
A commutative algebra approach to linear codes

Marta Giorgetti (giorge@mat.unimi.it)

Department of Mathematics, University of Milano, Italy.

Massimiliano Sala (msala@bcri.ucc.ie)

Boole Centre for Research in Informatics, UCC Cork, Ireland

Abstract

Recently some methods have been proposed to find the distance and weight distri-
bution of cyclic codes using Gröbner bases. We identify a class of codes for which
these methods can be generalized. We show that this class contains all interesting
linear codes (i.e., with d ≥ 2) and we provide variants and improvements. This
approach sometimes reveals an unexpected algebraic structure in the code. We also
investigate the decoding for an interesting sub-class, proving the existence of general
error locator polynomials.

Keywords: Linear code, distance, weight distribution, Gröbner basis, general
error locator polynomial.

Researchers in Coding Theory have been extensively investigating error
correcting codes with algebraic methods, since the very beginning of their
theory (see for example the two classical books [PW72] and [MS77] and the
recent survey [PHB98]). The algebraic approach has been successful in provi-
ding classes of codes that can be studied easily and that can be decoded with
(relative) efficiency.

There are good reasons to single out one of these classes: the class of cyclic
codes. First, cyclic codes enjoy a rich algebraic structure, permitting both fast
sharp estimates on their most important parameters (see e.g. [BRC60],[HT74],
[Roo83], [BS06],[ST00]) and the parameters’ exact determination via commu-
tative algebra techniques (see [Sal02], [MS03],[Sal06]).
Second, some subclasses of cyclic codes (such as the Reed-Solomon codes and
the BCH codes) possess fast decoding algorithms ([Fit95]), so that most actual
coding implementations (in hardware and software) are based on these codes.
Third, in [OS05] a novel decoding algorithm has been introduced for generic
cyclic codes, which has been shown experimentally to be extremely efficient
(and a proof is given for some special cases in [MOS06] and [OS06]).

The aim of this paper is to view linear codes as a “generalization” of cyclic
codes, trying to export techniques for a class to the whole set of codes. We

20/XI/2006 BCRI–CGC–preprint, http://www.bcri.ucc.ie

2 A commutative algebra approach to linear codes

note that other researchers have tried similar generalizations. For example,
in [PSvW91] it is shown that in some sense any linear code is an Algebraic-
Geometry code and in [FL98] it is shown that any linear code can be seen as
an affine-variety code.

The remainder of this paper is structured as follows:

• Section 1, we provide preliminaries and notation; we assume that the
reader has some familiarity with standard algebra, such as finite field
theory, but we assume he is not familiar with coding theory, so we give
all necessary definitions. In particular, we recall the definition of general
error locator polynomials.

• Section 2, we define our code family (the nth-root codes), provide some
examples, give some results and show some applications. To be more pre-
cise, we prove that any interesting linear code (i.e., with d ≥ 2) can be
seen as an nth-root code, we describe some ideals whose varieties deter-
mine the distance and weight distribution (so that they can be computed
via Gröbner basis techniques) and we give a similar algorithm to deal
with cosets. We introduce several sub-families, including what we call
proper maximal zerofree codes.

• Section 3, we extend the decoding techniques of [OS05] to a large sub-
class of nth-root codes, containing proper maximal zerofree codes. In this
section the reader is assumed to have some understanding of Gröbner
basis theory for 0-dimensional ideals. We prove that these codes admit
general error locator polynomials of any type ν ≥ 0. We do so by descri-
bing precisely the geometric conditions behind the main results of [OS05]
and introducing a special class of zero-dimensional ideals, which we call
stratified ideals. From the shape of the Groebner basis of any stratified
ideal, the existence of general error locator polynomials easily follows.
Furthermore, we propose an alternative approach for the computation of
said polynomials, which works better in some cases.

• Section 4, we see how well-known code families can be described as nth-
root codes. This section is divided into sub-sections, any requiring some
specific knowledge of the matter hereby exposed: cyclic codes, classical
Goppa codes, RM codes, Goppa AG codes (with a detailed analysis for
codes from Hermitian curves).

• Section 5, we provide some complexity considerations and we show some
methods to accelerate the involved calculations. We apply the theory
of semi-regular sequences to formally determine the regularity degree
(aymptotically) for an ideal that is proved equivalent to our previously
constructed, in the binary zero-free case. This requires the combinatorial
valuation of some spurious solutions.

• Section 6, we summarize our results and point out to future research.

CGC

M. Giorgetti, M. Sala 3

1 Preliminaries

In this section we fix some notation and we recall some basic concepts
about general algebra, polynomial rings and linear codes.

We denote by Fq the finite field with q elements, where q is a power of
a prime and by n a natural number such that q and n are relatively prime,
(n, q) = 1. Let 1 ≤ k ≤ N ≤ n, k, N ∈ N. We refer to the vector space of
dimension N over Fq as to (Fq)

N .
We use the symbol

⊔

i∈I Bi to denote the disjoint union of sets Bi, i ∈ I.
The zeros of polynomial xn − 1, which are called n-th roots of unity, lie in

an extension field Fqm and in no smaller field. We denote the set of all these
roots by Rn and they form a cyclic subgroup of Fqm, i.e. there is α ∈ Fqm ,
called a primitive n-th root of unity, such that:

xn − 1 =
n∏

i=1

(x − αi).

If n = qm − 1, the zeros of xn − 1 form the multiplicative group of field Fqm.
From now on q,n, k, N , m and α are understood (unless otherwise stated).

1.1 Polynomial rings

Let K be a field, let K be the algebraic closure of K and let J be an ideal
in polynomial ring K[Y] = K[y1, . . . , ys], with s ≥ 1.

Definition 1.1. Given a polynomial f ∈ K[Y], we denote by V(f) the set of
all zeros of f in (K)s, i.e.

V(f) = {(a1, . . . , as) ∈ (K)s | f(a1, . . . , as) = 0}.

Given an ideal J ⊆ K[Y], we denote by V(J) the set of zeros of J in (K)s, i.e.

V(J) = {(a1, . . . , as) ∈ (K)s | f(a1, . . . , as) = 0, ∀f ∈ J}.

Definition 1.2. Let S ⊆ (K)s. Then the set of all polynomials f ∈ K[Y] such
that f(a1, . . . , as) = 0 for all points (a1, . . . , as) ∈ S forms an ideal in K[Y].
This ideal is the vanishing ideal of S and is denoted by I(S).

Let L ⊂ K[Y], we denote by < L > the ideal in K[Y] generated by L.

1.2 Coding Theory

Definition 1.3. Let H be an (N−k)×N matrix with entries in Fqm , such that
its rank over Fq is N−k. The set C of all vectors c ∈ (Fq)

N such that HcT = 0
is an (N, k) linear code over Fq, N is the length and k is the dimension.

CGC

4 A commutative algebra approach to linear codes

The elements of C are called codewords and matrix H is a parity-check

matrix of C. If q = 2, C is called a binary code. Any k × N matrix G whose
rows form a vector basis of C is called a generator matrix of C.

Definition 1.4. Let x, y be two vectors in (Fq)
N . Then:

(1) the Hamming distance d(x, y) between x and y is the number of coordi-
nates in which x and y differ;

(2) the Hamming weight w(x) is the number of nonzero components of x.

Definition 1.5. Let C be a linear code. The number

dC = min
x,y∈C,x6=y

d(x, y) = min
x∈C,x6=0

w(c)

is called the (minimum) distance of C.

From now on, “code” means “linear code”.
If a code C has length N , dimension k and distance d, we say that C is

an [N, k, d] code.
When a codeword is transmitted, it can be affected by errors or erasures.

An error occurs when one codeword component is changed into another field
element and an erasure occurs when the received component has an unknown
value. We know where the erasures are (erasure locations), but we do not know
where the errors occur (error locations). It is convenient to collect the errors
in a vector which is the received vector minus the sent word.
If there is a decoding procedure for C that can always correct τ errors or less,
then we say that the error correction capability of the code C is τ . We denote
by t the maximum value for τ . It is known that t = b d−1

2
c.

Moreover, for any ν and τ natural numbers such that 2τ + ν < d, we know
that C can correct simultaneously ν erasures and τ errors.

Definition 1.6. Let C be an (N, k) code. We denote by Ai = Ai(C) the
number of words in C with weight i. The integer set {A0, A1, . . . , AN} is called
the weight distribution of C.

Definition 1.7. Let C ⊆ (Fq)
N be an (N, k) code. For any vector a ∈ (Fq)

N

the set
a + C = {a + x : x ∈ C}

in called a coset (or translate) of C. Let H be a parity-check matrix of C.
Then vector S(y) = HyT of length N − k is called the syndrome of y. We
denote by Ai(a + C) the number of vectors of weight i in translate a + C.

Definition 1.8. Let C be an (N, k) code over Fq with parity-check matrix H.
Let D be a proper subset of N = {1, . . ., N}. Let H ′ be the matrix obtained
from H by deleting columns h.,j, j ∈ D. We define the shortened code C(D)
as the code having H ′ as a parity-check matrix.

CGC

M. Giorgetti, M. Sala 5

1.3 General error locator polynomial

Let C be an [N, k, d] code over Fq, t its correction capability and H a
parity-check matrix. Let d ≥ 3. The syndromes lie in (Fqm)N−k and form a
vector space of dimension (N − k) over Fq. Let α be a primitive N -th root of
unity in Fqm, so that n = N . Let r = N − k.

Definition 1.9. Let LC be a polynomial in Fq[X, z], where X = (x1, . . . , xr).
Then LC is a general error locator polynomial of C if

(1) LC(X, z) = zt + at−1z
t−1 + · · ·+ a0, with aj ∈ Fq[X], 0 ≤ j ≤ t − 1, that

is, LC is a monic polynomial with degree t with respect to the variable z
and its coefficients are in Fq[X];

(2) given a syndrome s = (s1, . . . sr) ∈ (Fqm)N−k, corresponding to a vector
error of weight µ ≤ t and error locations {k1, . . . , kµ}, if we evaluate the
X variables in s, then the roots of LC(s, z) are exactly {αk1, . . . , αkµ, 0, . . . , 0

︸ ︷︷ ︸

t−µ

}.

Given a generic code C, the existence of a general error locator polynomial
is not known. In [OS05] the authors prove its existence for any cyclic code.

We can extend Definition 1.9 to the case when there are also erasures.

Definition 1.10. Let L be a polynomial in Fq[X, W, z], X = (x1, . . . , xr) and
W = (wν, . . . , w1), where ν is the number of erasures that occurred. Then L
is a general error locator polynomial of type ν of C if

(1) L(X, W, z) = zτ + aτ−1z
τ−1 + · · · + a0, with aj ∈ Fq[X, W], for any

0 ≤ j ≤ τ − 1, that is, L is a monic polynomial with degree τ in the
variable z and coefficients in Fq[X, W];

(2) for any syndrome s = (s1, . . . , sr) and any erasure location vector
w= (w1, . . . , wν), corresponding to an error of weight µ ≤ τ and error
locations {k1, . . . , kµ}, if we evaluate the X variables in s and the W
variables in w, then the roots of L(s,w, z) are {αk1, . . . , αkµ, 0, . . . , 0

︸ ︷︷ ︸

τ−µ

}.

If such L exists for a given code C, then we name the polynomial Lν
C .

To be consistent with our notation, we refer to LC also as to a general

locator polynomial of type 0, where clearly LC = L0
C .

For a code C, the possession of a general locator polynomial Lν
C of type

ν for all 0 ≤ ν < d might be a stronger condition than the possession of a
general error locator polynomial LC , but in [OS05] the authors prove that any
cyclic code admits a general locator polynomial of type ν, for 0 ≤ ν < d.

CGC

6 A commutative algebra approach to linear codes

2 General nth-root codes

2.1 Definition and first properties

Definition 2.1. Let L ⊂ Rn∪{0}, L = {l1, . . . , lN} and P = {g1(x), . . . , gr(x)}
in Fqm [x] such that ∀i = 1, . . . , N there is at least one j = 1, . . . , r such that
gj(li) 6= 0. We denote by C = Ω(q, n, qm, L,P) the code defined over Fq having

H =

g1(l1) . . . g1(lN)

g2(l1) . . . g2(lN)
...

...

gr(l1) . . . gr(lN)

=

g1(L)

g2(L)
...

gr(L)

as its parity-check matrix. We say that C is an nth-root code.

Remark 2.2. Code C = Ω(q, n, qm, L,P) is linear over Fq, its length is N = |L|
and its distance d is greater than or equal to 2, because there are no columns
in H composed only of zeros.

If 0 ∈ L we assume lN = 0 (any re-ordering of L gives an equivalent code).
We will denote by L̄ the set Rn \ L.

Definition 2.3. Let C = Ω(q, n, qm, L,P) be an nth-root code and v ∈ (Fq)
N .

If L̄ = ∅, we say that C is maximal.
If P ⊂ Fq[x], we say that C is proper.
If 0 /∈ L, we say that C is zerofree, non-zerofree otherwise.
Vector v is zerofree if either C is zerofree or C is non-zerofree but vN = 0.

Since any function from Fqm to itself can be expressed as a polynomial,
we can accept in P also rational functions of type f/g, f, g ∈ Fqm, such that
g(x̄) 6= 0 for any x̄ ∈ Fqm. We do so from now on, without further comments.

Example 2.4. Let q = 2, n = 7, qm = 8, L = F23 =< β > ∪{0} and
P = {g1(x) = 1

x2+x+1
, g2(x) = x

x2+x+1
}. The seven 7th roots of unity are all

the elements of F∗
8, R7 = F∗

8. The nth-root code C = Ω(2, 7, 8, F8, {g1, g2}) is
non-zerofree (0 ∈ L), maximal (L̄ = Rn \ L = ∅), proper (both g1 and g2 lie
in F2[x]) and its parity-check matrix is the following:

H =

g1(1) g1(β) g1(β

2) g1(β
3) g1(β

4) g1(β
5) g1(β

6) g1(0)

g2(1) g2(β) g2(β
2) g2(β

3) g2(β
4) g2(β

5) g2(β
6) g2(0)

 , i.e.

H =

1 β2 β4 β2 β β β4 1

1 β3 β6 β5 β5 β6 β3 0

 .

It is easy to see that C is an [8,2,5] code with generator matrix

CGC

M. Giorgetti, M. Sala 7

G =

1 0 0 1 0 1 1 1

0 1 1 1 1 1 1 0

 ,

and weight distribution {A0 = 1, A1 = A2 = A3 = A4 = 0, A5 = 2, A6 = 1}.

In the next example we show that not all maximal nth-root codes can be
seen as maximal proper nth-root codes.

Example 2.5. Let q = 2, n = 5, qm = 24, L = R5 and P = {g}, where
g = γ12x4 + γ11x3 + x2 + γ14x + γ3 and γ is a primitive element of F16. Let
C = Ω(2, 5, 24, R5,P). Code C is maximal (L̄ = ∅) and zero-free (0 /∈ L) and
its parity-check matrix is the following:

H =
(
g(γ3), g(γ6), g(γ9), g(γ12), g(γ15)

)
=
(
γ6, γ2, γ3, γ14, γ15

)
.

It is easy to see that C is an [5,2,3] code with generator matrix

G =

1 1 1 0 0

0 0 1 1 1

 .

We show that C is not proper maximal by contradiction. If C is (zerofree)
proper maximal then C = Ω(2, 5, 24, R5,P ′), where P ′ = {g′

1, . . . , g
′
r} ⊂ F2[x]

for some r ≥ 1. Its parity-check matrix is then

H ′ =

g1(γ
3), g1(γ

6), g1(γ
9), g1(γ

12), g1(γ
15)

...
...

...
...

...

gr(γ
3), gr(γ

6), gr(γ
9), gr(γ

12), gr(γ
15)

.

