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Abstract

Left normal bands, strongly distributive skew lattices, implicative BCS-algebras, skew
Boolean algebras, skew Boolean intersection algebras, and certain other non-commutative
structures occur naturally as term reducts in the study of ternary discriminator algebras and
the varieties that they generate, giving rise thereby to various classes of pointed discrimina-
tor varieties1 that generalise the class of pointed ternary discriminator varieties. For each
such class of varieties there is a corresponding pointed discriminator function that gener-
alises the ternary discriminator. In this paper some of the classes of pointed discriminator
varieties that are contained in the class of dual binary discriminator varieties are charac-
terised. A key unifying property is that the principal ideals of an algebra in a dual binary
discriminator variety are entirely determined by the dual binary discriminator term for that
variety.
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1 Introduction
Recall that the ternary discriminator on a set A is the function t : A3 → A defined for all
elements a, b, c ∈ A by t(a, b, c) = a if a 6= b, and c otherwise. A ternary discriminator
algebra is an algebra A for which there exists a term t(x, y, z) in the language of A that
realises the ternary discriminator on A. A ternary discriminator variety is a variety gener-
ated by a class K of ternary discriminator algebras, for which there exists a term t(x, y, z)
realising the ternary discriminator function on each A ∈ K. Ternary discriminator varieties
generalise Boolean algebras and have been widely studied; see [15, Chapter IV§9].

A key property of the ternary discriminator term t(x, y, z) for a ternary discriminator
variety V is that it determines the congruences on each algebra A ∈ V, in the sense that
the congruences of A are precisely those of the term reduct 〈A; tA〉. This motivates the
following definition.

Definition 1.1. The generic2 ternary discriminator variety TD is the variety of algebras of
similarity type 〈3〉 generated by the class of all algebras of the form A = 〈A; t〉, where the
ternary operation t is the ternary discriminator function on A.

Algebras in ternary discriminator varieties have a number of strong congruence proper-
ties. In particular, they are congruence-distributive, congruence-permutable, congruence-
regular, and congruence-uniform. Moreover, every compact congruence is a principal fac-
tor congruence. Consequently, every algebra in a ternary discriminator variety can be rep-
resented as a Boolean product of ternary discriminator algebras; for details see [15, Chap-
ter IV§9].

Examples of ternary discriminator varieties include varieties generated by a primal al-
gebra (and thus the variety of Boolean algebras), monadic algebras, cylindric algebras of
dimension n, and skew Boolean intersection algebras. The latter are used as a paradig-
matic example of a (pointed) ternary discriminator variety in this paper. Briefly, a skew
Boolean intersection algebra (SBIA) is a skew lattice with additional operations such that
each principal subalgebra a ∧ A ∧ a is a Boolean lattice, and for which finite meets exist
with respect to the natural skew lattice partial order. For a more detailed definition and
some key properties of SBIAs see [7].

While the generic ternary discriminator variety is a useful concept (see for example [14]
and [29]), it can be somewhat unintuitive to work directly with the ternary discriminator
term. In practice, almost all natural examples of ternary discriminator varieties have at least
one constant term,3 which facilitates the definition and use of more familiar binary terms.
In particular, it is shown in [7] that every algebra A in a pointed ternary discriminator
variety, that is, a ternary discriminator variety with a constant term, has a right handed
(and thus also a left handed) SBIA term reduct that has the same congruences as A. This
follows from the observation that the variety of left (or right) handed SBIAs is, up to term
equivalence, the generic pointed ternary discriminator variety, namely the variety TD0

generated by the class of all algebras of type 〈3, 0〉, having the form 〈A; t, 0〉, where the
operation t is the ternary discriminator on A.

More generally, if an algebra A is a member of a (not necessarily pointed) ternary dis-
criminator variety V with ternary discriminator term t(x, y, z) and c is an arbitrary element

2Alternatively called pure by some authors; see for example [14].
3Two important exceptions [36, Corollary 4.31] are the varieties SA3 and BN4 arising respectively as the

equivalent quasivariety semantics (in the sense of Blok and Pigozzi [10]) of the 3-valued relevant logic with
mingle RM3 [5, §26.9, §29.12] and its 4-valued cousin, the logic BN4 of Brady [13].
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of its base set A, then the polynomial reduct Ac = 〈A;∨c,∧c, \c,∩c, c〉 is a left handed
skew Boolean intersection algebra4 such that ConA = ConAc, with operations defined
by5

a ∨c b := t(b, c, a); a ∧c b := t(b, t(b, c, a), a);

a/cb := t(a, b, c); a\cb := t(c, b, a), and
a ∩c b := t(c, t(c, b, a), a) = a/c(a/cb).

The various reducts of Ac are also familiar structures. For example, 〈A;∧c, c〉 is a left
normal band; 〈A; \c, c〉 is an implicative BCS-algebra; 〈A; /c, c〉 is an implicative BCK-
algebra; 〈A;∨c,∧c, c〉 is a left handed strongly distributive skew lattice with zero c; and
〈A;∨c,∧c, \c, c〉 is a left handed skew Boolean algebra.

Up to isomorphism the structure of each of these derived algebras is independent of the
choice of c. This is shown by the following result from [6]. It can be proved using the
Boolean product representations of Ac and Ad.

Theorem 1.2. Let V be a ternary discriminator variety, with A ∈ V. Then for all c, d ∈ A,
Ac
∼= Ad.

Every congruence on an algebra must also be a congruence on each of its reducts.
Since the congruence lattice of every algebra is always a complete sublattice of the lattice
of equivalence relations on its base set, the congruence lattice of Ac, and thus of A, is a
sublattice of the congruence lattice of each reduct of Ac. Of course, such reducts do not
in general have amenable congruence properties. In particular, their congruence lattices
may satisfy no special lattice identities and they need not be congruence n-permutable for
any n ≥ 2. However, it follows from Theorem 2.19 in the next section that whenever
∧c is included as one of its operations such a reduct has the same principal ideals as Ac.
Moreover, for each such reduct there exists a corresponding function that generalises the
ternary discriminator, and each of these generalised discriminator functions gives rise to a
class of pointed discriminator varieties that generalises the class of pointed ternary discrim-
inator varieties. The class of dual binary discriminator varieties and its subclass of binary
discriminator varieties, which have been studied by a number of authors, are examples.

Section 2 of this paper provides a new characterisation of the class of dual binary dis-
criminator varieties (Theorem 2.19). In subsequent sections a number of its pointed dis-
criminator variety subclasses are described and characterised. These are the classes of
binary, skew, skew Boolean, multiplicative, pointed fixedpoint, and pointed ternary dis-
criminator varieties. It is shown that the principal ideals of algebras in such varieties are
entirely determined by their dual binary discriminator term. Various characterisations, in-
cluding some that are purely ideal-theoretic in nature, are obtained for the classes of binary,
skew Boolean, pointed fixedpoint, and pointed ternary discriminator varieties; see Theo-
rems 3.2, 6.6, 8.1, and 9.1 respectively.

2 The class of dual binary discriminator varieties
Binary and dual binary discriminator varieties were introduced in [16]. The next three
definitions are based on that paper, with some minor differences in the terminology and

4Note that Ac is term equivalent to the algebra 〈A;∨c,∧c, /c, c〉.
5We follow the normal convention of writing t(a, b, c) rather than tA(a, b, c) for the realisation in an algebra

A of a term t(x, y, z), provided that there is no ambiguity about which algebra is intended.
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notation used.

Definition 2.1. Let A be a non-empty set and let 0 ∈ A. The dual binary 0-discriminator
on A is the binary function ∧ defined for all a, b ∈ A by a ∧ b = a, if b 6= 0, and 0
otherwise. 0 is called the discriminating element.

