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a b s t r a c t

In this paper, three numerical methods to solve Volterra integro-differential equations
containing rational functions are discussed. The first one is the Differential Quadrature
Method and, to the best knowledge of the author, it has never been applied to this kind of
problem; the second one is a new version of the Iterative Differential Quadraturemethod, a
method proposed by the author some years ago to solve problems in space–time domains,
revised herein for the single space variable problem; the third one is a numerical Picard-
like method, proposed herein to combine successive approximations with numerical
integration. Stability and convergence of the second and the third method are discussed.
The three methods have been applied to solve a real world problem in the field of the
structural engineering and the numerical results compared.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, the following integro-differential equation is considered

dry
dzr

+ β(z)y(z) + α(z)
∫ z

0
γ (z)y(z)dz = q(z), zϵ [0, h] (1)

with r ≥ 2 and with the boundary conditions

diy
dz i

(h) = ai, i = 0, . . . , r − 1

where ai are real constants, α(z) and q(z) are real continuous functions, β(z) and γ (z) are rational functions.
Many problems in science and engineering involve integro-differential equations often requiring efficient solution

methods, e.g. heat conduction inmaterials withmemory, viscoelasticity and reactor dynamics. The problemhere considered
deals with the bending moment equation for a tubular tapered cantilever beam, which depending on the load conditions,
can represent a typical model for wind towers or for chimneys. The mathematical model is given by a second order Volterra
integro-differential equation containing rational functions as expressed by Eq. (1). With regard to the numerical solution of
general Volterra integro-differential equations, the current literature discuss the use of spline collocationmethods (see [1,2])
or finite elementmethods [3]. In this paper, the aim is to investigate the use ofmethods not previously discussed or proposed.
The first one is the Differential Quadrature Method (DQM). In recent years, the DQM has become an increasingly popular
numerical technique for the rapid and efficient solution of a variety of science and engineering problems. The method was
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first developed by Bellman and Casti in the early 1970s [4] and can be regarded as a powerful alternative to the conventional
low order Finite Difference Method (FDM) and Finite Element Method (FEM), since it yields very accurate numerical results
using a considerably smaller number of grid points and hence requiring relatively little computational effort. So far hundreds
of papers devoted to the DQM or its variants have been published. In 1996, Bert and Malik presented a comprehensive
review of the chronological development and application of the DQM up to that year [5]. In 2000 appeared the book by Shu,
describing systematically both the theoretical analysis and the application of themethod [6]. A critical survey of themethod
according to the current achievements can be retrieved in [7].

The idea of the DQM is that, chosen some grid (or sampling) points in a direction (i.e. a grid line), the derivative at a grid
point along a grid line is approximated by a linear weighted sum of the functional values at all the grid points along the
grid line.

The second numerical method here discussed is the Iterative Differential Quadrature (IDQ) method, a method proposed
by the author some years ago [8,9] to solve problems in space–time domains, by applying the same quadrature rules used
in the DQM both in space and in time and computing the solution for a certain number M of subdomains one by one, i.e.
by retrieving each time the initial conditions by the immediately preceding calculus step. This method is here proposed for
the first time in a new version, named theModified Iterative Differential Quadrature (MIDQ) method, to solve a single space
variable problem. It should be pointed out that the method is different from the FEM, since, despite of the subdomains, the
method does not require an assembly step.

Finally, the third method is a Picard-like method, i.e. a numerical adaptation of the Picard method which combines
successive approximations with numerical integration.

Although themethod of successive approximations can be used as a semi-analytical approach by computing the integrals
exactly, some complications may arise when there are rational functions, even for the linear case, since computations
become very time-expensive. To overcome this drawback, the r-fold inverse operator applied to the rth-order differential
equation (1) is replaced by a weighted sum of the integrand values at N grid points, where the weights are obtained by
integrating r times the Lagrange interpolating polynomials.

As one can see, all the three approaches use the Lagrange interpolating polynomials but differently, since the first one
uses them to obtain a fully discretized system, the second one uses them to approximate solution by piecewise polynomials
computed recursively one by one and the third one uses them to introduce the numerical integration in a recursive
approximation scheme.

