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Abstract

The farnesoid X receptor alpha (FXR) is a bile acid sensor activated by binding to endogenous bile acids including chenodeoxycholic 
acid (CDCA). Although, FXR is expressed in male reproductive tissue, the relevance of the receptor on reproduction is scarcely 
known. Here, we demonstrated the FXR presence and its action on several human sperm features. Western blot and 
immunofluorescence assays evidenced the FXR expression in human spermatozoa and the localisation in the middle piece. CDCA 
increasing concentrations and GW4064, synthetic ligand of FXR, were used to study the FXR influence on sperm motility, survival, 
capacitation, acrosome reaction and on glucose as well as lipid metabolism. Interestingly, our data showed that increasing 
concentrations of CDCA negatively affected sperm parameters, while the receptor blockage by (Z)-Guggulsterone and by the anti-FXR 
Ab reversed the effects. Intriguingly, elevated CDCA levels increased triglyceride content, while lipase and G6PDH activities were 
reduced with respect to untreated samples, thus impeding the metabolic reprogramming typical of the capacitated sperm. In 
conclusion, in this study, we demonstrated for the first time a novel target for FXR and that the activated receptor alters the 
acquisition of sperm fertilising ability. We showed that sperm itself express the FXR and it is responsive to specific ligands of the 
receptor; therefore, bile acids influence this cell both in male and in female genital tracts. It might be hypothesized that bile acid 
levels could be involved in infertility with idiopathic origin as these compounds are not systematically measured in men undergoing 
medically assisted procreation.
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Introduction

The farnesoid X receptor alpha (FXR or NR1H4) is a bile 
acid sensor, activated by binding to endogenous bile 
acids (BAs) (e.g., chenodeoxycholic acid (CDCA) and 
cholic acid (CA)). The FXR is member of the nuclear 
receptor superfamily of ligand-dependent transcription 
factors. Although FXR is typically referred as bile acid 
receptor, it is expressed in many tissues. High levels of 
FXR have been described not only in liver and intestine 
(Forman et  al. 1995), but also in kidney and adrenals 
(Huber et al. 2002, Otte et al. 2003). In addition, low 
levels of FXR mRNA have also been reported in the 
heart, lung, stomach, adipose, thymus, spleen, ovary, 
testes and vascular tissue (Zhang et  al. 2003, Bishop-
Bailey et  al. 2004, Higashiyama et  al. 2008, Popescu 
et al. 2010, Vignozzi et al. 2011, Morelli et al. 2012). 
The FXR has a relevant participation, even directly or 
indirectly, in both male and female reproduction (Estela 
et al. 2015). According to initial reports, FXR seems not to 
be expressed in the testis (Forman et al. 1995, Seol et al. 
1995). However, subsequent studies have suggested that 
FXR could be expressed in the testis of mice (Maeda 
et  al. 2004) and certain reptiles (Alfaro et  al. 2002). 

Besides, FXR has been found in cells from male 
reproductive tissues such as Leydig cells, corpora 
cavernosa, epididymis, vas deferens, prostate, urethra 
and spermatogonia in humans and other mammals 
(Alfaro et  al. 2002, Kaeding et  al. 2008, Catalano 
et  al. 2010, Vignozzi et  al. 2011, Anaya-Hernández 
et  al. 2014). Altogether, a role for FXR in the control 
of reproductive processes appears plausible; however, 
it remains to be demonstrated. Up to date, an action 
for FXR in the development of male sex organs and/or 
reproductive functions has been poorly investigated.