Definition 2.2. A dual binary discriminator algebra is an algebra A for which there exists
a binary term x ∧ y and a constant term 0 in the language of A that induce the dual binary
0-discriminator and its discriminating element 0 respectively on the base set A of A.

Definition 2.3. A dual binary discriminator variety is a variety V with a binary term x∧ y
and a constant term 0 in the language of V such that V is generated by a class K of dual
binary discriminator algebras, with the terms x ∧ y and 0 inducing the dual binary 0-
discriminator and its discriminating element respectively on each A ∈ K.

The constant term in Definition 2.3 is referred to as the discriminating constant of
the variety. A dual binary discriminator variety with discriminating constant 0 is called a
dual binary 0-discriminator variety. Similarly, a dual binary discriminator algebra with
discriminating element 0 is called a dual binary 0-discriminator algebra.

Natural examples of dual binary discriminator varieties are common and diverse, and
include normal bands with zero, semilattices with zero, strongly distributive skew lattices
with zero, pseudocomplemented semilattices, bounded distributive lattices, Stone algebras,
skew Boolean algebras, skew Boolean intersection algebras, and many others.

Definition 2.4. The generic dual binary discriminator variety, denoted by DBD, is the va-
riety of similarity type 〈2, 0〉 generated by the class of all dual binary discriminator algebras
of the form A = 〈A;∧, 0〉, with ∧ being the dual binary 0-discriminator on A.

Recall that an idempotent semigroup A = 〈A; ·〉 (i.e. a band) is normal if it satisfies
the identity xyzx ≈ xzyx. A is left normal (resp. right normal) if it satisfies xyz ≈ xzy
(resp. xyz ≈ yxz). A band with zero is an algebra A = 〈A; ·, 0〉 of similarity type 〈2, 0〉
with a band operation · and a constant 0, satisfying the band identities plus the identities
x0 ≈ 0x ≈ 0. By Schein [32] the only subdirectly irreducible normal bands with zero are
(up to isomorphism) S0, the 2-element meet semilattice with zero; L, the three-element left
normal band with zero that has no non-trivial two-sided semigroup ideals; and R, the three-
element right normal band with zero that has no non-trivial two-sided semigroup ideals. It
is easily seen that the term xyx induces the dual binary 0-discriminator ∧ on each of these
algebras.

Since the identity xyx ≈ xy holds for left normal bands, the semigroup operation re-
alises the dual binary 0-discriminator on L. We denote the variety of left normal bands with
zero by LNB0. Since S0 and L are the only subdirectly irreducible members of LNB0

and S0 is a subagebra of L, it follows that LNB0 = HSP({L}), the variety generated
by L.

Proposition 2.5. DBD = LNB0.

Proof. It is straightforward to check that every dual binary 0-discriminator algebra 〈A;∧, 0〉
in DBD is an idempotent semigroup with zero that satisfies the left normal band identity
x ∧ y ∧ z ≈ x ∧ z ∧ y. Let K denote the class of all dual binary discriminator alge-
bras in DBD. Then K ⊆ LNB0 and hence HSP(K) = DBD ⊆ LNB0. But L ∈ K, so
HSP({L}) = LNB0 ⊆ DBD.
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It is convenient to use the term 0-band for a band with a zero element that is the reali-
sation of a constant term 0.

Corollary 2.6. Every algebra A in a dual binary 0-discriminator variety has a left nor-
mal 0-band term reduct 〈A;∧, 0〉, where ∧ is the operation induced by the dual binary
discriminator term.

Clearly, the dual binary discriminator term for a given dual binary 0-discriminator vari-
ety is unique up to identity of terms. However, it is possible for a variety to be a dual binary
discriminator variety with respect to more than one constant. For example, the variety L10
of bounded distributive lattices 〈L;∨,∧, 0, 1〉 is both a dual binary 0-discriminator vari-
ety, with dual binary discriminator term x ∧ y, and a dual binary 1-discriminator variety,
with dual binary discriminator term x ∨ y. L10 is generated by the two-element bounded
distributive lattice, which is both a dual binary 0-discriminator algebra and a dual binary
1-discriminator algebra.

Let A be an algebra in a dual binary 0-discriminator variety with dual binary 0-
discriminator term x ∧ y. It is well-known from semigroup theory (and straightforward
to prove) that the binary relation � defined for all a, b ∈ A by a � b if a ∧ b = a is a
preorder on A, and that the binary relation ≤ defined for all a, b by a ≤ b if b ∧ a = a
is a partial order.6 Observe that ≤ ⊆ � and 0 ≤ a for all a ∈ A, where 0 is the element
induced by the discriminating constant 0. The equivalence relation Ξ given by a Ξ b if
a � b and b � a is referred to as the Clifford-Mclean relation on A. It is a congruence on
the left normal 0-band reduct of A, with 〈A;∧, 0〉/Ξ being the maximal meet semilattice
homomorphic image of 〈A;∧, 0〉.

Definition 2.7. An element m ∈ A is called maximal if a � m for all a ∈ A.

For example, every non-zero element of a dual binary 0-discriminator algebra is maxi-
mal. Clearly, when the set M of maximal elements of an algebra A is non-empty it forms
an equivalence class of Ξ.

Recall from [20] that a term t(~x, ~y) is an ideal term in ~y for a class K of algebras with
respect to a constant term 0 if K |= t(~x,~0) ≈ 0, where ~x and ~y denote sequences of
variables. A non-empty subset I of A ∈ K is a 0-ideal of A (or just an ideal when there
is no ambiguity regarding which constant term is intended) if 0 = 0A ∈ I and for every
~a ∈ A and ~b ∈ I , tA(~a,~b) ∈ I whenever t(~x, ~y) is an ideal term in ~y for K. The ideals of
an algebra A form an algebraic lattice under set inclusion, so for everyX ⊆ A the smallest
ideal containing X exists. It is denoted by 〈X〉 and is called the ideal generated by X .
WhenX = {a} this ideal is called principal and is denoted by 〈a〉. We denote the set of all
ideals of A by IdA, and the lattice of ideals of A by IdA. Clearly, for every congruence
ψ, [0]ψ = {a | a ψ 0} is always an ideal. However, it is not always the case that an ideal is
a congruence class. If every ideal of A is the 0-class of a congruence on A, then A is said
to be normal or to have normal ideals.

Definition 2.8. Given a language with a constant 0, a term t(x1, . . . , xn) is called 0-
reflexive if it satisfies the identity t(0, . . . ,0) ≈ 0. An algebra A with a constant term 0 in
its language is said to be reflexive if {0} = {0A} is a one-element sub-universe, that is, if
fγ(0, . . . , 0) = 0 for each operation fγ of A. A class K of algebras with a constant term 0
is reflexive if every member of K is reflexive.

6For a detailed discussion of the various order relations (called Green’s preorders) on semigroups in general
see [33, Section 0].
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Clearly, a reflexive algebra must have (up to term equivalence) exactly one constant
term in its language. Thus, a reflexive dual binary discriminator variety has, up to term
equivalence, exactly one discriminating constant and one dual binary discriminator term.
The generic dual binary discriminator variety is an example.

Lemma 2.9. Let V be a dual binary 0-discriminator variety with dual binary discriminator
term x ∧ y and let t(x1, . . . , xn), where n > 0, be a term in the language of V. Then

1. V satisfies every identity of the form

t(x1, . . . , xn) ∧ y ≈ t(x1 ∧ y, . . . , xn ∧ y) ∧ y.

2. When t(x1, . . . , xn) is 0-reflexive it satisfies the identity

t(x1, . . . , xn) ∧ y ≈ t(x1 ∧ y, . . . , xn ∧ y).

Proof. It is straightforward to verify that these identities hold on every member of V that
is in the class of dual binary discriminator algebras that generates V.

