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Abstract

We propose a unified treatment of internal and boundary vertex Least Squares
reconstructions in second-order accurate cell-centered finite volume discretisation of
2-D steady diffusion problems. Dirichlet, Neumann and Robin boundary conditions
are taken into account in the same formulation by introducing suitable constraints in
the Least Squares minimization process. The method is discussed in its theoretical
framework and a representative numerical experiment illustrates its capability in
providing the second order of accuracy.

Key words: Finite Volume, Unstructured mesh, Neumann Boundary Conditions,
Robin Boundary Conditions, Least Squares reconstruction.

1 Introduction

Let us consider the second-order steady diffusion problem

div(ν∇u) = f on Ω,

αu + βn · ν∇u = g on ∂Ω,
(1)

for the unknown scalar field u on the domain Ω ⊂ R2 with closed boundary ∂Ω.
In equations (1), ν is the scalar viscosity field and f a forcing term. In (1), n is
the outward-directed normal vector to ∂Ω, g is a suitable boundary function
which yields the boundary conditions on ∂Ω and α and β two switch coeffi-
cients. This formulation of the boundary conditions is quite general, because
it allows us to take into account simultaneously the following cases:
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(i) Dirichlet boundary conditions, α = 1, β = 0;
(ii) Neumann boundary conditions, α = 0, β = 1;
(iii) Robin boundary conditions, α = 1, β = 1.

Boundary conditions of mixed type are also included. The domain boundary
∂Ω can indeed be split into the union of distinct connected subsets where dif-
ferent choices of α and β are set. We outline that mixed boundary conditions
are required when the Neumann condition (ii) is taken into account. Other-
wise, case (ii) alone would certainly lead to a singular discretization [1]. Under
suitable assumptions on the regularity of the closed boundary contour ∂Ω and
the boundary function g, problem (1) can be re-formulated in a weak form,
and the existence and uniqueness of the analytical solution can be proved [2].

In this work we consider the 2-nd order accurate finite volume discretization
that is generally referred to as diamond scheme in literature. As usual in
Finite Volumes, a linear operator is built by re-formulating in a discrete way
the element-wise flux balance integrals. A numerical diffusive flux function is
introduced at this stage, which makes usage of cell-average solution values
and an estimate of the vertex solution values. These latters are obtained from
the cell-average ones by applying a special averaging procedure that ensures
formal second order of accuracy. Let us indicate by uk the cell-average value
of the cell Tk, and by uv the reconstructed solution at the boundary vertex v
of coordinates xv.

Formally, we can write

uv =
∑

k∈σv
ωv

k uk, (2)

where the summation index k runs throughout the set σv of the cells adjacent
v and the cell averages uk are multiplied by suitable weight factors ωv

k . The
reconstruction weights can be determined in several ways that are widely
applied in Computational Fluid Dynamics applications and well documented
in literature. To this purpose, it is certainly worth mentioning the weights
provided by the simple arithmetic average technique [3,4], by the cell area
ratio technique [5], by the inverse distance ratio technique [6–9], and by the
Least Squares approximation process [10].

It turns out that special care must be deserved to the treatment of the bound-
ary conditions in this reconstruction step. The treatment of a Dirichlet bound-
ary vertex is rather simple and consists in imposing directly the boundary
value. Thus, we set uv = g(xv) in place of (2). The situation is much more
complex for a vertex showing a Neumann or a Robin condition. In these two
latter cases, the point-wise values are usually estimated by the ghost cell tech-
nique [1]. Basically, this technique applies the same reconstruction procedure
of an internal vertex to an extended set of cell-averaged data which includes
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ghost cell data defined on ghost cells. The ghost cells are images of the bound-
ary cells incident v and built by specular reflections across the boundary and
the internal edges. Ghost cell data are estimated by an extrapolation process,
usually based on a 1-st order Taylor series development [1]. The vertex value
reconstructed by this method reads as

uv =
∑

k∈σv
ωv

k uk +
∑

k′∈σ′v

ωv
k′uk′ .

The first summation index, k, runs throughout the set of “real” cells σv,
while the second one, k′, runs throughout the set σ′

v of ghost cells. This latter
summation term takes into account fictitious ghost cell data uk′ multiplied by
the ghost cell weight factors ωv

k′ .