CDCA and CA are the major end products of bile 
acid biosynthesis (Vlahcevic et al. 1991, Chiang 1998) 
and Gray et  al. have suggested that the bile acids are 
important for the testicular function by showing that FXR 
activation by CDCA affects the sex steroid production in 
Leydig cells (Gray & Squires 2013). Furthermore, the FXR 
activation by obeticholic acid, a semi-synthetic bile acid 
analogue, which has the chemical structure 6α-ethyl-
chenodeoxycholic acid (INT-747) avoids the reduction 
of smooth musculature in the corpora cavernous and 
the erectile dysfunction promoted by a high-fat diet in 
animal models (Vignozzi et  al. 2011). A similar effect 
has been observed in the bladder smooth musculature 
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of rats fed with a high-fat diet, in which the damage of 
the muscle induced by the diet is partially blunted by 
testosterone, but almost completely reverted by INT-
747 (Morelli et al. 2012). Mice fed a diet supplemented 
with CDCA have a reduced fertility as consequence of 
testicular defects, a decreased protein accumulation of 
connexin-43 and N-cadherin and a high intra-testicular 
bile acid concentration (Baptissart et  al. 2014). Few 
papers showed that BA has a direct action on sperm; 
however, it reduced sperm motility in a dose- and time-
dependent way, in parallel with profound alterations of 
sperm ultrastructure (Psychoyos et al. 1993, Courtot et al. 
1994). Classically, FXR forms heterodimers with 9-cis-
retinoic acid receptor (RXRα) and binds to FXR-response 
elements (FXREs) (Modica et  al. 2010); however, for 
several nuclear receptors a non-genomic action has 
been demonstrated also in sperm biology (Aquila et al. 
2009a,b, Guido et al. 2011, Cappello et al. 2012, Aquila 
& De Amicis 2014, Rago et al. 2014). To date, no notice 
on a possible non-genomic actions for FXR have been 
reported; however, sperm acts through rapid effects 
given its peculiar structure and function. The increase 
of plasma BA levels is a common disturbance to several 
liver troubles from the earliest stages of the disease 
(Yamazaki et  al. 2013). Data obtained from animal 
models suggest that the effects of liver disorders on male 
reproductive function might alter both endocrine and 
exocrine functions of the testis.

In this study, we have demonstrated for the first time 
that human sperm is a novel target for FXR, discovering 
an unsuspected field of action for this nuclear receptor. 
Interestingly, the FXR activated by high CDCA levels, 
negatively influenced different sperm features such as 
survival, motility, capacitation and acrosome reaction. 
Our finding provided new insight in the molecular 
mechanisms through which BAs exert their negative 
effects on human reproduction.

Materials and methods

Chemicals

EBSS medium, CDCA, (Z)-Guggulsterone, GW4064 and 
all other chemicals were purchased from Sigma Chemical. 
Acrylamide bisacrylamide was from Labtek Eurobio (Milan, 
Italy). Triton X-100 and eosin Y were from Farmitalia Carlo 
Erba (Milan, Italy). ECL Plus Western blotting detection 
system, Hybond TM ECL TM and Hepes sodium salt were from 
Amersham Pharmacia Biotech. Anti-FXR NB400 was from 
Novus Biologicals (NOVUS, Italy), anti FXR sc-25309, FXR 
blocking peptide, anti pAKT sc 514032, pMAPK sc 292838 
and β-actin were purchased from Santa Cruz Biotechnology, 
peroxidase-coupled anti-rabbit IgG and anti-rabbit TRITC 
conjugate Ab were from Santa Cruz Biotechnology. 
Cholesterol oxidase (CHOD)–POD enzymatic colorimetric 
assay, triglycerides assay, lipase activity, glucose-6-phosphate 
dehydrogenase (G6PDH) activity, kits were purchased from 

Inter-Medical (Biogemina Italia Srl, Catania, Italy). Different 
controls were performed in the assay considered: Normal 
Rabbit Serum (NRS), BSA 2%, EtOH at 0.012% (used to dilute 
CDCA and GW4064 as well (Z)-Guggulsterone) did not give 
any effect in all the assays performed.

Semen samples and spermatozoa preparations

Human semen was collected, according to the World Health 
Organization (WHO)-recommended procedure (WHO 2010). 
Spermatozoa preparations were performed as previously 
described (De Amicis et  al. 2011). Briefly, semen samples 
with normal parameters of volume, sperm count, motility, 
morphology and vitality according to the WHO Laboratory 
Manual (WHO 2010) were included in this study. The study 
has been approved by the local medical ethical committee, 
and all participants gave their informed consent.