Definition 2.10. An algebra A in a variety with a constant term 0 is called 0-ideal simple
if its only 0-ideals are {0A} and A.

For the remainder of this paper, in order to simplify the notation and unless stated oth-
erwise, we regard a dual binary discriminator variety as having just one discriminating
constant, which will normally be denoted by 0. An ideal term of such a dual binary dis-
criminator variety V means an ideal term with respect to 0, while an ideal of an algebra
A ∈ V means a 0-ideal. In a similar fashion, an ideal simple algebra in V means one that
is 0-ideal simple.

Lemma 2.11. Every dual binary 0-discriminator algebra A is ideal simple.

Proof. Clearly x ∧ y, the dual binary discriminator term for A, is an ideal term in y.
Suppose I ∈ A is such that I 6= {0}. Let b ∈ I be such that b 6= 0. Then for all a ∈ A,
a = a ∧ b ∈ I . Thus I = A. Hence A is ideal simple.

Thus a non-trivial dual binary 0-discriminator algebra has exactly two equivalence
classes under the relation Ξ, namely {0} and A \ {0}. We say that such an algebra is
flat, since it is order isomorphic to a flat Scott domain.7

The universal algebraic notions of a semisimple algebra and a semisimple variety (see
[15, Chapter IV§12]) have exact ideal-theoretic analogues.

Definition 2.12. An algebra is said to be ideal semisimple if it is isomorphic to a subdirect
product of ideal simple algebras. A variety V is ideal semisimple if every member of V is
ideal semisimple.

The proof of the following lemma is directly analogous to the proof of [15, Lem-
ma IV§12.2] characterising semisimple varieties.

7In the literature, a skew lattice having exactly two Clifford-Maclean equivalence classes is said to be primitive.
In general neither of these classes need be a singleton. However, if A is a primitive skew lattice with zero then
the lower equivalence class is a singleton, and in that case A is order isomorphic to a flat Scott domain.
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Lemma 2.13. A variety V is ideal semisimple if and only if every subdirectly irreducible
member of V is ideal simple.

Examples of ideal semisimple dual binary discriminator varieties include normal bands
with zero, strongly distributive skew lattices with zero, and skew Boolean algebras; see
[26, 27].

In [3] Agliano and Ursini introduce the notion of equationally definable principal ideals
for arbitrary varieties with a constant term. A variety V with a constant term 0 has equation-
ally definable principal ideals (EDPI) if there exist pairs of binary terms pi, qi, i = 1, . . . , n
such that for every A ∈ V and all a, b ∈ A, a ∈ 〈b〉 if and only if pi(a, b) = qi(a, b) for
i = 1, . . . , n, where 〈b〉 denotes the principal ideal generated by b. A related notion was
subsequently considered by van Alten in [4] as follows:

Definition 2.14. A class K of algebras is said to have EDPI ? if there exists an ideal term
t(x, y) in y such that for each A ∈ K and all a, b ∈ A, a ∈ 〈b〉 if and only if a = tA(a, b).

The following key result follows from [4, Theorems 4.2 and 4.3].

Theorem 2.15. Let V be a variety with constant term 0 generated by a class K. The
following are equivalent.

1. V has EDPI.

2. V has EDPI ?.

3. K has EDPI ?.

Proposition 2.16. Every dual binary discriminator variety V has EDPI. A term in the
language of V witnesses EDPI ? if and only if it is, up to term identity, the dual binary
discriminator term.

Proof. If K is a class of dual binary discriminator algebras, then by Lemma 2.11 its mem-
bers are ideal simple and it is clear that the dual binary discriminator term witnesses EDPI ?

for K, so by Theorem 2.15 V has EDPI. Suppose that t(x, y) is an ideal term in y witness-
ing EDPI ? for V. Then for every dual binary discriminator algebra A ∈ V and for all
a, b ∈ A, a ∈ 〈b〉 if and only if a = tA(a, b). Since A is ideal simple, this implies that
tA(a, b) = a when b 6= 0, with 0 being the realisation in A of the discriminating constant
of V. Also, tA(a, 0) = 0, since t(x, y) is an ideal term in y. Thus tA(a, b) is the dual
binary discriminator on A, and hence t(x, y) is the dual binary discriminator term for V,
since V is generated by a class of dual binary discriminator algebras.

Corollary 2.17. The principal ideals of every algebra in a dual binary 0-discriminator
variety coincide with those of its left normal 0-band term reduct.

In particular, every principal ideal 〈b〉 of an algebra A in a dual binary discriminator
variety has the form 〈b〉 = {a ∈ A | a ∧ b = a} = {a ∈ A | a � b}, and so every ideal I
is a down set with respect to the natural preorder, that is, if b ∈ I and a � b then a ∈ I .

Definition 2.18. Let A be an algebra with a left normal 0-band term reduct A0 = 〈A;∧, 0〉.
A has ideal-compatible operations if the principal 0-ideals of A coincide with those of A0.
A class K of algebras with a left normal 0-band term is said to have ideal-compatible op-
erations if every A ∈ K has ideal-compatible operations with respect to its left normal
0-band term reduct.



8 Art Discrete Appl. Math. 2 (2019) #P2.08

Theorem 2.19. Every dual binary discriminator variety is term equivalent to a variety of
left normal bands with ideal-compatible operations. A variety V with a constant term 0 is
a dual binary 0-discriminator variety if and only if it has EDPI and is generated by a class
of 0-ideal simple algebras.

Proof. The first statement is clear in view of Corollary 2.17. For the second statement,
suppose that V is a dual binary 0-discriminator variety. Then by Proposition 2.16 and
Theorem 2.15 V has EDPI and the dual binary 0-discriminator term for V witnesses EDPI ?.
By Lemma 2.11, every dual binary 0-discriminator algebra is ideal simple, so V is generated
by a class of ideal simple algebras. Conversely, if V has EDPI and is generated by a family
K of ideal simple algebras, then by Theorem 2.15 the members of K have EDPI ?. If
t(x, y) is a term in the language of V that witnesses EDPI ? then it follows from the proof
of Proposition 2.16 that t(x, y) realises the dual binary 0-discriminator function on each
member of K. Hence V is a dual binary 0-discriminator variety.

2.1 Central elements

Let V be a dual binary 0-discriminator variety, with A ∈ V. Denote the element 0A by 0.
For each c ∈ A let Ψc denote the binary relation on A given by a Ψc b if a ∧ c = b ∧ c.
It follows from Lemma 2.9 that Ψc is a congruence on A; see also [16, Theorem 5.3].
Let Θc denote the smallest congruence on A that identifies the elements 0 and c. Since
a Ψc (a ∧ c) Θc 0 for all a ∈ A, it follows that Ψc ∨ Θc = ιA, the largest congruence
on A.

Definition 2.20. An element c of an algebra A in a dual binary 0-discriminator variety is
said to be central if Θc and Ψc are complementary factor congruences of A.

In general, Ψc and Θc will be complementary factor congruences when Θc ◦ Ψc =
Ψc ◦Θc = ιA, and Ψc ∧Θc = ωA. Since Ψc ∨Θc = ιA for every c, a sufficient condition
for Ψc and Θc to be factor congruences is that Ψc ∧ Θc = ωA. When c = 0, Ψc = ιA,
while Θc = ωA, the smallest congruence on A. On the other hand, if c is a maximal
element, then Ψc = ωA, while Θc = ιA, so 0, and maximal elements when they exist, are
examples of central elements.