As documented in literature, this treatment of the boundary conditions have
shown in more complex fluid dynamics applications “suspect” behaviors that
deserve further investigation [7–9].

In this paper, we propose a different approach that generalises to the bound-
ary vertex case the internal vertex reconstruction procedure by introducing the
boundary conditions as constraints in the vertex Least Squares reconstruction
process. Our method allows a unique definition for Dirichlet, Neumann and
Robin conditions, and preserves the required 2-nd order of accuracy of the
finite volume discretization. Furthermore, our technique does not require any
modification of the discrete finite volume operator to include the boundary
condition treatment. This method can thus be easily incorporated with mini-
mum effort into pre-existent software implementations.

The outline of the paper follows. In Section 2 we present a short review of
the finite volume method that forms the framework of the vertex Least square
reconstruction algorithm. This latter one is presented and discussed in full
details in Section 3. Then, in Section 4 we illustrate the performance of this
method on a representative test case. Finally, in Section 5 we draw the con-
clusions.

2 The 2-nd order Finite Volume formulation

Let us shortly review for exposition’s sake the 2-nd order accurate cell-centered
Finite Volumes into which the Least Squares vertex reconstruction is naturally
incorporated. This section is mainly based on References [3,11].

As usual in cell-centered finite volume approximations, we assume that the
computational domain Ω be covered by an unstructured mesh Th. The mesh Th

is a collection of NT non-empty and non-overlapping control volumes, namely
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Ti, which are two-dimensional simplices (triangles). The mesh size h is defined
as the supremum of the mesh control volume diameters [12]. The set Ωh =
∪NT

i=1Ti ⊆ Ω is a polygonal approximation of Ω.

Convergence analysis introduces a set of constraints on the sequence of meshes
as the size factor h tends to zero, leading to the concept of finite volume
admissible meshes in accord with the definition given in References [3,11]. We
strenghten these conditions by requiring that the admissible meshes furtherly
satisfy:

• Assumption 1, there exists a real positive constant γ independent of h that
bounds every mesh angles from below;

• Assumption 2, there exist at least three cells incident every mesh boundary
vertex, whose centroids are non collinear.

Assumption 1 introduces a minimum angle condition that avoids too stretched
or skewed meshes in the convergence process h → 0. It is similar to the an-
gle condition usually taken into account in finite element discretisation [12].
Assumption 2 clearly implies that a boundary vertex must be shared by at
least three control volumes. We will demonstrate in the next section that As-
sumption 2 ensures the well posedness of the linear algebraic problem resulting
from the proposed scheme because a linear two-dimensional approximation re-
quires the specification of three independent degrees of freedom. We will also
show that Assumption 2 can be partially relaxed, at the price of introducing
a problem dependent constraint on the finite volume meshes.

The cell-centered finite volume method on Th is derived as usual by inte-
grating equation (1) on Ti and then applying the Gauss-Green divergence
theorem [11]. This yields the flux balance integral equation∫

∂Ti

n · ν∇u dl =
∫
Ti

f dx, for i = 1, . . .NT, (3)

defined on the boundary ∂Ti of the i-th control volume Ti.

Let us indicate by u the solution vector, whose i-th component ui is the finite
volume approximation of the i-th cell-averaged solution. The finite volume
method mimicks (3) by substituting the integrals of the diffusive flux n · ν∇u
across the edge eij ⊂ ∂Ti by its discrete counterpart denoted by Gij(u). The
righ-hand-side source integral is calculated by a quadrature formula of the
correct order of accuracy and indicated by fi. This approach leads to state
the set of equations ∑

j∈σi

Gij(u) = fi, for i = 1, . . .NT, (4)

that correlates the cell-average approximations and ghost-cell values ui labeled
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by the index set σi of the cells adjacent to Ti and boundary edges in ∂Ti∩∂Ω.