A comparison between the results obtained by the numerical methods here considered and the ones obtained by the
standard FEM is proposed: differently from the FEM all the methods here considered present the advantage of allowing
a one-dimensional model, by solving the problem by means of a small number of grid points. The three methods behave
differently depending on the load conditions: for all the load conditions considered herein, the best results seem to be
allowed by the MIDQ method.

It should be pointed out that, especially with regard to DQ based methods, the aim of the paper is not to propose a
methodology for retrieving an optimized set of sampling points (this is the subject of an ongoing research) but to examine
possible range of application of these methods to the problem to be solved, by means of a relatively small number of grid
points. Finally, it is worth noting that the proposedmethods are different from other iterative methods applied to nonlinear
problems (e.g. see [10]).

The paper is structured in three theoretical sections in order to give an overviewof themethods, also dealingwith stability
and convergence, followed by a section where the mathematical model is described and a section devoted to numerical
results and discussion.

2. The Differential Quadrature Method

The DQM approximates the rth order derivative of a function y(z) by a linear weighted sum of the functional values at
given grid points along the grid line.

By writing the function y(z) as:

y(z) =

N−
k=1

lk(z)yk

where lk(z) are the Lagrange interpolation functions at the points zk, the rth-order z-derivative of the function y(z) at a point
z = zi may be written as[

dry
dzr

]
z=zi

=

N−
k=1

drLk
dzr

(zi) =

N−
k=1

A(r)
ik yk i = 1, 2, . . . ,N (2)

where A(r)
ik are the weighting coefficients to be computed as follows [6].
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The off-diagonal terms of the weighting coefficient matrix of the first-order derivative turns out to be:

A(1)
ij =

N∏
ν=1
ν≠i

(zi − zν)

(zi − zj)
N∏

ν=1
ν≠j

(zj − zν)
i, j = 1, 2, . . . ,N j ≠ i. (3)

The off-diagonal terms of the weighting coefficient matrix of the higher-order derivative are obtained through the
recurrence relationship:

A(r)
ij = r


A(r−1)
ii A(1)

ij −
A(r−1)
ij

(zi − zj)


i, j = 1, 2, . . . ,N j ≠ i (4)

where 2 ≤ r ≤ (N − 1).
The diagonal terms of the weighting coefficient matrix are given by:

A(r)
ii = −

N−
ν=1
ν≠i

A(r)
iν i = 1, 2, . . . ,N (5)

where 1 ≤ r ≤ (N − 1).
Assuming the Lagrange interpolated polynomials as test functions, there is no restriction in the choice of the grid

coordinates. In the current literature, the choice of Gauss–Chebyshev–Lobatto (GCL) points is usual, but in what follows,
two different distributions will be considered (not so frequent in the DQM literature): a graded distribution

zi =


i − 1
N − 1

p

h, p > 1 (6)

and a geometric distribution

zi = bN−ih, 0 < b < 1 (7)

with i = 1, . . . ,N .
The distribution of the sampling points can also be obtained by computing the zeros of the first order derivative of

Gegenbauer polynomials [11].
Gegenbauer polynomials can be seen as a particular case of the Jacobi polynomials. An explicit representation of the

ultraspherical polynomials of degreem and order λ,Gλ
m(z), can be retrieved in [12].

For λ = 1/2, Gegenbauer polynomials reduce to Legendre polynomials; for λ → 0, Gegenbauer polynomials multiplied
by λ−1 differ in the limit by a constant respect to the Chebyshev polynomials and the shifted Gauss–Chebyshev–Lobatto
(GCL) points can be retrieved.

By applying the quadrature rules (2) to Eq. (1), one has the following discretized equations

N−
j=1

A(r)
ij yj + βiyi + αi

N−
k=1

Ck(zi)γkyk = qi, i = 1, . . . ,N (8)

where

Ck(z) =

∫ z

0
lk(z)dz

being lk(z) the Lagrange interpolating polynomials and with the boundary conditions

yN = a0,
N−
j=1

A(p)
Nj yj = ap, p = 1, . . . , r − 1.