Since the concept of a central element considered in this paper does not require algebras
to have elements that are residually distinct, it differs from the notion of a central element
due to Vaggione [38]. In the case of algebras in dual binary discriminator varieties having a
second constant term that is residually distinct from the discriminating constant, the central
elements in the sense of Vaggione are the same as the central elements considered in this
paper. In view of that, the following definition is useful.8

Definition 2.21. A dual binary 0-discriminator variety V is said to be double pointed if
there exists a constant term 1 in the language of V that is residually distinct from 0; that is,
Θ1 = ιA for all A ∈ V, where 1 = 1A.

Examples of double pointed dual binary discriminator varieties include bounded dis-
tributive lattices, pseudocomplemented semilattices, Stone algebras, and Boolean algebras.
Many examples that are double pointed ternary discriminator varieties arise in the study

8In conformance with our notation, Θ1 abbreviates Θ(0, 1), the smallest congruence that identifies the ele-
ments 0 and 1.
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of discriminator logics, since double pointedness ensures the existence of logical negation.
For details, see [35].

Proposition 2.22. A dual binary 0-discriminator variety V is double pointed if and only if
there exists a constant term 1 in the language of V such that V |= x ∧ 1 ≈ x. In that case
the element 1A ∈ A is both maximal and central for every A ∈ V.

Proof. Let V be a double pointed dual binary 0-discriminator variety and let 1 be a con-
stant term that is residually distinct from 0. Let A ∈ V be a non-trivial dual binary 0-
discriminator algebra. Then A has at least two elements, so Θ1 = ιA implies that 1 6= 0,
where 1 = 1A and 0 = 0A. But then a ∧ 1 = a for all a ∈ A, since ∧ is the dual binary
0-discriminator on A. Hence the identity x ∧ 1 ≈ x is satisfied by a class of algebras that
generates V.

Conversely, if V has a constant term 1 such that V |= x ∧ 1 ≈ x, then the element
1 = 1A is maximal for every A ∈ V, so Θ1 = ιA for every A ∈ V. The second statement
of the proposition follows because maximal elements are always central.

When a variety V is a ternary discriminator variety every element of an algebra A ∈ V
is central. However, the converse does not hold. For example, every element of a skew
Boolean algebra is central (see Proposition 6.2), but the variety of skew Boolean algebras
is not a ternary discriminator variety. The following lemma identifies a necessary (but not
sufficient) condition for every element of every algebra in V to be central.

Lemma 2.23. Let V be a dual binary 0-discriminator variety. If the congruences Θc and
Ψc permute for every A ∈ V and all c ∈ A then there exists a binary term s(x, y) which
satisfies the identities s(x,0) ≈ x and s(x, x) ≈ 0.

Proof. Let F(x, y) denote the free V-algebra on free variables x and y. Assume that
Θy ◦ Ψy = ιF(x,y). Then there exists an element s = s(x, y) of F (x, y) such that
x Θy s(x, y) Ψy 0. Since y ≡ 0(Θy) this implies that x = s(x, 0). Also, s(x, y) Ψy 0
implies that s(x, y) ∧ y = 0 ∧ y = 0. Now F(x, y) is free in x and y, so s(x,0) ≈ x
and s(x, y) ∧ y ≈ 0 are identities of V. Since s(x, y) is a 0-reflexive term, V |= 0 ≈
s(x, y)∧ y ≈ s(x∧ y, y ∧ y), by Lemma 2.9. Putting x = y gives V |= s(x, x) ≈ 0. Thus,
when V has the property that Θc ◦ Ψc = ιA for every A ∈ V and c ∈ A, a binary term
satisfying the stated identities must exist.

A term s(x, y) satisfying the identities of Lemma 2.23 is called 0-subtractive; see
[37]. A variety V with a constant term 0 is called subtractive at 0, or 0-subtractive, if
it has a 0-subtractive term. An algebra A with a constant term 0 is 0-subtractive if the
variety HSP({A}) is 0-subtractive. Subtractive algebras have normal 0-ideals and are
congruence-permutable at 0, that is, [0]θ◦ψ = [0]ψ ◦θ for every pair of congruences θ and
ψ, where 0 = 0A. Conversely, a variety V with a constant 0 and the property that every
A ∈ V is congruence-permutable at 0A has a 0-subtractive term; see [37, Proposition 1.2].
Such a variety is therefore also called 0-permutable, or congruence-permutable at 0. When
a dual binary 0-discriminator variety is subtractive at 0 we simply say that it is subtractive.

3 Binary discriminator varieties
The definitions of the binary discriminator function, a binary discriminator algebra, a binary
discriminator variety, and the generic binary discriminator variety mirror Definitions 2.1,
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2.2, 2.3, and 2.4 in the previous section. Thus, given a set A with element 0 ∈ A, the
binary 0-discriminator on A is the function \ : A2 → A defined for a, b ∈ A by a\b = a
if b = 0, and 0 otherwise. A binary discriminator algebra is an algebra A for which there
exists a a binary term x\y and a constant term 0 that induce the binary 0-discriminator
and its discriminating element 0 = 0A on the base set A of A. A binary discriminator
variety is a variety generated by a class K of binary discriminator algebras, with terms x\y
and 0 inducing the binary 0-discriminator and its discriminating constant 0 and on each
A ∈ K. The generic binary discriminator variety is the variety of similarity type 〈2, 0〉
generated by the class of all algebras of the form A = 〈A; \, 0〉, with \ being the binary
0-discriminator on A.

Lemma 3.1 (cf. [16, Theorem 2.1]). A variety V is a binary 0-discriminator variety if and
only if V is a 0-subtractive dual binary 0-discriminator variety.

Proof. Suppose V is a binary 0-discriminator variety. It is immediate that the binary dis-
criminator term x\y witnesses 0-subtractivity. Moreover, a\(a\b) is the dual binary 0-
discriminator a ∧ b on every binary 0-discriminator algebra in V. On the other hand,
if V is a dual binary 0-discriminator variety with a 0-subtractive term s(x, y) then it is
easily checked that s(x, x ∧ y) realizes the binary 0-discriminator on every dual binary
0-discriminator algebra in V.

It was shown in [8] that the generic binary discriminator variety is the variety iBCS of
implicative BCS-algebras of type 〈2, 0〉, axiomatised by the identities

iBCS :
x\x ≈ 0 (x\y)\z ≈ (x\z)\y

(x\y)\z ≈ (x\z)\(y\z) x\(y\x) ≈ x

It was also shown there that iBCS is generated as a variety by the three-element bi-
nary discriminator algebra B2 = 〈{0, 1, 2}; \, 0〉, that is, iBCS = HSP({B2}). Implica-
tive BCS-algebras are precisely the 〈\, 0〉-subreducts of pseudocomplemented semilattices,
where a\b = a∧b∗ for each pseudocomplemented semilattice 〈A;∧, ∗, 0〉 and all a, b ∈ A.
As such, they occur widely as subreducts of algebras such as Stone algebras, linearly or-
dered Heyting algebras, pseudocomplemented semilattices, skew Boolean algebras, strict
basic logic algebras, product logic algebras, and algebras in residually finite varieties of
basic logic algebras.

If A ∈ iBCS then the Clifford-McLean equivalence relation Ξ is a congruence on A and
A/Ξ ∈ iBCK, the variety of implicative BCK-algebras, which is the reflective subvariety
of iBCS axiomatised relative to iBCS by the identity x\(x\y) ≈ y\(y\x).

Combining Theorem 2.19 and Lemma 3.1 yields the following.

Theorem 3.2. Every binary discriminator variety is term equivalent to a variety of im-
plicative BCS-algebras with ideal-compatible operations. A variety V with a constant term
0 is a binary 0-discriminator variety if and only if V is subtractive at 0, has EDPI and is
generated by a class of 0-ideal simple algebras.

