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Abstract

We present an extension of the Soft Concurrent Constraint language that allows the nonmonotonic evolution
of the constraint store. To accomplish this, we introduce some new operations: the retract(c) reduces the
current store by c, the updateX(c) transactionally relaxes all the constraints of the store that deal with
the variables in the set X, and then adds a constraint c; the nask(c) tests if c is not entailed by the store.
We present this framework as a possible solution to the management of resources (e.g. web services and
network resource allocation) that need a given Quality of Service (QoS). The QoS requirements of all the
parties should converge, through a negotiation process, on a formal agreement defined as the Service Level
Agreement, which specifies the contract that must be enforced. c-semirings are the algebraic structures that
we use to model QoS metrics.
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1 Motivations

Many real-life problems require computation mechanisms which are nonmonotonic
in their nature. Consider for example an everyday scenario where clients need to
reserve some resources, and service providers must allocate those resources provid-
ing also a desired Quality of Service (QoS). Negotiation [14] is the process by which
a group of agents communicate among themselves and try to come to a mutually
acceptable agreement on some matter. The means for achieving this goal consist
in offering concessions and retracting proposals. When agents are autonomous and
cooperation/coordination is attempted at run-time, automated negotiation repre-
sents a complex process [14]. Notice that this process must be dynamic because
clients and providers can change their requirements during their execution.
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To model and manage automated negotiation, in this paper we propose the
Nonmonotonic Soft Concurrent Constraint (nmsccp) language, which extends Soft
Concurrent Constraint Programming (sccp) [3,7] in order to support the nonmo-
notonic evolution of the constraint store. In classical sccp the tell and ask agents
can be equipped with a preference (or consistency) threshold which is used to de-
termine their success, failure, or suspension: the action is enabled only if the store
is “consistent enough” with respect to the threshold. Since constraints can only
be accumulated (via the tell operation), this consistency level can only monotoni-
cally decrease starting from the initial empty store: the function used to combine
the constraints, i.e. the × of the semiring, is intensive [6]. To go further, we pro-
pose some new actions that provide the user with explicit nonmonotonic operations
which can be used to retract constraints from the store (i.e. update and retract),
and a particular ask operation (i.e. nask), enabled only if the current store does
not entail a given constraint.

The nmsccp language has two main difference with regard to the classical sccp:
i) the consistency level of the store can be increased by retracting constraints (i.e.
it is not monotonic), and ii) some of the failures are transformed in suspension
because of the nonmonotonicity of the store. According to i), we have extended the
semantics of the actions to include also an upper bound on the store consistency
(since it can be increased by a retract, for example), in order to prune also “too
good” computations obtained at a given step. In this way, now we are able to model
intervals of acceptability, while in sccp there is only a check on “not good enough”
computations, i.e. decreasing too much the consistency w.r.t the lower threshold.
This leads to ii): in sccp an agent fails if the resulting store is not consistent enough
with respect to the threshold (i.e. a given semiring value or soft constraint); in
nmsccp the same agent simply suspends waiting for a possible consistency increase
of the current store, which enables the pending action.

We apply these extensions to model Service Level Agreements (SLAs) [2,15] and
their negotiation: soft constraints represent the needs of the agents on the traded
resources and the consistency value of the store represents a feedback on the current
agreement. In other words, how much all the requirements are consistent among
themselves, or how much the global satisfaction is being met. The thresholds on the
actions are used to check this interval of preference values, and having a feedback
value which is not a plain “yes or no” (i.e. true or false, as in crisp constraints) is
clearly more informative. Using soft constraints (e.g. “at most around 10 Mbyte of
bandwidth”) gives the service provider and clients more flexibility in expressing their
requests with respect to crisp constraints (e.g. “exactly 10 Mbyte”), and therefore
there are more chances to reach a shared agreement. Moreover, the cost model
is very adaptable to the specific problem, since it is parametric with the chosen
semiring, and its semantics is directly embedded in the requirement definition itself
(i.e. the constraint) and in the language modeling the agent (e.g. the thresholds on
the tell and retract actions).

The remainder of this paper is organized as follows. In Sec. 2 we summarize the
background information. Sec. 3 features the nonmonotonic language, its operational

S. Bistarelli, F. Santini / Electronic Notes in Theoretical Computer Science 236 (2009) 147–162148



semantics and how the consistency intervals are managed. In Sec. 4 we show how
the language can be used to represent preference-driven negotiations. At last, Sec. 5
shows related works and Sec. 6 concludes by indicating future research directions.

Related Work on Nonmonotonic Extensions.
The inspiration for this work comes from [9] and [11]: in [11] the authors present

a nonmonotonic framework for Concurrent Constraint Programming (ccp) [20], to-
gether with its semantics. Our nask and update operations (see Sec. 3) are the soft
versions of those described in [11], while the atell, which adds a constraint only if
it is consistent with the store, can be trivially modelled with the classical (valued)
tell of sccp. A negative ask like our nask is described also in [19]. The idea for
a fine-grained removal of constraints (the retract in Sec. 3) comes from [9], which
describes a different nonmonotonic framework for ccp. Its main purpose was not to
add any additional nondeterminism (besides the choice operator) by keeping track
of the dependencies among constraints in the same parallel computation, otherwise
the nonmonotonic evolution could yield different results if executed with different
scheduling policies. However, in our language we decided to allow this kind of non-
determinism, since we believe it is more natural to experience this behaviour during
the negotiation interactions in open systems. Other examples of nonmonotonic evo-
lution of the constraint store in ccp are presented in [13], and their line of research
is usually called Linear Concurrent Constraint Programming.

