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to understand why the issue of inflammation has not been 
successfully addressed thus far in patients with ESRD, while 
at the same time weighing the potential disadvantages and 
offering novel innovative approaches for targeting inflam-
mation in patients with ESRD.  © 2017 S. Karger AG, Basel 

 Introduction 

 Despite the fact that end-stage renal disease (ESRD) is 
stable in its incidence, suggesting some efficacy of preven-
tive approaches (ERA/EDA Registry: www.era-edta-reg.
org), ESRD remains associated with higher cardiovascular 
risk compared to normal individuals  [1]  and carries a mor-
tality rate higher than in other chronic diseases (ERA/EDA 
Registry: www.era-edta-reg.org). Enhanced oxidative 
stress and severe inflammation boost cardiovascular risk, 
particularly in diabetic patients  [2] . While an association 
between inflammation and cardiovascular risk has been 
established  [3] , little progress has been made in targeting 
elevated inflammation in ESRD. Here, we will revisit the 
negative effect of ESRD on inflammation, and explore its 
impact on cardiovascular outcomes and survival in dia-
lyzed patients. Finally, we will also discuss possible clinical 
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 Abstract 

  Background:  Despite the stable incidence of end-stage re-
nal disease (ESRD), it continues to be associated with an un-
acceptably high cardiovascular risk.  Summary:  ESRD is char-
acterized by enhanced oxidative stress and severe inflam-
mation, which boost cardiovascular risk, thus increasing 
cardiovascular-associated mortality rate. While substantial 
effort has been made in the technological innovation of dia-
lytic techniques, few significant advances have been made 
to reduce inflammation in patients with ESRD. Indeed, this 
contrasts with the extensive scientific breakthroughs made 
in the basic field of science in targeting inflammation. There 
is thus a pressing need for clinical trials to test the effect of 
reducing inflammation in patients with ESRD. Here, we will 
revisit the negative effect of ESRD on inflammation and ex-
plore the impact of enhanced inflammation on cardiovascu-
lar outcomes and survival in patients with ESRD. Finally, we 
will discuss the need for clinical trials that target inflamma-
tion in ESRD, as well as weigh potential disadvantages and 
offer novel innovative approaches.  Key Message:  We will try 

 Published online: February 25, 2017 NephrologyAmerican    Journal of

 Paolo Fiorina, MD, PhD 
 Nephrology Division, Boston Children’s Hospital 
 Harvard Medical School, Enders Building 5th Floor Room EN511 
 300 Longwood Ave, Boston, MA 02115 (USA) 
 E-Mail paolo.fiorina   @   childrens.harvard.edu 

 © 2017 S. Karger AG, Basel
 

 www.karger.com/ajn 



 Altered Immunity in ESRD Am J Nephrol 2017;45:310–319
DOI: 10.1159/000458768

311

trials that target inflammation in patients with failing kid-
neys, while weighing the potential disadvantages and of-
fering novel innovative approaches. We used the key 
words “inflammation,” “ESRD,” and  “cardiovascular risk” 
in searches of the PubMed, Embase, and Cochrane data-
bases and then selected literature from the last 10 years.

  Causes of Increased Inflammation in ESRD 

 The incidence of high levels of inflammation in ESRD 
is not surprising, given that high-sensitivity C-reactive 
protein (hs-CRP) is elevated in the course of metabolic 
syndrome, diabetes, and smoking, all of which are preva-
lent in ESRD patients  [4] . In this disease setting, a combi-
nation of oxidative burst  [5] , uremic toxicity, dyslipid-
emia, and oxidative stress resulting from dysfunctional 
mitochondrial electron transfer  [6]  generates free reactive 
species. These compounds induce oxidative modifications 
of carbohydrates such as advanced glycation end products 
(AGEs), advanced oxidation protein products (AOPPs), 
advanced lipoxidation end products (ALEs), oxidized low 
density lipoproteins (oxLDLs) and DNA, in turn recog-
nized as damage-associated molecular patterns (DAMPs) 
by Toll-like receptors (TLRs), which are upregulated in 
many cell types in ESRD, including macrophages and neu-
trophils  [7] . TLRs and nucleotide binding oligomerization 
domain-like receptors (NODs), particularly NOD2, rec-
ognize oxidized products, priming a deleterious cascade of 
proinflammatory signaling  [8] . Inflammation is further 
worsened by the same blood–dialyzer contact, water im-
purities, anemia, and antioxidant loss during dialysis  [9, 
10] , all of which activate the complement cascade and neu-
trophil granulocytes. Furthermore, iron administration, 
which is essential for anemia management, exerts direct 
mitochondrial toxicity  [11] , reacting with H 2 O 2  and pro-
ducing OH and AOPPs  [12] . These effects are mitigated in 
part by neutrophil gelatinase-associated lipocalin (NGAL), 
a marker of iron status that also functions as a free iron 
scavenger  [13] . Heparin, which may induce the release of 
myeloperoxidase from endothelial cells, has pro-oxidant 
and pro-inflammatory effects as well  [10] . Among circu-
lating factors involved in worsening inflammation in 
ESRD, the following should also be noted.