Let A be an algebra in a binary 0-discriminator variety V. Recall that Θc denotes
the smallest congruence on A equating the elements 0 and c, where 0 is the realisation of
the discriminating constant 0 of V. Subtractivity ensures that every 0-ideal I of A is a
congruence class, so it is meaningful to let ΘI denote the smallest congruence θ of A such
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that [0]θ = I .9 It turns out that ΘI has a simple characterisation that depends only on the
binary discriminator term. This means that some key structural properties of algebras in
binary discriminator varieties can be conveniently studied by restricting attention to their
iBCS-algebra term reducts; see for example [9], where the following result is proved.

Theorem 3.3. Let V be a binary 0-discriminator variety and let A ∈ V. For all a, b, c ∈ A,

1. a ≡ b mod Θc if and only if a\c = b\c.
2. [0]Θc = 〈c〉 = {a ∈ A | a\c = 0} = {a ∈ A | a ∧ c = a}.
3. For every ideal I , a ≡ b mod ΘI if and only if a\c = b\c for some c ∈ I .

4. For all Ψ ∈ ConA, ΘI ∨Ψ = ΘI ◦Ψ ◦ΘI .

Let A ∈ V, where V is a binary 0-discriminator variety. Since V is 0-subtractive,
an element c ∈ A will be central if and only if Ψc ∧ Θc = ωA. Let QB2 denote the
quasi-identity x ∧ z ≈ y ∧ z & x\z ≈ y\z ⇒ x ≈ y. The next result is immediate.

Theorem 3.4. Let V be a binary 0-discriminator variety. The following are equivalent.

1. For all A ∈ V, every c ∈ A is central.

2. For all A ∈ V and a, b, c ∈ A, a ∧ c = b ∧ c and a\c = b\c implies a = b.

3. V |= QB2.

We call a binary 0-discriminator variety satisfying the equivalent conditions of Theo-
rem 3.4 a QB2 variety. This terminology reflects the fact that the quasi-variety generated
by B2, the three-element binary 0-discriminator algebra, is axiomatised by the iBCS iden-
tities together with the QB2 quasi-identity. Most natural examples of binary discriminator
varieties are QB2 varieties.10 Such varieties are of interest because their members have
weak Boolean product representations. A number of examples of weak Boolean prod-
uct representations of algebras in QB2 varieties appear in the literature; see, for example,
[18, 23], or [30].

4 Some other pointed discriminator functions
In the following definitions we follow the convention of using infix notation for functions
in two variables.

Definition 4.1. Let A be a set and let 0 ∈ A. Then the

• skew 0-discriminator on A is the function s defined for all a, b, c ∈ A by

s(a, b, c) =


c if c 6= 0,

a if c = 0 and b 6= 0,

0 otherwise;

• multiplicative 0-discriminator on A is the function q defined for all a, b, c ∈ A by

q(a, b, c) =

{
a if c 6= 0 and a = b,

0 otherwise;
9Thus ΘI is Iδ in the terminology of Agliano and Ursini [2].

10Two significant exceptions are the varieties of implicative BCS-algebras and pseudocomplemented semilat-
tices.
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• pointed fixedpoint 0-discriminator on A is the function f defined for all a, b, c ∈ A
by

f(a, b, c) =

{
c if a = b,

0 otherwise;

• skew Boolean 0-discriminator on A is the function w defined for all a, b, c ∈ A by

w(a, b, c) =


0 if c 6= 0,

b if c = 0 and b 6= 0,

a otherwise;

• meet 0-discriminator on A is the function ∩ defined for all a, b ∈ A by

a ∩ b =

{
a if a = b,

0 otherwise;

• monoidal 0-discriminator on A is the function ∨ defined for all a, b ∈ A by

a ∨ b =

{
b if b 6= 0,

a otherwise.

• Implicative BCK difference (brieflly, iBCK difference) is the function / defined for
all a, b ∈ A by

a/b =

{
a if a 6= b,

0 otherwise.

Implicative BCK difference may alternatively be defined in terms of the binary and
meet 0-discriminators: a/b = a\(a ∩ b). For each of the 0-discriminator functions we
have the associated notions of a discriminator algebra, discriminator variety, and generic
discriminator variety, with definitions analogous to those for the corresponding dual binary
and binary 0-discriminator constructs. Some examples of skew, skew Boolean, multiplica-
tive, and pointed fixedpoint discriminator varieties are provided in the next four sections.

All of these pointed discriminator functions are to some extent interdefinable. For
example, each of the cited 0-discriminator functions with two arguments can be written
as a composition using just the ternary discriminator and the element 0, while each of the
cited 0-discriminator functions with three arguments can be written as a composition of the
cited 0-discriminator functions with two arguments. In particular, we have the following.

a ∧ b = t(b, t(b, 0, a), a) q(a, b, c) = (a ∩ b) ∧ c
a ∨ b = t(b, 0, a) s(a, b, c) = (a ∧ b) ∨ c
a ∩ b = t(a, t(a, b, 0), 0) w(a, b, c) = (a ∨ b)\c
a ∨ b = w(a, b, 0) = s(a, a, b) a\b = t(0, b, a)

a\b = w(a, a, b) = f(b, 0, a) a/b = t(a, b, 0)

a ∩ b = q(a, b, b) = f(a, b, a)

a ∧ b = f(0, f(b, 0, a), a) = w(0, a, w(0, a, b)) = s(a, b, 0) = q(a, a, b) = a\(a\b)
f(a, b, c) = (c\(a\(a ∩ b)))\(b\(a ∩ b)) = (c\(a/b))\(b/a)

t(a, b, c) = f(a, b, c) ∨ (a\(a ∩ b)) = ((c\(a/b))\(b/a)) ∨ (a/b)
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In view of these equalities and Theorem 2.19 the following is immediate.

Proposition 4.2. Every pointed ternary, pointed fixedpoint, skew Boolean, skew, multi-
plicative, and binary 0-discriminator variety is also a dual binary 0-discriminator variety.
Hence, every such variety has both ideal-compatible operations and EDPI. Moreover, ev-
ery pointed ternary discriminator variety is also a monoidal disciminator variety, a binary
discriminator variety, a meet discriminator variety, a multiplicative discriminator variety, a
skew discriminator variety, a skew Boolean discriminator variety, and a pointed fixedpoint
discriminator variety.

As a consequence of Proposition 4.2 and the displayed equalities, the various classes
of pointed discriminator varieties can be ordered by class inclusion, as shown in Figure 1.
For each class, the figure also shows which of the pointed discriminator terms with two
arguments are definable in the varieties making up that class. Note that there are a number
of subclasses of the class of dual binary discriminator varieties that are not included in
the diagram; for example, the class of pointed dual discriminator varieties and the class of
multiplicative skew discriminator varieties described in Section 7.
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Figure 1: Some classes of pointed discriminator varieties.

4.1 Additivity

Definition 4.3. Let K be a class of algebras with a constant term 0 in its language. A
binary term x+ y is called additive with respect to 0, or 0-additive, if K |= x+ 0 ≈ x and
K |= 0 + x ≈ x. An algebra A is 0-additive if {A} has a 0-additive term.11

11The terminology additive is preferred over monoidal in this paper in view of the connection with direct
summands, and to avoid confusion with the monoidal discriminator.
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A variety that is reflexive and additive with respect to a constant term 0 has the property
that a direct product A = B ×C of two algebras decomposes into the direct sum of two
subalgebras A = B1 ⊕C1, where B1

∼= B and C1
∼= C. (See [28, §2] for the definition

of a direct sum and an outline of its properties.) In view of [28, Theorem 2] the converse is
also true; a variety in which every product of two algebras decomposes into the direct sum
of two subalgebras must have a constant term 0 in its language such that it is both reflexive
and 0-additive.

