = −0.06, and for σe = 0. There, for better visibility, quasi-periodic
solutions are omitted, whereas only periodic motion branches are shown. The behavior is
qualitatively similar to the corresponding internally resonant case (Figure 5), even if smaller
amplitudes a2 occur here, due to the weaker nonlinear interaction between the two modes.

UC
LC
NLC
NLC-1M
NLC-NL

(a) Ū

a1

UC
LC
NLC
NLC-1M
NLC-NL

(b) Ū

a2

Figure 9. Bifurcation diagram for σe = 0, σi = −0.06: (a) amplitude a1; (b) amplitude a2 (solid line:
stable; dashed line: unstable).

As final comments, the efficiency of the nonlinear control device is confirmed, both
in pushing forward the bifurcation and in reduction of the post-critical amplitudes. The
internal resonance for the analyzed cases appears as a weak phenomenon compared to the
galloping induced on the first mode, slightly modifying the post-critical evolution with the
presence of the minor component a2. Nonlinear structural geometry and inertia give minor
contributions as well, confirming the almost linear features of cantilevers [52], even in the
case of internal resonance.

5. Conclusions

The aeroelastic behavior of a tall building modeled as an Euler-Bernoulli beam is
considered here. Base isolation with a nonlinear viscous-elastic device is assumed, for
vibration mitigation purpose. The steady component of the wind triggers galloping, whereas
the turbulent component, with harmonic evolution, is in principal parametric resonance
with the first mode of the beam. Internal resonance in ratio 1:3 between the first and second
beam mode, reached after suitable calibration of the base device, is considered as well.

After the application of the Multiple Scale Method in direct approach, a bifurcation
analysis is carried out to evaluate the effects of the nonlinear viscous term of the device,
the internal resonance and the structural nonlinear geometric and inertial terms.

The main conclusions can be summarized as follows:

• The base device, through its linear viscous component, pushes forward the bifurcation
point, as expected;

• The nonlinear viscous term of the device reduces the amplitude of the post-critical
evolution, as compared to the use of a purely linear device;

• The galloping induced by the mean wind on the first mode represents the leading
phenomenon, being the second mode marginally involved in the motion due to its
smaller amplitudes;

• The structural nonlinearities provide weak modification to the response, confirming
the almost linear behavior of the cantilever, even when internal resonance occurs.

Author Contributions: S.D.N.: Conceptualization, Methodology, Investigation, Validation, Writing—
original draft; D.Z.: Conceptualization, Methodology, Investigation, Validation, Writing—original
draft; A.L.: Conceptualization, Methodology, Supervision, Writing—review and editing. All authors
have read and agreed to the published version of the manuscript.
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Appendix A. Nonlinear Equations of Motion

The nonlinear equations of motion of the cantilever, realized with viscous-elastic
material and equipped with base isolation device, are evaluated here as an extension of
what was done in [45] to the case under analysis. Being u(s, t), v(s, t) the longitudinal and
transversal displacements of the axis-line points, respectively, the kinematic problem of the
cantilever reads:

ε = u′ +
v′2

2
(A1)

k = v′′ − (u′v)− v′2v′′ (A2)

where ε is the axial strain and k the bending curvature, Taylor-expanded up to the quadratic
and cubic terms, respectively. Essential boundary conditions are written at cross-section
A, namely:

uA = 0 (A3)

v′A = 0 (A4)

As typical for the case of longitudinally movable end (here at cross-section B), the
internal constraint ε = 0 is applied and it is implemented introducing the Lagrange
multiplier λ(s, t), which represents the reactive axial force along the beam. Moreover, a
response function relevant to linear Kelvin-Voigt material is assumed, namely:

M = EIk + ηk̇ (A5)

being EI the bending stiffness and η the internal viscous factor. The extended Hamiltonian
Principle, consequently, reads:

δH =
∫ t2

t1

[∫ l

0

[
m(u̇δu̇ + v̇δv̇)− (EIk + ηk̇)δk− (cev̇− pa)δv + λδε + εδλ

]
ds

+ (κvA + ζ1v̇A + ζ3v̇Av2
A)δvA

]
dt = 0, ∀δu, δv, δλ

(A6)

where m is the mass per unit length, ce the external damping coefficient, pa the aerodynamic
force, κ the base device stiffness, ζ1, ζ3 the linear and cubic damping coefficients of the
device, respectively, δ is the variation operator and t1, t2 two generic time instants, at which
δu, δv, δλ all vanish. After substitution of Equations (A1) and (A2) in (A6) and application
of the part integration formula, the equations of motion are obtained. Among them, the
one relevant to δu reads:

mü + [λ− EIv′v′′′ + ηv′v̇′′′]′ = 0 (A7)

which can be integrated to evaluate the expression of the Lagrange multiplier:

λ =
∫ s

1
[(EIv′v′′′ + ηv′v̇′′′)′ −mü]dξ (A8)

where the boundary condition λ(1, t) = 0 is used. The equation relevant to δλ reproduces
the constraint ε = 0. Then, using Equation (A1) for ε and after integration, the expression
for u is obtained:

u(s, t) = −1
2

∫ s

0
v′(ξ, t)2dξ (A9)
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where the boundary condition (A3) is used. Substitution of Equations (A8) and (A9) in the
equation relevant to δv, provides the following condensed equation of motion, where only
the variable v appears and terms up to the cubic order are retained:

mv̈ + cev̇ +
m
2

v′
[∫ s

0
v′(ξ, t)2dξ

]••
+

m
2

v′′
∫ s

1

[∫ ξ

0
v′(ζ, t)2dζ

]••
dξ

+ (EI + η∂t)

[
v′′
(

1 +
v′2

2

)]′′
+

[
v′2

2
(EI + η∂t)v′′′

]′
− pa = 0

(A10)

with boundary conditions:

v′A = 0

(EI + η∂t)

[
v′′A

(
1 +

v′2A
2

)]′
+

v′2A
2
(EI + η∂t)v′′′A + κvA + ζ1v̇A + ζ3v̇Av2

A = 0

− (EI + η∂t)

[
v′′B

(
1 +

v′2B
2

)]′
−

v′2B
2
(EI + η∂t)v′′′B = 0

(EI + η∂t)

[
v′′B

(
1 +

v′2B
2

)]
+

v′2B
2
(EI + η∂t)v′′B = 0

(A11)

Appendix B. Coefficients of Equations

Defining

I1 =
∫ 1

0
ϕ1(s)2ds, I2 =

∫ 1

0
ϕ2(s)2ds (A12)

then the coefficients of the AME (18) are:

d1 = − 1
4I1

(b3ω2
1

∫ 1

0
ϕ1(s)4ds), d2 = − 1

2I1
(3b3ω2

1

∫ 1

0
ϕ1(s)4ds), d̂2 = − 1

2I1
(ζ3 ϕ1(0)4),

d̃2 = (3
∫ 1

0
ϕ1(s)ϕ′′1 (s)

3ds)/(2I1ω1) + (3
∫ 1

0
ϕ1(s)ϕ′1(s)ϕ′′1 (s)ϕ′′′1 (s)ds)/(I1ω1)

−
∫ 1

0

∫ s

0
ϕ′1(ξ)

2dξϕ1(s)ϕ′1(s)dsω1/I1 −
∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)

2dζdξϕ1(s)ϕ′′1 (s)dsω1/I1,

d3 = (9b3ω2
1

∫ 1

0
ϕ1(s)3 ϕ2(s)ds)/(2I1), d4 = (−3b3ω2

1

∫ 1

0
ϕ1(s)4ds)/(4I1),

d5 = (9b3ω2
1

∫ 1

0
ϕ1(s)3 ϕ2(s)ds)/(2I1), d̂5 = (−ζ3 ϕ1(0)3 ϕ2(0))/(2I1),

d̃5 = (3
∫ 1

0
ϕ1(s)ϕ′′1 (s)

2 ϕ′′2 (s)ds)/(2I1ω1) +
∫ 1

0
ϕ1(s)ϕ′2(s)ϕ′′1 (s)ϕ′′′1 (s)ds/(I1ω1)

+
∫ 1

0
ϕ1(s)ϕ′1(s)ϕ′′2 (s)ϕ′′′1 (s)ds/(I1ω1) +

∫ 1

0
ϕ1(s)ϕ′1(s)ϕ′′1 (s)ϕ′′′2 (s)ds/(I1ω1)

− 2
∫ 1

0

∫ s

0
ϕ′1(ξ)ϕ′2(ξ)dsϕ1(s)ϕ′1(s)dsω1/I1 −

∫ 1

0

∫ s

0
ϕ′1(ξ)

2dξϕ1(s)ϕ′2(s)dsω1/I1

− 2
∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)ϕ′2(ζ)dζdξϕ1(s)ϕ′′1 (s)dsω1/I1 −

∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)

2dζdξϕ1(s)ϕ′′2 (s)dsω1/I1,

(A13)
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and

d6 = (9b3ω2
1

∫ 1

0
ϕ1(s)3 ϕ2(s)ds)/(4I1), d7 = −(27b3ω2

1

∫ 1

0
ϕ1(s)2 ϕ2(s)2ds)/(I1)

d̂7 = −(ζ3 ϕ1(0)2 ϕ2(0)2)/(I1), d̃7 = (3
∫ 1

0
ϕ1(s)ϕ′′1 (s)ϕ′′2 (s)

2ds)/(I1ω1)

+ (2
∫ 1

0
ϕ1(s)ϕ′2(s)ϕ′′2 (s)ϕ′′′1 (s)ds)/(I1ω1) + (2

∫ 1

0
ϕ1(s)ϕ′2(s)ϕ′′1 (s)ϕ′′′2 (s)ds)/(I1ω1)