The numerical diffusive flux integral is defined by

Gij(u) = − |eij| νijnij · G�
ij(u), (5)

where νij =
∫
eij

ν(x) dx, and G�
ij(u) is the numerical estimate of the solution

gradient provided at the edge eij of lenght |eij| by the diamond scheme [3].
Since G�

ij(u) is a linearly dependent function of its argument u, substituting
equation (5) in equation (4) yields a linear algebraic problem whose solution
is indeed the cell-average vector u.

The normal component of the numerical gradient G�
ij(u) in (5) is defined

throughout the following steps. First, we introduce a one-side edge-centered
approximation of the normal derivative n · ∇u, namely nij · Gij. Then, we
distinguish the case of an internal and a boundary edge. At an internal edge,
a conservative definition is achieved by averaging the two one-side numerical
gradients Gij(u) and Gji(u), respectively defined within the control volumes
Ti and Tj adjacent the edge eij. The average gradient is

G�
ij(u) = WijGij(u) + WjiGji(u).

The weights yielding the diamond scheme are

Wij =
|Ti|

|Ti|+ |Tj|
, and Wji =

|Tj|
|Ti|+ |Tj|

.

At a boundary edge, the conservative discrete gradient is given by taking the
unique available edge gradient, that is G�

ij(u) = Gij(u).

The one-side edge-centered approximation of the normal component of the
solution gradient, that is nij · Gij(u), is estimated by applying the Gauss-
Green theorem to the simplex whose vertices are the centroid of Ti and the
vertices of the edge eij. Let us denote by x̃ij ∈ eij the orthogonal projection of
the centroid of Ti onto the edge eij. After some algebraic manipulations, the
one-side edge-centered gradient can be re-written as

nij · Gij(u) =
ũij − ui

hij

,

where hij is the distance between x̃ij and xi, and

ũij =
∑

v∈Vi∩Vj

λij
vuv

is the linearly interpolated value of u|Ti
at x̃ij. This latter term is expressed

by using the vertex values uv and the linearly interpolating coefficients at
x̃ij, namely λij

v , with respect to v for any v ∈ Vj ∩ Vj. From Assumption 1
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it follows that x̃ij is an interior point of the edge eij, and, consequently, that
the linearly interpolating coefficients are strictly positive. In this case, uij is a
convex linear combination of the vertex values uv.

Finally, let us outline that in order to achieve a second-order accurate dis-
cretization, the diamond scheme requires that at any mesh edge eij the numer-
ical gradients Gij of the numerical diffusive flux be estimated to at least O(h)
order of accuracy. This is given by using the linear Least Squares reconstruc-
tion algorithm described in the next section to approximate the cell-vertex
values from the cell-averaged finite volume approximations.

3 Least Squares vertex reconstruction

A linear approximation of the analytical solution is built from the cell-averaged
data set

{(xk, uk), k ∈ σv}

within the macro-element ∪k∈σvTk by applying the Least Squares Method.
This approximation takes the form

uv(x) = a + b · (x− xv), x ∈ ∪k∈σvTk, (6)

in terms of the vector of coefficients a and b. For the sake of notation com-
pactness, we will also use throughout this section the LS coefficient vector
ZT = (a, bT ). The following proposition is the basic result of this paper.

Proposition 1 The reconstructed value uv = uv(xv) of the vertex v – no
matter this one is an internal or a boundary vertex – takes the form of the
affine linear combination of the surrounding cell-averaged values,

uv =
∑

k∈σv
ωv

k uk + ũv, (7)

where {ωv
k , k ∈ σv} are the weights and ũv a special displacement value pro-

duced by the Least Squares process.

Essentially, we claim in proposition 1 that the Least Squares interpolation
technique, which has been proposed in literature just for the reconstruction of
the values at internal vertices, can be suitably generalized to take into account
both internal and boundary vertices.

In the rest of this section we prove this result discussing separately the case
of an internal and a boundary vertex. In both cases we derive a formula to
compute efficiently the weights and the displacements generated by the Least
Squares method.
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3.1 Internal Vertex Least Squares Algorithm

The linear Least Squares approximation is given by taking the coefficient
vector (a, b)T as the minimizer of the functional

J (a, b) =
∑

k∈σv
λk [a + b · (xk − xv)− uk]

2 ,

where {λk} is a suitable set of strictly positive weights normalized to a unit
sum. Usual choices are λk = 1

Nv
[3,4], where Nv is the cardinality of the set

σv of the triangles incident to v, λk =
|xk−xv|−1∑

k∈σv|xk−xv|−1 [6–9], λk = |Tk|∑
k∈σv

|Tk|

[5].