We omit the prefix and say that a dual binary discriminator variety is additive when
there is no ambiguity regarding which discriminating constant is intended. Skew, skew
Boolean, and pointed ternary discriminator varieties are additive, so reflexive members of
them that are isomorphic to finite direct products can be represented as a direct sum of
subalgebras.

5 Skew discriminator varieties
A skew lattice 〈A;∨,∧〉 is an algebra with two associative and idempotent binary opera-
tions ∨ and ∧, satisfying the dual pair of absorption laws x ∧ (x ∨ y) ≈ x ≈ (y ∨ x) ∧ x
and x∨ (x∧ y) ≈ x ≈ (y ∧ x)∨ x. For precise details, see [25]. By a strongly distributive
skew lattice is meant a skew lattice that is symmetric, normal, and distributive; for details
about such algebras see [27, §3].

Proposition 5.1. The generic skew discriminator variety is term equivalent to the variety
of left handed strongly distributive skew lattices with zero. Thus every skew discriminator
variety is term equivalent to a variety of strongly distributive skew lattices with zero and
with ideal-compatible operations.

Proof. The skew 0-discriminator on a pointed setA ⊇ {0} can be written as a composition
of the dual binary and monoidal 0-discriminators: s(a, b, c) = (a ∧ b) ∨ c. Conversely,
we have a ∧ b = s(a, b, 0) and a ∨ b = s(a, a, b). Thus any skew 0-discriminator algebra
in the generic skew 0-discriminator variety is term equivalent to an algebra of the form
A = 〈A;∨,∧, 0〉. The remainder of the proof is analogous to the proof of Proposition 2.5.
It is straightforward to verify that an algebra such as A is a primitive, and therefore flat, left
handed strongly distributive skew lattice with zero and that every flat left handed strongly
distributive skew lattice with zero has this form. On the other hand, it follows from [27,
Theorem 3.2] that every subdirectly irreducible strongly distributive skew lattice with a
zero is flat. Hence the generic skew discriminator variety is term equivalent to the variety
of left handed strongly distributive skew lattices with zero. The second assertion of the
proposition now follows from Theorem 2.19.

More generally, if A = 〈A;∨,∧, 0〉 is a flat strongly distributive skew lattice with a
zero, then the skew 0-discriminator can be defined on A by

s(a, b, c) = c ∨ (a ∧ b ∧ a) ∨ c.

Examples of skew discriminator varieties that are not ternary discriminator or skew Boolean
discriminator varieties thus include strongly distributive skew lattices with zero and hence
also distributive lattices with zero, as well as certain varieties in which each member has a
bounded distributive lattice term reduct, such as the variety of Q-distributive lattices intro-
duced in [17].
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While the term x ∨ y witnesses additivity for every skew discriminator variety, an ad-
ditive dual binary discriminator variety need not be a skew discriminator variety. However,
an additive binary discriminator variety is always a skew discriminator variety. In fact,
rather more is true.

Proposition 5.2. A variety V with a constant term 0 is a 0-additive binary 0-discriminator
variety if and only if it is a skew Boolean 0-discriminator variety. Hence a subtractive skew
discriminator variety is always a skew Boolean discriminator variety.

Proof. Let V be a binary 0-discriminator variety with a 0-additive term x+ y and a binary
0-discriminator term x\y. Let A be a binary 0-discriminator member of V. A straightfor-
ward case-splitting argument shows that the term ((x\y) + y)\z realises the skew Boolean
0-discriminator on A, with the sub-term (x\y) + y realising the monoidal 0-discriminator
on A. Hence V is a skew Boolean 0-discriminator variety. Conversely, if V is a skew
Boolean 0-discriminator variety with skew Boolean 0-discriminator term w(x, y, z) then,
by considering their realisations on a skew Boolean 0-discriminator algebra in V, it is easy
to verify that w(x,0, y) is a binary 0-discriminator term, while w(x, y,0) is a 0-additive
term.

6 Skew Boolean discriminator varieties
A skew Boolean algebra may be regarded as an algebra A = 〈A;∨,∧, \, 0〉, where the
reducts 〈A;∨,∧〉 and 〈A; \, 0〉 are respectively a strongly distributive skew lattice and an
implicative BCS-algebra, such that A |= x ∧ y ∧ x ≈ x\(x\y). This identity ensures that
the natural preorders on the two reducts coincide. For an alternative definition, and further
details about the variety of skew Boolean algebras, see [26].

By [26, Theorem 1.13], there are, up to isomorphism, just three subdirectly irreducible
skew Boolean algebras. Moreover, each of these algebras is flat. Given a flat skew Boolean
algebra A, it is straightforward to verify that the ternary function w defined for all a, b, c ∈
A by w(a, b, c) = (b ∨ a ∨ b)\c is the skew Boolean 0-discriminator on A. It follows that
skew Boolean algebras constitute a skew Boolean discriminator variety.

Proposition 6.1. The generic skew Boolean discriminator variety is term equivalent to
the class of left handed skew Boolean algebras. Thus, every skew Boolean discriminator
variety is term equivalent to a variety of skew Boolean algebras with ideal-compatible
operations.

Proof. If A is a skew Boolean 0-discriminator algebra with a skew Boolean 0-discriminator
w, the left handed skew Boolean algebra operations may be defined for all a, b, c ∈ A by
a∧ b = w(0, a, w(0, a, b)), a∨ b = w(a, b, 0) and a\b = w(0, a, b). Conversely, if A is an
ideal simple left handed skew Boolean algebra then the skew Boolean 0-discriminator on
A is given for all a, b, c ∈ A by w(a, b, c) = (a ∨ b)\c. The result now follows in a similar
manner to Proposition 2.5, since every subdirectly irreducible skew Boolean algebra is flat
and thus ideal simple. The second statement of the Proposition follows from Theorem 2.19.

Proposition 6.2. Every skew Boolean discriminator variety satisfies the QB2 quasi-identity.
Thus every element of an algebra in skew Boolean discriminator variety is central.
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Proof. By [26, Theorem 1.13], there are, up isomorphism, just three subdirectly irre-
ducible skew Boolean algebras. Moreover, these algebras are ideal simple and have at most
three elements, so their implicative BCS-algebra reducts are isomorphic to either B2, the
three-element implicative BCS-algebra, or to the two-element implicative BCK-algebra,
which is a subalgebra of B2. Therefore, every subdirectly irreducible skew Boolean alge-
bra must satisfy QB2. Birkhoff’s Theorem (see [15, Theorem II§9.6]) ensures that every
skew Boolean algebra is isomorphic to a subdirect product of subdirectly irreducible skew
Boolean algebras. Thus every skew Boolean algebra must satisfy QB2, since the satisfac-
tion of quasi-identities is preserved under the taking of subdirect products. The result now
follows from Theorem 3.4 and Proposition 6.1.

Apart from skew Boolean algebras, examples of skew Boolean discriminator varieties
include Stone algebras, double Stone algebras, Kleene-Stone algebras, strict basic logic
algebras, and many others, including every pointed ternary discriminator variety. Skew
Boolean discriminator varieties have a close connection with Church algebras, namely
algebras that have a ternary term q(x, y, z) and two constant terms 0 and 1 in their language
satisfying the identities q(1, x, y) ≈ x and q(0, x, y) ≈ y; see [18]. The next result is
inspired by [31, Proposition 3.2].

Proposition 6.3. Let V be a double-pointed skew Boolean 0-discriminator variety. Then
V is a variety of Church algebras.