Let e1 = g′(γ3), e2 = g′(γ6), e3 = g′(γ9), e4 = g′(γ12), e5 = g′(γ15), where
g′(x) = gi(x) for some i = 1, . . . , r. Since (e1, e2, e3, e4, e5) is a row of H, it must
satisfy e1 +e2 +e3 = 0 and e3 +e4 +e5 = 0. In other words, the following ideal
J ⊂ F16[b0, . . . , b15, e1, . . . , e5] has at least a solution ε = (b̄0, . . . , b̄15, ē1, . . . , ē5)
in V(J) such that (ē1, ē2, ē3, ē4, ē5) 6= (0, 0, 0, 0, 0),

J =< e1 + e2 + e3, e3 + e4 + e5, {b2
i + bi}0≤i≤15 , {e16

i + ei}1≤i≤5 ,

g′(γ3) − e1, g′(γ6) − e2, g′(γ9) − e3, g′(γ12) − e4, g′(γ15) − e5 >,

where g′ =
∑15

0 bix
i ∈ F2[x]. A computer computation shows that a Gröbner

basis of J contains {e1, . . . , e5} and so V(J) does not contain ε, hence g′ does
not exist. This means that no polynomial in P can have coefficients in F2,
which proves our claim.

CGC

8 A commutative algebra approach to linear codes

Remark 2.6. In order to define the same nth-root code it is possible to use
different n. For example to define a linear code with length N = 5, we can use
the five 5th roots of unity or five elements chosen from the set of the seven
7th roots of unity. See next example.

Example 2.7. Let C be a linear code over F2 having parity-check matrix

H =

1 1 0 1 0

0 0 1 1 1

 .

It is possible to view C as a maximal, zerofree nth-root code Ω(2, 5, 24, L1,P1),
where L1 = R5 = {γ3, γ6, γ9, γ12, γ15} ⊂ F16 =< γ > ∪{0} and P1 ⊂ F16[x] is
P1 = {g1, g2}, with

g1 = γ7x4 + γ14x3 + γ11x2 + γ13x + 1, g2 = γ2x4 + γ4x3 + γx2 + γ8x + 1 .

Code C can also be seen as a non-maximal nth-root code zerofree with different
parameters, that is, C = Ω(2, 7, 23, L2,P2), where L2 ⊂ R7 = F

∗
8 =< β >,

L2 = {β, β2, β3, β4, β5} and P2 ⊂ F23 [t] is P2 = {p1, p2}, with

p1 = t4 + t2 + t + 1, p2 = β4t4 + β6t3 + t + β2 .

Moreover, code C can also be seen as a non-maximal, non-zerofree nth-root
code with the following parameters: C = Ω(2, 7, 23, L3,P3), with L3 ⊂ F8,
L3 = {β, β2, β3, β4, 0} and P3 ⊂ F8[z] is P3 = {h1, h2}, where

h1 = β5z4 + z3 + β5z2 + β4z, h2 = β6z4 + β3z2 + β5z + 1 .

Note however that code C cannot be seen as a maximal non-zerofree code.

The next proposition shows in particular that any correctable code can be
seen as an nth-root code for suitable values of n.

Proposition 2.8. Let C be a code over Fq of length N and d ≥ 2. Then C is
an nth-root code for any n ≥ N − 1 such that (n, q) = 1. In particular:

(1) if n = N , then C can be maximal zerofree,

(2) if n = N − 1, then C is maximal non-zerofree.

Proof. Let C be a linear code over Fq of length N , dimension k and d ≥ 2,
with parity-check matrix H = (hi,j) ∈ (Fq)

(N−k)×N . Since d ≥ 2 there is no
j = 1, . . . , N such that hi,j = 0, ∀i = 1, . . .N − k. Let n be a natural number
such that n ≥ N − 1 and (n, q) = 1. Let Rn = {α1, . . . , αn} be the set of
nth-roots of unity over Fq.

• Suppose that n ≥ N . Let L be a subset of Rn, |L| = N , and r = N − k.
Thanks to the Lagrange interpolation theorem we can find r polynomials
gi(x) ∈ Fqm[x] such that gi(αj) = hi,j ∀αj ∈ L, i = 1, . . . , r, j = 1, . . . , N ,

CGC

M. Giorgetti, M. Sala 9

viewing any hi,j as an element of Fqm . We collect polynomials gi(x) in set
P = {gi}1≤i≤r. Polynomials gi(x) are such that for any i = 1, · · · , r there
is at least one 1 ≤ j ≤ r such that gj(αi) 6= 0. Then it is obvious that
code C can be seen as the zerofree nth-root code Ω(q, n, qm, L,P).

• With the above construction, if n = N code C is maximal, since L = Rn.

• Let L be a set composed of 0 and N − 1 elements of Rn. With the above
argument it is easy to proof that C is a non-zerofree nth-root code.
If n = N − 1, code C is maximal non-zerofree, since L = Rn ∪ {0}.

Corollary 2.9. Let C be a code. C is an nth-root code if and only if d ≥ 2.

Proof. It follows immediately from Proposition 2.8 and from Remark 2.2.

Thanks to previous proposition, an (linear) [N, k, d] code C, d ≥ 2, can
be seen as an nth-root code, but we do not know whether it can be seen as a
proper nth-root code: we only know that there are codes that cannot be seen
as maximal proper nth-root (see Example 2.5).

2.2 Computing distance and weight distribution for an nth-root code

In this section we provide a method to compute the distance and weight
distribution of a code C, given a representation of C as an nth-root code.

The following two ideals are necessary to our purposes.

Definition 2.10. Let C = Ω(q, n, qm, L,P) be an nth-root code, w and ŵ be
natural numbers such that 2 ≤ w ≤ N = |L|, 1 ≤ ŵ ≤ N − 1. We denote by
Jw(C) and Ĵŵ(C) the following two ideals:

Jw = Jw(C) = Jw(q, n, qm, L,P) ⊂ Fqm[z1, . . . , zw, y1, . . . , yw],

Ĵŵ = Ĵŵ(C) = Ĵŵ(q, n, qm, L,P) ⊂ Fqm[z1, . . . , zŵ, y1, . . . , yŵ, ν],

Jw = 〈 {∑w
h=1 yhgs(zh)}1≤s≤r

,
{
yq−1

j − 1
}

1≤j≤w
,

{pij(zi, zj)}1≤i<j≤w ,
{

zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤w
〉

(1)

Ĵŵ = 〈
{
∑ŵ

h=1 yhgs(zh) + νgs(0)
}

1≤s≤r
,
{
yq−1

j − 1
}

1≤j≤ŵ

νq−1 − 1, {pij(zi, zj)}1≤i<j≤ŵ ,
{

zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤ŵ
〉

(2)

where pij =
∑n−1

h=0 zh
i zn−1−h

j =
zn
i −zn

j

zi−zj
are in Fq[zi, zj].

We denote by η(Jw) and η̂(Ĵŵ) the integers η(Jw) = |V(Jw)|, η̂(Ĵŵ) = |V(Ĵŵ)|.

CGC

10 A commutative algebra approach to linear codes

Remark 2.11. Ideals Jw and Ĵŵ are radical, since they contain polynomials
yq

j −yj and zn+1
j −zj with j = 1, . . ., w for Jw and j = 1, . . ., ŵ for Ĵŵ ([Sei74]).

Remark 2.12. If we are in the binary case (q = 2), variables yj, j = 1, . . . , w,
and ν are 1, and so we can omit them and the ideals become:

Jw = Jw(C) = Jw(2, n, 2m, L,P) ⊂ F2m [z1, . . . , zw] ,

Jw = 〈 {∑w
h=1 gs(zh)}1≤s≤r

, {pij(zi, zj)}1≤i<j≤w

{
zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤w
〉;

Ĵŵ = Ĵŵ(C) = Ĵŵ(2, n, 2m, L,P) ⊂ F2m [z1, . . . , zŵ],

Ĵŵ = 〈
{
∑ŵ

h=1 gs(zh) + gs(0)
}

1≤s≤r
, {pij(zi, zj)}1≤i<j≤ŵ ,

{
zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤ŵ
〉.

Proposition 2.13. Let C = Ω(q, n, qm, L,P) be an nth-root code. In the ze-
rofree case, there is at least one codeword of weight w in C if and only if there
exists at least one solution of Jw(C). In the non-zerofree case, there is at least
one codeword of weight w in C if and only if there exists at least one solution
of Jw(C) or of Ĵw−1(C). Moreover the number of codewords of weight w is

Aw = η(Jw)
w!

in the zerofree case and

Aw = η(Jw)
w!

+ η̂(Ĵw−1)
(w−1)!

in the non-zerofree case

The proof is reported in Subsection 2.5.

2.3 Algorithms

Since the number of solutions of an ideal J is directly computed from any
Gröbner basis of J (see [BCRT93]), we can easily describe an algorithm to
compute the weight distribution (and the distance) of an nth-root code, by
applying Proposition 2.13.

We first consider the zerofree case.

INPUT: a zerofree nth-root code C = Ω(q, n, qm, L,P),

an integer 2 ≤ w ≤ |L|
OUTPUT: the element Aw of the weight distribution of C

STEP 1: construct ideal Jw = Jw(C)

STEP 2: compute a Gröbner basis Gw of Jw

STEP 3: use Gw to get the number η(Jw) of points in V(Jw)

STEP 4: return η(Jw)
w!

We now consider the non-zerofree case.

CGC

M. Giorgetti, M. Sala 11

INPUT: a non-zerofree nth-root code C = Ω(q, n, qm, L,P),

an integer 2 ≤ w ≤ |L|
OUTPUT: the element Aw of the weight distribution of C

STEP 1: construct ideals Jw = Jw(C) and Ĵw−1 = Ĵw−1(C)

STEP 2: compute a Gröbner basis Gw of Jw and

compute a Gröbner basis Ĝw−1 of Ĵw−1

STEP 3: use Gw to get the number η(Jw) of points in V(Jw) and

use Ĝw−1 to get the number η̂(Ĵw−1) of points in V(Ĵw−1)

STEP 4: return η(Jw)
w! + η̂(Ĵw−1)

(w−1)!

We give an example for the non-zerofree case.

Example 2.14. Consider the nth-root code C as in Example 2.4. We compute
its weight distribution by using our algorithm. Setting w = 2 we construct
ideals J2(C) ⊆ F2[z1, z2] and Ĵ1(C) ⊆ F2[z1]:

J2(C) =< g1(z1) + g1(z2), g2(z1) + g2(z2), z
7
1 − 1, z7

2 − 1, p(z1, z2) >

Ĵ1(C) =< g1(z1) + g1(0), g2(z1) + g2(0), z7
1 − 1 >

Their Gröbner bases G2 and Ĝ1 are trivial and hence there are no words
of weight 2 in this nth-root code. The same happens for w = 3 and w = 4, so
that A3 = A4 = 0. Setting w = 5 we construct the ideals J5 and Ĵ4. Basis G5

is trivial, but basis Ĝ4 has the following leading terms

{
z1z2, z2

1 , z1z
2
3 , z3

2 , z1z
3
4 , z4

3 , z2
2z

2
3 , z5

4 , z2
2z

3
4 , z3

3z
3
4

}
.

These monomials permit us to compute the number η̂(Ĵ4) = 48 ([BCRT93]).

We get A5 = η(J5)
5!

+ η̂(Ĵ4)
4!

= 48
4!

= 2 (note that the 2 words of weight 5 in C
have the last component non zero). Computing G6 we have a non trivial result,
η(J6) = 720, and for Ĵ5 we get an empty variety. The words of weight 6 are

then A6 = η(J6)
6!

+ η̂(Ĵ5)
5!

= 720
6!

= 1. Summarizing, we have:

w G(Jw) Ĝ(Ĵw−1) η(Jw) η̂(Ĵw−1) Aw

2,3,4,7 {1} {1} 0 0 0

5 {1} not trivial 0 48 2

6 not trivial {1} 720 0 1

8 – {1} – 0 0

CGC

12 A commutative algebra approach to linear codes

2.4 Computing the weight distribution for cosets

In this subsection we study the computation of the weight distribution of
translates of any nth-root code C = Ω(q, n, qm, L,P).

We can define two ideals and use them to calculate the weight distribution
of cosets, similarly to what is done in previous sections.

Definition 2.15. Let C = Ω(q, n, qm, L,P) be an nth-root code, w and ŵ be
natural numbers such that 2 ≤ w ≤ N = |L|, 1 ≤ ŵ ≤ N−1. Let a ∈ (Fq)

N \C

and σ(a) ∈ (Fqm)r be its syndrome. We denote by Jw(a + C) and Ĵŵ(a + C)
the following two ideals:
Jw(a+C) ⊂ Fqm [z1, . . . , zw, y1, . . . , yw], Ĵŵ(a+C) ⊂ Fqm[z1, . . . , zŵ, y1, . . . , yŵ, ν],

Jw(a + C) = 〈 {∑w
h=1 yhgs(zh) − σ(a)}1≤s≤r ,

{
yq−1

j − 1
}

1≤j≤w
,

{pij(zi, zj)}1≤i<j≤w ,
{

zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤w
〉;

(3)

Ĵŵ(a + C) = 〈
{
∑ŵ

h=1 yhgs(zh) + νgs(0) − σ(a)
}

1≤s≤r
,
{
yq−1

j − 1
}

1≤j≤ŵ

νq−1 − 1, {pij(zi, zj)}1≤i<j≤ŵ ,
{

zn
j −1

Q

l∈L̄(zj−l)

}

1≤j≤ŵ
〉.

(4)

We also define η(Jw(a+C)) = |V(Jw(a+C))|, η̂(Ĵŵ(a+C)) = |V(Ĵŵ(a+C))|.

We have the following proposition.

Proposition 2.16. Let C = Ω(q, n, qm, L,P), a ∈ (Fq)
N \ C, and a + C a

coset of code C. In the zerofree case, there is at least one vector of weight w
in coset a + C if and only if there is at least one solution of Jw(a + C). In the
non-zerofree case, there is at least one vector of weight w in a +C if and only
if there is at least one solution of Jw(a + C) or of Ĵw−1(a + C). Furthermore,
the number of vectors of weight w in a + C is

Aw(a + C) = η(Jw(a+C))
w!

in the zerofree case and

Aw(a + C) = η(Jw(a+C))
w!

+ η̂(Ĵw−1(a+C))
(w−1)!

in the non-zerofree case

Proof. We apply similar arguments to those of Proposition 2.13.

Example 2.17. We consider code C as in Example 2.4. We know that it has
64 cosets (including C itself), any having a syndrome vectors σ(a) in (F8)

6.
Since H has two rows, we can consider syndromes in (F8)

2.
Let a = (0, 0, 0, 0, 0, 0, 0, 1) and HaT = σ(a) = (1, 0)T .
We construct ideals Jw(a + C), Ĵw−1(a + C) (2 ≤ w ≤ 8), we compute their
Gröbner bases Ga

w = G(Jw(a + C)), Ĝa
w−1 = Ĝ(Ĵw−1(a + C)), obtaining the

following results:

CGC

M. Giorgetti, M. Sala 13

w Ga
w Ĝa

w−1 η(Jw(a + C)) η̂(Ĵw−1(a + C)) Aw(a)

2,3,5,6 {1} {1} 0 0 0

4 non trivial {1} 48 0 2

7 {1} non trivial 0 720 1

8 – {1} – 0 0

2.5 Proof of Proposition 2.13

Let C = Ω(n, q, qm, L,P) be an nth-root code of length N = |L|. We have:

• in the zerofree case, L = {αi1, . . . , αiN} = {αij}ij∈I , I ⊂ {1, . . . , n} such
that |I| = N and i1 < . . . < iN , i.e. set I contains the exponents ij such
that αij belongs to L.

• in the non-zerofree case, L = {αi1 , . . . , αiN−1, 0} = {αij}ij∈Î ∪ {0}, Î ⊂
{1, . . . , n} such that |Î| = N − 1 and i1 < . . . < iN−1, i.e. set Î contains
the exponents ij such that αij belongs to L.

Observe that having ordered the exponents of α in I (or Î) we have not ordered
set L.