+ (2
∫ 1

0
ϕ1(s)ϕ′1(s)ϕ′′2 (s)ϕ′′′2 (s)ds)/(I1ω1)− 10

∫ 1

0

∫ s

0
ϕ′1(ξ)ϕ′2(ξ)dξϕ1(s)ϕ′2(s)dsω1/I1

− 10
∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)ϕ′2(ζ)dζdsϕ1(s)ϕ′′2 (s)dsω1/I1,

d8 = (81b3ω2
1

∫ 1

0
ϕ1(s)ϕ2(s)3ds)/(4I1), d9 = (−27b3ω2

1

∫ 1

0
ϕ1(s)2 ϕ2(s)2ds)/(2I1),

d10 = − ce

2
− (η

∫ 1

0
ϕ1(s)ϕ′′′′1 (s)ds + ζ1 ϕ1(0)2 + ηϕ1(1)ϕ′′′1 (1))/(2I1), d̂10 = − b1

2

d11 = (−3b1

∫ 1

0
ϕ1(s)ϕ2(s)ds)/(4I1), d12 =

b1

4

(A14)

and

d13 = (b3ω2
2

∫ 1

0
ϕ1(s)3 ϕ2(s)ds)/(54I2), d̂13 = (−ζ3 ϕ1(0)3 ϕ2(0))/(6I2),

d̃13 =
∫ 1

0
ϕ2(s)ϕ′′1 (s)

3ds/(2I2ω2) +
∫ 1

0
ϕ2(s)ϕ′1(s)ϕ′′1 (s)ϕ′′′1 (s)ds/(I2ω2)

−
∫ 1

0

∫ s

0
ϕ′1(ξ)

2dξϕ2(s)ϕ′1(s)dsω2/(9I2)−
∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)

2dζdξϕ2(s)ϕ′′1 (s)dsω2/(9I2),

d14 = − 1
12

(b3ω2
2

∫ 1

0
ϕ1(s)2 ϕ2(s)2ds)/(I2), d15 = (b3ω2

2

∫ 1

0
ϕ1(s)3 ϕ2(s)ds)/(36I2),

(A15)

and

d16 = − 1
3
(b3ω2

2

∫ 1

0
ϕ1(s)2 ϕ2(s)2ds)/(I2), d̂16 = −(ζ3 ϕ1(0)2 ϕ2(0)2)/(I2),

d̃16 = (3
∫ 1

0
ϕ2(s)ϕ′′1 (s)

2 ϕ′′2 (s)ds)/(I2ω2) + (2
∫ 1

0
ϕ2(s)ϕ′2(s)ϕ′′1 (s)ϕ′′′1 (s)ds)/(I2ω2)

+ (2
∫ 1

0
ϕ2(s)ϕ′1(s)ϕ′′2 (s)ϕ′′′1 (s)ds)/(I2ω2) + (2

∫ 1

0
ϕ2(s)ϕ′1(s)ϕ′′1 (s)ϕ′′′2 (s)ds)/(I2ω2)

− 10
∫ 1

0

∫ s

0
ϕ′1(ξ)ϕ′2(ξ)dξϕ2(s)ϕ′1(s)dsω2/(9I2)− 10

∫ 1

0

∫ s

1

∫ ξ

0
ϕ′1(ζ)ϕ′2(ζ)dζdξϕ2(s)ϕ′′1 (s)dsω2/(9I2),

d17 = (b3ω2
2

∫ 1

0
ϕ1(s)ϕ2(s)3ds)/(4I2), d18 = − 1

12
(b3ω2

2

∫ 1

0
ϕ1(s)2 ϕ2(s)2ds)/(I2),

d19 = (b3ω2
2

∫ 1

0
ϕ1(s)ϕ2(s)3ds)/(2I2)

d20 = − 1
2
(3b3ω2

2

∫ 1

0
ϕ2(s)4ds)/(I2), d̂20 = − 1

2
(ζ3 ϕ2(0)4)/(I2), d̃20 = (3

∫ 1

0
ϕ2(s)ϕ′′2 (s)

3ds)/(2I2ω2)

+ (3
∫ 1

0
ϕ2(s)ϕ′2(s)ϕ′′2 (s)ϕ′′′2 (s)ds)/(I2ω2)− (

∫ 1

0

∫ s

0
ϕ′2(ξ)

2dξϕ2(s)ϕ′2(s)dsω2)/I2

− (
∫ 1

0

∫ s

1

∫ ξ

0
ϕ′2(ζ)

2dζdξϕ2(s)ϕ′′2 (s)dsω2)/I2, d21 = − 1
12

(b1

∫ 1

0
ϕ1(s)ϕ2(s)ds)/I2,

d22 = − ce

2
+ (η

∫ 1

0
ϕ2(s)ϕ′′′′2 (s)ds + ζ1 ϕ2(0)2 + ηϕ2(0)ϕ′′′2 (0))/I2, d̂22 = − b1

2

(A16)
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