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Abstract. A two lane, non-periodic highway with on-ramps and off-
ramps is simulated using a simple cellular automata model. The main
experimental features of highway traffic are reproduced, indicating the
usefulness of this approach for the study of traffic and it is shown the
need of ramps to produce congested traffic. A fractal dimension for the
variables used for traffic analysis, that is car density, car speed and flow
has been measured with a Box Counting algorithm. Finally, it is sug-
gested how to perform real-time traffic forecasts.

1 Introduction

Every day an enormous number of car drivers, commuting to work or going to
the countryside for the weekend, get stucked into traffic. Many of the readers
of this article, as car drivers, might have noticed how sometimes, driving on an
highway, the traffic suddenly slows to a crawl. For a while cars move very slowly
and then are again free to accelerate. There are no accidents or roadworks to
cause the jam, which apparently has no explanation.

This and other aspects of highway traffic, like the creation of car density
waves, together with the great economical costs and health problems linked to
traffic, spurred the scientists attention into the study of the subject. In the last
decades, experimental data were collected and analysed, mainly in USA, Ger-
many and Japan [1-5]. At the same time, models of traffic flow were built. The
firsts were based on collective properties of traffic [6]. Then there were micro-
scopic models, like the so called optimal velocity model by Bando and cowork-
ers [7]. Both were based on the computer resolution of non-linear differential
equations. Despite some succes, a real progress in the study of traffic came only
with the introduction of computer simulations based on cellular automata. This
method is simpler to implement on computers, provides a simple physical picture
of the system and can be easily modified to deal with different aspects of traffic.
For these reasons, cellular automata models are getting more and more popular.
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In synthesis, a cellular automaton consists of a regular lattice with a discrete
variable at each site. A set of rules specify the space and time evolution of
the system, which is discrete in both variables [8,9]. These rules are usually
limited to first neighbours interactions, but this is not necessary however, and
the particular application of cellular automata to traffic is one case where longer
range interactions are used.

2 Cellular Automata Model

The model proposed in this article simulate a two lane highway with on and
off-ramps as a long straight road divided into cells which can be occupied by
cars moving in the direction of increasing cell number. Cars enter the highway
at the road beginning and at on-ramps at a given rate by means of pseudo ran-
dom number generation. Once in the road, they move according to a set of rules.
These evolution rules were derived from those used by Schreckenberg, Nagel and
coworkers [10-12]. These authors simulated a multilane highway with the use
of few simple rules, which proved how cellular automata models are effective in
simulating traffic. Although really interesting, the above cited model and other
similar are unrealistic. Their main pitfalls are the use of periodic boundary con-
ditions and the lack of ramps. Leaving aside that every highway has a beginning
and an end, the use of periodic boundary conditions forbids simulating a variable
car density along the highway, which is the common situation. As widely known,
traffic in most highways presents two peaks, one in the morning and a second
one in the afternoon [13], in addition to an absolute minimum during the night.
These basic experimental facts simply cannot be reproduced in the framework
of periodic models without ramps.

Ramps absence also hinders the well known fact that traffic jams usually
nucleate in correspondence of ramps or other obstacles to car flow such as road-
works or junctions. Even if it is proved that above a certain car density along the
road, density fluctuations naturally occur and grow into jams, as far as ramps
are always present it is there that jams first nucleate [14]. Furthermore, this
happens at a lower density with respect to a rampless highway.

In order to consider a more realistic road and to be able to simulate transient
phenomena, we developed a cellular automata model for a two lane highway
leaving periodic boundaries conditions and introducing on-ramps [15], which
were modeled as a single entrance cell in lane 1. Their number could vary from
simulation to simulation and were typically located 2500 cells apart. In this
article we present an improved version of that model where both on and off ramps
are present, data collection at a fixed point from a car detector is simulated and
data analysis is performed in order to look for the fractal dimension of traffic.