Let π be a projection map:

π : (Fq)
n+1 → (Fq)

N , π : (v1, . . . , vn, v0) 7→ (vi1 , . . . , viN)

Note that we use v0 to denote the last position of the input vector instead
of vn+1, in order to simplify notation in the non-zerofree case. For any w,
2 ≤ w ≤ N , let Aw ⊂ (Fqm)w × (Fq)

w be the set composed of all vectors
a = (a1, . . . , aw, a′

1, . . . , a
′
w) such that: ai = 0 or ai = αj (j = 1, . . . , n), if

ai = 0 then i = w, ai 6= aj (∀i 6= j), and a′
i 6= 0 (for any i′).

Sets {Aw}2≤w≤N are obviously disjoint. We define a function φ as

φ :
⊔

2≤w≤N

Aw → (Fq)
n+1, φ(a1, . . . , aw, a′

1, . . . , a
′
w) = (v1, . . . , vn, v0),

where

v0 =

a′
w, if aw = 0

0, if aw 6= 0
, and for i 6= 0, vi =

a′
j, if ∃j such that aj = αi

0, otherwise
.

Composing maps φ and π we obtain Φ = π ◦ φ :
⊔

2≤w≤N Aw → (Fq)
N ,

π ◦ φ(a1, . . . , aw, a′
1, . . . , a

′
w) = π(v1, . . . , vn, v0) = (vi1 , . . . , viN).

CGC

14 A commutative algebra approach to linear codes

We claim that if v ∈ (Fq)
N is a vector of weight w then Φ−1(v) ⊂ Aw and

|Φ−1(v)| =

w! if v is zerofree

(w − 1)! if v is non-zerofree
. (5)

In fact, let v be a vector of weight w:

v =

(

0, . . . , 0
︸ ︷︷ ︸

, ν1, 0, . . . , 0, νi, 0, . . . , 0, νw, 0, · · · , 0
︸ ︷︷ ︸

)

.

↑ ↑ ↑ ↑ ↑
µ1 − 1 µ1 µi µw N − µw

(6)

If v is zerofree then any a ∈ Φ−1(v) is a = (αµ1 , . . . αµw , ν1, . . . , νw), or any
other vector obtained from a via a permutation σ ∈ Sw acting as:

(αµσ(1) , . . . , αµσ(w) , νσ(1), . . . , νσ(w)),

so that |Φ−1(v)| = w!.
If v is non-zerofree then any a ∈ Φ−1(v) is a = (αµ1 , . . . αµw−1 , 0, ν1, . . . , νw−1, νw),
or any other vector obtained from a via a permutation σ̃ ∈ Sw−1 acting as:

(αµσ̃(1) , . . . , αµσ̃(w−1) , 0, νσ̃(1), . . . , νσ̃(w−1), νw),

so that |Φ−1(v)| = (w − 1)! and (5) is proved.
Let c = (c1, . . . , cN) ∈ C be a codeword of weight w. Let H be the standard

parity-check matrix of C, so that HcT = 0, i.e.

g1(l1) g1(l2) . . . g1(lN)

g2(l1) g2(l2) . . . g2(lN)
...

...
...

...

gr(l1) gr(l2) . . . gr(lN)

c1

c2

...

cN

= 0.

By representing c as in (6) we obtain the r equations

w∑

h=1

gs(lµh
)νh = 0 for s = 1, . . . , r. (7)

If c is zerofree, representing lµi
= αµi with zi and νi with yi for any

i = 1, . . . , w, we define an ideal J ′
w in Fqm [z1, . . . , zw, y1, . . . , yw] as generated

by {∑w
h=1 yhgs(zh)}1≤s≤r, {yq−1

i − 1}1≤i≤w and {zn
i − 1}1≤i≤w.

If c is non-zerofree, representing lµi
= αµi with zi, i = 1, . . . , w − 1, and

νi with yi, i = 1, . . . , w, we define an ideal Ĵ ′
w in Fqm[z1, . . . , zw, y1, . . . , yw] as

generated by {∑w
h=1 yhgs(zh)}1≤s≤r, {yq−1

i −1}1≤i≤w, {zn
i −1}1≤i≤w−1, and zw.

CGC

M. Giorgetti, M. Sala 15

It is clear from equations (7) that any codeword of weight w corresponds
to at least one solution of ideals J ′

w, Ĵ ′
w: we will refer to these solutions as

”proper solutions” and to the others as ”spurious solutions”.

We certainly have a spurious solution if, for i 6= j, we get zi = zj: a
codeword cannot have for the same position different values. In order to remove

these spurious solutions we add polynomials {pi,j(zi, zj)}{1≤i<j≤w} =
zn
i −zn

j

zi−zj
. In

[Sal06] the author shows that the set {zn
i − 1, pi,j(zi, zj)}{1≤i<j≤w} is a basis

for the ideal I vanishing on the variety

V = {(z̄1, . . . , z̄w) | z̄n
i − 1 = 0, i = 1, . . . , w, z̄i 6= z̄j, 1 ≤ i < j ≤ w}.

Then, we can add, respectively, to J ′
w and Ĵ ′

w sets {pi,j(zi, zj)}{1≤i<j≤w} and
{pi,j(zi, zj)}{1≤i<j≤w−1}, obtaining respectively

J ′′
w =< J ′

w, pi,j(zi, zj){1≤i<j≤w} > and Ĵ ′′
w =< Ĵ ′

w, pi,j(zi, zj){1≤i<j≤w−1} > .

Observe that J ′′
w is Jw and Ĵ ′′

2 has the same number of solutions of Ĵw−1. In
conclusion, for any word c of weight w, if c is zerofree there is at least one
solution of Jw, else there is at least a solution of either Jw or Ĵw−1.

Conversely, let č = (ž1, . . . , žw, y̌1, . . . , y̌w) be in the variety of J ′′
w = Jw.

Since žn
i = 1, ∀i = 1, . . . , w, we can write any ži as αµi, for some 1 ≤ µi ≤ n.

Moreover, since ži 6= žj for any i 6= j we have that µi 6= µj for any i 6= j and
yj 6= 0 ∀ j = 1, . . . , w, so that č ∈ Aw. Applying map Φ to č we obtain:

c =

(

0, . . . , 0
︸ ︷︷ ︸

, y̌1, 0, . . . , 0, y̌i, 0, . . . , 0, y̌w, 0, · · · , 0
︸ ︷︷ ︸

)

.

↑ ↑ ↑ ↑ ↑
µ1 − 1 µ1 µi µw N − µw

A direct check shows that c is actually a codeword.
On the other hand, if č = (ž1, . . . , žw, y̌1, . . . , y̌w) is in the variety of Ĵ ′′

w = Ĵw−1,
since žn

i = 1, ∀i = 1, . . . , w−1, we can write any ži as αµi , for some 1 ≤ µi ≤ n.
Moreover, since ži 6= žj for any i 6= j, we have that µi 6= µj for any i 6= j. We
compute Φ(č):

c =

(

0, . . . , 0
︸ ︷︷ ︸

, y̌1, 0, . . . , 0, y̌i, 0, . . . , 0, y̌w−1, 0, . . . , 0, y̌w) .

↑ ↑ ↑ ↑ ↑
µ1 − 1 µ1 µi µw−1 µw

A direct check shows that c is actually a codeword.

To conclude the proof it is enough to apply (5).

CGC

16 A commutative algebra approach to linear codes

3 General error locator polynomial

In this section we assume the reader is familiar with Gröbner theory
for 0−dimensional ideals, in particular with the Gianni-Kalkbrener theorem
([Kal89], [Gia89],[GM89],[CM02]).

Let K be a (not necessarily finite) field. Assume G is a Gröbner basis for
a 0−dimensional ideal J ⊂ K[S,A, T], S = (s1, . . . , sH), A = (a1, . . . , aL),
T = (t1, . . . , tM) w.r.t. a order with S < A < T and with the A–variables
lexicographically ordered by a1 > a2 > · · · > aL. Then the elements of set
G ∩ (K[S,A] \ K[S]) can be collected into blocks {Gi}1≤i≤L:

G1 = {g1,1(S, aL, . . . , a2, a1), . . . , g1,l1(S, aL, . . . , a2, a1)},
G2 = {g2,1(S, aL, . . . , a2), . . . , g2,l2(S, aL, . . . , a2)},

...

GL = {gL,1(S, aL), . . . , gL,lL(S, aL)},
in such a way that:

• for any i, Gi ⊂ K[S, aL, . . . , ai+1][ai] \ K[S, aL, . . . , ai+1],

• the ideal generated by tj>iGj is actually the i-th elimination ideal Ji,
Ji = J ∩ K[S, aL, . . . , ai].

The Gianni-Kalkbrener Theorem ensures that Gi 6= ∅ for any 1 ≤ i ≤ L.
Clearly any Gi, 1 ≤ i ≤ L, can be decomposed into blocks of polynomials
according to their degree with respect to the variable ai:

Gi = ∪∆i

δ=1Giδ,

but some Giδ could be empty. In this way, if g ∈ Giδ, we have:

• g ∈ K[S, aL, . . . , ai+1][ai] \ K[S, aL, . . . , ai+1],

• degai
(g) = δ, i.e. g = baδ

i + · · · and b = Lp(g) ∈ K[S, aL, . . . , ai+1].

Let Niδ be the number of elements of Giδ. We name the elements of the set
Giδ = {giδj , 1 ≤ j ≤ Niδ} after their order:

h < j ⇔ Lt(giδh) < Lt(giδj).

Remark 3.1. We can summarize our description.
Given any two polynomials glDh ∈ GlD and giδj ∈ Giδ, then

glDh < giδj ⇔ Lt(glDh) < Lt(giδj) ⇔

l > i or

l = i, D < δ or

l = i, D = δ, h < j

(8)

CGC

M. Giorgetti, M. Sala 17

Since J is 0−dimensional, we can clearly decompose the variety of its
elimination ideals as follows. Let JS = J∩K[S], JS∪{aL} = J∩K[S, aL], . . . ,
JS∪{aL,...,a1} = J ∩ K[S, aL, . . . , a1] = J ∩ K[S,A]. We have:

1) V(JS) = tλ(L)
j=1 ΣL

j , with

ΣL
j = {(s1, . . . , sN) ∈ V(JS) | there are exactly j values {ā(1)

L , . . . , ā
(j)
L },

s.t.(s1, . . . , sN , ā
(i)
L) ∈ V(JS∪{aL}), 1 ≤ i ≤ j};

2) V(JS∪{aL}) = tλ(L−1)
j=1 ΣL−1

j ,with

ΣL−1
j = {(s1, . . . , sN , aL) ∈ V(JS∪{aL}) | there are exactly j values

{ā(1)
L−1, . . . , ā

(j)
L−1}, s.t.(s1, . . . , sN , aL, ā

(i)
L−1) ∈ V(JS∪{aL,aL−1}), 1 ≤ i ≤ j};

3) V(JS∪{aL,...,ah}) = tλ(h−1)
j=1 Σh−1

j , 2 ≤ h ≤ L with

Σh−1
j = {(s1, . . . , sN , aL, . . . , ah) ∈ V(JS∪{al,...,ah}) | ∃ exactly j values

{ā(1)
h−1, . . . , ā

(j)
h−1}, s.t.(s1, . . . , sN , aL, . . . , ah, ā

(i)
h−1) ∈ V(JS∪{aL,...,ah+1}),

1 ≤ i ≤ j};

Note that, for a general 0-dimensional ideal J , nothing can be said about
λ(h), except that λ(h) ≥ 1 for any 2 ≤ h ≤ L.

We now introduce a class of ideals which are very useful in our context.

Definition 3.2. With the above notation we say that J is stratified if:

(1) λ(h) = h, 1 ≤ h ≤ L and

(2)
∑h

j 6= ∅, 1 ≤ h ≤ L, 1 ≤ j ≤ h.

In the next two examples we show some non-stratified ideals.

Example 3.3. Let S = {s1}, A = {a1} (so that L = 1) and T = {t1} such
that S < A < T . Let K = C and J be the ideal in C[s1, a1, t1] generated by

{s21 − s1, a1s1 − a1 − s1 + 1, a2
1 − 2a1s

2
1 − 2a1s1 − a1 + s31 + 3s21 + 2s1, t1}.

The variety of J is V(J) = {(0, 1, 0), (1, 2, 0), (1, 3, 0)}. Let JS = J ∩ C[S] =

< s21 − s1 >, then V(JS) = tλ(L)
j=1

∑L
j = tλ(1)

j=1

∑1
j = {0, 1}. Clearly {0} =

∑1
1

and {1} =
∑1

2, which means λ(1) = 2 6= 1 = L, so ideal J is not stratified
because condition (1) in Definition 3.2 is not satisfied for h = 1. See Figure 1
(A).

CGC

18 A commutative algebra approach to linear codes

0 1 2 3 4 5
0

1

2

3

4

5

s1

0 1 2 3 4 5
0

1

2

3

4

5

s1

(A) (B)a1 a3

Fig. 1. Varieties in the non-stratified case.

Example 3.4. Let S = {s1}, A = {a1, a2, a3} (so that L = 3) and T = {t1}
such that S < A < T and a1 > a2 > a3. Let K = C and J be the ideal in
C[s1, a1, a2, a3, t1] generated by

{s21 − s1, a3s1 − s1, a3
3 − 6a2

3 + 11a3 − 6, a1, t1} .

The variety of J is V(J) = {(0, 0, 0, 1, 0), (0, 0, 0, 2, 0), (0, 0, 0, 3, 0), (1, 0, 0, 1, 0)}
and V(JS∪a3) = {(0, 1), (0, 2), (0, 3), (1, 1)}. Let JS = J ∩ C[S] =< s21 − s1 >,

then V(JS) = tλ(L)
j=1

∑L
j = tλ(3)

j=1

∑3
j = {0, 1}. Clearly {1} =

∑3
1 and {0} =

∑3
3

which means λ(3) = 3, satisfying condition (1) in Definition 3.2. However,
∑3

2 = ∅ and so ideal J is not stratified, because it does not satisfy condition
(2) in Definition 3.2, for h = 3. See Figure 1 (B).

The next example shows a simple stratified ideal.

Example 3.5. Let S = {s1}, A = {a1, a2} (so that L = 2) and T = {t1} such
that S < A < T and a1 > a2. Let K = C and J be the ideal in C[s1, a1, a2, t1]
generated by:

{s21 − s1, a2 − 3, a1s1 − 2s1, a
2
1 + a1s1 − 3a1 − 2s1 + 2, t1}.

The variety of J is V(J) = {(0, 1, 3, 0), (0, 2, 3, 0), (1, 2, 3, 0)}. Let JS = J ∩
C[S] =< s21 − s1 >, then V(JS) = JS = tλ(L)

j=1

∑L
j = tλ(2)

j=1

∑2
j = {0, 1}.

Clearly {1} =
∑2

1 and {0} =
∑2

2, which means λ(2) = 2 satisfying condi-

tion (1) in Definition 3.2, for h = 1, 2. Variety V(JS∪{a2}) = tλ(L−1)
j=1

∑λ(1)
j =

{(0, 1), (0, 2), (1, 2)}. On the other hand, {(0, 1), (0, 2), (1, 2)} =
∑1

1, which

means λ(L − 1) = λ(1) = 1 satisfying condition (1) and all
∑i

j, ∀i, j = 1, 2,
are not empty, so that ideal J is stratified. See Figure 2 (A) and (B).

CGC

M. Giorgetti, M. Sala 19

0 (1,0) (2,0) (2,1)
0

1

2

3

4

5

(a2,s1)0 1 2 3 4 5
0

1

2

3

4

5

s1

(A) (B)a2 a1

Fig. 2. Varieties in a stratified case

.

By revisiting Theorem 5.4 and Theorem 5.5 of [OS05], we get the following
theorem.

Theorem 3.6. Let J be a radical, stratified ideal, then for 1 ≤ i ≤ L,

Gi = ti
δ=1Giδ ,

with Giδ 6= ∅, 1 ≤ δ ≤ i and 1 ≤ i ≤ L. Moreover

• ∀ 1 ≤ i ≤ L, Gii = {gii1}, i.e. only one polynomial exists in Gi with
degree i w.r.t ai;

• ∀ 1 ≤ i ≤ L, Lp(gii1) = 1, Lt(gii1) = ai
i.

In next definition we adapt ideal Jw in Definition 2.10 to correct errors.