Proof. Let 1 be a constant term that is residually distinct from 0. By Proposition 2.22,
V |= x ∧ 1 ≈ x, and for every A ∈ V the element 1 = 1A ∈ A is maximal. Let x′

abbreviate the term 1\x and let q(x, y, z) denote the ternary term (y ∧ x) ∨ (z ∧ x′). Then
for all a, b ∈ A we have

qA(0, a, b) = (a ∧ 0) ∨ (b ∧ 0′) = 0 ∨ (b ∧ (1\0))

= 0 ∨ (b ∧ 1) = 0 ∨ b = b,

and

qA(1, a, b) = (a ∧ 1) ∨ (b ∧ 1′) = a ∨ (b ∧ (1\1))

= a ∨ (b ∧ 0) = a ∨ 0 = a.

Hence V is a variety of Church algebras.

In the particular case of semicentral right Church algebras there is an even closer cor-
respondence. Briefly, V is a variety of semicentral right Church algebras if its language
includes a constant term 0 and a ternary term q(x, y, z) satisfying q(0, x, y) ≈ y, such that
for every A ∈ V, all elements of A are semicentral. For details see [18].

Proposition 6.4. The class of skew Boolean discriminator varieties coincides with the class
of varieties of semicentral right Church algebras.12

Proof. Let V be a variety of semicentral right Church algebras, with right Church algebra
term q(x, y, z). By [18, Lemma 4.5], A ∈ V is directly indecomposable if and only if for
all a, b, c ∈ A, q(a, b, c) = b if a 6= 0 and c otherwise. Let w(a, b, c) = q(c, 0, q(b, b, a)).

12The authors are grateful to the referee for pointing out this result.
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Then for all a, b, c ∈ A, w(a, b, c) = 0 if c 6= 0, and q(b, b, a) otherwise. But q(b, b, a) = b
if b 6= 0, and a otherwise. Hence w(a, b, c) is the skew Boolean 0-discriminator on A.
Since every subdirectly irreducible algebra is directly indecomposable it follows that the
term q(z,0, q(y, y, x)) realises the skew Boolean 0-discriminator on a class of algebras that
generates V. Thus V is a skew Boolean discriminator variety.

Conversely, suppose that V is a skew Boolean discriminator variety with skew Boolean
discriminator term w(x, y, z) and discriminating constant term 0. Let q(x, y, z) be the
term w(w(y, y, w(y, y, x)), w(z, z, x),0) and suppose that A ∈ V is a skew Boolean
0-discriminator algebra. Then for all a, b, c ∈ A,

q(a, b, c) = w(w(b, b, w(b, b, a)), w(c, c, a), 0)

= w(w(b, b, 0), 0, 0) = w(b, 0, 0) = b

when a 6= 0, while

q(a, b, c) = w(w(b, b, w(b, b, 0)), w(c, c, 0), 0)

= w(w(b, b, b), c, 0) = w(0, c, 0) = c

when a = 0. Thus A is a directly indecomposable semicentral right Church algebra. Since
V is generated by a class of such algebras, it must be a variety of semicentral right Church
algebras.

In [18] the variety of pure semicentral right Church algebras is defined to be the variety
of type 〈3, 0〉 comprising all semicentral right church algebras of the form 〈A; q, 0〉, with
q being its right Church algebra operation. Combining Propositions 6.1 and 6.4 with [18,
Theorem 4.6] yields the following.

Corollary 6.5. The generic skew Boolean discriminator variety, the variety of pure semi-
central right Church algebras, the variety of left handed skew Boolean algebras, and the
variety of right handed skew Boolean algebras are all term equivalent.

Every skew Boolean discriminator variety is additive, as witnessed by the term x ∨ y.
As a consequence, every principal ideal 〈c〉 of a reflexive algebra A in a skew Boolean
discriminator variety is a direct summand. Its complementary direct summand is the ideal
ann(c) = {a ∈ A | a ∧ c = 0}. We remark that there is a converse to this result: a
reflexive variety V with the property that the principal ideals of every member of V are
direct summands must be a skew Boolean discriminator variety.

Theorem 6.6. Let V be a variety with constant 0. The following are equivalent.

1. V is a skew Boolean 0-discriminator variety.

2. V is an additive binary 0-discriminator variety.

3. V is a subtractive skew 0-discriminator variety.

4. V is an additive and subtractive dual binary 0-discriminator variety.

5. V is additive and subtractive at 0, has EDPI and is generated by a class of 0-ideal
simple algebras.

Proof. Combine Theorem 3.2 and Proposition 5.2.
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Corollary 6.7. A congruence-permutable dual binary 0-discriminator variety is additive
and subtractive, and hence is a skew Boolean 0-discriminator variety.

Proof. Let V be a congruence-permutable dual binary 0-discriminator variety. By a theo-
rem of Mal’cev (see [15, Theorem II§12.2]), there exists a term p(x, y, z) in the language
of V such that V |= p(x, y, y) ≈ p(y, y, x) ≈ x. Let x + y be the term p(x,0, y) and let
s(x, y) be the term p(x, y, 0). Then x+ 0 ≈ p(x,0,0) ≈ x, and 0 + x ≈ p(0,0, x) ≈ x,
so V is additive. Also s(x,0) ≈ p(x,0,0) ≈ x and s(x, x) ≈ p(x, x,0) ≈ 0, so V is
subtractive. Thus V is a skew Boolean 0-discriminator variety.

7 Multiplicative discriminator varieties
Definition 7.1. An algebra A in a dual binary discriminator variety V has intersections if
finite meets exist under the natural dual binary discriminator partial order on A. A dual
binary discriminator variety V is said to have intersections if every member of V has inter-
sections.

The variety of skew Boolean intersection algebras introduced in [7] is an example of a
dual binary discriminator variety with intersections.

Lemma 7.2. Let V be a multiplicative 0-discriminator variety. Then there exist terms
x ∩ y and x ∧ y that induce the meet 0-discriminator and the dual binary 0-discriminator
respectively on the multiplicative 0-discriminator algebras in V.

Proof. Let q(x, y, z) be the multiplicative discriminator term for V. Put x∩ y = q(x, y, x)
and x ∧ y = q(x, x, y). Let A ∈ V be a multiplicative 0-discriminator algebra with
discriminating element 0 = 0A. Then for all a, b ∈ A, qA(a, b, a) = a if a = b and
0 otherwise; while qA(a, a, b) = a if b 6= 0 and 0 otherwise. Hence these functions are
respectively the meet and the dual binary 0-discriminators on A.

Theorem 7.3. Let V be a dual binary 0-discriminator variety with dual binary discrimina-
tor term x∧ y. Then V is a multiplicative 0-discriminator variety if and only if there exists
a binary term x ∩ y such that V satisfies the following identities:

x ∩ 0 ≈ 0 ∩ x ≈ 0 x ∩ y ≈ y ∩ x x ∩ (y ∩ z) ≈ (x ∩ y) ∩ z
x ∩ x ≈ x x ∧ (x ∩ y) ≈ x ∩ y (x ∧ z) ∩ (y ∧ z) ≈ (x ∩ y) ∧ z

Moreover, every dual binary 0-discriminator variety with such a term has intersections and
is a meet 0-discriminator variety.

Proof. Let V be a multiplicative 0-discriminator variety and suppose that A ∈ V is a
multiplicative 0-discriminator algebra. By Lemma 7.2 there are terms x ∧ y and a ∩ y
that realise the dual binary and meet 0-discriminators on A. Straightforward case-splitting
arguments show that the displayed identities hold on A and hence they are identities of V,
since it is a variety generated by a family of such algebras.

Conversely, if V is a dual binary 0-discriminator variety with dual binary 0-discrimina-
tor term x ∧ y, and a term x ∩ y such that the displayed identities are satisfied, then these
identities imply that for every A ∈ V the term reduct 〈A;∩, 0〉 is a meet semilattice with
zero. Moreover, the identities also imply that for all a, b ∈ A, a ∩ b ≤ a and a ∩ b ≤ b
under the natural dual binary discriminator partial order. Suppose that c ∈ A is such that
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c ≤ a and c ≤ b, so that a∧ c = c and b∧ c = c. Then c = (a∧ c)∩ (b∧ c) = (a∩ b)∧ c,
which implies that c ≤ a∩ b. Thus a∩ b is the greatest lower bound of a and b with respect
to the natural dual binary discriminator partial order and hence V has intersections.