2 Background

Absorptive Semiring.
An absorptive semiring [5] S can be represented as a 〈A,+,×,0,1〉 tuple such

that: i) A is a set and 0,1 ∈ A; ii) + is commutative, associative and 0 is its unit
element; iii) × is associative, distributes over +, 1 is its unit element and 0 is its
absorbing element. Moreover, + is idempotent, 1 is its absorbing element and × is
commutative. Let us consider the relation ≤S over A such that a ≤S b iff a+ b = b.
Then it is possible to prove that (see [6]): i) ≤S is a partial order; ii) + and ×
are monotonic on ≤S ; iii) 0 is its minimum and 1 its maximum; iv) 〈A,≤S〉 is a
complete lattice and, for all a, b ∈ A, a + b = lub(a, b) (where lub is the least upper
bound). Informally, the relation ≤S gives us a way to compare semiring values and
constraints. In fact, when we have a ≤S b (or simply a ≤ b when the semiring will
be clear from the context), we will say that b is better than a.

In [5] the authors extended the semiring structure by adding the notion of divi-
sion, i.e. ÷, as a weak inverse operation of ×. An absorptive semiring S is invertible
if, for all the elements a, b ∈ A such that a ≤ b, there exists an element c ∈ A such
that b × c = a [5]. If S is absorptive and invertible, then, S is invertible by resid-
uation if the set {x ∈ A | b × x = a} admits a maximum for all elements a, b ∈ A

such that a ≤ b [5]. Moreover, if S is absorptive, then it is residuated if the set
{x ∈ A | b × x ≤ a} admits a maximum for all elements a, b ∈ A, denoted a ÷ b.
With an abuse of notation, the maximal element among solutions is denoted a÷ b.
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This choice is not ambiguous: if an absorptive semiring is invertible and residuated,
then it is also invertible by residuation, and the two definitions yield the same value.

To use these properties, in [5] it is stated that if we have an absorptive and com-
plete semiring 3 , then it is residuated. For this reason, since all classical soft con-
straint instances (i.e. Classical CSPs, Fuzzy CSPs, Probabilistic CSPs and Weighted
CSPs) are complete and consequently residuated, the notion of semiring division
can be applied to all of them. Therefore, for all these semirings it is possible to
use the ÷ operation as a “particular” inverse of ×; its extension to soft constraints,
defined as �÷, can be used to (partially) remove soft constraints from the store (see
next Paragraph).

Soft Constraint System.
A soft constraint [6,3] may be seen as a constraint where each instantiation of its

variables has an associated preference. Given S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a soft constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring. Using this
notation C = η → A is the set of all possible constraints that can be built starting
from S, D and V .

Any function in C involves all the variables in V , but we impose that it depends
on the assignment of only a finite subset of them. So, for instance, a binary con-
straint cx,y over variables x and y, is a function cx,y : (V → D) → A, but it depends
only on the assignment of variables {x, y} ⊆ V (the support of the constraint, or
scope). Note that cη[v := d1] means cη′ where η′ is η modified with the assignment
v := d1. Notice also that, with cη, the result we obtain is a semiring value, i.e.
cη = a.

Given the set C, the combination function ⊗ : C × C → C is defined as (c1 ⊗
c2)η = c1η × c2η (see also [6,3,7]). Having defined the operation ÷ on semirings,
the constraint division function �÷ : C × C → C is instead defined as (c1 �÷ c2)η =
c1η÷c2η [5]. Informally, performing the ⊗ or the �÷ between two constraints means
building a new constraint whose support involves all the variables of the original
ones, and which associates with each tuple of domain values for such variables a
semiring element which is obtained by multiplying or, respectively, dividing the
elements associated by the original constraints to the appropriate sub-tuples. The
partial order ≤S over C can be easily extended among constraints by defining c1 

c2 ⇐⇒ c1η ≤ c2η. Consider the set C and the partial order 
. Then an entailment
relation 
⊆ ℘(C) × C is defined s.t. for each C ∈ ℘(C) and c ∈ C, we have C 

c ⇐⇒ ⊗

C 
 c (see also [3,7]).
Given a constraint c ∈ C and a variable v ∈ V , the projection [6,3,7] of c over

V \{v}, written c ⇓(V \{v}) is the constraint c′ s.t. c′η =
∑

d∈D cη[v := d]. Informally,
projecting means eliminating some variables from the support. This is done by
associating with each tuple over the remaining variables a semiring element which
is the sum of the elements associated by the original constraint to all the extensions

3 If S is an absorptive semiring, then S is complete if it is closed with respect to infinite sums, and the
distributivity law holds also for an infinite number of summands.
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of this tuple over the eliminated variables. To treat the hiding operator of the
language, a general notion of existential quantifier is introduced by using notions
similar to those used in cylindric algebras. For each x ∈ V , the hiding function [3,7]
is defined as (∃xc)η =

∑
di∈D cη[x := di].