Discussion about the error related to a DQ solution can be retrieved in [6]. Numerical results for different distributions
of sampling points are presented in Section 6.
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3. The Modified Iterative Differential Quadrature Method

In this section, a new modified version of the IDQ method is presented to solve Eq. (1) with r = 2, according to the
mathematical model presented in Section 5.

By means of this method, the quadrature grid can be regarded as a series of M sub-grids with N points and the
solution will be computed successively for each sub-grid. So if 1z[i] is the length of the ith subdomain (or interval) one
has h =

∑M−1
i=0 1z[i] and the approximated solution over the entire domain is given by piecewise polynomials

y[i]
=

N−
j=1

V [i]
j (z)y[i]

j (9)

being

V [i]
j (z) = δ1j +

N−1−
r=1

A(r)
1j

r!

 z
∆z[i]

r

where A(r)
1j are the weighting coefficients computed with regard to a unitary interval.

It should be noted that the solution is computed not only at the end of each interval, but also through it.
In order to apply the MIDQ method, Eq. (1) is conveniently rewritten as follows, by introducing the reference change

ζ = h − z

dw
dζ

= −q(ζ ) + B(ζ )w + α(ζ )

∫ h

h−ζ

G(ζ )wdζ , ζ ϵ[0, h] (10)

where wT
= (y, y) represents the vector containing the solution values (i.e. solution y and its first-order ζ -derivative y),

qT
= (0, q(ζ )), being B and G 2 × 2 matrices defined as follows

B =

[
0 1

−β(ζ ) 0

]
G =

[
0 0

γ (ζ ) 0

]
.

By dividing the space domain into subdomains and by applying the quadrature rules one has with regard to the ith
subdomain (by omitting the index [i] for the sake of simplicity):

N−
j=1

Ckjwj = qk, k = 1, . . . ,Nt (11)

where

Ckj = −
A(1)
kj

1z
I2 + αkcj(ζ k)G(ζ j) − δkjB(ζ j) (12)

with

cj(ζ ) =

∫ h

h−ζ

lj(ζ )dζ

and for ζ
[i]
k ϵ[0, 1z[i]

], k = 1, . . . ,N

ζ
[i]
k = ζ

[i]
k +

i−1−
p=0

1z[p], i > 0

which becomes

ζ
[i]
k = ζ

[i]
k + i1z, i = 0, . . . ,M − 1

if all the intervals have equal length. The elements cj also depend on the interval length since one can write:

cj(ζ ) =

N−
r=1

br


ζ

1z

r

1z

where br are real parameters.
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Fig. 1. The subdomains in the MIDQ scheme.

In order to retrieve a recursive formula involving the solutionw[i] at the abscissa ζ
[i]
1 and the solutionw[i+1] at the abscissa

ζ
[i]
1 + 1z[i] (see Fig. 1), the unknowns wj, with j = 2, . . . ,N − 1 are eliminated and after some algebra one obtains:

w[i+1]
= H[i]w[i]

+ Q[i] (13)

where H is a 2 × 2 matrix constructed as follows

H = −D−1
N D1

DN = CNN − CNC
−1

CN

D1 = CN1 − CNC
−1

C1

CN = (CN2, . . . , CN(N−1))

C
T
1 = (C21, . . . , C(N−1)1)

T

C
T
N = (C2N , . . . , C(N−1)N)T

C =

 C22 · · · C2(N−1)
...

...
...

C(N−1)2 · · · C(N−1)(N−1)


and the vector Q[i] turns out to be

Q[i]
= −D−1

N (CNC
−1

q − qN),

qT
= (q2, . . . , q(N−1))

T .