Processing and treatments of human ejaculated sperm

For each experiment, the ejaculates of three different 
normozoospermic healthy donors were pooled and processed 
as previously described (De Amicis et  al. 2011). Swim-up 
sperm purified, were washed with unsupplemented Earle’s 
Balance Salt Solution medium (EBSS) without sodium 
bicarbonate, calcium and phenol red (uncapacitating medium) 
and re-suspended in the same medium. Then, it was incubated 
for 30 min at 37°C and 5% CO2, without (control, NC) or with 
increasing CDCA (0.5, 2, 10, 50 and 100 µM). The minimum 
and maximum values of critical micellar concentration in water 
at 37°C for the sodium salts of CDCA are 3.0 mmol/L minimum 
and 30 mmol/L respectively (Bile acids: chemistry, physiology, 
and pathophysiology (Monte et  al. 2009). Therefore, having 
used lower concentrations (µmol), the authors exclude a 
‘detergent/micellar’ effect of CDCA.

It is important to point out that the concentrations 0.5, 2, 
10, 50 and 100 µM are supra-physiological, however, when 
we treat with lower concentrations, no significant effects were 
observed. In another set of experiments, sperm were incubated 
with anti-FXR Ab, (Z)-Guggulsterone 10 µM (a specific 
inhibitor of FXR) and GW4064 6 µM (a specific activator of 
FXR). The concentration of GW4064 at 6 µM was utilized after 
carrying out a dose-response curve to estimate the reduction 
of sperm vitality after incubation with CDCA and GW4064 
increasing concentrations (Supplementary Fig.1 (see section 
on Supplementary data at the end of the article)). When the 
anti-FXR Ab as well as the specific inhibitor (Z)-Guggulsterone 
were combined with CDCA, a pretreatment of 15 min 
was performed.

The anti-FXR Ab dilution of 1:100 was empirically 
determined to neutralise 97% of the FXR sperm sites into the 
incubation medium. Furthermore, additional controls were 
performed and the cells were treated with normal rabbit 
serum, BSA 2% and 0.015% of EtOH. CDCA was dissolved  
in ethanol (0.01% final concentration in the culture) and 
when used as solvent control did not induce positive 
results in all in vitro assays, obtaining data similar to that of 
the control.
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Western blot analysis of sperm proteins

Each sperm sample was centrifuged for 5 min at 5000 g. 
The pellet was resuspended in lysis buffer (62.5 mmol/L 
Tris-HCl, pH 6.8; 150 mm NaCl; 2% SDS; 1% Triton X100; 
10% glycerol; 1 mm phenylmethylsulfonylfluoride; 10 μg/mL 
leupeptin; 10 μg/mL aprotinin; 2 μg/mL pepstatin) as previously 
described (Zara et al. 2007, Madeo et al. 2009, Aquila et al. 
2013). Briefly, an equal amount of proteins (70 µg) was 
boiled for 5 min, separated on an 11% polyacrylamide gel 
electrophoresis, transferred to nitrocellulose membranes and 
probed with an appropriate dilution of the indicated primary 
Abs. The binding of the secondary Ab was revealed with the 
ECL Plus Western blotting detection system, according to 
the manufacturer’s instructions. The negative control was 
performed using a sperm lysate that was immunodepleted 
of FXR (i.e. pre-incubated lysate with anti-FXR Abs for 1 h at 
room temperature and immunoprecipitated with Protein A/G-
agarose). Furthermore, the specificity of anti-FXR antibodies 
was tested by pre-absorption of each primary antibody with 
an excess of the respective blocking peptide for 48 h at 4°C 
(negative controls). β-Actin served as a control for equal 
loading. Specifically, the intensity of the pAKT and pMAPK 
bands were normalised to the intensity of the actin band by 
densitometric analysis. pMAPK intensity was analysed only for 
the 42 kDa band.

Immunofluorescence labelling

Sperm cells were rinsed three times with 0.5 mM Tris–HCl 
buffer, pH 7.5 and allowed to settle onto slides in a humid 
chamber. The overlying solution was carefully pipetted off 
and replaced by absolute methanol for 7 min at −20°C. After 
methanol removal, sperm cells were washed in Tris-buffered 
saline (TBS) containing 0.1% Triton X-100 and were treated 
for immunofluorescence. Two anti-human FXR NB400 (1:200) 
and sc 25309 (1:100) were utilised as primary antibodies, 
and the anti-rabbit TRITC conjugated IgG (1:80) as secondary 
antibody. The specificity of anti-FXR antibodies was tested by 
pre-absorption controls (Rago et al. 2006, 2007).