To model parameter passing, for each x, y ∈ V a diagonal constraint [3,7] is
defined as dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x := a, y := b] = 0
if a �= b. Considering a semiring S = 〈A,+,×,0,1〉, a domain of the variables
D, an ordered set of variables V and the corresponding structure C, then SC =
〈C,⊗, 0̄, 1̄,∃x, dxy〉 4 is a cylindric constraint system (“a la Saraswat” 5 [7]).

3 The Language

In this Section we will give the flavour of the new operations and the reasons why
we introduced them in this new language. Then we will show the entire language
together with its operational semantics and some simple examples to illustrate the
evolution of the agent computation.

The retract(c) operation is at the basis of our nonmonotonic extension of the
sccp language, since it permits to remove the constraint c from the current store σ.
It is worth to notice that our retract can be considered as a “relaxation” of the store,
and not only as a strict removal of the token representing the constraint, because
in soft constraints we do not have the concept of token. Thus if c (parameter of
retract) satisfies σ 
 c then it can be removed, even if c is different from any other
constraints previously added to σ.

To use a metaphor describing the sequence of actions, imagine to pour a liquid
into and out a bowl with a spoon. The content of the bowl represents the store, and
the liquid in the spoon represents the soft constraint we want to add and retract
from the store; as the two liquids are mixed, we lose the identity of the added
soft constraint, which can worsen the condition of the store by raising the level
of the liquid in the bowl. When we want to relax the store, we remove some of
the liquid with the spoon, and that corresponds to the removed constraint: the
consistency is incremented because the level of the bowl is lowered. This “bowl
example” is appropriate when × is not idempotent, otherwise pouring the same
constraint multiple times would not increase the liquid level.

The updateX(c) primitive has been inspired by the work in [11]. It consists in a
sort of “assignment” operation, since it transactionally relaxes all the constraints of
the store that deal with variables in the set X, and then adds a constraint c (usually
with support = X). This operation is variable-grained with respect to our retract,
and for many applications (as ours, on SLA negotiation), it is very convenient to
have a relaxation operation that is focused on one (or some) variable: the reason
is that it could be required to completely renew the knowledge about a parameter
(e.g. the bandwidth of the example in Sec. 4).

4 0̄ and 1̄ respectively represent the constraints associating 0 and 1 to all assignments of domain values;
in general, the ā function returns the semiring value a.
5 Notice that in sccp, algebraicity is not required, since the algebraic nature of C strictly depends on the
properties of the semiring [7].
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::=

The nask(c) operation (crisp examples are in [9,16]) is enabled only if the current
store does not entail c; it is the negative version of ask, since it detects absence
of information. Note that, in general, ask(¬c) is different from nask(c), so it is
necessary to introduce a completely new primitive. Consider for example the store
{x ≤ 10}: while the action nask(x < 5) succeeds, ask(x ≥ 5) would block the
computation. Consider also that the notion of ¬c (i.e. the negation of a constraint)
is not always meaningful with preferences based on semirings, except, for instance,
for the Boolean semiring (i.e. 〈{0, 1},∨,∧, 0, 1〉). It would be difficult to define ¬c

when using Weighted semirings [3,6]. This operation improves the expressivity of
the language, since it allows to check facts not yet derivable from the store (it can
be valuable to add them), or no longer derivable (to check if some constraints have
been removed), or facts that we do not want to be implied by the store.

Given a soft constraint system as defined in Sec. 2 and any related constraint c,
the syntax of agents in nmsccp is given in Fig. 1. P is the class of programs, F is
the class of sequences of procedure declarations (or clauses), A is the class of agents,
c ranges over constraints, X is a set of variables and Y is a tuple of variables.

In addition to the new operations, the other most important variation with
regard to sccp is the action prefixing symbol � in the syntax notation, which can
be considered as a general “checked” transition of the type →ϕ2

ϕ1 (e.g., referring to
Fig. 1, we can write ask(c) →ϕ2

ϕ1 A), where ϕi is a placeholder that can stand for
either a semiring element ai or a constraint φi, i.e. ϕi = ai/φi.

In the first case (i.e. ai), we need to summarize the consistency of the store
into a plain value and “compare” it with the ai semiring value, while in the second
case (i.e. φi), we need to make a pointwise comparison between the store and the
φi constraint, i.e. a comparison between two constraints [7]. The way we compare
these values/constraints depends on their level in the transition symbol: a1 (or φ1)
will be used as a cut level to prune computations that at this point are not good
enough (i.e. a lower bound), while a2 (or φ2) to prune computations that are too
good (i.e. an upper bound). The four possible instantiation of � are given in
Fig. 2, i.e. →a2

a1
, →φ2

a1 , →a2
φ1

and →φ2

φ1
(the semantics of these checked transitions

will be better explained in Sec. 3.1). As in classical sccp, the semiring values a1

and a2 represent two cut levels that summarize the consistency of the store into a
plain value. On the other hand, the constraints φ1 and φ2 represent a finer check
of the store, since a pointwise comparison between the store and these constraints
is performed.