Imposing the null gradient condition

∇ZJ (Z) = 0

leads to the algebraic system usually known as weighted normal equations,
which can be written in the matrix form

AT ΛAZ = AT Λuv, (8)

by introducing the following definitions. Let us first introduce the Nv-sized
r.h.s. data vector uv and the diagonal Nv-order weight matrix Λ,

uv =


u1

...

uNv

 , Λ =


λ1

. . .

λNv

 .

and the Nv-sized auxiliary vectors

1 =


1
...

1

 , δx =


x1 − xv

...

xNv − xv

 , δy =


y1 − yv

...

yNv − yv

 .

Finally, we introduce the Nv × 3 rectangular matrix A = [1, δx, δy].

The matrix AT ΛA is non-singular for every internal vertex v. Let us observe
that, independently of the dimensionality of the vertex v, A is a maximum
rank matrix. Indeed, in σv there must be at least two cells in the 2-D case
whose centroids are non collinear with v. A standard result from matrix theory
states that

rank(AT ΛA) = rank(A),
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implying that the matrix AT ΛA is non-singular.

Solving (8) we obtain the Least Squares coefficients {ωv
k , k ∈ σv}. These ones

coincide with the entries of the first row of the Λ-weighted Moore-Penrose
pseudo-inverse of A, and are formally given by

ωv
k = (1, 0, 0)(AT ΛA)−1AT Λek, (9)

ek being the k-th vector of the canonical base of RNv . Finally, equation (7)
follows in view of (9) and by taking ũv = 0.

3.2 Boundary Vertex Least Squares Algorithm

As for the internal vertex case, we build the linear approximation (6) of the
data set {(xk, uk), k ∈ σv} in the Least Squares sense .

As v is a boundary vertex, we introduce the boundary condition of (1) as linear
constraints of the form

α a + βb · nv = g(xv),

where nv = n(xv), and gv = g(xv).

Actually, it turns out to be convenient to distinguish between the two situa-
tions at the boundary vertex v ∈ ∂Ω:

(i) the domain boundary ∂Ω is locally regular — at least differentiable — at v;
(ii) the domain boundary ∂Ω is only Lipschitz continuous at v, i.e. it is a corner.

When the boundary shows at least C1 regularity at the vertex point xv ∈ ∂Ω,
the normal vector nv = n(xv) can be uniquely defined. In such a case, we
minimize the constrained functional

J (a,b, µ) =
∑

k∈σv
λk [a + b · (x− xv)− uk]

2 + µ (α a + βb · nv − gv ),

where µ is a Lagrangian multiplier. Otherwise, we must cope with two distinct
normal vectors n

(1)
v and n

(2)
v , one for each boundary edge incident v. We take

into account this situation by introducing two different lagrangian multipliers
µ1 and µ2, and by minimizing the constrained functional

J (a,b, µ) =
∑

k∈σv
λk [a + b · (x− xv)− uk]

2 +
∑

k=1,2

µk (α a + βb · n(k)
v − gv ).
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By repeating the Least Squares procedure, we obtain the augmented systemAT ΛA B

BT 0


 Z

µ

 =

AT Λuv

gv

 , (10)

where A and ZT = (a, bT ) are the 3 × 3 matrix and the 3-entry vector of
unknowns defined in the previous section. The lagrangian multiplier unknown
vector µ and the constraint matrix B are defined in cases (i) and (ii) by

case (i) µ =
[
µ

]
, B =

 α

βnv

 ;

case (ii) µ =

 µ1

µ2

 , B =

 α α

βn
(1)
v βn

(2)
v

 .