To see that V is a meet 0-discriminator variety, let A be a dual binary 0-discriminator
algebra in V. Let a, b ∈ A. Now a ∩ b is the meet of a and b under the natural dual binary
discriminator partial order onA. But A is order isomorphic to a flat domain, which implies
that a ∩ b = 0 when a 6= b. Also a ∩ a = a. Thus the term x ∩ y realises the meet
0-discriminator on a class of algebras that generates V.

In view of this result we say that a dual binary discriminator variety V is multiplicative
if it has a binary term x ∩ y such that for every A ∈ V and all a, b ∈ A, a ∩ b is the meet
of the elements a and b under the natural dual binary discriminator partial order on A.

Example 7.4. The dual discriminator on a set A is the ternary function d : A3 → A given
for all a, b, c ∈ A by d(a, b, c) = a if a = b, and c otherwise; see [19]. Let V be a pointed
dual discriminator variety, with dual discriminator term d(x, y, z) and a constant term 0. If
A ∈ V is a dual discriminator algebra then dA(a, b, 0) = a if a = b, and 0 otherwise, while
dA(0, b, a) = a if b 6= 0, and 0 otherwise, so d(x, y, 0) and d(0, y, x) are respectively meet
and dual binary discriminator terms for V, with the multiplicative discriminator term for V
being d(0, z, d(x, y, 0)).

Jonathan Leech [24] has shown that a multiplicative skew discriminator variety is a
pointed dual discriminator variety (and hence is congruence distributive). The converse
does not hold, since the generic pointed dual discriminator variety is not additive.

8 Pointed fixedpoint discriminator varieties
Fixedpoint discriminator varieties arise in algebraic logic and were introduced by W. Blok
and D. Pigozzi in [11]. Pointed fixedpoint discriminator varieties were introduced in [1],
where they are called dual fixedpoint discriminator varieties, and independently in [34].
The generic pointed fixedpoint discriminator variety is (up to term equivalence) the variety
iBCSK of implicative BCSK-algebras, introduced in [34]. An implicative BCSK-algebra
is an algebra A = 〈A; /, \, 0〉 of type 〈2, 2, 0〉, where 〈A; /, 0〉 is an implicative BCK-
algebra, 〈A; \, 0〉 is an implicative BCS-algebra, such that the natural partial orders on
each of these term reducts coincide. An equational base for the variety iBCSK may be
obtained by taking the iBCS and iBCK identities, together with the identities (x\y)/x ≈ 0
and x ∧ (x/y) ≈ x/y. Humberstone [21, 22] has extensively investigated the deductive
system canonically associated with the variety iBCSK from the perspective of the normal
modal logic S5.

Recall that an algebra with a constant term 0 is 0-regular if for every two congruences
θ and ψ, [0]θ = [0]ψ implies θ = ψ. A variety with a constant term 0 is 0-regular
if every member of it is 0-regular. A variety V is said to be ideal determined at 0 if
every ideal of an algebra A ∈ V is the 0-class of a unique congruence relation; see [20,
Definition 1.3]. Clearly, every algebra in such a variety has the property that its lattice
of 0-ideals is isomorphic to its lattice of congruences. By [20, Corollary 1.9] a variety V
with a constant term 0 is ideal determined at 0 if and only if it is both subtractive at 0 and
0-regular.

Implicative BCSK-algebras are 0-regular and, since the iBCS and iBCK operations are
both subtractive at 0, the variety iBCSK is ideal determined. Moreover, iBCSK is semi-
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simple, that is, every subdirectly irreducible member of iBCSK is simple. Full details
appear in [34]. Since every pointed fixedpoint discriminator variety is term equivalent to a
variety of iBCSK-algebras with ideal-compatible operations, it follows that such a variety
must be ideal determined at its discriminating constant, and thus must also be semi-simple.
In summary:

Theorem 8.1. The following are equivalent for a variety with constant 0.

1. V is a pointed fixedpoint 0-discriminator variety.

2. V is a subtractive multiplicative 0-discriminator variety.

3. V is a multiplicative binary 0-discriminator variety.

4. V is a 0-regular binary 0-discriminator variety.

5. V is an ideal determined dual binary 0-discriminator variety.

6. V is ideal determined at 0 and is semi-simple with EDPI.

The equivalence of 1 and 6 was shown independently in [1, Theorem 4.8]. We remark
that for the double-pointed analogue of Theorem 8.1, further equivalences are possible: in
particular, fundamental connections can be established with the pseudo-interior algebras of
Blok and Pigozzi [12].

9 Pointed ternary discriminator varieties
Pointed ternary discriminator varieties can be characterised in many different ways. Note
that a ternary discriminator variety is a dual binary 0-discriminator variety for each constant
term 0 in its language.

Theorem 9.1. For each constant term 0 in the language of a variety V the following are
equivalent.

1. V is a pointed ternary discriminator variety.

2. V is term equivalent to a variety of skew Boolean intersection algebras with ideal-
compatible operations.

3. V is a multiplicative skew Boolean 0-discriminator variety.

4. V is an ideal determined skew 0-discriminator variety.

5. V is a multiplicative and subtractive skew 0-discriminator variety

6. V is an additive and multiplicative binary 0-discriminator variety.

7. V is an additive, subtractive and multiplicative dual binary 0-discriminator variety.

8. V is an additive pointed fixedpoint 0-discriminator variety.

9. V is a congruence-permutable multiplicative 0-discriminator variety.

Proof. Let V be a pointed ternary discriminator variety with constant term 0. By The-
orem 1.2 and Proposition 4.2, V is a dual binary 0-discriminator variety. By [7, Theo-
rem 4.7], the generic pointed ternary discriminator variety is term equivalent to the variety
of left handed skew Boolean intersection algebras, so it follows from Theorem 2.19 that
V must be term equivalent to a variety of skew Boolean intersection algebras with opera-
tions that are ideal-compatible with respect to its dual binary 0-discriminator term. Thus
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1 implies 2. Now 2 implies 3 because every skew Boolean intersection algebra is a multi-
plicative skew Boolean algebra in view of [7, §4] and Theorem 7.3.

Since every ternary 0-discriminator variety is also a skew, skew Boolean, binary, dual
binary, and pointed fixedpoint 0-discriminator variety, the equivalence of 3, 4, 5, 6, 7 and
8 follows directly from Theorems 3.2, 6.6, 7.3, and 9.1.

In view of Corollary 6.7, a congruence-permutable dual binary 0-discriminator variety
is skew Boolean 0-discriminator variety, so 9 implies 3. Ternary discriminator varieties are
congruence-permutable by [15, Theorem IV§9.4] and a ternary 0-discriminator variety is a
multiplicative 0-discriminator variety by Proposition 4.2, so 1 implies 9.

To complete the proof it is sufficient to show that 3 implies 1, so assume that V is a
multiplicative skew Boolean 0-discriminator variety. Then by Proposition 6.1 V is term
equivalent to a variety of skew Boolean algebras with ideal-compatible operations. By
Theorem 7.3 these algebras have intersections, that are witnessed by a binary meet 0-
discriminator term x ∩ y. Thus, by [7, Theorem 4.4], when the meet discriminator term
is included in their type, they are members of the ternary discriminator variety of skew
Boolean intersection algebras. Hence the ideal simple members of V are ternary discrimi-
nator algebras, and since it is generated by its ideal simple members, V must be a pointed
ternary discriminator variety.
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