The slides were examined under an Olympus BX41 
microscope and the images were taken with CSV1.14 
software, using a CAM XC-30 for image acquisition, observing 
a minimum of 200 spermatozoa for nine slides.

Sperm motility and viability

Sperm motility and viability were assessed by means of light 
microscopy examining an aliquot of each sperm sample, which 
had been incubated as mentioned earlier. Sperm motility 
was expressed as percentage of total motile spermatozoa, 
including the rapid progressive (PR) plus the slow progressive 
(NP) cells (normal values: PR + NP > 40% as reported by WHO 
2010). Viability was assessed by red-eosin exclusion test using 
Eosin Y to evaluate potential toxic effects of the treatments. An 
independent observer scored 200 cells for stain uptake (dead 
cells) or exclusion (live cells). Sperm viability was expressed 
as the percentage of total live sperm. Viability was evaluated 
before and after pooling the samples, and there were no 

adverse effects among the different treatments on human 
sperm survival (Aquila et al. 2003, Cappello et al. 2012).

Measurement of cholesterol efflux

Cholesterol was measured in duplicate by a CHOD–POD 
enzymatic colorimetric method according to manufacturer’s 
instructions in the incubation medium from human 
spermatozoa, as previously described (Aquila et  al. 2006, 
2009a, Santoro et al. 2013). Purified sperm samples, washed 
twice with uncapacitating medium, were incubated as 
mentioned earlier. At the end of the sperm incubation the 
culture media were recovered by centrifugation, lyophilised, 
and subsequently dissolved in 1 mL of buffer reaction. The 
samples were incubated for 10 min at room temperature, 
and then the cholesterol content was measured with the 
spectrophotometer at 505 nm. Cholesterol standard used was 
200 mg/dL. The limit of sensitivity for the assay was 0.05 mg/
dL. Inter- and intra-assay variations were 0.04% and 0.03%, 
respectively. Cholesterol results are presented as mg per 
10 × 106 number of spermatozoa.

Acrosome reaction

Spermatozoa incubated with 0.5, 2, 10, 50 and 100 µM of 
CDCA, spermatozoa pre-incubated with anti-FXR Ab and 
then combined with 50 µM CDCA, spermatozoa incubated 
only with buffer (NC) were re-suspended in unsupplemented 
EBSS medium (5 × 106 sperm/mL), placed in a conical tube 
and cultured for 2 h in an atmosphere of 5% CO2 in air 
at 37°C. Then, acrosomal status was monitored using the 
acrosome-specific fluorochrome fluorescein isothiocyanate-
labelled peanut (Arachis hypogaea) agglutinin (FITC–PNA) 
in conjunction with DNA-specific fluorochrome propidium 
iodide (PI) as a viability test (Funahashi 2002). Briefly, 
sperm suspension (1 × 106 mL) was exposed to FITC–PNA 
(10 µg/mL) and PI (12 µmol/L) for 5 min at 37°C and then 
fixed by adding 1 µL of 12.5% (w/v) paraformaldehyde 
on 0.5 mol TRIS/L (pH 7.4). The slides were immediately 
examined with an epifluorescence microscope (Olympus 
BX41) with a multiple fluorescence filter (U-DM-DA/FI/TX2) 
observing a minimum of 200 spermatozoa per slide (100× 
objective). Acrosomal status was assessed according to the 
staining patterns.