  Advanced Glycation End Products 
 AGEs are augmented in ESRD and interact with 

their receptor (RAGE), thus enhancing NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells)-
mediated production of cytokines (interleukin [IL]-1, 

 IL-6, monocyte chemoattractant protein-1 [MCP-1], 
 tumor necrosis factor-α [TNF-α]) and cell adhesion 
 molecules on T-cells  [14] .

  Homocysteine 
 Hyperhomocysteinemia has been observed in ESRD 

patients associated with impaired methyltransferase ac-
tivity, which is essential to revert homocysteine to me-
thionine and adenosyl methionine. The latter is manda-
tory for DNA and protein methylation, and a lack of this 
molecule may lead to DNA hypermethylation and in-
flammation  [15, 16] .

  Indoxyl Sulfate and P-Cresyl Sulfate 
 These uremic toxins are increased in the advanced 

stages of renal disease and induce intercellular adhesion 
molecule-1 (ICAM-1) expression, activating NF-κB and 
reactive species production by endothelial cells  [17] , in-
creasing leukocyte endothelial adhesion  [18] , endothelial 
E-selectin, MCP-1, and tissue factor expression  [19] .

  Uremic Dyslipidemia 
 The association of uremic dyslipidemia with inflam-

mation  [20]  is related to cellular expression of the recep-
tors involved in immune response (TLRs, major histo-
compatibility complex-II [MHC-II], cluster of differenti-
ation [CD]40, CD40 ligand, CD80, CD28, apoptosis 
antigen 1 [FAS], and FAS ligand), which may be influ-
enced by fluidity of membrane structures called lipid rafts. 
Thus, the expression of the aforementioned receptors can 
be modulated by membrane cholesterol content, and it 
can be impaired by dysfunctional high density lipoprotein 
[HDL] reverse cholesterol transport  [21] . This leads to en-
hanced membrane expression of MHC-II, CD80, CD86, 
and TLR4  [22]  and inflammation. Low density lipopro-
teins (LDLs) are also oxidized to oxLDLs, largely because 
of lipoprotein-associated phospholipase A 2  (Lp-PLA 2 ) 
 [23] , which produces highly proinflammatory lysophos-
phatidylcholine and oxidized free fatty  acids  [24] .

  Adaptive and Innate Immunity Abnormalities 

in ESRD 

 Oxidative stress, dialysis, and uremic dyslipidemia in-
duce immune incompetence in ESRD, causing detrimen-
tal and aimless hyperactivation of the immune system. 
The proof of this phenomenon is found in evidence of 
elevated levels of peripheral markers of immune activa-
tion (e.g.,  cytokines and chemokines)  [25–32] . Other pro-
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inflammatory cell products, like NGAL  [13] , galectin-3 
(GAL-3)  [33],  and Lp-PLA 2   [34] , the first released by 
polymorphonuclear leukocytes and the others by macro-
phages, have been shown to be augmented as well.