In the model, the highway length can be varied from simulation to simulation
and in order to compare the results of the simulations with experimental data,
we considered each cell to correspond to a length of 5 m and each evolution
step for the cells to occurr in 1 s. The model is asymmetric: one lane, named in
the following lane 2 or left lane, is used for overtaking while the other, named
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lane 1 or right lane, is for normal cruise. For all on-ramps, at each time step
(ts) the program checks if the cell is empty. If empty, a random number in the
[0,1] interval is generated and if it is less than the threshold chosen for that
simulation, a car is generated at that cell with a speed of 2 cell/ts . At the
road beginning, cars are generated both on lane 1 and lane 2 with the procedure
described above, with starting speed 2 cell/ts. Every car entering the highway
has a given destination or off-ramp. Approaching its exit, the car slow down and
eventually move into the rigth lane. When the off-ramp is reached the car is
removed from the road.

For the sake of simplicity, cars can have only two values of their maximum
speed: 6 or 9 cell/ts, corresponding to a maximum speed of 108 or 162 km /h.
The first kind of vehicles corresponds to tracks. In this kind of simulations, cars
have an unbound braking ability in order to avoid car accidents.

The evolution rules away from ramps are schematically described as follows
in pidgin algol language:

MAIN:
Begin:
Init variables;
Load Highway-configuration;
Load Run-Parameters; /* RP */
Open Output-file;
If requested by RP then
Extract random initial state with initial car density given by RP ;
Do Velocity-Normalization;
Endif
/* MAIN LOOP: */
Repeat for Ntimes; /* Number of times specified in RP */
Forall on ramps:
With Propability P Do: /* Entrance Probability is given in RP for each en-
trance */
If entrance cell is empty then
generate new vehicle with velocity := 2;
endif
End With Propability
End Forall
Forall cars in Lane 2:
If are verified the conditions to reenter in lane 1 then
Change Lane;
Endif
End Forall
Forall cars in Lane 1:
If (car distance from exit) < 2 then
remove car;
endif
If are verified the conditions to overtake then Change Lane;
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If car.velocity < car.mazxv then
car.velocity := car.velocity + 1;
Endif
Endif
End Forall
Do Velocity-normalization;
Forall cars in Lane 1:
With Propability P Do:
/* Random deceleration with probability P given in RP */
car.velocity := car.velocity - 1;
End With Propability
End Forall
Forall cars in Lanes 1 and 2:
Car.position := Car.position + Car.velocity;
End Forall
Measure-and-Store physical quantities;
/* eg.: mean car density and velocity, flux etc. */
End Repeat /* End of main Loop */
Close ouput files;
End /* end of main program */

Velocity-normalization :
DEFINE Forward.Gap as the MINIMUM between the number of free cells
from a car to the next one in the same lane along the car direction of motion
and the distance of the car fromthe exit;
Begin:
Forall cars in Lanes 1 and 2:
Measure Forward.Gap;
If car.velocity < car.mazv then
car.velocity := car.velocity + 1;
Endif
If car.velocity > Forward.Gap then
/* This model (as the Schreckenberg one) avoids accidents */
car.velocity := Forward. Gap;
Endif
End Forall

Return ;

End

The input parameters to the program at the beginning of each simulation are:
highway length, ramp number and position, starting car density for each lane,
car generation probability, random deceleration probability, fraction of slow cars,
maximum speed of vehicles (maxv) and simulation length in time ticks.

At each iteration the state of the highway is computed and at selected times
recorded in a file. This means computing for each cell mean car speed and density,
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averaging over the 100 cells before and after the given cell. From these quantities
the flow is readily computed as density by mean speed. Furthermore, for each car,
position, speed and gaps are recorded. The use of averages in the calculation of
car speed and density is due to the use of a discrete model. Where in a real road
cars can have a continuous range of speeds and distances, here there are only
discrete quantities. A meaningful comparison with experimental data becomes
possible only after the averaging process, which increases the number of possible
values for speed and density. It is to say that in most cases experimental data
from highways are averages over time and/or space [14,16], so that the use of
averages is a legitimate procedure.