By applying Eq. (13) recursively, it is possible to write:

w[i+1]
=

i∏
j=0

H[j]w[0]
+ Q[i]

+

i−1−
k=0

i∏
j=k+1

H[j]Q[k] (14)

where w[0] contains the terms ai (i = 0, 1) given in the boundary conditions at z = h (i.e. ζ = 0).
Considerations about the local error are equivalent to the ones for the DQM [6], but here in addition one has to analyze

stability. In order to achieve stability, the spectral radius of the matrix H has to not exceed the unit value (see Section 6).
Since the elements Ckj can be written as:

Ckj =
1

1zN−1

N−1−
r=0

a[r]
kj 1zN−r−1

where a[r]
kj are 2 × 2 matrices, more complicated polynomial forms (involving all the terms of Ckj) are encountered in the H

elements, so it is difficult to state an a priori condition on 1z.
The grid points can be generated by means of Gegenbauer polynomials as explained in the previous section.

4. A Picard-like numerical method

In this section, another numerical iterative method is presented.
To the scope, let us introduce the operator

L =
dr

dzr

whose inverse is the r-fold operator

L−1(·) =

∫ h

z
. . . r-fold . . .

∫ h

z
(·)dz . . . dz
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and applying L−1 on both sides of Eq. (1) one has

y(z) =

r−1−
i=0

ai
(z − h)i

i!
+ (−1)rL−1 (q(z)) + (−1)r+1L−1 (β(z)y(z)) + (−1)r+1L−1


α(z)

∫ z

0
γ (z)y(z)


. (15)

In accordancewith the idea of the successive approximations, the solution can bewritten by series of unknown functions
yi which can be determined recursively

y =

∞−
k=0

yk (16)

y0 =

r−1−
i=0

ai
(z − h)i

i!
+ (−1)rL−1 (q(z)) (17)

yk+1 = (−1)r+1L−1 (β(z)yk) + (−1)r+1L−1


α(z)
∫ z

0
γ (z)yk


. (18)

By introducing numerical integration, one can write, with regard to a function f (z):

L−1 
f (z)


=

N−
i=1

Ci(z)f (zi) (19)

where

Ci(z) =

∫ h

z
. . .

∫ h

z
li(z)dz . . . dz (20)

being li(z) the Lagrange interpolating polynomials and N the number of grid points at abscissae 0 = z1 < z2 < · · · <
zN−1 < zN = h.

So one has (by assuming r as even for the sake of simplicity):

y0 = C0(z)q0 (21)

where

C0(z) =

1, (z − h), . . . , (z − h)r−1, C1(z), . . . , CN(z)


(22)

qT
0 =


a0, a1, . . . ,

ar−1

(r − 1)!
, q(z1), . . . , q(zN)


(23)

and

yk+1 = D(z)yk (24)

where yTk = (yk(z1), . . . , yk(zN)) and

D(z) = −C(z)

B + ACG


(25)

with B,A,G diagonal matrices whose ith element is given by β(zi), α(zi), γ (zi), respectively, and

C(z) = (C1(z), . . . , CN(z)) (26)

C =

C1(z1) · · · CN(z1)
...

...
...

C1(zN) · · · CN(zN)

 (27)

with C i(z) =
 z
0 li(z)dz.

If one consider the solution given by the first k series terms y[k](z) =
∑k

i=0 yi(z), the related error e[k], i.e. the error after
k iterations is

e[k](z) = y(z) − y[k](z). (28)

Since it is

yk = Dyk−1 = D
k
y0 (29)
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Fig. 2. The model: a tubular tapered cantilever beam subject to concentrated loads at the top and to variable distributed transversal loads over the span.

where

D
T

= (D(z1), . . . ,D(zN)) (30)

then Eq. (24) can be written as follows

yk+1 = D(z)D
k
y0. (31)

So one has

y[k](z) = y0 + D(z)
k−1−
i=0

D
i
y0. (32)

By considering the Taylor series expansion of y(z) around h, one can write

y(z) = y0 −

N−
i=1

Ciq(zi) + O((z − h)r) (33)

and it follows that

e[k]
= −D(z)


(I − D)−1(I − D

k
)

y0 −

N−
i=1

Ciq(zi) + O((z − h)r) (34)

with I the identity matrix of order N .
This error function converges to a quantity c for k which tends to infinity, if the spectral radius of the matrix D is less

than 1:

c = −D(z)