  Inflammation is pivotally driven by TLRs and NODs 
on polymorphonuclear leukocytes (chronically activated 
and degranulated)  [35] , which release reactive species 
and myeloperoxidase (MPO)  [10, 36] . The latter phe-
nomenon is linked to leukocyte apoptosis and impaired 
phagocytosis  [37] , impaired antigen presentation func-
tion  [38, 39] , and increased cytokine production  [7] . Di-
alytic treatment may activate antibodies and comple-
ments; indeed, dialyzers absorb albumin, complement 
component 3 (C3), C1q, immunoglobulin G and ficolin, 
leading to activation of the alternative  [9, 40] , classical, 
and lectin  [41]  pathways of complement. All these altera-
tions in innate immunity unavoidably have affects in 
adaptive immunity as well, inducing elevated number of 
high IL-2-producing T-cells  [27] , low number of B-lym-
phocytes (due to apoptosis)  [42] , dysfunctional memory 
CD4 +  T-cells  [43] , reduced CD4/CD8 ratio, increased 
Th1/Th2 ratio, and depletion of memory CD4 and CD8 
T-cells and regulatory T-cells (Tregs; more likely to ex-
hibit an IL-17 pro-inflammatory phenotype)  [44] .

  Mechanisms by Which Inflammation May Increase 

Cardiovascular and Mortality Risk in ESRD 

 In patients with ESRD, several mediators of inflam-
mation share a link with cardiovascular disease  [34, 45–
63]  ( Table 1 ). Indeed, this is quite dubious for C reactive 
protein (CRP), either in terms of mere association or 
from a pathogenic perspective. In fact, while in some tri-
als CRP did not merge as a strong independent cardio-
vascular risk factor (instead of IL-1, IL-6, TNF-α, albu-
min, and body mass index)  [52, 53, 55, 60] , the genetic 
analysis of polymorphisms leading to a gain of function 
of gene transcription of CRP failed to demonstrate a 
dose-dependent effect of this marker  [64]  and a possible 
causal role. Other biomarkers (sTWEAK, MIC-1, 
CD4 + CD28-null T-cells, RANKL, pentraxin3, CCR5, 
GAL-3, myeloperoxidase, Lp-PLA 2 , and sCD14) ,  have 
also been linked to cardiovascular risk in ESRD  [32, 34, 
45–48, 51, 57, 61–63] . Besides studies of association, 
there are evidences that uremic serum directly causes 
vascular damage  [65]  via activation of pro-inflammatory 
endothelial pathways (e.g., TLR4, NF-κB, NALP3 
[NACHT, LRR and PYD domains-containing protein 3] 
and p38 MAPK [p38 mitogen-activated protein kinase]), 

which induce increased endothelial expression of ICAM-
1, VCAM-1 (vascular cell adhesion molecule-1), von 
Willebrand factor  [66, 67] , reduced nitric oxide availabil-
ity, generating endothelial dysfunction  [68] .

  Though the association between inflammation and 
cardiovascular disease is undeniable and while there is 
some evidence of a possible pathophysiological role, a 
sure causal relationship can not be stated so far, given the 
lack of intervention trials with this end point.

  Targeting Inflammation in ESRD: Preclinical Studies 

 Indirect Strategies 
 Oxidative stress drives inflammation in ESRD, and not 

surprisingly, targeting oxidative stress is associated with 
improved outcomes in preclinical models ( Table  2 ). 
 Wistar rats treated with antioxidants such as L-arginine 
 [69] , tocotrienol, or α-tocopherol  [70]  showed a decrease 
in plasmatic concentrations of endothelial and cardiovas-
cular stress markers including sICAM-1, TNF-α, NF-κB, 
VCAM-1, MCP-1, and TGF-β. Similar results have been 
obtained with LF-4 (an ApoA-1 mimetic peptide)  [71] , 
telmisartan  [72] , the oral sorbent AST-120, by improving 
the uremic milieu in ApoE-deficient mice  [73] . However, 
the lack of reliable ESRD murine models makes these re-
sults difficult to interpret or translate to humans.

  Direct Strategies 
 Several strategies aimed at reducing inflammation di-

rectly were tested including the following: (i) the C3 an-
tagonist Cp40, which blunts complement activation and 
increases IL-10 concentrations in Cynomolgus monkeys 
 [74] ; (ii) the proteasome inhibitor MG132 and the NF-κB 
inhibitor PDTC, which reduced the binding of NF-κB to 
DNA and TNF-α levels in New Zealand white rabbits 
 [75] ; (iii) thalidomide, which induced decreased expres-
sion of NF-κB in C57BL/6 mice  [76] ; (iv) IL-10, which 
reduced MCP-1 and RANTES (regulated on activation, 
normal  T-cell expressed and secreted) in Sprague–Daw-
ley rats  [77] ; and (v) ablation of chemokine receptors in 
inbred C57BL/6 mice, which prevented renal ischemia/
reperfusion injury  [78] .