In addition to the state of the road at chosen times, the traffic evolution as
a function of time at selected positions is recorded. This should be particularly
useful when the program will be used to simulate real highways and used to
make traffic forecasts. We recently patented a system consisting of car detectors
to be installed along an highway, whose output will be used to calibrate a cellular
automata program implementing that particular highway. The simulations will
provide a detailed knowledge of the road characteristics. As a result, it will
be possible to forecast if a car jam is going to happen somewhere along the
highway on the basis of the current state of traffic and try to take some action
in order to prevent it. This could be done reducing car flow inside the highway
or having some wufficial car driving at reduced speed. This second kind of action
could help preventing the complete stop of cars which is the main cause of jam
formation [17].

The computer program used for these simulations was written in Fortran90.
In the program, software packages written at CERN (CERLIB) are used, mainly
for data analysis and graphic outputs (paw software) [18]. Eigth hours traffic
along a 100 Km long highway can be simulated in 3 to 5 minutes (depending on
traffic) with a personal computer equipped with a 1 GHz processor, a 266 MHz
bus, 256 Mbyte RAM memory and Linux operating system.

3 Representative results from computer simulations

Three main kind of traffic are found in highways. These will be called free flow,
synchronized flow and congested flow. A wide variety of subconditions is found
in synchronized and congested flow, which are sometimes named under different
terms, like wide moving jams.

Free flow is a condition where fast cars can easily overtake slow ones, there
are large gaps between cars and traffic flows easily. This phase occurs at low car
density (below 0.1 car/cell in the computer simulations of this work, but the value
is not sharply defined) and is characterised by the property that an increasing
car density along the highway produce an increasing flow. Experimental data
show that in terms of flow this condition lasts for car flow increasing from zero
up to 2000-2500 cars per lane per hour [14].

At the higher densities (above 0.5 car/cell in the computer simulations, but
again the value is not well defined) it is found the so-called congested flow. Tt
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is a condition of heavy traffic, with flow decreasing with increasing car density
and easy formation of jams. Overtaking is difficult and car speed can be nearly
Z€ro.

Intermediate between the former and the latter is the so-called synchronized
flow [14]. This condition is defined as a state of traffic in multilane roads in
which the vehicles in different lanes move with almost the same speed. In this
region flow can be high in spite of an increasing density and an average speed of
cars only about 1/2 that of free flow. In synchronized flow the linear correlation
between flow and density is lost and the two quantities becomes totally non-
correlated, that is a density increase can be accompanied by either a decrease or
an increase in flow rate. At each traffic condition corresponds a different value
of the average distance between cars.

These conditions of traffic (or phases, since they resemble in some aspects
phase transitions in matter [14]), correspond to three distinct regions in a flow
vs. density plot, also named fundamental plot. It is obtained plotting car flow
as a function of car density for all positions along the highway and for all times.
Every reasonable model of traffic must be able to correctly reproduce this plot,
as is the case of the cellular automata model here described. In Fig. 1 such a
plot, as obtained from one of the simulations performed with this program is
reported.
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Fig. 1. Fundamental plot of traffic. The population contour lines reveal how most
points (> 99%) concentrate into 3 regions. The first, on the left, corresponds to free
flow and is characterized by a positive slope. The central contoured region corresponds
to synchronized flow. The last contoured region, with negative slope, is due to the
presence in the simulation of congested traffic.

Noteworthy, this cellular automata model is able to simulate dynamical fea-
tures of traffic which were never observed with continuous and/or periodic mod-
els. Two examples are shown in Fig. 2 and in Fig. 3. In the first plot, the onset
and backward propagation of a wide jam is reported. As found in real highways,
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jams forms when car density becomes high and are nucleated by ramps (and also
by junctions or roadworks, features not introduced at present in the model).
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Fig. 2. In this simulation a density wave is generated at a certain time at about cell
10000 (top figure) and propagates backward (2400 and 10400 time steps later in the
mid and bottom figure, respectively).