The augmented system (10) is formally solved by the null space method, which
generalises the treatment of internal vertices described in section 3.1 to the
boundary vertices. Let us first introduce the kernel matrix of BT , that is
the matrix K whose columns form by definition a basis for the null-space of
BT . This fact is expressed by the relation BTK = 0. Let us then denote by
Ẑ = (â, b̂)T a special solution vector such that BT Ẑ = gv. Substituting the
general solution expression Z = Ẑ + Kρ into (10) and projecting onto the
null-space of BT , we obtain the reduced algebraic system

KTAT ΛAKρ = KT (AT Λuv −AT ΛAẐ)

for the unknown vector ρ. Consequently, the solution ρ can be formally written
as

ρ = (KTAT ΛAK)−1KTAT Λ(uv −AẐ),

if we assume that the projected matrix KTAT ΛAK is non-singular. This latter
issue will be discussed in section 3.3.

A special solution Ẑ can be built in a very simple way by setting â = 0 and
choosing the coefficients of the vector b̂ that satisfy the equation b̂ · nv = gv,
for instance b̂ = gvnv. Notice that this is clearly always possible because
nv 6= 0. Finally, since the linear Least Squares reconstructed value at the
vertex v is

uv(xv) = a = (1, 0, 0) · Z = (1, 0, 0) · (Ẑ +Kρ),

formula (7) is obtained by defining in case (i)

ωv
k = (1, 0, 0)K(KTAT ΛAK)−1KTAT Λek, (11)
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and

ũv = (1, 0, 0)
[
I −K(KTAT ΛAK)−1KT

]
AT ΛA Ẑ. (12)

In case (ii), the weight formula (11) still holds, but (12) defines a two-entry

vector ũv = (ũ
(1)
v , ũ

(2)
v )T , because we have one Least Squares displacement for

each contraint. In such case, the Least Squares displacement in (7) is the sum

of these latters, i.e. ũv = ũ
(1)
v + ũ

(2)
v .

3.3 Existence and uniqueness of the LS reconstructed solution

As BT is a maximum rank matrix in both cases (i) and (ii), the projected
matrix KTAT ΛAK is non-singular if and only if there holds that

Ker(BT ) ∩Ker(Λ
1
2A) = {0}. (13)

This condition is surely verified because Assumption 2 implies that A is also a
maximum-rank matrix. As anticipated in the previous section, Assumption 2
can be relaxed by admitting the case of a “pathological” boundary vertex
belonging to one or two triangles. A unique solution to (10) can still be guar-
anteed to exist by requiring that (13) be directly satisfied. This leads to ask
explicitly for a constraint of the form

Λ
1
2AK 6= 0,

that must be checked for every pathological vertex and is clearly dependent
on the boundary condition coefficients α and β.

3.4 Numerical Stability

As pointed out in References [13,6], the algebraic problem resulting from the
weighted normal equations (8) may be ill-conditioned when the mesh is highly
stretched. As the sensitivity of the solution of (8) and (10) depends on the
square of the condition number ofA, the accuracy of the Least Squares weights
may be significantly reduced. This situation takes place when the centroids are
nearly collinear, that is, when a situation of numerical rank deficiency occurs
in the Least Squares resolution process.

In References [13,6] the authors utilizes the weights giving the arithmetics
average, i.e. λ = 1

Nv
I, and suggest to apply an orthogonal decomposition

in the form A = QR, Q denoting as usual the orthogonal matrix and R
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the upper triangular matrix of the Gram-Schmidt process. The reconstructed
solution is then given by  a

b

 = R−1QTuv.

This technique is rather standard in the numerical re-solution of Least Squares
problems.

A simpler strategy consists in imposing an angle condition at the mesh gener-
ation level to avoid excessive mesh stretching and collinear (co-planar in 3-D)
centroids.

4 A numerical experiment

In this section we illustrate experimentally the accuracy of the proposed
method and its capabilities in reconstructing the vertex values.

The source term f is calculated in order to have the following exact solution

u(ex)(x, y) = x y exp(x + y)

on the domain Ω = [0, 1]× [0, 1].

As depicted in Figure 4, boundary conditions of Dirichlet type, i.e. α = 1,
β = 0, are imposed to the vertices at x = 0 and at x = 1. The vertices at
the top side of the domain, y = 1, are given a Neumann type condition, i.e.
α = 0, β = 1, and the ones at the bottom side, y = 0, a Robin type condition,
α = β = 1. The lower-left vertex is given a Neumann type condition, the
upper-right one a Robin type condition, and the other two corner vertices a
Dirichlet type condition.