  Targeting Inflammation in ESRD Clinical Trials 

 Indirect Strategies 
 Antioxidant therapies have been tested in human clini-

cal trials as well to reduce cardiovascular risk. In the SPACE 
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study, a reduction of 64% for overall end points and of 70% 
for myocardial infarction was observed with vitamin E in 
ESRD patients  [79] . The study by Jun et al.  [80] , in which 
10 trials pooling nearly 2,000 patients with altered kidney 
function who were treated with several antioxidants (e.g., 
vitamin E, co-enzyme Q, acetylcysteine, bardoxolone 
methyl and human recombinant superoxide dismutase) 
were analyzed, showed a 43% reduction in cardiovascular 
end points (RR = 0.57), but only in dialysis patients. Disap-
pointingly, anti-hypertensives, statins, and lifestyle chang-
es failed to reduce cardiovascular risk in ESRD patients 
 [81] . In particular, the efficacy of renin–angiotensin sys-

tem inhibitors is far from being demonstrated. With re-
gard to homocysteine-lowering treatments, while showing 
conflicting results on endothelial function  [82, 83] , results 
did not suggest improved prevention of cardiovascular 
events either in ESRD  [84]  or kidney transplanted patients 
 [85] . However, it is possible that lowering hyperhomocys-
teinemia may be of value in diabetic patients  [86, 87] .

  Targeting Complement 
 Pharmacological complement inhibition by anti-C1 

and anti-C5a compounds may abrogate intradialytic in-
flammation, due to blood–dialyzer contact. However, the 

Table 1. Evidence of a relationship between inflammation markers and cardiovascular risk

Patients Pivotal findings

Dialysis patients (n = 176) IL-6 independently predicts mortality (OD [95% CI] 2.7 [1.1–6.6]) [52]

Dialysis patients (n = 1,228) CRP predicts mortality (HRs [95% CI] 1st tertile 2.2 [0.96–5.16], 2nd tertile 3.3 
[1.49–7.33], 3rd tertile 4.19 [1.93–9.06]) [60]

Dialysis patients (n = 231) High vs low IL-1, IL-6, and TNF-α levels predict mortality (HR [95% CI] 2.62 [1.44–3.69]) 
[53]

Dialysis patients (n = 218) sTWEAK alone and with IL-6 predicts cardiovascular mortality (respective HRs [95% CI] 
2.66 [1.24–5.62] each pg/mL and 7.45 [1.98–27.9] each pg/mL) [46]

Dialysis patients (n = 1,041) Hs-CRP and IL-6 predict cardiac death (respective adjusted HRs [95% CI] 1.22 [0.96–1.55] 
each mg/dL and 1.21 [0.96–1.53] each pg/mL) [55]

Dialysis patients (n = 54) Hs-CRP predicts silent cerebral infarction (HR [95% CI] 1.61 [1.17–2.85] each mg/dL) [56]

Dialysis patients (n = 470) MIC-1 predicts mortality (OD [95% CI] 4.84 [1.09–21.62]) [45]

Dialysis patients CRP and CD4 + CD28-null T-cells correlate with impaired flow-mediated vasodilatation 
and increased carotid intima-media thickness [57]

Dialysis patients (n = 68) Inverse relationship between RANKL and vascular calcifications [47]

Dialysis patients (n = 105) Hs-CRP, PTX3, IL-6/IL-10 ratio correlate with systolic dysfunction [62]

Dialysis and control patients Inflammation correlates with endothelial glycocalyx damage [65]

Dialysis, CKD and control patients VCAM-1, ICAM-1, vWF, and circulating endothelial cells correlate with p38 MAPK and 
NF-B in ESRD [67]

Dialysis patients (n = 413) CCR5 delta 32 and hs-CRP >10 mg/L predict mortality (HR [95% CI] 1.82 [1.29–2.58]) [61]

Dialysis patients (n = 1,168), patients 
submitted to coronary angiography 
(n = 2,579)

GAL-3 predicts cadiovascular mortality in LURIC and 4D studies (respective HRs 
[95% CI] 1.21 [1.01–1.44] and 1.12 [1.01–1.24] each SD) [48]