Definition 3.7. Let C = Ω(q, n, qm, L,P) be a zerofree, maximal nth-root
code, with correction capability t. We denote by JC,t the ideal

JC,t ⊂ Fqm [x1, . . . , xr, zt, . . . , z1, y1, . . . , yt],

JC,t = 〈
{∑t

h=1 yhgs(zh) − xs

}

1≤s≤r
,
{
yq−1

j − 1
}

1≤j≤t
,

{zizjpij(zi, zj)}i6=j, 1≤i,j≤t ,
{
zn

j − zj

}

1≤j≤t
〉

(9)

We denote by Gc,t any Gröbner basis of JC,t w.r.t. >.

Note that variables x1, . . . , xr represent correctable syndromes, z1, . . . , zt

error locations and y1, . . . , yt error values.

CGC

20 A commutative algebra approach to linear codes

Lemma 3.8. Ideal JC,t is radical and stratified.

Proof. Points in V(JC,t) cannot be outside (Fqm)r+2t. Since JC,t contains
polynomials yq−1

j − 1, and zn
j − 1 divides zqm

j − zj for j = 1, . . . , t, thanks to
Seidenberg’s Lemma ([Sei74]), JC,t is radical.

To prove that JC,t is stratified we begin with the case h = t (L = t).
Let µ be a natural number 2 ≤ µ ≤ t − 1 and

Σt
µ = {x̄ = (x̄1, . . . x̄r) ∈ V(JC,t

x1,...,xr
) | there are exactly

µ values (z1
t , . . . , z

µ
t) s.t. (x̄1, . . . x̄r, z

j
t) ∈ V(JC,t

x1,...,xr,zt
)}.

A point in V(JC,t) corresponding to a syndrome that can correct µ− 1 errors
is of type

(x̄1, . . . , x̄r, ∗ ∗ ∗ ∗ ∗
︸ ︷︷ ︸

, ȳ1, . . . , ȳt).

µ − 1 values 6= 0

and t − µ + 1 values 0

There are (µ−1)! points corresponding to this syndrome. If we truncate them
at the (r + 1)-th component, position r + 1 may assume either µ − 1 values
corresponding to error locations or a zero value, for a total number of µ values.
So

Σt
µ ⊃ {syndromes that can correct µ − 1 errors , 2 ≤ µ ≤ t − 1}.

The converse inclusion is proved similarly.
Let

Σt
t = {x̄ = (x̄1, . . . x̄r) ∈ V(JC,t

x1,...,xr
) | there are exactly

t values (z1
t , . . . , z

t
t) s.t. (x̄1, . . . x̄r, z

j
t) ∈ V(JC,t

x1,...,xr,zt
)}.

As in the previous case, there may be points corresponding to syndromes
correcting t − 1 errors (in the r + 1-th position we can find the t − 1 values
corresponding to errors positions and also 0), but there can also be points
corresponding to syndromes correcting t errors, so that in position r + 1 only
nonzero values can stay (which are t).

Let

Σt
1 = {x̄ = (x̄1, . . . x̄r) ∈ V(JC,t

x1,...,xr
) | there is exactly

one value z1
t s.t. (x̄1, . . . x̄r, z

1
t) ∈ V(JC,t

x1,...,xr,zt
)}

and the only vector satisfying this condition is clearly vector 0 that can be
extended only with a zero.

If µ > t

Σt
µ = {x̄ = (x̄1, . . . x̄r) ∈ V(JC,t

x1,...,xr
) | there are exactly

CGC

M. Giorgetti, M. Sala 21

µ values (z1
t , . . . , z

t
t) s.t. (x̄1, . . . x̄r, z

j
t) ∈ V(JC,t

x1,...,xr,zt
)}.

The syndromes can correct only µ ≤ t errors, so that Σt
µ = ∅ for all µ > t.

We have proved that ideal JC,t for h = t satisfies conditions (1) and (2)
in Definition 3.2. With similar arguments we can prove that it satisfies these
conditions for h 6= t, and hence it is stratified.

Applying Theorem 3.6 to JC,t, thanks to Lemma 3.8, we have the following
fact.

Fact 3.9. In Gröbner basis GC,t there exists a unique polynomial of type

g = zt
t + at−1z

t−1
t + . . . + a0, ai ∈ Fqm [X].

Proof. It is enough to take i = t and g = gtt1.

We are ready for the main result of this section.

Theorem 3.10. If code C is a proper maximal zerofree nth-root code with
correction capability t, then C possesses a general error locator polynomial.

Proof. From Fact 3.9, a polynomial of type g = zt
t +at−1z

t−1
t + . . .+a0, with

ai ∈ Fqm[X], exists in JC,t. Since C is proper, all polynomials in ideal JC,t

have coefficients in Fq and so g must be in Fq[X, zt].
We claim that L = g(X, zt) ∈ Fq[X, zt] is a general error locator polynomial
for C. Polynomial g satisfies clearly (1) in Definition 1.9. Condition (2) in
Definition 1.9 is satisfied, because correctable syndromes are in V(JC,t∩Fq[X])
and g is in JC,t.

Since cyclic codes are proper maximal zerofree nth-root codes (see Sub-
section 4.1) we obtain, as a special case of Theorem 3.10, that cyclic codes
have general error locator polynomials (Theorem 6.9 in [OS05]).

In the next two examples we show two methods to compute general error
locator polynomials. The former is suggested by Lemma 3.9. In the latter we
assume we know that a general locator polynomial exists for the code and
hence we apply directly Definition 1.9.

Example 3.11. Let G and H be the following binary matrices

G =

1 1 1 0 0

0 0 1 1 1

 H =

1 0 1 0 1

0 1 1 0 1

0 0 0 1 1

.

Let C be the [5, 2, 3] linear code over F2 with G as a generator matrix and H
as a parity-check matrix. Note t = 1. Let γ be the primitive element of F16.

CGC

22 A commutative algebra approach to linear codes

Then C is the zerofree maximal nth-root code Ω(2, 5, 24, R5,P), where

P = { g1(x) = γ4x4 + γ8x3 + γ2x2 + γx + 1,

g2(x) = γ10x4 + γ5x3 + γ5x2 + γ10x + 1,

g3(x) = γ11x4 + γ7x3 + γ13x2 + γ14x}.

We construct ideal JC,t ⊂ F16[x1, x2, x3, z1] = F16[X, Z], as follows:

JC,1 = 〈{gh(z1) − xh}1≤h≤3 , zn
1 − z1〉.

If we calculate Gröbner basis GC,t = GX ∪GX,z1 w.r.t. the lexicographical order
induced by x1 < x2 < x3 < z1, we obtain:

GX = {x2
3 + x3, x2

2 + x2, x1x3 + x2x3, x1x2 + x1 + x2x3 + x2 + x3 + 1, x2
1 + x1}

and

GX,z1 = {g111 = z1 + (γ2+γ)x1 + (γ3+γ)x2x3 + γx2 + x3 + (γ3+γ2+γ)}.

In GX,z1 there is only one polynomial in z1 of degree 1, as we expected, g111,
and it must be a general error locator polynomial for C thanks to Fact 3.9.

Example 3.12. Let C be the code in Example 3.11. Another way to compute
the general error locator polynomial is to see code C with parity-check matrix
H = (γ6, γ2, γ3, γ14, 1), so that C = Ω(2, 5, 24, R5,P ′), where

P ′ = {γ12x4 + γ11x3 + x2 + γ14x + γ3} .

If we calculate the Gröbner basis G ′ w.r.t. the lexicographical order induced
by x1 < z1, its elements are:

G ′
x1

= x5
1 + (γ3)x4

1 + (γ3 + γ)x2
1 + γ2x1 + (γ2 + γ + 1), G ′

x1,z1
= z1 + x3

1.

There is only one polynomial in z1 of degree 1, as we expected, and it is
another general error locator polynomial for C.

Example 3.13. Another way to compute general error locator polynomials
for a code is to suppose that those polynomials exist. Let C be the code
studied in Example 3.11. We assume that its parity-check matrix is a row,
H = (e1, e2, e3, e4, e5). We search a general error locator polynomial z + f(x)
(the degree t of z is 1). It must satisfy the following conditions:

f(ei) = αi , ∀1 ≤ i ≤ 5, and f(0) = 0 .

Polynomial f(x) has degree at most 5 with coefficients bi in F2, so that we
can write f(x) = b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x (f(0) = 0 =⇒ b0 = 0).

CGC

M. Giorgetti, M. Sala 23

We compute a Gröbner basis of ideal J ⊂ F2[b1, b2, b3, b4, b5, e1, e2, e3, e4, e5],

J = 〈 e1 + e2 + e3, e3 + e4 + e5, {e15
i + 1}1≤i≤5, {b2

i + bi}1≤i≤5,

f(e1) + γ3, f(e2) + γ6, f(e3) + γ9, f(e4) + γ12, f(e5) + γ15〉 ,

where relations e1 = e2 + e3, e4 = e3 + e5 follow from matrix G. We obtain
e1 = γ6, e2 = γ2, e3 = γ3, e4 = γ14, e5 = 1, so that the parity-check matrix is
H = (γ6, γ2, γ3, γ14, 1) and the general error locator polynomial is f(x) = x3.
We note that it is the same as in Example 3.12.

Remark 3.14. The previous example is interesting because we have simulta-
neously computed for C an nth-root presentation and a general error locator
polynomial. The nice shape of the general error locator polynomial reveals an
unexpected structure in this code.

If the approach presented in Example 3.13 fails for a code C ′, that is,
if V(J) = ∅, then it means that C ′ does not possess a general error locator
polynomial for any nth-root presentation, such that H is composed of one row.
However, it could be that C ′ possesses a general error locator polynomial for
H with up to N −k rows. We think that it is obvious how this may be checked
with a similar commutative algebra approach, and so we do not detail it.

3.1 Extended syndrome variety

We extend previous results to the case when there are also erasures. Let τ
be a natural number corresponding to number of error, µ be a natural number
corresponding to number of erasure and such that 2τ +µ < d. We have to find
solutions of equations of type:

s̄j +

τ∑

l=1

algj(α
kl) +

ν∑

l̄=1

c̄l̄gj(α
hl̄) = 0, j = 1, . . ., r , (10)

where {kl}, {al} and {cl̄} are unknown and {s̄j}, {hl̄} are known. We introduce
variables W = (w1, . . ., wν) and U = (u1, . . ., uν), where the {wh} stand for
erasure locations (αhl̄) and the {uh} stand for erasure values c̄l̄ (h = 1, . . ., ν).

When the word v(x) is received, the number ν of erasures and their posi-
tions {wh} are known.

We rewrite equations (10) in terms of X, Y, Z, W and U , where the {xj}
stand for the syndromes (j = 1, . . ., r), as:

CGC

24 A commutative algebra approach to linear codes

JC,τ,ν = 〈 {∑τ
l=1 ylgj(zl) +

∑ν
l̄ ul̄gj(wl̄) − xj}j=1,...,r,

,

{zn+1
i − zi}i=1,...,τ , {yq−1

i − 1}i=1,...,τ ,

{uq
h − uh}h=1,...,ν , {wn

h − 1}h=1,...,ν ,

{xqm

j − xj}j=1,...,r, {p(wh, wk)}h6=k,h,k=1,...,ν,

{zip(zi, wh)}i=1,...,τ,h=1,...,ν , {zizjp(zi, zj)}i6=j,i,j=1,...,τ 〉.
We observe that:

- polynomials
∑τ

l=1 ylgj(zl)+
∑ν

l̄ ul̄gj(wl̄)−xj characterize the nth-root code;

- polynomials zn+1
i − zi ensure that zi are nth-roots of unity or 0;

- polynomials wn
h − 1 ensure that wh are nth-roots of unity;

- polynomials yq−1
i − 1, uq

h − uh ensure that yi ∈ F∗
q and uh ∈ Fq;

- polynomials zip(zi, wh) ensure that an error cannot occur in a position cor-
responding to an erasure;

- polynomials p(wh, wk) ensure that any two erasure locations are distinct;

- polynomials zizjp(zi, zj) ensure that any two error locations are distinct.

Ideal JC,τ,ν depends only on code C and on ν. With arguments similar to
those used in the proof of Lemma 3.8 it is easy to show the following lemma:

Lemma 3.15. Ideal JC,τ,ν is stratified and radical.

Applying Theorem 3.6, thanks to Lemma 3.15, we get the following results:

Fact 3.16. In Gröbner basis GC,τ,ν there is a unique polynomial of type

g = zτ
τ + aτ−1z

τ−1 + . . . + a0, ai ∈ Fqm[X, W].

Theorem 3.17. If code C is a proper maximal zerofree nth-root code, then C
possesses general error locator polynomials of type ν, for any ν ≥ 0.

Proof. It is enough to take g as in Fact 3.16.

Example 3.18. Let C ′ be the shortened code obtained from code C presented
in Example 2.4. Code C ′ is a [7, 1, 6] linear code, so that τ (errors) and µ
(erausers) satisfy relation τ + e < 6. If τ = 1, e = 2, the syndrome ideal is

J = {g1(z1) + u1g1(w1) + u2g(w2) + x1, g2(z1) + u1g2(w1) + u2g2(w2) + x2,

z8
1 − z1, w

7
1 − 1, w7

2 − 1, x8
1 − x1, x

8
2 + x2, u

2
1 + u1, u

2
2 + u2,

z1p(z1, w1, 7), z1p(z1, w2, 7), p(w1, w2, 7)}

and in G there is only one polynomial having z1 as leading term (App. A).

CGC

M. Giorgetti, M. Sala 25

4 Other code families

In this section we analyze some classes of codes and we show how they
can be seen naturally as nth-root codes.

4.1 Cyclic codes and related codes

Definition 4.1. Let g be a divisor of xn − 1 over Fq. We define SC as the set

SC = {i1, . . . , in−k|g(αij) = 0, 1 ≤ ij ≤ n}

of all powers of α that are roots of g. Let H be the following matrix:

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
. . .

...

1 αin−k α2in−k . . . α(n−1)in−k

.

The cyclic code C generated by g is the linear code C over Fq such that H is
a parity-check matrix for C.

Setting q and n as above, m the smallest integer such that n|qm − 1,
L = Rn, i.e. L = {α, α2, . . . , αn}, and P = {xij | ij ∈ SC}, we can see C as
the nth-root code Ω(q, n, qm, Rn, {xij | ij ∈ SC}). In fact, nth-root codes are
a generalization of cyclic codes. Moreover, since xh ∈ Fq[x] for any q, we have
the following result.

Proposition 4.2. Any cyclic code is a proper maximal zerofree nth-root code.
As a consequence, it possesses a general error locator polynomial.

We claim that also shortened cyclic codes (see Definition 1.8) can be seen
as nth-root codes: if D is a subset of positions where cyclic code C is shortened,
then code C(D) is an nth-root code Ω(q, n, qm, L,P), where q, n and P are as
above and L = {αj | 1 ≤ j ≤ n, j 6∈ D}.
Remark 4.3. Since shortened (and non-shortened) cyclic codes are nth-root
codes, we can apply the algorithm of Subsection 2.3 to compute their distance
and weight distribution. In this special case, this algorithm coincides with the
algorithm proposed in [Sal06].

Now we consider the Reed-Solomon codes and the BCH codes, which are
important families of cyclic codes.

Definition 4.4. A cyclic code C of length n over Fq is a BCH code of designed
distance δ if, for some integer b ≥ 0, the generator polynomial g(x) of C is the
monic lowest degree polynomial over Fq having αb, αb+1, . . . , αb+δ−2 as zeros.

CGC

26 A commutative algebra approach to linear codes

The minimum distance is d ≥ δ and the parity-check matrix is:

H =

1 αb α2b . . . αn−1

1 αb+1 α2(b+1) . . . α(n−1)(b+1)

...
...

...
. . .

...

1 αb+δ−2 α2(b+δ−2) . . . α(n−1)(b+δ−2)

Definition 4.5. A Reed-Solomon (or RS) code over Fq is a BCH code of
length N = q − 1.