Therefore, we can now model intervals of acceptability during the computation,

P F.A

F ::= p(Y ) :: A | F.F

A ::= success | tell(c) � A | retract(c) � A | updateX(c) � A | E | A‖A | ∃x.A | p(Y )

E ::= ask(c) � A | nask(c) � A | E + E

Fig. 1. Syntax of the nmsccp language.
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while in classical sccp this is not possible: sccp being monotonic, since the consis-
tency level of the store can only be decreased during the executions of the agents, it
is only meaningful to prune those computations that decrease this level too much.
On the other hand, in nmsccp there is the possibility to remove constraints from
the store, and thus the level can be increased again (this leads to the absence of
a fail agent). For this reason we claim the importance of checking also that the
consistency level of the store will not exceed a given threshold.

Having an interval of preferences, and not only a lower bound, is very important
in negotiation, since it allows to improve the expressivity of requests and results. For
instance, consider the preference as a cost for a given resource: the lower threshold
of the interval will prevent us from paying that resource too much (i.e. a high cost
means a low preference), while the upper threshold models a clause in the contract
that forces us to pay at least a minimum price.

The classical ask and tell operations in sccp (where only the lower bound is
present) can be obtained also in nmsccp: e.g. ask/tell(c) →1̄

φ A.

3.1 The Operational Semantics

To give an operational semantics to our language we need to describe an appropriate
transition system 〈Γ, T,→〉, where Γ is a set of possible configurations, T ⊆ Γ is
the set of terminal configurations and →⊆ Γ × Γ is a binary relation between
configurations. The set of configurations is Γ = {〈A, σ〉}, where σ ∈ C while the set
of terminal configurations is instead T = {〈success, σ〉}. The transition rule for the
nmsccp language are defined in Fig. 3.

The � is a generic checked transition used by several actions of the language.
Therefore, to simplify the rules in Fig. 3 we define a function check� : σ →
{true, false} (where σ ∈ C), that, parametrized with one of the four possible in-
stances of � (C1-C4 in Fig. 2), returns true if the conditions defined by the specific
instance of � are satisfied, or false otherwise. The conditions between parentheses
in Fig. 2 claim that the lower threshold of the interval clearly cannot be “better”
than the upper one, otherwise the condition is intrinsically wrong.

C1: �=→a2
a1

check(σ)� = true if

{
σ ⇓∅ �>S a2

σ ⇓∅ �<S a1

(with a1 �> a2)

C2: �=→φ2
a1 check(σ)� = true if

{
σ �� φ2

σ ⇓∅ �<S a1

(with a1 �> φ2 ⇓∅)

C3: �=→a2
φ1

check(σ)� = true if

{
σ ⇓∅ �>S a2

σ �� φ1

(with φ1 ⇓∅ �> a2)

C4: �=→φ2

φ1
check(σ)� = true if

{
σ �� φ2

σ �� φ1

(with φ1 �� φ2)

Otherwise, within the same conditions in parentheses, check(σ)� = false

Fig. 2. Definition of the check function for each of the four checked transitions.
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Notice that in Fig. 2 we use �<S a1 instead of ≥S a1 because we can possibly
deal with partial orders. Similar considerations can be done for �� instead of �.

Some of the intervals in Fig. 2 (C1, C2 and C3) are checked by considering the
least upper bound among the values yielded by the solutions of a Soft Constraint
Satisfaction Problem (SCSP) [3] defined as P = 〈C, con〉 (C is the set of constraints
and con ⊆ V , i.e. a subset the problem variables). This is called the best level of
consistency and it is defined by blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) = (

⊗
C) ⇓con;

notice that supp(blevel(P )) = ∅. We also say that: P is α-consistent if blevel(P ) =
α; P is consistent iff there exists α >S 0 such that P is α-consistent; P is inconsistent
if it is not consistent. In Fig. 2 C1 checks if the α-consistency of the problem is
between a1 and a2.

In words, C1 states that we need at least a solution as good as a1 entailed by
the current store, but no solution better than a2; therefore, we are sure that some
solutions satisfy our needs, and none of these solutions is “too good”. The semantics
of these checks can easily be changed in order to model different requirements on
the preference interval, e.g. to guarantee that all the solutions in the store (and not
at least one) have a preference contained in the given interval.

Here is a description of the transition rules in Fig. 3. In the Tell rule (R1), if
the store σ ⊗ c satisfies the conditions of the specific � transition of Fig. 2, then
the agent evolves to the new agent A over the store σ ⊗ c. Therefore the constraint
c is added to the store σ. The conditions are checked on the (possible) next-step
store: i.e. check(σ′)�.