(I − D)−1 y0 −

N−
i=1

Ciq(zi) + O((z − h)r). (35)

Iterations can be ended if for any 0 < εi ≪ 1 one has:

|e[k](zi) − e[k−1](zi)| ≤ |y[k](zi) − y[k−1](zi)| ≤ |yk(zi)| ≤ εi i = 1, . . . ,N (36)

where yk(zi) is the ith element of the vector yk.
Grid points can be equally spaced or not. In this second case, a general way to generate the grid points can be computing

the zeros of the first order derivative of Gegenbauer polynomials as introduced in Section 2.

5. The model

A tubular tapered cantilever beam is considered, with height h and moment of inertia J(z) subject at the top to a
concentrated transversal force F , a concentrated bending moment m, a concentrated axial load P and over the span to a
variable distributed transversal load q(z) and the self-weight f (z), as shown in Fig. 2. This is a typical model for wind towers,
where q(z) is the peak wind load, obtained by multiplying the peak wind pressures on the tower surface (according to the
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5 10 15 20 25

Fig. 3. Exact (continuous line) and approximated (dashed line) distributed wind load q(z) (in N/m).

national code and Eurocode 1—part 1:4 [13]) by the diameter at abscissa z, and the concentrated loads represent the action
of the turbine or, excluding these concentrated loads, this is the model usually assumed for a chimney. At the preliminary
design stage of a precast concrete small-wind tower, a linear analysis can be performed, but changes in the shape may be
frequent, so one has to compute repeatedly the bendingmoments, axial and shear forces.Whilst the axial forceN(z) and the
shear force T (z) can be easily obtained, bending moment M(z) requires solving the following integro-differential equation
(where negative axial loads are compressive loads)

d2M
dz2

+


−P +

∫ h

z
f (z)dz


M(z)
EJ(z)

+ f (z)
∫ z

0

M(z)
EJ(z)

dz = −q(z), zϵ[0, h] (37)

with the boundary conditions

M(h) = −m,
dM
dz

(h) = F .

It should be pointed out that the bending moments can also be deduced by deriving twice the displacements obtained
by solving (in this case) a complete fourth-order ordinary differential equation (ODE) with variable coefficients, but in order
to implement a general optimization procedure to detect the geometric characteristics (procedure not discussed here), an
efficient numerical scheme to compute accurate enough bending moments is needed.

For a circular cross-section with depth s, maximum external diameter (at the tower base) dmax, minimum external
diameter (at the tower top) dmin, one has:

f (z) = ηπs
[
(dmax − s) −

1
h

(dmax − dmin) z
]

, J(z) =

3−
i=0

biz i (38)

where η is the specific weight of the material and

b0 =
1
8
πs


d3max − 3d2maxs + 4dmaxs2 − 2s3


(39)

b1 = −
(dmax − dmin)πs


3d2max − 6dmaxs + 4s2


8h

(40)

b2 =
3(dmax − dmin)

2πs (dmax − s)
8h2

, b3 =
(dmax − dmin)

3πs
8h3

(41)

are coefficients obtained by rearranging the expression of the moment of inertia J(z).
Giving a formula for q(z) is more complicated since it is constructed under certain conditions according to Eurocode 1—

Part 1:4 [13]. In Fig. 3, the distributedwind load q(z) (continuous line), for the case discussed in the next section, is compared
with a possible approximation (dashed line) obtained by Lagrange interpolating polynomials with seven equally spaced grid
points.