Usually, but not always, b = 1. A RS code is a cyclic code with genera-
tor polynomial g(x) = (x − αb)(x − αb+1) . . . (x − αb−δ−2), where α is the
primitive element of Fqm. A RS code can be treated as an nth-root code
Ω(q, n, qm, F∗

qm , {xi | i = b, b + 1, . . . , b + δ − 2}).
Remark 4.6. Using result from [KM00], it is easy to describe explicitly a gen-
eral error locator polynomial for RS codes and hence prove its high sparsity.

4.2 Classical Goppa codes

In this section we view classical Goppa codes as nth-root codes.

Definition 4.7. Let g(z) ∈ Fqm[z], deg(g) = r ≥ 2, and let L = {α1, . . . , αN}
denote a subset of elements of Fqm which are not roots of g(z). Then the
Goppa code Γ(L, g) is defined as the set of all vectors c = (c1, . . . , cN) with
components in Fq that satisfy the condition:

N∑

i=1

ci

z − αi

≡ 0 mod g(z) .

Usually, but now always, set L is taken to be the set of all elements in Fqm

which are not roots of the Goppa polynomial g(z). If g(z) is irreducible over
Fqm then code Γ(L, g) is called irreducible Goppa code. A parity-check matrix
for Γ(L, g) can be written as:

1
g(α1)

1
g(α2)

· · · 1
g(αN)

α1

g(α1)
α2

g(α2)
· · · αN

g(αN)

α2
1

g(α1)

α2
2

g(α2)
· · · α2

N

g(αN)
...

...
. . .

...

αr−1
1

g(α1)

αr−1
2

g(α2)
· · · αr−1

N

g(αN)

.

Setting q, m and L as above, n = qm − 1 and P = { xi

g(x)
, ∀i = 0, . . . , r − 1}, it

CGC

M. Giorgetti, M. Sala 27

follows that classical Goppa code Γ(L, g) over Fq is the nth-root code

Γ = Ω

(

q, qm − 1, qm, L,

{
xi

g(x)
|i = 0, . . . , r − 1

})

.

The following results are then obvious.

Proposition 4.8. If the Goppa polynomial g is in Fq[x], then Γ(L, g) is a
proper nth-root code. In particular, if L = Fqm \ {0}, code Γ(L, g) is proper
and maximal.

Theorem 4.9. Any classical Goppa code Γ(L, g) such that g ∈ Fq[x] and
L = Fqm \ {0} admits a general error locator polynomial.

Example 4.10. Consider the nth-root code of Example 2.4, shortened in
position 0. It is a classical Goppa code with g(x) = x2 + x + 1 and L = F∗

8.
A general error locator polynomial for this code is

L =z2

2
+ z2(x

5
1x

2
2 + x5

1 + x3
1x

2
2 + x3

1 + x2
1x

2
2 + x2

1x2 + x1x
5
2 + x1x

4
2 + x1x

3
2+

x1x
2
2 + x1x2 + x1 + x7

2 + x4
2 + x3

2 + x2
2 + 1) + x5

1x
2
2 + x5

1x2 + x5
1 + x4

1x
2
2+

x3
1x

3
2 + x2

1x2 + x2
1 + x1x

6
2 + x1x2 + x1 + x7

2 + x6
2 .

Now we focus on irreducible Goppa codes, Γ(L, g) such that L = Fqm.
These codes admit also the following parity-check matrix H:

H =
(

1
γ−ζ0

, 1
γ−ζ1

, · · · , 1
γ−ζ

qm−1

)

,

where γ ∈ Fqmr is any root of g(x) and Fqm = {ζi | 0 ≤ i ≤ qm − 1}.
We can extend Definition 2.1 to generalized nth-root codes, by allowing also
P ⊂ FQ[X] with Fqm ⊂ FQ. In this sense, an irreducible Goppa code Γ(L, g)
can be considered as a generalized nth-root code Ω(q, qm − 1, qmr, Fqmr ,P),
where P = {g(x)} = { 1

γ−x
}.

Even the ideals in Definition 2.10 can be given in the generalized case, by
considering Jw = Jw(C) = Jw(q, n, qmr, L,P) ⊂ FQ[z1, . . . , zw, y1, . . . , yw],

Ĵw = Ĵw(C) = Ĵw(q, n, qmr, L,P) ⊂ FQ[z1, . . . , zw, y1, . . . , yw, µ].

Example 4.11. Let us consider the nth-root code C given in Example 2.4.
Polynomial g(x) is irreducible over F23 = {ζi}i=0,...,7, so Goppa code C is
irreducible. Let ε be a primitive element of F64: γ = ε21 is a root of Goppa
polynomial g(x) and f(x) = x6 + x4 + x3 + x + 1 is a primitive polynomial of
F64 over F2[x]. Parity-check matrix H is then:

H =
(

1
ε21−ζ0

, 1
ε21−ζ1

, . . . , 1
ε21−ζ7

)

.

Setting q, qm and L = Fqm as above, n = qm − 1 and P = {g(x)} = { 1
ε21−x

},
we can see C as a generalized nth-root code.

CGC

28 A commutative algebra approach to linear codes

4.3 Reed-Muller codes

Definition 4.12. Let m ∈ N, m ≥ 1. An arbitrary function f : (F2)
m −→ F2

is called a Boolean function (B.f. for short).

For example we can define the i-th elementary B.f., vi : (F2)
m −→ F2,

vi(x1, . . . , xm) = xi. Their products form a linear basis for all the B.f.’s

{1, v1, . . . , vm, v1v2, v1v3, . . . , vm−1vm, v1v2v3, . . . , v1v2 · · · vm} ,

so that we can see the B.f’s. as polynomials in F2[v1, v2, . . . , vm] ([MS77]).

Definition 4.13. Let m ≥ 1 and 1 ≤ r ≤ m. We define the binary Reed-

Muller code of order r and length n = 2m as the set of Boolean functions
that are polynomials of degree at most r. We denote this set by RM(r,m).

The key point is that we can associate to any B.f. f a vector f such that
f = (f(V1), . . . , f(V2m)), once an ordering on (F2)

m = {Vi}1≤i≤2m has been
chosen (which we assume in this sub-section).

Theorem 4.14 ([MS77]). The dual code of RM(r, m) is RM(m − r, m).

Hence we can construct a linear basis for the dual code of RM(r, m) by taking
a linear basis for RM(m − r, m), so that a parity-check matrix is

H =

v1

...

vm

v1v2

...

vm−r+1 · · · vm

=

v1(V1) v1(V2) . . . v1(V2m)
...

...
...

...

vm(V1) vm(V2) . . . vm(V2m)

(v1v2)(V1) (v1v2)(V2) · · · (v1v2)(V2m)
...

...
...

...

(vm−r+1 · · · vm)(V1) (vm−r+1 · · · vm)(V2) . . . (vm−r+1 · · · vm)(V2m)

.

In other words, code RM(r, m) can be seen as the nth-root code

Ω(2, 2m − 1, 2m, F2m, {vi1 · · ·vij |1 ≤ j ≤ m − r, 1 ≤ i1 6= . . . 6= ij ≤ m}) .

CGC

M. Giorgetti, M. Sala 29

4.4 Algebraic-geometry codes

Let S = {P1, . . ., PN} be a finite set and P ⊂ {f | f : S → Fq} such that
P is a vector space over Fq. Then we define C = Ω(S,P) as the following
subset of (Fq)

N

Ω(S,P) = {(σ(P1), . . ., σ(PN)) |σ ∈ P}.

It is obvious that Ω(S,P) is a code in (Fq)
N . We can obtain any nth-root code

if we apply this construction to S ⊂ Rn ∪ {0} and P ⊂ Fqm [x].

To construct an AG code we need a projective, non singular, absolutely
irreducible curve χ. We can take S as a subset of rational points of χ, so that
D =

∑N
i=1 Pi is a divisor on χ. To define P we have to choose another divisor

G on χ such that supp(G) ∩ D = ∅ and then we consider

P = L(G) = {f ∈ Fq(χ)∗|(f) ≥ −G} ∪ {0} ,

where Fq(χ) is as usual the function field over Fq. We thus obtain the AG
code CL(χ, D, G) = Ω(S,P). It is possible to define the AG codes starting
from rational differential forms and residues, but the previous construction is
enough to describe any code as guaranteed by the following theorem.

Theorem 4.15 ([PSvW91]). Any linear code is AG. However, there are linear
codes that cannot be represented as CL(χ, D, G) with deg(G) < N .

Remark 4.16. An AG code as previously described is sometimes ([PSvW91])
called a weakly AG code.

The interest in the hypothesis deg(G) < N lies in the following theorem.

Theorem 4.17. Let g be the genus of χ and ρ = deg(G). Let C = CL(χ, D, G).
Then

k ≥ ρ + 1 − g, d ≥ n − ρ, i.e.

k + d ≥ n − g + 1 .

Remark 4.18. Theorem 4.17 suggest to focus on low-genus curves for search
for optimal codes.

From Proposition 2.8 it is clear that we can see any AG code (with d ≥ 2)
as an nth-root code, but it is not obvious how to do it. Actually, an explicit
description for L(G) it is not known in general and that is one of the main
problems while dealing with AG codes.

The most extensive research about AG codes has thus been carried out on
one-point AG codes, i.e. codes such that G = {ρP∞}, where P∞ is the point
at infinity of χ and D is the sum of all rational points of χ. In this case, we
can view L(G) ⊂ {f : (Fq)

s → Fq} and we can think of L(G) as L ⊂ Fqs[x] via
some representation φ : (Fqs) ↔ (Fq)

s. Then, we take a linear basis of L(G),

CGC

30 A commutative algebra approach to linear codes

< g1, . . ., gN−k >⊂ Fqs[x], and we consider the following nth-root code

C = Ω(q, qs − 1, qs, L,P) ,

where L = {P1, . . ., PN} is composed of all rational points of χ and P =
{g1, . . ., gN−k}. The following example shows how these ideas can be applied
to the most studied class of AG codes: the Hermitian codes.

Example 4.19. Let q be a power of a prime and χ be the Hermitian curve
defined over Fq2 by the affine equation χ : xq+1 = yq + y. This curve has

genus g = q(q−1)
2

and possesses N = q3 rational points, which we again call
P1, . . ., PN . Let ρ be a natural number such that 0 ≤ ρ ≤ n + 2g − 2 =
q3 + q2 − q − 2. The Hermitian code C(q, ρ) can be defined using the above
construction, as follows. Let D =

∑N
i=1 Pi, G = ρP∞ and L(G) be the corre-

sponding vector subspace of rational functions on χ, then the Hermitian code
C(q, ρ) (depending on q and ρ) is

C(q, ρ) =
{
(f(P1), . . ., f(PN)) ∈ (Fq2)N | f ∈ L(G)

}
.

Set L(G) can be generated by a set of monomial functions

B = {xrys | qr + (q + 1)s ≤ ρ, 0 ≤ r ≤ q − 1}

such that C has the following parity-check matrix

H =

g1(P1) . . . g1(PN)
...

. . .
...

gN−k(P1) . . . gN−k(PN)

where {gi}1≤i≤N−k are N − k monomials in B.
With the nth-root construction we can see code C considered above as the

nth-root code Ω(q, n, qm, L,P), where the parameters are:

q = q2, n = q4 − 1, qm = q2, Rn = Rq4−1
∼= (Fq2)2 \ {(0, 0)},

L ∼= {(u, v) ∈ χ | u, v ∈ Fq2}, where the correspondence ∼= comes from the
following (canonical) representation of finite fields

φ : (Fq2)2 → Fq4 (u, v) 7→ u + βv , (11)

once β (a primitive element of Fq4) is chosen. Then one can show ([Pel06])

L = {u + βv | (u, v) ∈ χ},

P =

{
(βq2

z − βz

βq2−β

)r

,
(zq2−z

βq2 − β

)s ∣∣
∣ qr + (q + 1)s ≤ ρ

}

.

CGC

M. Giorgetti, M. Sala 31

5 Complexity and computational considerations

The complexity of Gröbner basis computation has been the object of ex-
tensive studies. The worst case of their computation is double exponential
([Mor05]), but the generic behavior is much better. We recall some definitions
and theorems, taken from [BFSY05], [BFS04], [BFS03] and [Bar01]. In the
sequel, m,n and n are integers such that m, n ≥ 1 and k = m − n. Moreover,
we will denote by R the polynomial ring F2[y1, . . . , ym].

Definition 5.1. Let {f1, . . ., fm} ⊂ R be homogeneous polynomials. Poly-
nomial sequence (f1, . . ., fm) is regular if for any i = 1, . . ., m, fi is not a
zero-divisor in the quotient ring R/〈{f1, . . ., fi−1}〉. In other words,

g ∈ R, gfi ∈ 〈{f1, . . ., fi−1}〉 =⇒ g ∈ 〈{f1, . . ., fi−1}〉 .

Regular systems do not exist when the number of polynomials, m, is larger
than the number of variables, n. To overcome this difficulty, M. Bardet extends
this notion in her thesis, as follows. Let from now on (f1, . . ., fm) denote a
polynomial sequence in R such that ideal 〈{f1, . . . , fm}〉 is zero-dimensional
and all fi’s are homogeneous (this implies m ≥ n).

Definition 5.2. Polynomial sequence (f1, . . ., fm) is d-regular if, for any
i = 1, . . ., m, we have

g ∈ R, deg(g) < d − di, gfi ∈ 〈{f1, . . ., fi−1}〉 =⇒ g ∈ 〈{f1, . . ., fi−1}〉 .

Definition 5.3. We define the degree of regularity Dreg of ideal 〈{f1, . . ., fm}〉
as

Dreg = min

{

d ≥ 0 | dimF2({f ∈ I, deg(f) = d}) =

(
n + d

d

)}

.

Any Dreg-regular system is called semi-regular.

Theorem 5.4. The degree of regularity of a semi-regular system of m = n + k

homogeneous polynomials of degree d1 = deg(f1),. . ., dn+k = deg(fn+k) in n

variables behaves asymptotically (with k constant and n → ∞) as

Dreg =
m∑

i=1

di − 1

2
− αk

√
√
√
√

m∑

i=1

d2
i − 1

6
+ O(1) ,

where αk is the largest zero of the k-th Hermite polynomial.

There exist asymptotic estimations for the largest zero αk of the k-th
Hermite polynomial ([ADGR04]), i.e.

αk
k→∞−→

√
2
√

k. (12)

CGC

32 A commutative algebra approach to linear codes

We now explain why the regularity degree is so important to estimate the
complexity of Gröbner basis computation. The best-known algorithm to cal-
culate Gröbner bases, Faugere’s F5, is essentially based on the determination
of an echelon form for Macaulay matrices. A Macaulay matrix of degree D is
constructed starting from a set of homogeneous polynomials {f1, . . . , fz}, as
follows. We multiply any fi for some monomials mj such that deg(fimj) = D
The choice of these monomials depends on the algorithm optimizations. Let
{Fh}1≤h≤z′ be the polynomials so obtained. We then construct a matrix with
z′ rows and with a number of columns equal to the number of all monomials
of degree D. Any row of the matrix corresponds to an Fh and its entries are
nothing else than the coefficients of the corresponding monomial in Fh. The
cost of F5 is dominated by the cost of linear algebra on the biggest Macaulay
matrix needed, which is the matrix corresponding to the degree of regularity,
as shown in Bardet’s thesis.

We would like to estimate the degree of regularity of Jw(C) (or better, of
a sequence equivalent to it) in the binary case, where w is understood from
now on to be w ≥ 2. For simplicity we consider only the zerofree case (but
the non-zerofree can be shown to behave identically) and we restrict to the
maximal case, since it is the worst for us (the degrees of the input polynomials
are higher). We denote by F2m[Z] the polynomial ring F2m [z1, . . . , zw].