To apply the Ask rule (R2), we need to check if the current store σ entails the
constraint c and also if the current store is consistent with respect to the lower and
upper thresholds defined by the specific � transition arrow: i.e. if check(σ)� is

〈p(Y ), σ〉 −→ 〈B, σ′〉 p(Y ) :: A ∈ F P-call

Fig. 3. The transition system for nmsccp.

〈∃x.A, σ〉 −→ 〈B, σ′〉 with y fresh Hide

R10 〈A, σ〉 −→ 〈B, σ′〉

〈updateX(c) � A, σ〉 −→ 〈A, σ′〉 Update

R9 〈A[x/y], σ〉 −→ 〈B, σ′〉

〈retract(c) � A, σ〉 −→ 〈A, σ′〉 Retract

R8
σ′ = (σ ⇓(V \X)) ⊗ c check(σ′)�

〈nask(c) � A, σ〉 −→ 〈A, σ〉 Nask

R7 σ 
 c σ′ = σ�÷ c check(σ′)�

〈Σn
i=1Ei, σ〉 −→ 〈Aj , σ

′〉
Nondet

R6 σ �
 c check(σ)�

〈A ‖ B, σ〉 −→ 〈B, σ′〉
〈B ‖ A, σ〉 −→ 〈B, σ′〉

Parall2

R5
〈Ej , σ〉 −→ 〈Aj , σ

′〉 j ∈ [1, n]

〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall1

R4 〈A, σ〉 −→ 〈success, σ′〉

〈ask(c) � A, σ〉 −→ 〈A, σ〉
Ask

R3 〈A, σ〉 −→ 〈A′, σ′〉

〈tell(c) � A, σ〉 −→ 〈A, σ ⊗ c〉
Tell

R2 σ 
 c check(σ)�

R1 check(σ ⊗ c)�
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true.
Parallelism and nondeterminism: the composition operators + and ‖ re-

spectively model nondeterminism and parallelism. A parallel agent (rules R3 and
R4) will succeed when both agents succeed. This operator is modelled in terms
of interleaving (as in the classical ccp): each time, the agent A ‖ B can execute
only one between the initial enabled actions of A and B (R3); a parallel agent will
succeed if all the composing agents succeed (R4). The nondeterministic rule R5
chooses one of the agents whose guard succeeds, and clearly gives rise to global
nondeterminism.

The Nask rule is needed to infer the absence of a statement whenever it cannot
be derived from the current state: the semantics in R6 shows that the rule is enabled
when the consistency interval satisfies the current store (as for the ask), and c is
not entailed by the store: i.e. σ �
 c.

Retract: with R7 we are able to “remove” the constraint c from the store σ,
using the �÷ constraint division function defined in Sec. 2. According to R7, we
require that the constraint c is entailed by the store, i.e. σ 
 c. Notice that in [5]
the division is instead always defined, but for the nmsccp language we decided to be
able to remove a quantity c only if the store is “big” enough to permit the removal
of c, i.e. we want that a÷ b is possible only if a ≤S b. For example, consider the c1,
c2 and c3 weighted constraints in Fig. 4: the domain of the variable x is N and the
adopted semiring is instead the classical Weighted semiring 〈R+, min,+,+∞, 0〉.
It is possible to perform c2 �÷ c1 because c2 
 c1 (the c1 function is completely
dominated by c2 for every x ∈ N, and thus c1 is better), but it is not possible to
perform c3 �÷ c1 because, for x = 1 (for instance), c3(x) = 2 is better than c1(x) = 4:
thus 2 ≤ 4 and the semiring division 2÷4 cannot consequently be performed because
of the R7 definition. Clearly, it is also possible to completely remove a constraint
as if using tokens:

Theorem 3.1 (Complete removal) Given a soft constraint system C, where the
semiring S is invertible by residuation and thus �÷ can be defined, then the nmsccp
agent 〈tell(ci) � retract(ci) � A, σk〉 is equivalent (i.e. the final store is the same)
to 〈A, σk〉, for every constraint ci, store σk and � (if enabled).

As a sketch of the proof, the agents’ equivalence comes from the properties
explained in [5], i.e. a × b ÷ b = a always holds, given any two elements a, b ∈ S.
Since the constraint operations (⊗ and �÷) are derived from their related semiring
operators (× and ÷), the same properties hold.

The semantics of Update rule (R8) [11] resembles the assignment operation
in imperative programming languages: given an updateX(c), for every x ∈ X it
removes the influence over x of each constraint in which x is involved, and finally
a new constraint c is added to the store. To remove the information concerning
all x ∈ X, we project (see Sec. 2) the current store on V \X, where V is the set
of all the variables of the problem and X is a parameter of the rule (projecting
means eliminating some variables). If X = V , this operation finds the blevel of the
problem defined by the store, before adding c. At last, the levels of consistency
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{ } → → { } → →

Fig. 4. Six weighted soft constraints (notice that c2 = c1 ⊗ c4).

are checked on the obtained store, i.e. check(σ′)�. Notice that all the removals
and the constraint addition are transactional, since are executed in the same rule.
Moreover, notice that the removal semantics of the update is quite different from
that of the retract : the update operation can always be applied, while the retract
can be applied only when σ 
 c. In addition, performing an update is different
from sequentially performing one (or some) retract and then a tell : the retract
relaxes the store in a “clear” way, while the update “releases” one (or more) variable
x by choosing the best semiring value for each constraint c supported by x (i.e.
σ ⇓(V \{x})=