Staining patterns

Spermatozoa with a nuclear red PI staining were considered 
as dead cells, while sperm cells without PI staining were 
considered as live cells. Live spermatozoa were classified 
into two main categories on the basis of the FITC–PNA 
staining as follows: (i) acrosome non-reacted cells with 
uniform green FITC–PNA fluorescence of acrosome cap; 
(ii) acrosome-reacted cells without any fluorescence and/
or only equatorial segment staining. Values were expressed 
as percentage. Six replicate experiments were performed for 
each semen sample.
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Assay of the G6PDH activity

The conversion of NADP+ to NADPH, catalysed by G6PDH, 
was measured by the increase in absorbance at 340 nm (Aquila 
et al. 2009a, 2013). Spermatozoa samples, washed twice with 
uncapacitating medium, were incubated in the same medium 
(control) for 30 min at 37°C and 5% CO2. Other samples were 
incubated in the presence of the indicated treatments. After 
incubation, 50 μL of sperm extracts were loaded into individual 
cuvettes containing buffer (100 mM triethanolamine, 100 mM 
MgCl2, 10 mg/mL glucose-6-phosphate, 10 mg/mL NADP+, 
pH 7.6) for spectrophotometric determination. The absorbance 
of samples was read at 340 nm every 20 s for 1.5 min. Data 
are expressed as nmol/min/106 spermatozoa. The enzymatic 
activity was determined with three control media: one without 
glucose-6-phosphate as substrate (G1), another without the 
coenzyme (NADP+) (G2) and the third without either substrate 
or coenzyme (G3).

Triglycerides assay

Triglycerides were measured in duplicate by a GPO–POD 
enzymatic colorimetric method according to manufacturer’s 
instructions in sperm lysates and as previously described 
(Aquila et  al. 2006, 2009a,b). Swim-up-purified sperm 
samples, washed twice by centrifugation with uncapacitating 
medium, were incubated in the same medium (control) for 
30 min at 37°C and 5% CO2. Other samples were incubated in 
the presence of the indicated treatments. At the end of sperm 
incubation, 10 μL of the lysate were added to 1 mL of the buffer 
reaction and incubated for 10 min at room temperature. Then, 
the triglycerides content was measured at 505 nm using a 
spectrophotometer. Data are presented as mg/106 sperms.

Lipase activity assay

Lipase activity was evaluated, by the method of Panteghini 
(Panteghini et  al. 2001) based on the use of 1,2-o-dilauryl-
rac-glycero-3-glutaric acid-(6′-methylresorufin) ester (DGGR) 
as substrate, as previously described (Aquila et  al. 2006, 
2009b, De Amicis 2012). Fifty micrograms of sperm extracts 
were loaded into individual cuvettes containing buffer for 
spectrophotometric determination. DGGR is cleaved by 
lipase, resulting in an unstable dicarbonic acid ester, which 
is spontaneously hydrolysed to yield glutaric acid and 
methylresorufin, a bluish-purple chromophore with peak 
absorption at 580 nm. The absorbance of samples was read 
every 20 s for 1.5 min. The rate of methylresorufin formation 
is directly proportional to the lipase activity in the sample. 
Analysis of total imprecision gave a coefficient of variation 
between 0.02% and 0.032%. The estimated reference interval 
was 6–38 U/L (μmol/min/mg protein). The enzymatic activity 
was determined with three control media: one without the 
substrate, another without the co-enzyme (colipase) and the 
third without either substrate or co-enzyme.

Statistical analysis

The Western blotting and immunofluorescence analyses 
were performed in at least four independent experiments. 

The data obtained from motility, viability and acrosome 
reaction assays (six replicate experiments using duplicate 
determinations) were presented as the mean ± s.e.m. The data 
obtained from cholesterol efflux, triglycerides assay, lipase 
activity and G6PDH activity (six replicate experiments using 
duplicate determinations), were presented as the mean ± s.e.m. 
Each data point of the Western blotting densitometric 
analysis representing the band intensities and evaluated in 
terms of arbitrary densitometric units were presented as the 
mean ± s.e.m. The differences in mean values were calculated 
using analysis of variance (ANOVA) with a significance level 
of P < 0.05. The Mann–Whitney U tests was used after ANOVA 
as post hoc test.

Results

Human sperm express FXR

FXR expression was first investigated by Western blotting 
analysis, using two different antibodies and obtaining 
the same result. A single immune-reactive band at about 
60 kDa in two different sperm samples lysates from 
human sperm (N1, N2) was observed (Fig. 1A). MCF7 
(breast cancer cell line) was used as positive control 
(Catalano et al. 2010), while no band was observed in 
the negative controls performed as reported in ‘Materials 
and methods’ section (Fig. 1A and A1).