6. Numerical results and discussion

Several numerical experiments have been carried out, but just some significant results are here discussed for the sake of
brevity. In what follows, the results are referred to three load conditions: the first one includes all the concentrated loads
at the top (as depicted in Fig. 2), the second one has no concentrated loads at the top, the third one has no concentrated
loads and the distributed load q(z) is assumed to be constant over the span. A 36 m tower, with s = 0.16 m and
dmin = 0.6, dmax = 1.2 m is here considered. Young’s modulus is E = 3.55 × 104 MPa. A finite element (FE) model,
composed by 1240 four-nodes shell elements (accounting for bending and membrane effects), gives the reference solution.
The values of the bendingmoments at different abscissae, i.e. z = 0, z = h/3, z = 2h/3, obtained by the FE analysis and the
numerical methods, for different load conditions, are tabled in Tables 1–15 (bending moments are in kN m). The results are
referred both to equally and not equally spaced points. With regard to the first load condition, the DQM does not work well:
the smallest errors can be obtained by the graded distribution with p = 2 and N = 5 (Table 1), whereas by means of some
distributions of sampling points, the numerical solution at z = 0 turns out to be one half enough of the reference solution



S. Tomasiello / Computers and Mathematics with Applications 62 (2011) 3183–3193 3191

Table 1
First load condition: numerical results obtained by the DQM for the geometric and the graded distributions.

FE Geometric b = 0.54,N = 5 Error (%) Graded p = 2,N = 5 Error (%)

M(0) −3350.85 −3273.12 2.3197 −3390.07 −1.1704
M(h/3) −1918.91 −1734.34 9.6185 −1943.27 −1.2695
M(2/3h) −808.15 −512.44 36.5910 −814.26 −0.7560

Table 2
First load condition: the bending moment at z = 0,M(0), obtained by the DQM for different distributions of
grid points.

N λ = 0 λ = 0.5 λ = −1.4 Equally spaced

5 −1606.09 −1601.81 −1625.42 −1591.95
8 −1510.15 −1509.38 −1510.85 −1503.70

12 −1510.29 −1510.72 −1509.95 −1555.09
20 −1510.64 −1510.71 −1510.55 −2666.08

Table 3
First load condition: MIDQ results at different abscissae z and for different values of λ (3 equal intervals with N = 4).

FE λ = 0 Error (%) λ = −0.2 Error (%) λ = 0.5 Error (%) λ = −0.5 Error (%)

M(0) −3350.85 −3236.94 3.3994 −3273.17 2.3182 −3185.81 4.9253 −3368.70 −0.5327
M(h/3) −1918.91 −1868.16 2.6447 −1884.84 1.7755 −1844.39 3.8835 −1928.59 −0.5045
M(2/3h) −808.15 −794.62 1.6742 −799.21 1.1062 −788.01 2.4921 −811.17 −0.3737

Table 4
First load condition: MIDQ results at different abscissae z for λ closest to −0.5 (3 equal intervals with N = 4).

FE λ = −0.45 Error (%) λ = −0.46 Error (%) λ = −0.455 Error (%)

M(0) −3350.85 −3347.32 0.1053 −3351.36 −0.0152 −3349.33 0.0454
M(h/3) −1918.91 −1918.83 0.0042 −1920.68 −0.0922 −1919.75 −0.0438
M(2/3h) −808.15 −808.51 −0.0445 −809.01 −0.1064 −808.76 −0.0755

Table 5
First load condition: spectral radius of the matrices Hi (i = 1, 2, 3) for different values of λ.

λ = 0 λ = 0.5 λ = −0.2 λ = −0.5 λ = −0.45 λ = −0.46 λ = −0.455

ρ1 0.9816 0.9746 0.9865 0.9991 0.9963 0.9968 0.9965
ρ2 0.9847 0.9794 0.9884 0.9979 0.9958 0.9962 0.9960
ρ3 0.9884 0.9846 0.9910 0.9978 0.9963 0.9966 0.9964

Table 6
First load condition: the Picard-like numerical results at different abscissae z and for different distributions of grid points with N = 7.

FE Equally spaced Error (%) λ = −1.4 Error (%) λ = 0.5 Error (%) λ = 0 Error (%)

M(0) −3318.87 −3346.53 −0.8334 −3346.78 −0.8409 −3348.97 −0.9069 −3349.23 −0.9148
M(h/3) −1904.91 −1916.98 −0.6336 −1919.58 −0.7701 −1917.74 −0.6735 −1918.14 −0.6945
M(2/3h) −804.39 −807.16 −0.3444 −807.69 −0.4102 −807.50 −0.3866 −807.58 −0.3966

Table 7
First load condition: the Picard-like numerical results at different abscissae z and for different distributions of grid points with N = 8.