All of the calculations are performed on a set of four unstructured grids built
as follows. The base grid is formed by 162 triangles and has been generated
by using the public domain software Triangle; the grids at the next refinement
levels are obtained by a nested subdivision process. That is, each triangle at a
given refinement level is subdivided into four triangles by connecting its edge
mid-points. Notice that this partitioning strategy preserves the shape, that is
the aspect ratio, of the triangular mesh cells.

The steady solutions for the first three mesh calculations are shown in Figure 2,
whild Table 1 summarizes the results of all of the four simulation runs. The
first three columns respectively report the number of the mesh cells, #T , the

11



(1, 1)

(1, 0)

(0, 1)

(0, 0)

u = g u = g

n · ν∇u = g

u + n · ν∇u = g

Fig. 1. Boundary conditions

number of mesh edges, #E, and the number of boundary edges, #BE. The
forth column reports the relative error Erel of the cell-averaged concentration
with respect to the analytical solution. This error is measured by using a
discrete version of the L2 norm; that is

Erel =

√∑
Ti∈Th

|Ti| |ui − u(ex)(xi)|2√∑
Ti∈Th

|Ti| |u(ex)(xi)|2
. (14)

The fifth column gives the rate of convergence rate measured when the mesh
factor h is halved in the mesh refinement process. These numbers indicates
the order of accuracy in the approximation of a suitably smooth solution, and
are calculated by applying the formula

Rate(h, h/2) = log2

Erel
h

Erel
h/2

,

to the relative errors Erel
h and Erel

h/2 of two successive lines in the tables.

The next three columns repeat the same information about the linearly-
reconstructed vertex concentration. The errors are calculated by a formula
similar to (14), that is

Ẽrel =

√∑
v∈Vh

Ω
|v| |uv − u(ex)(xv)|2√∑

v∈Vh
Ω
|v| |u(ex)(xv)|2

,

where Vh
Ω is the set of all of the vertices of the mesh, |v| =

∑
v∈σv |Tv| is

the cumulative area of the triangles surrounding the vertex v, and σv the set
of indices of these latter triangles. The convergence rate of the vertex recon-
structed values has the same definition of the convergence for the cell-average
values previously introduced. It is evident from the results in Table 1 that
second-order convergence is attained in nearly all of the runs, thus confirming
the theoretical convergence rate. The corsest grids show the worst resolution
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Table 1
Absolute and relative errors and convergence rates for ν = 1.

#lev #T #E #BE Erel Rate Ẽrel Rate

1 162 259 32 6.11 10−3 — 1.12 10−3 —
2 648 1004 64 1.46 10−3 2.06 3.35 10−3 1.88
3 2592 3952 128 3.56 10−4 2.03 8.68 10−4 1.94
4 10368 15680 256 8.77 10−5 2.02 2.21 10−4 1.97

as one can expect, and consequently the worst accuracy in the spatial approx-
imation. Nevertheless, by increasing the mesh resolution, the spatial accuracy
increases and tends towards the order O(h2), as predicted by the theory.

5 Conclusions

We introduced the theoretical framework of an alternative approach to the
usual ghost cell method for the treatment of boundary conditions in Least
Squares-based cell-centered finite volume discretisations of two-dimensional
second-order steady diffusion problems.

The Least Squares vertex reconstruction can be re-formulated in a unified way
to take into account both internal and boundary vertices. In the former case,
we apply the standard Least Squares reconstruction process which is solved by
the normal equation technique. In the latter case, a constrained Least Squares
process is considered that takes into account at the vertex reconstruction level
Dirichlet, Neumann and Robin conditions for the boundary vertices.

The method has been discussed in full details, and its application to a repre-
sentative numerical test case demonstrated its compatibility to second-order
accurate Least Squares-based cell-centered Finite Volumes.
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Fig. 2. Steady diffusion equation on three different refinement level meshes, l = 1, 2,
3; cell-averaged solutions are displayed on the left and linearly-reconstructed vertex
solutions on the right.
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