FXR is located in the midpiece

Given the extreme polarisation of sperm cell, it is 
important to investigate the location of a molecule 
since it may be indicative of the function. A brilliant 
red light revealed the FXR presence only in the 

Figure 1 FXR expression in human spermatozoa. (A) Representative 
experiment of pooled sperm samples (lanes N1, N2); MCF7 breast 
cancer cells as positive control (MCF7), (C−) negative control; (A1) 
negative pre-absorption control. Actin serves as a loading control. 
The experiments were repeated at least four times and images show 
the results of one representative experiment. FXR immunolabelling of 
human sperm. (B) Phase contrast; (B1) expression of FXR in human 
spermatozoa showed a red immunofluorescence labelling in the 
sperm mid piece; (B2) negative pre-absorption control. Pictures are 
representative of four similar experiments. Scale bars: 5 µM.
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sperm midpiece (Fig.  1B1). No fluorescent signal 
was obtained when primary antibody was omitted 
(negative pre-absorption control), thus confirming 
the specificity of the antibody binding. By using 
two different primary antibodies the same pattern of 
localisation was observed.

CDCA through FXR negatively influences sperm 
motility and survival

Assessment of the motile sperm fraction is perhaps 
the most widely used measure of semen quality, since 
motility describes the ability of sperm to move properly 
towards an egg. Therefore, we investigated the effect 
of increasing CDCA from 0.5 to 100 µM. As shown in 
Fig. 2A, sperm motility was significantly reduced after 
CDCA treatment, whereas the combined treatment with 
Ab anti-FXR plus 50 µM CDCA or (Z)-Guggulsterone 
plus 50 µM CDCA restored the motility.

Another important parameter of human sperm 
performance consists in the capacity of sperm to 
survive as long as possible to have the chance to find 
and fertilise the oocyte. From our data, CDCA treatment 
inhibits sperm survival, while the pretreatment with Ab 
anti-FXR or (Z)-Guggulsterone inhibited the CDCA-
induced effects (Fig.  2B). It appears that CDCA was 
more effective than GW4064, the specific synthetic 
FXR activator, in inhibiting motility and survival.

FXR affects AKT and MAPK phosphorylation

To further define the FXR-induced effect on sperm 
survival, we analysed this action from a molecular 
point of view, exploring the main signalling involved in 
cell survival and previously explored in human sperm, 
the PI3K/Akt pathway (Aquila et  al. 2007) and MAPK 
42/44 phosphorylations (Santoro et al. 2013). Our data 
showed that pAKT and prevalently the p42 band of 
pMAPK were significantly reduced by increasing CDCA 
and GW4064 6 µM treatments (Fig. 3). This effect was 
reversed by (Z)-Guggulsterone.

CDCA did not induce cholesterol efflux in 
human sperm

Sperm functional maturation in vivo occurs during 
its travel in the female genital tract, where sperm 
undergo the capacitation process. A main feature 
of the capacitation comprises the cholesterol 
efflux by sperm, and the role of FXR in regulating 
cholesterol homeostasis is well established. Therefore, 
we investigated a possible action of FXR in the 
capacitation, by treating sperm with increasing CDCA 
or GW4064 6 µM concentrations. As shown in the 
Fig. 4A, CDCA reduced cholesterol efflux, although in 
a significant way at 50 and 100 µM. (Z)-Guggulsterone 
reversed the effect.

CDCA through FXR produced acrosome reaction failure

The full acquisition of sperm ability to fertilise culminates 
with the acrosome reaction, which is the end point of 
fully capacitated sperm. However, premature acrosome 
loss and/or acrosome reaction failure are also important 
causes of male infertility. Figure 4B shows a representative 
fluorescence pattern of human spermatozoa, stained 
with FITC–PNA + PI for the assessment of acrosome 
status and viability as previously reported (Carpino et al. 
2010). The CDCA treatment, increased the incidence 
of dead spermatozoa (PI positive cells) as well as the 
acrosome non-reacted cells, of consequence the 