∑
di∈D cη[x := di], where D is the domain of x). Therefore, if c is

supported also by another variable y, c is somewhat still constraining y after the
update operation. As an example of the different semantics between an update
and a retract-tell sequence, the agent 〈tell(c5) →0∞ retract(c5) →0∞ tell(c2), 0̄〉
(in the Weighted semiring 1 ≡ 0̄) results in the store c5 �÷ c5 ⊗ c2 = c2, while
〈tell(c5) →0∞ update{x}(c2), 0̄〉 results in the store 3̄ ⊗ c2 (i.e. c5 ⊗ c2), where
3̄ = c5 ⇓(V \{x}) (see Fig. 4).

Hidden variables: the semantics of the existential quantifier in R9 is similar
to that described in [18] by using the notion of freshness of the new variable added
to the store.

Procedure calls: the semantics of the procedure call (R10) has already been
defined in [7]: the notion of diagonal constraints (as defined in Sec. 2) is used to
model parameter passing.

Given the transition system proposed in Fig. 3, we define for each agent A the
set of final stores that collects the results of successful computations that A can
perform (i.e. the observables): SA = {σ ⇓var(A)| 〈A, 1̄〉 →∗ 〈success, σ〉}.

No Failures.
The nmsccp agents computation can only be successful or can suspend waiting

for a change of the store in which it is possible to execute the action on which an
agent is suspended on. This represents a further difference with respect to sccp
where, when trying to execute a (valued or not) ask/tell, if the resulting level of
the store consistency is lower than the threshold labeled on the transition arrow,
then this is considered a failure (see [7]): in sccp the store consistency can only be
monotonically decreased, and therefore a better level can never be reached during
the successive steps. In nmsccp, another agent in parallel can instead perform a

c1 : ({x} → N) → R
+ s.t. c1(x) = x + 3 c2 : ({x} → N) → R

+ s.t. c2(x) = 2x

c3 : ({x} → N) → R
+ s.t. c3(x) = 2x

c4 : ({x} → N) → R
+ s.t. c4(x) = x + 5

c5 : ( x N) R
+ s.t. c5(x) = 3̄ c6 : ( y N) R

+ s.t. c6(y) = y + 1
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retract (or an update) and can consequently increase the consistency level of the
store, then enabling the idle action.

Preference Representation and Operations
The representational and computational issues are complex and would deserve

a deep discussion [10]. However, some different considerations can be provided
whether or not the language adopted to represent the constraints preference is
finite.

As a practical example of (a specific subset of) soft constraints that have a finite
representation, consider the Weighted semiring and consider a class of constraints
whose soft preference (or cost) is represented by a polynomial expression over the
variables involved in the constraints. In this case, adding a constraint to the store
means to obtain a new polynomial form that is the sum of the new preference and
the polynomial representing the current store; retracting a constraint means just
to subtract the polynomial form from the store. Suppose we have three constraints
c1(x, y) = x2−3x+4y, c2(x) = 3x+2 and c3(y) = 3y−2: if the initial store contains
c1(x, y), tell(c2) gives (c1 ⊗ c2) = x2 − 3x + 4y + 3x + 2 = x2 + 4y + 2, and then a
retract(c3) would result in the store preference (c1⊗c2 �÷ c3) = x2+4y+2−(3y−2) =
x2 + y. To compute the result of an update{y}(c4) we need to project over V \{y}
(see Sec. 2) before adding c4: therefore, if the store preference is x2 + y, we must
find the minimum of this polynomial by assigning y = 0 and finally obtaining
x2 ⊗ c4 = x2 + x + 5 as result (see Fig. 4). Notice that in the Weighted semiring, to
maximize the preference means to minimize the polynomial.

Otherwise, if soft constraints have not a finite representation, we can model the
store as an ordered list of constraints and actions. For examples, if the agents have
chronologically performed the actions tell(c1), tell(c2) retract(c3) and updateX(c4),
the store will be c1 ⊗ c2 �÷ c3 ⇓(V \X) ⊗ c4 (whose composition is left-associative).
Therefore, at each step it is possible to compute the actual store in order to verify
the entailments among constraints and the consistency intervals. Thus, the actions
ordering is important:

Theorem 3.2 (Actions ordering) Given a soft constraint system C, where the
semiring S is invertible by residuation, changing the tell and retract actions order-
ing inside an agent changes the final store.