FE Equally spaced Error (%) λ = −1.4 Error (%) λ = 0.5 Error (%) λ = 0 Error (%)

M(0) −3318.87 −3346.62 −0.8361 −3348.47 −0.8919 −3348.59 −0.8955 −3348.40 −0.8898
M(h/3) −1904.91 −1917.01 −0.6352 −1917.41 −0.6562 −1918.21 −0.6982 −1918.19 −0.6971
M(2/3h) −804.39 −807.32 −0.3643 −807.21 −0.3506 −807.73 −0.4152 −807.72 −0.4140

(Table 2). By using the MIDQ method, with three intervals of equal length 1z = h/3 and with N = 4 for each interval,
one has good results for λ closest to −0.45 (Tables 3 and 4); the spectral radius of the matrices Hi, with i = 1, 2, 3, can be
retrieved in Table 5.

With regard to the third method, i.e. the Picard-like numerical method, good results can be achieved for N = 7 without
needing any suitable distribution of grid points: approximated solutions are reported in Table 6 for N = 7 and Table 7 for
N = 8. Besides, five terms in the series solution are sufficient to obtain accurate enough solutions. In fact, for N = 7 and
equally spaced grid points one has:

MT
5 =


1.89 × 10−3, 1.22 × 10−3, 7.37 × 10−4, 3.93 × 10−4, 1.67 × 10−4, 4 × 10−5, 0


.
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Table 8
Second load condition: DQM results for the geometric and the graded distributions.

FE Geometric b = 0.48,N = 5 Error (%) Graded p = 2,N = 5 Error (%)

M(0) −1487.41 −1495.73 −0.5594 −1600.43 −7.5984
M(h/3) −663.96 −600.77 9.5171 −728.93 −9.7852
M(2/3h) −162.55 −33.58 79.3417 −185.10 −13.8727

Table 9
Second load condition: DQM bending moments at z = 0 for different distributions of grid points.

N λ = 0 Error (%) λ = 0.5 Error (%) λ = −1.4 Error (%) Equally spaced Error (%)

6 −1526.65 −2.6381 −1525.74 −2.5770 −1522.31 −2.3464 −1531.87 −2.9891
12 −1524.62 −2.5017 −1525.05 −2.5306 −1524.28 −2.4788 −1569.32 −5.5069
20 −1524.97 −2.5252 −1525.04 −2.5299 −1524.88 −2.5191 −2677.74 −80.0270

Table 10
Second load condition: DQM bending moments at z = h/3 for different distributions of grid points.

N λ = 0 Error (%) λ = 0.5 Error (%) λ = −1.4 Error (%) Equally spaced Error (%)

6 −680.32 −2.4640 −680.26 −2.4550 −679.70 −2.3706 −687.29 −3.5138
12 −680.61 −2.5077 −680.90 −2.5514 −680.25 −2.4535 −710.57 −7.0200
20 −680.67 −2.5167 −680.71 −2.5227 −680.62 −2.5092 −1447.49 −118.0086

Table 11
Second load condition: DQM bending moments at z = 2h/3 for different distributions of grid points.

N λ = 0 Error (%) λ = 0.5 Error (%) λ = −1.4 Error (%) Equally spaced Error (%)

6 −166.65 −2.5223 −166.61 −2.4977 −167.36 −2.9591 −169.82 −4.4725
12 −166.75 −2.5838 −166.88 −2.6638 −166.61 −2.4977 −181.37 −11.5780
20 −166.70 −2.5531 −166.75 −2.5838 −96.82 40.4368 −545.76 −235.7490

Table 12
Second load condition: MIDQ results at different abscissae z and for different values of λ (3 equal intervals with N = 4).