Let C = Ω(2, n, 2m, L,P) be a binary zero-free maximal nth-root code.
The polynomial basis of ideal Jw given in Remark 2.12 is not homogenous,
so we introduce a new variable ζ and homogenize. The homogeneous basis so
obtained then gives rise to the following ideal Jw = Jw(C)

Jw = 〈
{

w∑

k=1

ḡt(zk, ζ)
}

1≤t≤r
,
{
pi,j(zi, zj)}1≤i6=j≤w, {zn

j − ζn}1≤j≤w〉 (13)

where ḡt(z, ζ) is the homogenized polymonial obtained by gt(z), for any gt ∈ P.
In order to apply Theorem 5.4 to system Jw, we note the following:

• we may assume Jw to be semi-regular for w large enough, since a generic
sequence of polynomials is conjectured to be semi-regular with a large
number of variables (many computer experiments with random sequences
and our own experiments show the same), being many special case already
formally proved;

• however, the number of variables is n = w +1 and the number of polyno-
mials is m = r +

(
w
2

)
+w, so that k = m − n =

(
r +

(
w
2

)
+ w

)
− (w +1) =

r +
(

w
2

)
− 1.

Since k is not constant w.r.t. n, we cannot apply Theorem 5.4. No formulae
of such type are known for this case and so a direct application of Bardet’s
theory is not feasible. In the next subsection we introduce a modified ideal
that gives anyway our desired result and to which Theorem 5.4 can be safely
applied. This application will be done in Subsection 5.2.

CGC

M. Giorgetti, M. Sala 33

5.1 Spurious solutions in the binary case

In this subsection we accelerate the computation of Gröbner basis G of
ideal Jw(C) by removing polynomials pi,j(zi, zj), which guarantee zi 6= zj

for any i 6= j. This gives rise to spurious solutions, that may be counted
with elementary combinatorial arguments. Although it is possible to treat the
general case, the involved arguments soon become long and cumbersome. Here
we restrict to the computation of the number of minimum weight codewords
(and the distance), when the code is binary.

Throughout this subsection w, N and m are three integers such that
1 ≤ w ≤ N and m ≥ 1. We also denote by F2m [Z] the polynomial ring
F2m [z1, . . . , zw], and by F the algebraic closure of F2.

Definition 5.5. Let C = Ω(2, n, 2m, L,P) be a binary nth-root code, with
|L| = N . We denote by Iw = Iw(C) the following ideal in F2m [Z]

Iw =
〈{

w∑

k=1

gt(zk)
}

1≤t≤r
,
{ zn

j − 1
∏

l∈L̄(zj − l)

}

1≤j≤w

〉

(14)

For the remainder of this subsection, C is understood.
Remark 5.6. It is obvious that Jw(C) = 〈Iw(C), {pi,j(zi, zj)}1≤i 6=j≤w〉, so that
V ∈ V(Jw(C)) if and only if V ∈ V(Iw(C)) and all components of V are
distinct. Furthermore, we can easily extend Definition 2.10 (Jw(C)) to the case
w = 1 by simply setting J1(C) = I1(C) (and hence V(J1(C)) = V(I1(C))).

Definition 5.7. Let {Jw}w≥1 be the following ideal sequence

Jw ⊂ F2m [z1, . . . , zw], Jw = 〈{lwi }i=1,...,r , {H(zj)}j=1,...,w〉 ,

where lwi ∈ F2m [z1, . . . , zw] for any w ≥ 1 and any 1 ≤ i ≤ r, and H ∈ F2m [z].

We say that {Jw} is self-related if

(1) polynomial lwi is symmetric for any i = 1, . . ., r and any w ≥ 2;

(2) lwi (z̄1, . . ., z̄w−2, z, z) = 0 ⇔ lw−2
i (z̄1, . . ., z̄w−2) = 0 for any i = 1, . . ., r,

any w ≥ 3 and any z̄1, . . . , z̄w−2, z ∈ F;

(3) V ∈ V(J2) ⇒ V = (z̄, z̄) for some z̄ ∈ F;

(4) V(J1) = ∅.

From now on {Jw} is understood to be a generic ideal sequence {Jw}w≥1

such that Jw ⊂ F2m [Z] for any w ≥ 1.

Fact 5.8. Ideal sequence {Iw(C)} (Definition 5.5) is self-related if d(C) ≥ 3.

Proof. We show all conditions (1)–(4) in Definition 5.7.

(1) Polynomial lwi =
∑w

k=1 gi(zk) is obviously symmetric for i = 1, . . ., r.

CGC

34 A commutative algebra approach to linear codes

(2) For any z ∈ F and any i = 1, . . ., r, gi(z) + gi(z) = 0, so that

lwi (z̄1, . . ., z̄w−2, z, z) =
w−2∑

k=1

gi(z̄k)+gi(z)+gi(z) =
w−2∑

k=1

gi(z̄k) = lw−2
i (z̄1, . . ., z̄w−2) .

(3) If V ∈ V(I2) is of type (z̄, ż), with z̄ 6= ż, then V ∈ V(J2) (Remark
5.6) and so there is in C at least a codeword of weight 2, which is not possible
since d ≥ 3. Thus, z̄ = ż.

(4) If V ∈ V(I1), then V ∈ V(J1) (Remark 5.6), and so there is in C at
least a codeword of weight 1, which is impossible.

Definition 5.9. Let V = (z̄1, . . . , z̄w) ∈ (F)w, with w ≥ 2. We say that

(1) V is weakly double-coordinate (wdc) if there exist i, j = 1, . . ., w,
i 6= j, such that z̄i = z̄j;

(2) V is strongly double-coordinate (sdc) if w is even and for any i,
1 ≤ i ≤ w, there is j such that z̄i = z̄j.

We can obviously extend the definition of wdc (and sdc) vectors to w-
tuples of a generic Cartesian product.

Definition 5.10. For any w, if V(Jw) = ∅ we say that Jw is a wdc ideal and
a sdc ideal.

For any w ≥ 2, we say that Jw is a wdc ideal if all its solutions are wdc.
If w ≥ 2 is even, we say that Jw is a sdc ideal if all its solutions are sdc.

Remark 5.11. If a vector (or an ideal) is sdc, then it is wdc.
If w = 2 the notions of wdc and sdc are coincident.

Lemma 5.12. Let {Jw} be a self-related ideal sequence. Suppose that Jw′ is
wdc for all 1 ≤ w′ ≤ w, then ideal Jw′ is sdc for any w′ ≤ w.

Proof. We first show Jw is sdc if w is even.
We prove this by induction on w.
If w = 2 then J2 is both wdc and sdc thanks to Remark 5.11.
We now suppose that the assertion holds for w − 2 and we prove it for w.
For any w′ ≤ w − 2, Jw′ is wdc, so by induction hypothesis Jw−2 is sdc.
Let V = (z̄1, . . ., z̄w) ∈ V(Jw) be any solution. As Jw is wdc, V has two
components with the same value, for example z̄w = z̄w−1. We truncate V in
the last two components, obtaining Ṽ = (z̄1, . . ., z̄w−2) ∈ V(Jw−2) (thanks to
condition 2 in Definition 5.7). But Jw−2 is sdc, so Ṽ is sdc and hence V is sdc.
Since V is arbitrary, also Jw is sdc.

We now show Jw is sdc if w is odd.
We prove this by induction on w.
If w = 1 then J1 is both wdc and sdc thanks to (4) in Definition 5.7.
We now suppose that the assertion holds for w − 2 and we prove it for w.

CGC

M. Giorgetti, M. Sala 35

For any w′ ≤ w− 2, Jw′ is wdc, so by induction hypothesis Jw−2 is sdc, i.e. it
has no solution. Let V and Ṽ be as in the even case. Again, Ṽ should lie in
V(Jw−2) (thanks to condition 2 in Definition 5.7), which is empty and so V
does not exist. Since V is arbitrary, also Jw is sdc.

The general case readily follows from the two previous ones.

Lemma 5.13. Ideals Iw(C) are wdc for all w ≤ d − 1.

Proof. Solutions of system Iw(C) for any w ≤ d − 1 cannot correspond to
codewords (since no weight-w codeword exists) and hence they are spurious,
which means they have two coincident components, i.e. they are wdc.

Definition 5.14. Let H ∈ F2m [z]. For any w, we denote by Aw(H) the set of
all sdc vectors in (V(H))w ∩ (F2m)w.

Theorem 5.15. Let d ≥ 3. Then, ideal Iw(C) is sdc for any 1 ≤ w ≤ d − 1.
Moreover:

• if d is odd, V(Id(C)) = V(Jd(C)),

• if d is even, V(Jd(C)) = V(Id(C)) t Ad(H
′), where H ′ = zn−1

Q

l∈L̄(z−l)
.

Proof. Since w ≤ d− 1, Lemma 5.13 and Lemma 5.12 imply that Iw is sdc.

Let us suppose d odd. If V is in V(Id(C))\V(Jd(C)), then it is a spurious so-
lution. Let Ṽ as in the proof of Lemma 5.12. We will have Ṽ ∈ V(Jd−2(C)). But
d−2 < d and d−2 is odd, so that by the first part of our proof V(Jd−2(C)) = ∅.
Hence, such V cannot exist and V(Id(C)) \ V(Jd(C)) = ∅.

Let us suppose d even. Any spurious solution is wdc. It is enough to show
that any vector in Aw(H) is in V(Id(C)), since by construction of Id(C) no
other spurious solution can exist.
Let V ∈ Aw(H), V = (v1, . . . , vd). Its component obviously satisfy H(vi) = 0
(for any i). On the other hand, we can group components {vi} according to
their values, so that {1, . . . , d} = tι′

ι=1Sι, where vi = vj if and only if i, j ∈ Vι

for one and only one ι. We then have, for any 1 ≤ i ≤ r,

w∑

k=1

gi(vk) =
ι′∑

ι=1

(
∑

k∈Sι

gi(vk)

)

=
ι′∑

ι=1

0 = 0 .

To count the number of spurious solutions we provide the following general
recursive formula.

Fact 5.16. Let l be an even integer l ≥ 2 and λ be an integer λ ≥ 1. Let T =
{ζ1, . . ., ζλ} be any set with |T | = λ. Let T l be the standard Cartesian product.
Let a(l, λ) be the number of sdc l-tuples in T l. For any integers λ′, l′ ≥ 1,

CGC

36 A commutative algebra approach to linear codes

define a(0, λ′) = 1 and a(l′, 1) = 1. Then

a(l, λ) =

l/2
∑

s=0

(
l

2s

)

a(l − 2s, λ − 1) . (15)

Proof. Let v = (v1, . . ., vl) ∈ T l. Element ζλ can appear in v either 2 or 4
or . . . l times. If ζλ is in exactly 2 components of v, say vi and vj, the (l − 2)-
tuple ṽ obtained by puncturing v in positions i and j is a sdc (l − 2)-tuple
in {ζ1, . . ., ζλ−1}l−2. Moreover, i and j can be any two positions. Thus, the
number of sdc l-tuples v having exactly 2 components equal to an assigned
value (e.g., to ζλ) is

(
l
2

)
a(l − 2, λ − 1).

Analogously, the number of sdc l-tuples having exactly 4 components equal to
an assigned value is

(
l
4

)
a(l− 4, λ− 1). By summing all these values, we obtain

our claimed expression.

Since

V
(

zn − 1
∏

l∈L̄(z − l)

)

⊂ F2m ,

by Theorem 5.15 and Proposition 2.13, we have our final result for this sub-
section.

Corollary 5.17. Let C = Ω(2, n, 2m, L,P) be a binary zero-free nth-root code.
Then Ad is:

Ad =
|V(Id)(C)| − a(d, N)

d!
(d even),

Ad =
|V(Id)(C)|

d!
(d odd).

Example 5.18. Let C = Ω(2, 255, 28, L,P) be the binary nth-root code such
that L = F256 \ {0} and P = {x, x2, x3, x4, x5, x6} ⊂ F2[x]. We have n =
N = 255 and C is nothing else that a BCH code with designed distance 7. In
particular, it cannot have words of weight 5. By computing a Gröbner basis of
I5(C) and J5(C), we obtain that |I5(C)| = |J5(C)| = 0, so that A5(C) = 0, as
expected, but the computations in the I5(C) case takes less than 4 seconds,
while the computations of the J5(C) case takes 28 seconds.

Remark 5.19. In a personal communication, F. Caruso claims the following
explicit formula to compute a(l, t)

a(l, λ) =
1

2λ−1

dλ/2e−1
∑

j=0

λ

j

 (λ − 2j)l .

CGC

M. Giorgetti, M. Sala 37

5.2 Regularity degree with spurious solutions

We now apply Bardet’s theory to the situation studied in the previous
subsection.

Let C be binary maximal zerofree. Let Iw = Iw(C) be the ideal obtained
by homogenizing the input basis of Iw(C), as follows:

Iw = 〈
{

w∑

k=1

ḡt(zk, ζ)
}

1≤t≤r
, {zn

j − ζn}1≤j≤w〉 (16)

where ḡt(z, ζ) is the homogenized polynomial obtained by gt(z), for any gt ∈ P.
We have m polynomials and n variables, with

n = w + 1, m = w + r, k = m − n = r − 1 .

We can then apply Theorem 5.4 to Iw by considering r fixed (but large enough
to apply (12)) and P generic in F2m [x], with m growing (so that n = 2m − 1
can grow and w ≤ n). We then have

Dreg = Dreg(Iw) =
r∑

i=1

di − 1

2
+

w∑

i=1

n − 1

2
− αr−1

√
√
√
√

r∑

i=1

d2
i − 1

6
+

w∑

i=1

n2 − 1

6

where di = deg(gi) and n = deg(zn
j − ζn).

We now estimate Dreg when w goes to infinity:

lim
w−→∞

Dreg = wn lim
w−→∞

Dreg

wn
.

We know di ≤ n, so that
∑r

i=1
di−1

2
≤ rn and hence (r is constant)

lim
w−→∞

1

wn

(
r∑

i=1

di − 1

2

)

≤ lim
w−→∞

1

wn
rn = 0 . (17)

Similarly, inside the square root,

lim
w−→∞

1

w2n2

(

α2
r−1

r∑

i=1

d2
i − 1

6

)

≤ lim
w−→∞

2r

w2n2
rn2 = 0 . (18)

The remaining terms give

Dreg ∼
wn

2
− αr−1

√

wn2

6

By applying (12) for r large enough, we finally obtain

Dreg ∼
wn

2
− n

√

w(r − 1)

3
∼ wn

2
. (19)

CGC

38 A commutative algebra approach to linear codes

6 Conclusions and further research

Linear codes are traditionally specified starting from a parity-check matrix
H. In particular, cyclic codes are such that the entries of H consist of the
evaluation of univariate monomials on all the n-th roots of unity. Our approach
in this paper is to specify “any” linear code (with d ≥ 2) as a code such that
the entries of H consist of the evaluation of generic (univariate) polynomials
on all the n-th roots of unity. In this sense, we say that linear codes “are” a
generalization of cyclic codes.

This point of view allows to extend to linear codes some computational
algebra techniques and some argument, that have been previously applied to
cyclic codes. This translates in new tools, but also in new challenges. To be
more precise, we can identify two main tools, both based on Groebner basis
computations, i.e. :

• algorithms to compute the weight distribution (and the distance),

• a new decoding algorithm for a (potentially very large) sub-class, via the
general error locator polynomial.

Let us consider the first tool. The problem of determining the weight dis-
tribution of a code is an NP-hard problem ([BD92], [Bar98]). We cannot expect
from our algorithm any computational improvement on known algorithms for
(generic) linear codes. However, the notion of a “generic linear code” is not
widely accepted, except in the sense that the code does not belong to any
known family (but recall that any linear code can be seen both as a weakly
AG code and as an affine-variety code, making the notion of known fam-
ily rather questionable). If instead you view your code as an nth-root code,
some algebraic properties may become apparent. Indeed, as it is clear from
our examples, a code can be seen an nth-root code in many different ways,
some of them leading to interesting properties. This is even more clear if you
look at the second tool. The problem of decoding linear codes is NP-hard
([Bar98], [BKvT99]), but if a linear code admits a sparse general error locator
polynomial (or such a polynomial with a sparse representation), then it can
be decoded very fast. We have provided an explicit example when the locator
polynomial is very small, given a certain nth-root presentation, and long when
given another. Yet, the code in consideration does not belong to any known
family. In other words, the question “what can we do with a generic linear
code?” becomes now “what is a generic linear code?”. If we define a generic
linear code as a code such that our tools can be applied efficiently, then it
becomes worthwhile to try showing that “most” codes satisfy this definition
(which we believe to be true). We have thus identified a research problem:

given a linear code, either find an nth-root presentation such that our tools
can be efficiently applied or show that such presentation does not exist.