Dialysis patients (n = 102) Lp-PLA2 >194 nmol/min/mL predicts cardiovascular outcome (OD [95% CI] 2.54 
[1.09–5.95]) [34]

Dialysis patients (n = 236) Doubled MPO levels predict cardiovascular risk (HR [95% CI] 1.60 [1.17–2.18]) [51]

Dialysis patients (n = 211) sCD14 predicts mortality (HR [95% CI] 3.11 [1.49–6.36] for 3rd tertile) [32]

Dialysis patients (n = 310) sCD14 predicts mortality (HR [95% CI] 1.94 [1.01–3.75] for 3rd tertile [63]

sTWEAK, serum TNF-related weak inducer of apoptosis; MIC-1, macrophage inhibitory cytokine-1; RANKL, receptor activator of 
nuclear factor kappa-B ligand; CCR5, C-C chemokine receptor type 5.
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high costs of these drugs are a major concern for health-
care providers. Conversely, 5C6 peptide (binding to fac-
tor H coated to polystyrene materials)  [88] , PMX-53 
(which bind to C5aR)  [89] , Compstatin and POT-4 
(which antagonize C3)  [90] , may represent promising al-
ternatives.

  Targeting Cytokines 
 Few trials evaluating cytokine targeting in ESRD can 

be found. One is based on the administration of a recom-
binant human IL-1 receptor antagonist (Anakinra)  [91] . 

Fourteen subjects were randomized to receive 100 mg 
Anakinra or placebo subcutaneously for 4 weeks. The 
trial was biased by the presence of more severe inflam-
mation in the placebo arm. Treated patients exhibited 53 
and 40% reduction in hs-CRP and IL-6 levels, respec-
tively, as compared to 1% reduction and 20% increase in 
the placebo group  [91] . In another trial, the TNF-α an-
tagonist, etanercept, tested with 10 dialyzed patients 
treated for 44 weeks failed to produce any effect on in-
flammation  [92] .

Table 2. Experimental therapies aimed at reducing inflammation in preclinical models of CKD and ESRD

Experimental model Study design Results

Cynomolgus hemodialysis 
model

Complement activation treated 
with the C3 inhibitor Cp40

Reduced complement activation 
and increased levels of IL-10 [74]

Adenine-induced CKD in 
C57BL/6 mice (n = 30)

3 Groups:
(a) Control group
(b) Adenine diet group
(c) Adenine + thalidomide group

Reduced expression of cytokines 
and activation of NK-kB in the kidney [76]

Subtotal nephrectomized rats 3 Groups:
(a) Untreated group
(b) Telmisartan group
(c) Telmisartan antagonist GW9662 group

Telmisartan antagonized macrophage 
infiltration, osteopontin, and VCAM-1 
expression, all blunted by GW9662 [72]

5/6 nephrectomy rats 
receiving the ApoA1 
mimetic drug L4F

3 Groups:
(a) Control sham operated rats
(b) Placebo group
(c) L4F group

L4F reduced MCP-1 and NF-B 
expression [71]

Extensive renal mass 
reduction in rats

4 Groups:
(a) CKD rats
(b) L-arginine group
(c) L-carnitine, catechin, vitamins E and C
(d) group
(e)  L-carnitine, catechin, vitamins E 

and C + L-arginine group

L-arginine decreased cytokines
Antioxidants decreased cytokines and 
sICAM-1, increasing IL-4 levels
L-arginine + antioxidants recovered normal 
cytokines and sICAM-1 [69]

New Zealand white rabbits 
submitted to 5/6 nephrectomy 
or sham operation (n = 24)

3 Groups:
(a) CKD untreated rabbits
(b) Proteasome inhibitor MG132 group
(c) NF-B inhibitor PDTC group

Reduced NF-B DNA binding capacity 
and reduction of TNF-α levels in the 
MG132 group, similarly to PDTC [75]

Streptozotocin-induced 
diabetic rats with CKD

2 Groups:
(a) Tocotrienol and α-tocopherol group
(b) Control group

Tocotrienol, associated with α-tocopherol, 
prevented the elevation of TNF-α, TGF-β, 
and the activation of NF-B [70]