FE λ = 0 Error (%) λ = 0.1 Error (%) λ = 0.5 Error (%) λ = 0.05 Error (%)

M(0) −1487.41 −1489.07 −0.1116 −1484.03 0.2272 −1470.11 1.1631 −1486.45 0.0645
M(h/3) −663.96 −668.87 −0.7395 −666.94 −0.4488 −661.56 0.3615 −667.87 −0.5889
M(2/3h) −162.55 −159.73 1.7349 −164.69 −1.3165 −163.55 −0.6152 −164.88 −1.4334

Table 13
Second load condition: spectral radius of the matrices Hi (i = 1, 2, 3) for different values of
λ.

λ = 0 λ = 0.5 λ = 0.1 λ = 0.05

ρ1 0.9816 0.9747 0.9798 0.9907
ρ2 0.9847 0.9794 0.9833 0.9840
ρ3 0.9884 0.9846 0.9874 0.9879

Table 14
Second load condition: the Picard-like numerical results at different abscissae z and for different distributions of grid points with N = 7.

FE Equally spaced Error (%) λ = −1.4 Error (%) λ = 0.5 Error (%) λ = 0 Error (%)

M(0) −1487.41 −1523.21 −2.4069 −1523.44 −2.4223 −1525.63 −2.5696 −1525.89 −2.5870
M(h/3) −663.96 −679.90 −2.4007 −682.49 −2.7908 −680.65 −2.5137 −681.06 −2.5755
M(2/3h) −162.55 −166.31 −2.3131 −166.83 −2.6330 −166.65 −2.5223 −166.72 −2.5654

Table 15
Third load condition: percentage errors for the three methods.

λ = 0 λ = −0.2 λ = 0.5

DQM (N = 6) 0.4190 0.4190 0.4190
DQM (N = 12) 0.4190 0.4190 0.4190
MIDQ 0.4155 0.4120 0.4190
Picard-like (N = 7) 0.9661 0.9661 0.9661
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Similar results hold for the other distributions of grid points, i.e. for N = 7 and λ = 0

MT
5 =


1.89 × 10−3, 1.60 × 10−3, 9.62 × 10−4, 3.93 × 10−4, 9.2 × 10−5, 6.34 × 10−6, 0


for N = 7 and λ = 0.5

MT
5 =


1.89 × 10−3, 1.53 × 10−3, 9.17 × 10−4, 3.93 × 10−4, 1.04 × 10−4, 1 × 10−5, 0


for N = 7 and λ = −1.4

MT
5 =


1.89 × 10−3, 1.87 × 10−3, 1.18 × 10−3, 3.93 × 10−4, 4.7 × 10−5, 3.48 × 10−8, 0


.

For all the cases considered, the spectral radius of the matrix D turns out to be less than 1.
With regard to the second load condition, the DQMdoes notworkwell again (Tables 8–11), even if the usual distributions

allow errors less than the ones referred to the first load condition (Tables 9–11).
The MIDQ method, with three intervals of equal length 1z = h/3 and with N = 4 for each interval again, allows small

percentage errors for λ closest to 0 (Table 12); the spectral radius of the matrices Hi, with i = 1, 2, 3, is tabled in Table 13.
The third numerical method does not work well: the percentage errors are comparable with the ones obtained by the

DQM with the usual distributions (Table 13), but these errors cannot be decreased since the spectral radius of the matrix D
is greater than 1 for any N .

Finally, the third load condition can be easily handled by the DQM, which allows in this case good results; equal results
can be obtained by the MIDQ method, with three intervals of equal length 1z = h/3 and with N = 4 again (the spectral
radius of the matrices Hi is less than one for any i); comparable results can be obtained by the Picard-like method.

7. Conclusions

In this paper, three numerical methods to solve integro-differential equations containing rational functions, with
application to a real world problem in structural engineering, have been discussed. The first method is the DQM, the second
one is a new version of the IDQ method, here named MIDQ, and the third one is a Picard-like method where successive
approximations jointly with numerical integration are used. Three different cases were considered and a comparison
between the results obtained by an FE analysis and by the present methods discussed. For all the three cases, the MIDQ
method seems to allow the best results.
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