In fact, if we suppose the × of S as idempotent, we have the nmsccp agent
〈tell(ci) � retract(ci) � tell(ci) � A, σk〉 ≡ 〈A, ci ⊗ σk〉, and by changing the
ordering of actions it differs from 〈tell(ci) � tell(ci) � retract(ci) � A, σk〉 ≡
〈A, σk〉, for every constraint ci, store σk and � (if enabled). To prove it, we consider
that for every semiring element a ∈ S, we have (a × a) ÷ a = 1 (since a × a = a,
if × is idempotent), but (a ÷ a) × a = a. This is due to idempotency of × and
the properties of ÷ shown in [5]. Theorem 3.2 holds even if × is not idempotent:
for example (see the constraints in Fig. 4), 〈tell(c2) � retract(c4) � success, c1〉
successfully terminates with the store c1 ⊗ c2 �÷ c4 ≡ 2x + 6, while 〈retract(c4) �
tell(c2) � success, c1〉 is suspended on the first retract, since the σ 
 c precondition
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Fig. 5. The graphical interpretation of a fuzzy agreement

of R7 in Fig. 3 is false (here, c1 
 c4 is false).
This representation (i.e. keeping also the sequence of operations) differs from the

classical one given by Saraswat [18] or in [8], since in these works a retract removes
from the store only one instance of the token: 〈tell(c1) → tell(c1) → retract(c1) →
A, 1̄〉 ≡ 〈A, c1〉, even if × is idempotent. Therefore, the ordering of the actions is
useless and the store can be seen only as a set of tokens.

4 The Negotiation of Service Level Agreements

One of the most meaningful application of the nmsccp language is to model generic
entities negotiating a formal agreement, i.e. a SLA [2,15]. The main task consists in
accomplishing the requests of all the agents by satisfying their QoS needs. Consid-
ering the fuzzy negotiation in Fig. 5 (Fuzzy semiring: 〈[0, 1], max,min, 0, 1〉) both a
provider and a client can add their request to the store σ (respectively tell(cp) and
tell(cc)): the thick line represents the consistency of σ after the composition (i.e.
min), and the blevel of this SCSP (see Sec. 3.1) is the max, where both requests
intersects (i.e. in 0.5).

We present four short examples to suggest possible negotiation scenarios. We
suppose there are two distinct companies (e.g. providers P1 and P2) that want to
merge their services in a sort of pipeline, in order to offer to their clients a single
structured service: e.g. P1 completes the functionalities of P2. This example models
the cross-domain management of services proposed in [2]. The variable x represents
the global number of failures they can sustain during the service provision, while the
preference models the number of hours (or a money cost in hundreds of euro) needed
to manage them and recover from them. The preference interval on transition arrows
models the fact that both P1 and P2 explicitly want to spend some time to manage
the failures (the upper bound in Fig. 2), but no so much time (lower bound in
Fig. 2). We will use the Weighted semiring and the soft constraints given in Fig. 4.
Even if the examples are based on a single criteria (i.e. the number of hours) for sake
of simplicity, they can be extended to the multicriteria case, where the preference
is expressed as a tuple of incomparable criteria.

Example 4.1 [Tell and negotiation] P1 and P2 both want to present their policy
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(respectively represented by c4 and c3) to the other party and to find a shared agree-
ment on the service (i.e. a SLA). Their agent description is: P1 ≡ 〈tell(c4) →0∞
tell(sp2) →0∞ ask(sp1) →2

10 success〉||〈tell(c3) →0∞ tell(sp1) →0∞ ask(sp2) →1
4

success〉 ≡ P2, executed in the store with empty support (i.e. 0̄). Variables sp1

and sp2 are used only for synchronization and thus will be ignored in the following
considerations (e.g. replaced by the SY NCHROi agents in Ex. 4.2). The final
store (the merge of the two policies) is σ = (c4⊗c3) ≡ 2x+x+5, and since σ ⇓∅= 5
is not included in the last preference interval of P2 (between 1 and 4), P2 does not
succeed and a shared agreement cannot be found. The practical reason is that the
failure management systems of P1 need at least 5 hours (i.e. c4 = x + 5) even if
no failures happen (i.e. x = 0). Notice that the last interval of P2 requires that at
least 1 hour is spent to check failures.

Example 4.2 [Retract] After some time (still considering Ex. 4.1), suppose that P1

wants to relax the store, because its policy is changed: this change can be performed
from an interactive console or by embedding timing mechanisms in the language as
explained in [4]. The removal is accomplished by retracting c1, which means that
P1 has improved its failure management systems. Notice that c1 has not ever
been added to the store before, so this retraction behaves as a relaxation; partial
removal, which cannot be performed with tokens (see Sec. 5), is clearly important
in a negotiation process. P1 ≡ 〈tell(c4) →0∞ SY NCHROP1 →2

10 retract(c1) →2
10

success〉||〈tell(c3) →0∞ SY NCHROP2 →1
4 success〉 ≡ P2 is executed in 0̄. The

final store is σ = c4 ⊗ c3 �÷ c1 ≡ 2x + 2, and since σ ⇓∅= 2, both P1 and P2 now
succeed (it is included in both intervals).