Rats 2 Groups:
(a) IL-10-transfected group
(b) Control group

IL-10 reduced the expression of MCP-1, 
IFN-γ, IL-2, and RANTES [77]

ApoE-deficient mice 
treated with AST-120

3 Groups:
(a) Uninephrectomy
(b) Subtotal nephrectomy
(c) Sham operation

Reduced aortic expression of MCP-1, 
TNF-α, and IL-1β [73]

IFN-γ, interferon-γ; NTGF-β, transforming growth factor-β.
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  Lessons Learned from Trials and the Next 

Immunological/Anti-Inflammatory Trial in ESRD 

 The goal of improving cardiovascular risk in dialysis 
patients can be achieved with integrated management, 
ranging from strict blood pressure and glycemic con-
trol, through treatment with antioxidant compounds, 
to  administration of novel anti-inflammatory mole-
cules  [93, 94] . Indeed, while an optimal blood pressure 
and glycemic control are difficult to achieve in real life, 
more anti-inflammatory treatments (Fig. 1) should be 
encouraged to confirm, for instance, the interesting re-
sults obtained with IL-1α receptor antagonists. The ef-
fect of novel TLR antagonists on the inflammatory re-
sponse and cardiovascular risk in ESRD should be test-
ed as well  [95] . Likewise, therapies improving HDL 
concentrations (e.g., recombinant HDLs, recombinant 
lecithin-cholesterol acyltransferase [rLCAT], cholester-
yl ester transfer protein [CETP] antagonists, torcetra-
pib, dalcetrapib and evacetrapib) should be evaluated. 
Strategies aiming at the lowering of uremic toxins, such 

as indoxyl sulfate and p-cresyl sulfate, by using intesti-
nal probiotics may also prove interesting  [96] . No data 
on the effect of galectin targeting in dialysis are avail-
able. The only reported experience is a trial developed 
by La Jolla Pharmaceutical Company in patients with 
chronic kidney disease stage 3b, treated with a complex 
polysaccharide (GCS-100), which binds to GAL-3 in-
hibiting profibrotic effects. A reduction in GFR decline 
was observed (see ASN 2014 abstract book). Also rGAL-
1 which, contrarily to GAL-3, may have immunomodu-
latory and anti-inflammatory properties may be con-
sidered for use in this context  [97] . Cell therapy may 
play an important role in the next clinical trials. Tregs 
have a crucial role in maintaining immunological self-
tolerance and in limiting the inflammatory response to 
immune reactions  [98] , possibly containing the aimless 
immunological activation in ESRD  [98] . Finally, mes-
enchymal stem cells, which possess immunomodula-
tory properties, may be harnessed to reduce inflamma-
tion as shown in diabetes, transplantation, and diabetic 
nephropathy  [99–103] .

Inflammation

Adaptive immunity
Low B-cells
High Th1/Th17 ratio
High Th1/Th2 ratio
Low CD4–CD8 ratio
Low Treg
Low memory CD4 and CD8
High IL-17 Tregs

TLRs antagonists and 
modulators:
Eritoran
Recombinant HDLs
Recombinant LCAT
CETP inhibitors

TNF-   scavangers (?):
Etarnecept

Pentoxifylline

IL-1Ra antagonists:
Anakinra 

IL-8 antagonists:
Reparixin
Redarixin

5C6

PMX-53

Compstatin
POT-4

GCS-100

Cell therapies:
Tregs
Mesenchymal stem cells

Cytokines:

IL-6

CRP

IL-1

IL-8

MCP-1
Complement:
fH ligands

C5aR inhibition

C3 inhibition

GAL-3

X

X

Indoxyl sulfate and
Cresyl sulfate:
AST-120  intestinal
sorbent
Probiotic agents

Innate immunity
CD14+/CD16+ monocytes
Granulocytes
TLRs 2 and 4
Complement
GAL-3

  Fig. 1.  Schematic attempt to show pathways that may be targeted or are currently being targeted in ESRD. 
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  Conclusions 

 Inflammation is one of the pivotal causes of mortal-
ity and morbidity in ESRD patients. Targeting of inflam-
mation will be necessary to reduce the devastating car-
diovascular complications observed in ESRD patients. 
Unfortunately, this has not been adequately addressed 
thus far in this population, particularly in diabetic pa-
tients, who may benefit the most from these approaches 
 [104] .
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