CGC

M. Giorgetti, M. Sala 39

Acknowledgments

The first author would like to thank the second author (her supervisor).
Part of this work has been presented at “Workshop D1: Gröbner Bases in
Cryptography, Coding Theory, and Algebraic Combinatorics”, Linz, 2006, and
at “Workshop on Coding and Cryptography”, UCC, Cork, 2006.

The authors would like to thank the following people for their comments
and suggestions: J. Abbot, M. Bardet, F. Caruso, F. Dalla Volta, J. C. Faugere,
P. Fitzpatrick, T. Mora, E. Orsini, M. Pellegrini, L. Perret, I. Simonetti, C.
Traverso.

We have run our computer simulations using the software package Singu-
lar (http://www.singular.uni-kl.de) at the computational centre MEDI-
CIS (http://medicis.polytechnique.fr).

This work has been partially supported by the STMicroelectronics con-
tract “Complexity issues in algebraic Coding Theory and Cryptography”.

References

[ADGR04] I. Area, D. K. Dimitrov, E. Godoy, and A. Ronveaux, Zeros of

Gegenbauer and Hermite polynomials and connection coefficients, Math.
Comp. 73 (2004), no. 248, 1937–1951.

[Bar98] A. Barg, Complexity issues in coding theory, Handbook of coding theory,
Vol. I, II, North-Holland, Amsterdam, 1998, pp. 649–754.

[Bar01] Magali Bardet, An investigation on overdetermined algebraic systems

and applications to error-correcting codes and to cryptography, Ph.D.
thesis, University of Paris 6, Paris, France, 2001.

[BCRT93] A. M. Bigatti, P. Conti, L. Robbiano, and C. Traverso, A “divide

and conquer” algorithm for Hilbert-Poincaré series, multiplicity and

dimension of monomial ideals, Applied algebra, algebraic algorithms and
error-correcting codes (San Juan, PR, 1993), Lecture Notes in Comput.
Sci., vol. 673, Springer, Berlin, 1993, pp. 76–88.

[BD92] A. M. Barg and I. I. Dumer, On computing the weight spectrum of cyclic

codes, IEEE Trans. Inform. Theory 38 (1992), no. 4, 1382–1386.

[BFS03] M. Bardet, J. C. Faugère, and B. Salvy, Complexity of Groebner basis

computation for semi-regular overdetermined sequences over F2 with

solutions in F2, Inria Research Report RR-5049, INRIA, France, 2003.

[BFS04] M. Bardet, J. C. Faugere, and B. Salvy, On the complexity of Groebner

basis computation of semi-regular overdetermined algebraic equations,
Tech. report, Talk at ICPSS 2004, 2004.

[BFSY05] M. Bardet, J. C. Faugere, B. Salvy, and B. Y. Yang, Asymptotic

behaviour of the degree of regularity of semi-regular polynomial systems,
Tech. report, Talk at MEGA 2005, 2005.

CGC

40 A commutative algebra approach to linear codes

[BKvT99] A. Barg, E. Krouk, and H. C. A. van Tilborg, On the complexity of

minimum distance decoding of long linear codes, IEEE Trans. Inform.
Theory 45 (1999), no. 5, 1392–1405.

[BRC60] R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting

binary group codes, Information and Control 3 (1960), 68–79.

[BS06] E. Betti and M. Sala, A new bound for the minimum distance of a cyclic

code from its defining set, IEEE Trans. Inform. Theory 52 (2006), no. 8,
3700–3706.

[CM02] M. Caboara and T. Mora, The Chen-Reed-Helleseth-Truong decoding

algorithm and the Gianni-Kalkbrenner Groebner shape theorem, Appl.
Algebra Engrg. Comm. Comput. 13 (2002), no. 3, 209–232.

[Fit95] P. Fitzpatrick, On the key equation, IEEE Trans. Inform. Theory 41

(1995), no. 5, 1290–1302.

[FL98] J. Fitzgerald and R. F. Lax, Decoding affine variety codes using Groebner

bases, Des. Codes Cryptogr. 13 (1998), no. 2, 147–158.

[Gia89] P. Gianni, Properties of Groebner bases under specializations,
EUROCAL ’87 (Leipzig, 1987), Lecture Notes in Comput. Sci., vol. 378,
Springer, Berlin, 1989, pp. 293–297.

[GM89] P. Gianni and T. Mora, Algebraic solution of systems of polynomial

equations using Groebner bases, Applied algebra, algebraic algorithms
and error-correcting codes (Menorca, 1987), Lecture Notes in Comput.
Sci., vol. 356, Springer, Berlin, 1989, pp. 247–257.

[HT74] C. R. P. Hartmann and K. K. Tzeng, Decoding beyond the BCH bound

using multiple sets of syndrome sequences, IEEE Trans. Inform. Theory
20 (1974), 292–295.

[Kal89] M. Kalkbrener, Solving systems of algebraic equations by using Groebner

bases, EUROCAL ’87 (Leipzig, 1987), Lecture Notes in Comput. Sci., vol.
378, Springer, Berlin, 1989, pp. 282–292.

[KM00] Y. Katayama and S. Morioka, One-shot reed-solomon decoding for high-

performance dependable systems, IEEE DSN 00 (2000), 390.

[Mor05] T. Mora, Solving polynomial equation systems. II, Encyclopedia of
Mathematics and its Applications, vol. 99, Cambridge University Press,
Cambridge, 2005, Macaulay’s paradigm and Gröbner technology.

[MOS06] T. Mora, E. Orsini, and M. Sala, General error locator polynomials

for binary cyclic codes with t <= 2 and n < 63, BCRI preprint,
www.bcri.ucc.ie 43, University College Cork, Boole Centre BCRI,
UCC Cork, Ireland, 2006.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. I, North-Holland Publishing Co., Amsterdam, 1977, North-
Holland Mathematical Library, Vol. 16.

CGC

M. Giorgetti, M. Sala 41

[MS03] T. Mora and M. Sala, On the Groebner bases of some symmetric systems

and their application to coding theory, J. Symbolic Comput. 35 (2003),
no. 2, 177–194.

[OS05] E. Orsini and M. Sala, Correcting errors and erasures via the syndrome

variety, J. Pure Appl. Algebra 200 (2005), no. 1-2, 191–226.

[OS06] , General error locator polynomials for binary cyclic codes with

t ≤ 2 and n < 63, IEEE Trans. Inform. Theory (2006), Accepted for
publication.

[Pel06] M. Pellegrini, On the weight distribution of some goppa ag codes, Ph.D.
thesis, University of Pisa, 2006, Work in progress.

[PHB98] V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of coding

theory. Vol. I, II, North-Holland, Amsterdam, 1998.

[PSvW91] R. Pellikaan, B. Z. Shen, and G. J. M. van Wee, Which linear codes are

algebraic-geometric?, IEEE Trans. Inform. Theory 37 (1991), no. 3, part
1, 583–602.

[PW72] W. W. Peterson and E. J. Weldon, Jr., Error-correcting codes, second
ed., The M.I.T. Press, Cambridge, Mass.-London, 1972.

[Roo83] C. Roos, A new lower bound for the minimum distance of a cyclic code,
IEEE Trans. Inform. Theory 29 (1983), no. 3, 330–332.

[Sal02] M. Sala, Groebner bases and distance of cyclic codes, Appl. Algebra
Engrg. Comm. Comput. 13 (2002), no. 2, 137–162.

[Sal06] , Groebner basis techniques to compute weight distributions of

shortened cyclic codes, Journal of Algebra and Its Applications (2006),
Accepted for publication.

[Sei74] A. Seidenberg, Constructions in algebra, Trans. Amer. Math. Soc. 197

(1974), 273–313.

[ST00] M. Sala and A. Tamponi, A linear programming estimate of the weight

distribution of BCH(255, k), IEEE Trans. Inform. Theory 46 (2000),
no. 6, 2235–2237.