The second plot is particularly interesting to us. It shows how a single on-
ramp is not enough to produce congested traffic. In the simulation relative to
Fig. 3, a congested flow road with an entrance at the beginning and an exit at its
end turns in time into free flow, despite the maximum possible number of cars
entering the road at its beginning. In other words, only the presence of several
ramps sufficiently closely spaced between them, can produce heavy traffic. This
is a common experience for drivers that at the highway beginning or after a
queue due to an accident, find fluid traffic and low car density.

3.1 Fractal Analysis

The results from the simple algorithm reported in the previous paragraph indi-
cate how the complexity of traffic is not due to a great number of drivers, each
behaving differently. It is rather the result of the repeted application of simple
rules, which are surely not corresponding to a linear interaction between cars.
Traffic is in fact a non linear system and the problem of writing down the dif-
ferential equations corresponding to the evolution rules of the cellular automata
problem is still open. This, together with the repeated fragmented look common
to all plots obtained from the data of the various simulations performed, sug-
gested us to look for self-similarity in traffic. To our knowledge such a research
has never been done on experimental data and only once on simulated data from
a unreal single lane round-about without entrance or exit [19].

Car density and flow as a function of space were analysed with the box
counting algorithm [19-21]. This is probably the most widely used algorithm to
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Fig. 3. Density as a function of space at different times in a simulation without ramps
except at the beginning (car entrance) or the end (car exit) and a starting density
of 0.8 car/cell. In this lane density decreases as a function of time: curve 1 refers to
time=1000 time steps after the beginning of the simulation, curve 2 to time=>5000 ts,
curve 3 to time=10000 ts, curve 4 to time=15000 ts, curve 5 to time=20000 ts.
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Fig. 4. Car flow as a function of space for a 5000 cell long treat of highway. The curve
is repeatedly fragmented with self similar look over about 2 orders of magnification
along the x-axis.
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extract a non integer dimension from some data. Let consider for example Fig. 4.
The plot area is divided into 25 boxes with side length 1/5 of the abscissa and
ordinate range of variation. This can be done again and again using n? boxes
of decreasing side length (1/n of the whole length). An estimate of the fractal
dimention D of the curve can be obtained from a linear fit of log(S) vs. log(1/n),
where S(n) is the number of squares which contain at least one point of the curve.
With a simple program implementing this algorithm, the value of S is readily
obtained. The capability of the program to correctly yield the fractal dimention
of several point sets was tested with fractal objects taken from mathematics
and with non fractal curves. A further analysis, based on the discrete Fourier
transform was accomplished, revealing that our traffic data do not have periodic
components.

Values of the fractal dimension D between 1.4 and 1.6 were found in the
examined data set over a range of about 2 orders of magnitude in highway
length. This is not much in comparison with other simulations of fractal systems,
but here we are working with a discrete system, so that it is not reasonable to
expect a self-similar behaviour measured over a range greater than that of the
experimental data.

The spread in D values coming from simulations performed with different
traffic conditions could be an indication of a different fractal dimension for the
various phases of traffic. We are at the present time trying to better our data
set and to use other algorithms to measure D in order to clarify this point. We
also plan in the next future to accomplish a similar analysis on real data, which
will be collected on italian highways, to check the simulated results.

4 Conclusions

The use of cellular automata algorithms seems to be the most effective way to
simulate global and dynamic features of highway traffic. Wave nucleation and
propagation, transition between phases of traffic, lane inversion (a greater car
density in left than in rigth lane): all most significant features experimentally
known from highways seem to be reproducible. These simulations even suggest to
look for features of traffic which were never noticed before, like an eventual fractal
dimension. Finally, as a result of the confidence in the goodness of the model,
it would be possible to test the effect of new traffic rules or drivers behaviour.
For example, as suggested in [17] the usual driver behaviour is competitive, that
is with continuous accelerations, reduced safety distance, etc. What about the
effect of a non competitive behaviour? The experimental results reported in [17]
and our personal experience, seems to show that there should be a noticeable
difference. This could be easily simulated by a modified version of the model
proposed here.
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