Example 4.3 [Nask] In a negotiation scenario, the nask operation can be used
for several purposes. Since it checks the absence of information (see Sec. 3), for
example it can be used to check if the own policy is still implied by the store or
if it has been relaxed too much: e.g. P1 ≡ 〈retract(c1) →0∞ SY NCHROP1 →0∞
success〉||〈tell(c4) →0∞ nask(c4) →0∞ tell(c4) →0∞ SY NCHROP2 →0∞ success〉 ≡
P2 (evaluated in 0̄). As soon as P2 adds its policy (i.e. c4), P1 can relax it (by
removing c1); P1 perceives this relaxation with the nask and adds again c4. The
reason is that P1 explicitly needs a global number of spent hours not better than
that one defined by c4, which then must be entailed by the store: e.g. its recovery
system works only with at least that time. Here the preference intervals of the two
agents are not significative, since equal to the whole R

+.

Example 4.4 [Update]The update can be instead used for substantial changes
of the policy: for example, suppose that P1 ≡ 〈tell(c1) →0∞ update{x}(c6) →0∞
success, 0̄〉. This agent succeeds in the store 0̄⊗c1 ⇓(V \{x}) ⊗c6, where c1 ⇓(V \{x})=
3̄ and 3̄ ⊗ c6 ≡ y + 4 (i.e. the polynomial describing the final store). Therefore,
the first policy based on the number of failures (i.e. c1) is updated such that x is
“refreshed” and the new added policy (i.e. c6) depends only on the y number of
system reboots. The consistency level of the store (i.e. the number of hours) now
depends only on the y variable of the SCSP. Notice that the 3̄ component of the
final store derives from the “old” c1, meaning that some fixed management delays
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are included also in this new policy.

5 Related Work

Nonmonotonicity has been extensively studied for crisp constraints in the so-called
linear cc programming [17] and in following works as [1,9,11,16]. Regarding re-
lated SLA negotiation models, the process calculus introduced in [12] is focused on
controlling and coordinating distributed process interactions while respecting QoS
parameters expressed as c-semiring values; however, the model does not cover nego-
tiation. In [2] and [15] the authors define SLAs at a lower level of abstraction and
their description is separated from their negotiation (while soft constraint systems
cover both cases).

The most direct comparison for nmsccp, since the two languages are both used for
SLA negotiation, is with the work in [8], in which soft constraints are combined with
a name-passing calculus (even if all the examples in the paper are then developed
using crisp constraints). However, w.r.t our language there are some important
differences: i) in nmsccp we do not have the concept of constraint token and it
is possible to remove every c that is entailed by the store (i.e. σ 
 c), even if
c is syntactically different from all the c previously added (as the retraction of
c1 in Ex. 4.2). For example, even the removal of the c1 ⊗ c2 composition from a
store containing both c1 and c2 cannot be performed in [8], because it is a derived
constraint. Therefore our retract is more like a “relaxation” operation, and not a
“physical” removal of a token as in [8]; this feature is in the nature of negotiation,
when a step back must be taken to reach a shared agreement.

Then, ii) with nmsccp we can reach a final agreement among the parties, knowing
also “how consistently” (or “how expensively”) the claimed needs are being satisfied.
This is accomplished by checking the preference level of the store and the consistency
intervals conditioning the actions (Fig. 2). In this way, each of the agents can specify
its desired preference for the final agreement. This is a relevant improvement with
regard to [8], where the final store collects all the consistent solutions without any
distinction, i.e. each solution that satisfies σ ⇓∅= αi, for every αi >S 0.

At last, iii) we introduced the update operation (extending the semantics of the
crisp update in [11]), which is a variable-grained relaxation, and the nask (whose
crisp version is in [11]), that is very useful to have in a nonmonotonic framework
to check absence of information. Notice that we do not need the check operation
defined in [8] in order to verify if a given constraint is consistent with the store
(without adding it). The reason is that we have the checked transitions of Fig. 2 to
prevent the store from becoming not consistent “enough”.

6 Conclusions and Future Work

Monotonicity is one the major drawbacks for practical use of concurrent constraint
languages in reactive and open systems. In this paper we have proposed some new
primitives (nask, update and retract) that allow the nonmonotonic evolution of the
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store. We have chosen to extend sccp because soft constraints [3,6] enhance the
classical constraints in order to represent consistency levels, and to provide a way
to express preferences, fuzziness, and uncertainty. We think that having preference
values directly embedded in the language represents a valuable solution to manage
SLA negotiation, particularly when a given QoS is associated with the resources.
Soft constraints can be used to model different problems by only parameterizing
the semiring structure.

We would like to merge this language with the timing mechanisms (e.g. “time-
out” and “interrupt”) explained in [4]. These capabilities can be useful during
complex interactions, e.g. to interrupt a long wait for pending conditions (or to
interrupt a deadlock) or to trigger urgent actions.

Moreover, we would like to investigate the possibility of a distributed store in-
stead of the centralized one we have assumed in this paper. In distributed CSP [21],
variables and constraints are distributed among all the agents, thus the knowledge
of the problem is not concentrated in a single agent only. This requirement is com-
mon in many practical application, and surely for (SLA) negotiating entities, where
each agent has a private store collecting its resources (i.e. variables) and policies
(i.e. constraints).

At last, we plan to provide the language with other formal tools, such as a
denotational semantics, a study on agent equivalences in order to prove when two
providers offer the same service. Moreover, we want to deepen the absence of failures
in nmsccp.
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