CGC

42 A commutative algebra approach to linear codes

7 Appendix A

Output with redSB

J1[194] = z1 + w2w1x3
2x6

1 + x5
2x6

1 + w3
2x2x7

1 + w3
1x2x7

1 + w4
2w3

1x3
2 + w3

2w4
1x3

2+

w5
2w1x4

2 + w4
2w2

1x4
2 + w2

2w4
1x4

2 + w2w5
1x4

2 + w3
2w2

1x5
2 + w2

2w3
1x5

2 + w4
2x6

2+

w3
2w1x6

2 + w2
2w2

1x6
2 + w2w3

1x6
2 + w4

1x6
2 + w2

2w1x7
2 + w2w2

1x7
2 + w5

2w2
1x2

2x1+

w2
2w5

1x2
2x1 + w4

2w2
1x3

2x1 + w3
2w3

1x3
2x1 + w2

2w4
1x3

2x1 + w4
2w1x4

2x1+

w2w4
1x4

2x1 + w4
2x5

2x1 + w2
2w2

1x5
2x1 + w4

1x5
2x1 + w2

2w1x6
2x1 + w2w2

1x6
2x1+

w4
2w3

1x2x2
1 + w3

2w4
1x2x2

1 + w5
2w1x2

2x2
1 + w2w5

1x2
2x2

1 + w5
2x3

2x2
1+

w4
2w1x3

2x2
1 + w3

2w2
1x3

2x2
1 + w2

2w3
1x3

2x2
1 + w2w4

1x3
2x2

1 + w5
1x3

2x2
1+

w3
2w1x4

2x2
1 + w2w3

1x4
2x2

1 + w2
2w1x5

2x2
1 + w2w2

1x5
2x2

1 + w2
2x6

2x2
1+

w2w1x6
2x2

1 + w2
1x6

2x2
1 + w2x7

2x2
1 + w1x7

2x2
1 + w5

2w1x2x3
1 + w4

2w2
1x2x3

1+

w2
2w4

1x2x3
1 + w2w5

1x2x3
1 + w5

2x2
2x3

1 + w5
1x2

2x3
1 + w4

2x3
2x3

1 + w4
1x3

2x3
1+

w2w1x5
2x3

1 + w2x6
2x3

1 + w1x6
2x3

1 + x7
2x3

1 + w5
2w1x4

1 + w4
2w2

1x4
1 + w3

2w3
1x4

1+

w2
2w4

1x4
1 + w2w5

1x4
1 + w5

2x2x4
1 + w4

2w1x2x4
1 + w2w4

1x2x4
1 + w5

1x2x4
1+

w4
2x2

2x4
1 + w3

2w1x2
2x4

1 + w2w3
1x2

2x4
1 + w4

1x2
2x4

1 + w3
2x3

2x4
1 + w2

2w1x3
2x4

1+

w2w2
1x3

2x4
1 + w3

1x3
2x4

1 + w2
2x4

2x4
1 + w2

1x4
2x4

1 + w2x5
2x4

1 + w1x5
2x4

1+

w2
2w2

1x2x5
1 + w2

2w1x2
2x5

1 + w2w2
1x2

2x5
1 + w2

2x3
2x5

1 + w2w1x3
2x5

1 + w2
1x3

2x5
1+

w2x4
2x5

1 + w1x4
2x5

1 + x5
2x5

1 + w3
2x2x6

1 + w2
2w1x2x6

1 + w2w2
1x2x6

1 + w3
1x2x6

1+

w2x3
2x6

1 + w1x3
2x6

1 + w3
2x7

1 + w3
1x7

1 + w2
2x2x7

1 + w2w1x2x7
1 + w2

1x2x7
1 + w2x2

2x7
1+

w1x2
2x7

1 + w5
2w2

1x2
2 + w4

2w3
1x2

2 + w3
2w4

1x2
2 + w2

2w5
1x2

2 + w4
2w2

1x3
2 + w3

2w3
1x3

2+

w2
2w4

1x3
2 + w4

2w1x4
2 + w2w4

1x4
2 + w3

2x6
2 + w3

1x6
2 + w2w1x7

2 + w5
2w2

1x2x1+

w2
2w5

1x2x1 + w5
2w1x2

2x1 + w4
2w2

1x2
2x1 + w2

2w4
1x2

2x1 + w2w5
1x2

2x1+

w4
2w1x3

2x1 + w3
2w2

1x3
2x1 + w2

2w3
1x3

2x1 + w2w4
1x3

2x1 + w3
2x5

2x1 + w3
1x5

2x1+

w2
2x6

2x1 + w2w1x6
2x1 + w2

1x6
2x1 + w2x7

2x1 + w1x7
2x1 + w5

2w2
1x2

1 + w4
2w3

1x2
1+

w3
2w4

1x2
1 + w2

2w5
1x2

1 + w3
2w3

1x2x2
1 + w5

2x2
2x2

1 + w4
2w1x2

2x2
1 + w2w4

1x2
2x2

1+

w5
1x2

2x2
1 + w4

2x3
2x2

1 + w3
2w1x3

2x2
1 + w2

2w2
1x3

2x2
1 + w2w3

1x3
2x2

1 + w4
1x3

2x2
1+

w2
2x5

2x2
1 + w2

1x5
2x2

1 + x7
2x2

1 + w5
2w1x3

1 + w4
2w2

1x3
1 + w3

2w3
1x3

1 + w2
2w4

1x
+
1

w2w5
1x3

1 + w4
2w1x2x3

1 + w2w4
1x2x3

1 + w3
2w1x2

2x3
1 + w2

2w2
1x2

2x3
1+

w2w3
1x2

2x3
1 + w2

2w1x3
2x3

1 + w2w2
1x3

2x3
1 + w5

2x4
1 + w4

2w1x4
1 + w3

2w2
1x4

1+

w2
2w3

1x4
1 + w2w4

1x4
1 + w5

1x4
1 + w4

2x2x4
1 + w2

2w2
1x2x4

1 + w4
1x2x4

1 + w2x4
2x4

1+

w1x4
2x4

1 + x5
2x4

1 + w4
2x5

1 + w4
1x5

1 + w2w1x2
2x5

1 + x4
2x5

1 + w3
2x6

1 + w3
1x6

1+

w2
2x2x6

1 + w2w1x2x6
1 + w2

1x2x6
1 + w2

2x7
1 + w2

1x7
1 + w2x2x7

1 + w1x2x7
1 + w5

2x3
2+

w4
2w1x3

2 + w2w4
1x3

2 + w5
1x3

2 + w2
2w2

1x4
2 + w2

2w1x5
2 + w2w2

1x5
2 + w2

2x6
2 + w2

1x6
2+

w2x7
2 + w1x7

2 + w5
2w1x2x1 + w2w5

1x2x1 + w4
2w1x2

2x1 + w2w4
1x2

2x1 + w4
2x3

2x1+

w2
2w2

1x3
2x1 + w4

1x3
2x1 + w3

2x4
2x1 + w3

1x4
2x1 + w2w1x5

2x1 + w5
2w1x2

1 + w4
2w2

1x2
1+

w3
2w3

1x2
1 + w2

2w4
1x2

1 + w2w5
1x2

1 + w5
2x2x2

1 + w4
2w1x2x2

1 + w2w4
1x2x2

1+

w5
1x2x2

1 + w2
2w2

1x2
2x2

1 + w3
2x3

2x2
1 + w3

1x3
2x2

1 + w2x5
2x2

1 + w1x5
2x2

1+

w5
2x3

1 + w4
2w1x3

1 + w2w4
1x3

1 + w5
1x3

1 + w4
2x2x3

1 + w3
2w1x2x3

1 + w2
2w2

1x2x3
1+

w2w3
1x2x3

1 + w4
1x2x3

1 + w3
2x2

2x3
1 + w2

2w1x2
2x3

1 + w2w2
1x2

2x3
1 + w3

1x2
2x3

1+

w2
2x3

2x3
1 + w2w1x3

2x3
1 + w2

1x3
2x3

1 + w3
2w1x4

1 + w2
2w2

1x4
1 + w2w3

1x4
1+

w3
2x2x4

1 + w2
2w1x2x4

1 + w2w2
1x2x4

1 + w3
1x2x4

1 + w2
2x2

2x4
1 + w2

1x2
2x4

1+

w2x3
2x4

1 + w1x3
2x4

1 + w3
2x5

1 + w2
2w1x5

1 + w2w2
1x5

1 + w3
1x5

1 + w2w1x6
1 + w5

2w2
1+

w4
2w3

1 + w3
2w4

1 + w2
2w5

1 + w4
2w2

1x2 + w3
2w3

1x2 + w2
2w4

1x2 + w5
2x2

2 + w3
2w2

1x2
2+

w2
2w3

1x2
2 + w5

1x2
2 + w4

2x3
2 + w2

2w2
1x3

2 + w4
1x3

2 + w2
2w1x4

2 + w2w2
1x4

2 + w2
2x5

2+

w2w1x5
2 + w2

1x5
2 + w3

2w2
1x2x1 + w2

2w3
1x2x1 + w4

2x2
2x1 + w4

1x2
2x1 + w2

2x4
2x1+

w2w1x4
2x1 + w2

1x4
2x1 + x6

2x1 + w2
2w1x2

2x2
1 + w2w2

1x2
2x2

1 + w2
2x3

2x2
1+

w2
1x3

2x2
1 + w4

2x3
1 + w2

2w2
1x3

1 + w4
1x3

1 + w2w1x2
2x3

1 + w2x3
2x3

1 + w1x3
2x3

1+

x4
2x3

1 + w3
2x4

1 + w3
1x4

1 + w2w1x2x4
1 + w2x2

2x4
1 + w1x2

2x4
1 + w2x6

1 + w1x6
1+

x2x6
1 + x7

1 + w5
2w1 + w4

2w2
1 + w3

2w3
1 + w2

2w4
1 + w2w5

1 + w5
2x2 + w4

2w1x2 + w3
2w2

1x2+

w2
2w3

1x2 + w2w4
1x2 + w5

1x2 + w2
2w2

1x2
2 + w3

2x3
2 + w3

1x3
2 + w2

2x4
2 + w2

1x4
2+

w2x5
2 + w1x5

2 + x6
2 + w5

2x1 + w3
2w2

1x1 + w2
2w3

1x1 + w5
1x1 + w2

2w2
1x2x1 + w2

2w1x2
2x1+

w2w2
1x2

2x1 + w2w1x3
2x1 + w2

2w2
1x2

1 + w2
2x2

2x2
1 + w2w1x2

2x2
1 + w2

1x2
2x2

1+

w2
2w1x3

1 + w2w2
1x3

1 + w2
2x2x3

1 + w2
1x2x3

1 + w2x2
2x3

1 + w1x2
2x3

1 + w2x2x4
1+

w1x2x4
1 + w2x5

1 + w1x5
1 + w5

2 + w5
1 + w3

2w1x2 + w2
2w2

1x2 + w2w3
1x2 + w3

2x2
2 + w3

1x2
2+

w2
2x3

2 + w2w1x3
2 + w2

1x3
2 + w2x4

2 + w1x4
2 + w2

2w1x2x1 + w2w2
1x2x1 + w3

2x2
1+

w2
2w1x2

1 + w2w2
1x2

1 + w3
1x2

1 + w2w1x2x2
1 + w2w1x3

1 + x2
2x3

1 + x5
1 + w3

2w1+

w2
2w2

1 + w2w3
1 + w3

2x2 + w2
2w1x2 + w2w2

1x2 + w3
1x2 + w2w1x2

2 + w2x3
2 + w1x3

2 + x4
2 + w3

2x1+

w2
2w1x1 + w2w2

1x1 + w3
1x1 + w2

2x2x1 + w2w1x2x1 + w2
1x2x1 + w2x2

2x1 + w1x2
2x1 + w2

2x2
1+

w2
1x2

1 + w2x2x2
1 + w1x2x2

1 + x2
2x2

1 + x2x3
1 + x4

1 + w2w1x2 + w2
2x1 + w2w1x1 + w2

1x1+

x2
2x1 + w2

2 + w2w1 + w2
1 + x2

1 + x2

CGC

M. Giorgetti, M. Sala 43

Output with noredSB

J1[194] = z1 + w2w1x3
2x6

1 + x5
2x6

1 + w3
2x2x7

1 + w3
1x2x7

1 + w4
2w3

1x3
2 + w3

2w4
1x3

2 + w5
2w1x4

2 + w4
2w2

1x4
2+

w2
2w4

1x4
2 + w2w5

1x4
2 + w3

2w2
1x5

2 + w2
2w3

1x5
2 + w4

2x6
2 + w3

2w1x6
2 + w2

2w2
1x6

2 + w2w3
1x6

2 + w4
1x6

2+

w2
2w1x7

2 + w2w2
1x7

2 + w5
2w2

1x2
2x1 + w2

2w5
1x2

2x1 + w4
2w2

1x3
2x1 + w3

2w3
1x3

2x1 + w2
2w4

1x3
2x1+

w4
2w1x4

2x1 + w2w4
1x4

2x1 + w4
2x5

2x1 + w2
2w2

1x5
2x1 + w4

1x5
2x1 + w2

2w1x6
2x1 + w2w2

1x6
2x1+

w4
2w3

1x2x2
1 + w3

2w4
1x2x2

1 + w5
2w1x2

2x2
1 + w2w5

1x2
2x2

1 + w5
2x3

2x2
1+

w4
2w1x3

2x2
1 + w3

2w2
1x3

2x2
1 + w2

2w3
1x3

2x2
1 + w2w4

1x3
2x2

1 + w5
1x3

2x2
1+

w3
2w1x4

2x2
1 + w2w3

1x4
2x2

1 + w2
2w1x5

2x2
1 + w2w2

1x5
2x2

1 + w2
2x6

2x2
1 + w2w1x6

2x2
1+

w2
1x6

2x2
1 + w2x7

2x2
1 + w1x7

2x2
1 + w5

2w1x2x3
1 + w4

2w2
1x2x3

1 + w2
2w4

1x2x3
1+

w2w5
1x2x3

1 + w5
2x2

2x3
1 + w5

1x2
2x3

1 + w4
2x3

2x3
1 + w4

1x3
2x3

1 + w2w1x5
2x3

1+

w2x6
2x3

1 + w1x6
2x3

1 + x7
2x3

1 + w5
2w1x4

1 + w4
2w2

1x4
1 + w3

2w3
1x4

1 + w2
2w4

1x4
1 + w2w5

1x4
1 + w5

2x2x4
1+

w4
2w1x2x4

1 + w2w4
1x2x4

1 + w5
1x2x4

1 + w4
2x2

2x4
1 + w3

2w1x2
2x4

1 + w2w3
1x2

2x4
1+

w4
1x2

2x4
1 + w3

2x3
2x4

1 + w2
2w1x3

2x4
1 + w2w2

1x3
2x4

1 + w3
1x3

2x4
1 + w2

2x4
2x4

1+

w2
1x4

2x4
1 + w2x5

2x4
1 + w1x5

2x4
1 + w2

2w2
1x2x5

1 + w2
2w1x2

2x5
1 + w2w2

1x2
2x5

1+

w2
2x3

2x5
1 + w2w1x3

2x5
1 + w2

1x3
2x5

1 + w2x4
2x5

1 + w1x4
2x5

1 + x5
2x5

1 + w3
2x2x6

1+

w2
2w1x2x6

1 + w2w2
1x2x6

1 + w3
1x2x6

1 + w2x3
2x6

1 + w1x3
2x6

1 + w3
2x7

1 + w3
1x7

1+

w2
2x2x7

1 + w2w1x2x7
1 + w2

1x2x7
1 + w2x2

2x7
1 + w1x2

2x7
1 + w5

2w2
1x2

2 + w4
2w3

1x2
2+

w3
2w4

1x2
2 + w2

2w5
1x2

2 + w4
2w2

1x3
2 + w3

2w3
1x3

2 + w2
2w4

1x3
2 + w4

2w1x4
2+

w2w4
1x4

2 + w3
2x6

2 + w3
1x6

2 + w2w1x7
2 + w5

2w2
1x2x1 + w2

2w5
1x2x1 + w5

2w1x2
2x1+

w4
2w2

1x2
2x1 + w2

2w4
1x2

2x1 + w2w5
1x2

2x1 + w4
2w1x3

2x1 + w3
2w2

1x3
2x1 + w2

2w3
1x3

2x1+

w2w4
1x3

2x1 + w3
2x5

2x1 + w3
1x5

2x1 + w2
2x6

2x1 + w2w1x6
2x1 + w2

1x6
2x1 + w2x7

2x1+

w1x7
2x1 + w5

2w2
1x2

1 + w4
2w3

1x2
1 + w3

2w4
1x2

1 + w2
2w5

1x2
1 + w3

2w3
1x2x2

1+

w5
2x2

2x2
1 + w4

2w1x2
2x2

1 + w2w4
1x2

2x2
1 + w5

1x2
2x2

1 + w4
2x3

2x2
1 + w3

2w1x3
2x2

1+

w2
2w2

1x3
2x2

1 + w2w3
1x3

2x2
1 + w4

1x3
2x2

1 + w2
2x5

2x2
1 + w2

1x5
2x2

1 + x7
2x2

1 + w5
2w1x3

1+

w4
2w2

1x3
1 + w3

2w3
1x3

1 + w2
2w4

1x3
1 + w2w5

1x3
1 + w4

2w1x2x3
1 + w2w4

1x2x3
1+

w3
2w1x2

2x3
1 + w2

2w2
1x2

2x3
1 + w2w3

1x2
2x3

1 + w2
2w1x3

2x3
1 + w2w2

1x3
2x3

1+

w5
2x4

1 + w4
2w1x4

1 + w3
2w2

1x4
1 + w2

2w3
1x4

1 + w2w4
1x4

1 + w5
1x4

1 + w4
2x2x4

1+

w2
2w2

1x2x4
1 + w4

1x2x4
1 + w2x4

2x4
1 + w1x4

2x4
1 + x5

2x4
1 + w4

2x5
1 + w4

1x5
1 + w2w1x2

2x5
1+

x4
2x5

1 + w3
2x6

1 + w3
1x6

1 + w2
2x2x6

1 + w2w1x2x6
1 + w2

1x2x6
1 + w2

2x7
1 + w2

1x7
1+

w2x2x7
1 + w1x2x7

1 + w5
2x3

2 + w4
2w1x3

2 + w2w4
1x3

2 + w5
1x3

2 + w2
2w2

1x4
2 + w2

2w1x5
2+

w2w2
1x5

2 + w2
2x6

2 + w2
1x6

2 + w2x7
2 + w1x7

2 + w5
2w1x2x1 + w2w5

1x2x1+

w4
2w1x2

2x1 + w2w4
1x2

2x1 + w4
2x3

2x1 + w2
2w2

1x3
2x1 + w4

1x3
2x1 + w3

2x4
2x1+

w3
1x4

2x1 + w2w1x5
2x1 + w5

2w1x2
1 + w4

2w2
1x2

1 + w3
2w3

1x2
1 + w2

2w4
1x2

1 + w2w5
1x2

1+

w5
2x2x2

1 + w4
2w1x2x2

1 + w2w4
1x2x2

1 + w5
1x2x2

1 + w2
2w2

1x2
2x2

1 + w3
2x3

2x2
1+

w3
1x3

2x2
1 + w2x5

2x2
1 + w1x5

2x2
1 + w5

2x3
1 + w4

2w1x3
1 + w2w4

1x3
1 + w5

1x3
1+

w4
2x2x3

1 + w3
2w1x2x3

1 + w2
2w2

1x2x3
1 + w2w3

1x2x3
1 + w4

1x2x3
1 + w3

2x2
2x3

1+

w2
2w1x2

2x3
1 + w2w2

1x2
2x3

1 + w3
1x2

2x3
1 + w2

2x3
2x3

1 + w2w1x3
2x3

1 + w2
1x3

2x3
1+

w3
2w1x4

1 + w2
2w2

1x4
1 + w2w3

1x4
1 + w3

2x2x4
1 + w2

2w1x2x4
1 + w2w2

1x2x4
1 + w3

1x2x4
1+

w2
2x2

2x4
1 + w2

1x2
2x4

1 + w2x3
2x4

1 + w1x3
2x4

1 + w3
2x5

1 + w2
2w1x5

1 + w2w2
1x5

1 + w3
1x5

1+

w2w1x6
1 + w5

2w2
1 + w4

2w3
1 + w3

2w4
1 + w2

2w5
1 + w4

2w2
1x2 + w3

2w3
1x2 + w2

2w4
1x2 + w5

2x2
2+

w3
2w2

1x2
2 + w2

2w3
1x2

2 + w5
1x2

2 + w4
2x3

2 + w2
2w2

1x3
2 + w4

1x3
2 + w2

2w1x4
2 + w2w2

1x4
2+

w2
2x5

2 + w2w1x5
2 + w2

1x5
2 + w3

2w2
1x2x1 + w2

2w3
1x2x1 + w4

2x2
2x1 + w4

1x2
2x1+

w2
2x4

2x1 + w2w1x4
2x1 + w2

1x4
2x1 + x6

2x1 + w2
2w1x2

2x2
1 + w2w2

1x2
2x2

1 + w2
2x3

2x2
1+

w2
1x3

2x2
1 + w4

2x3
1 + w2

2w2
1x3

1 + w4
1x3

1 + w2w1x2
2x3

1 + w2x3
2x3

1 + w1x3
2x3

1 + x4
2x3

1+

w3
2x4

1 + w3
1x4

1 + w2w1x2x4
1 + w2x2

2x4
1 + w1x2

2x4
1 + w2x6

1 + w1x6
1 + x2x6

1 + x7
1 + w5

2w1 + w4
2w2

1+

w3
2w3

1 + w2
2w4

1 + w2w5
1 + w5

2x2 + w4
2w1x2 + w3

2w2
1x2 + w2

2w3
1x2 + w2w4

1x2 + w5
1x2+

w2
2w2

1x2
2 + w3

2x3
2 + w3

1x3
2 + w2

2x4
2 + w2

1x4
2 + w2x5

2 + w1x5
2 + x6

2 + w5
2x1 + w3

2w2
1x1+

w2
2w3

1x1 + w5
1x1 + w2

2w2
1x2x1 + w2

2w1x2
2x1 + w2w2

1x2
2x1+

w2w1x3
2x1 + w2

2w2
1x2

1 + w2
2x2

2x2
1 + w2w1x2

2x2
1 + w2

1x2
2x2

1 + w2
2w1x3

1+

w2w2
1x3

1 + w2
2x2x3

1 + w2
1x2x3

1 + w2x2
2x3

1 + w1x2
2x3

1 + w2x2x4
1 + w1x2x4

1 + w2x5
1 + w1x5

1+

w5
2 + w5

1 + w3
2w1x2 + w2

2w2
1x2 + w2w3

1x2 + w3
2x2

2 + w3
1x2

2 + w2
2x3

2 + w2w1x3
2 + w2

1x3
2+

w2x4
2 + w1x4

2 + w2
2w1x2x1 + w2w2

1x2x1 + w3
2x2

1 + w2
2w1x2

1 + w2w2
1x2

1 + w3
1x2

1+

w2w1x2x2
1 + w2w1x3

1 + x2
2x3

1 + x5
1 + w3

2w1 + w2
2w2

1 + w2w3
1+

w3
2x2 + w2

2w1x2 + w2w2
1x2 + w3

1x2 + w2w1x2
2 + w2x3

2 + w1x3
2+

x4
2 + w3

2x1 + w2
2w1x1 + w2w2

1x1 + w3
1x1 + w2

2x2x1 + w2w1x2x1+

w2
1x2x1 + w2x2

2x1 + w1x2
2x1 + w2

2x2
1 + w2

1x2
1 + w2x2x2

1+

w1x2x2
1 + x2

2x2
1 + x2x3

1 + x4
1 + w2w1x2 + w2

2x1 + w2w1x1+

w2
1x1 + x2

2x1 + w2
2 + w2w1 + w2

1 + x2
1 + x2

CGC