Figure 2 FXR influences on sperm motility and survival. (A) Sperm 
motility, (B) sperm vitality after CDCA (0.5, 2, 10, 50 and 100 µM), 
GW (6 µM), Gug (10 µM) with or without 50 µM CDCA, + FXR Ab 
with or without 50 µM CDCA, NRS, BSA and EtOH. NC, non-
capacitated sperm. Columns represent mean ± s.e.m. of six 
independent experiments each done in duplicate, *P < 0.05 vs 
control, **P < 0.001 vs control.
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effects of CDCA on live sperm acrosome reaction are 
drastically reduced. By pre-treating with anti-FXR Ab or 
(Z)-Guggulsterone, the results were similar to that of the 
control (Fig. 4B1). It appears that the CDCA treatment 
through FXR impedes acrosome reaction.

Effects of CDCA/FXR on lipid metabolism in 
human sperm

During sperm extra-testicular maturation, an overall 
increase in sperm metabolism occurs and in somatic 
cells, FXR is an important regulator of lipid and glucose 
metabolism (Catalano et al. 2010). As shown in Fig. 5A, 
we first investigated triglycerides intracellular content 
upon the treatments indicated in the figure. Our data 
evidenced a significant increase in the triglycerides 
content, whereas the pre-treatment with anti-FXR Ab 
or (Z)-Guggulsterone plus 50 µM CDCA attenuated the 
effect. GW4064 6 µM also increased the triglycerides 
levels although in a lesser extent with respect CDCA 
50 µM. In the same experimental conditions, the lipase 
activity decreased (Fig. 5B), indicating a reduction in the 
lipid utilisation, according to the increased levels of the 
triglycerides. In this context the pre-treatment with anti-
FXR Ab significantly reversed the CDCA effect, while 

(Z)-Guggulsterone plus 50 µM CDCA slightly inhibited 
the CDCA action.

CDCA reduces glucose metabolism through the pentose 
phosphate pathway

To further investigate the role of FXR in sperm metabolism, 
we studied glucose metabolism through the pentose 
phosphate pathway (PPP). The evaluation of the G6PDH 
activity, which represents a key enzyme of this way, has 
been shown to be crucial in the acquisition of fertilising 
capability as well as to mediate gamete fusion (Aquila 
et al. 2005). From our results, it emerges that CDCA and 
GW4064 6 µM significantly reduced the G6PDH activity 
(Fig.  6). Interestingly, the pre-treatment with anti-FXR 
Ab or (Z)-Guggulsterone plus 50 µM CDCA produced 
a higher effect than the control in sperm treated with 
CDCA in the presence of the anti-FXR.

Figure 3 pAKT e pMAPK activation in human spermatozoa. Western 
analyses of pAKT, and pMAPK were performed on 70 µg of total 
protein. (A) Representative experiment of pooled sperm samples 
(lane 1 untreated sperm cells); (lanes 2, 3 sperm cells incubated 
with CDCA 2 and 50 µM respectively); (lane 4 sperm incubated with 
GW 6 µM); (lane 5 and 6 sperm cell treated with Gug 10 µM 
without/with CDCA 50 µM). (B) Columns are mean of four 
independent experiments in which band intensities were evaluated 
in terms of optical density arbitrary units. Actin serves as a loading 
control. Figure 4 FXR affects sperm capacitation and acrosome reaction. (A) 

Sperm cholesterol efflux after the previous indicated (Fig. 2) 
treatments. NC, non-capacitated sperm. Columns represent 
mean ± s.e.m. of six independent experiments each done in duplicate, 
*P < 0.05 vs control, **P < 0.001 vs control. (B) Acrosome reaction 
staining pattern with FITC–PNA + P: A and B dead non-reacted 
spermatozoa, C dead reacted sperm, D and E live non-reacted 
spermatozoa, F live reacted sperm. (B1) Dead reacted sperm after 
CDCA treatment. Columns represent mean percentage ± s.e.m. of six 
independent experiments. *P < 0.05 vs control, **P < 0.001 vs control.
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Discussion

Infertility affects approximately 10/15% of all couples 
worldwide and male factors contribute nearly 30–55% 
of all cases of infertility (Callister 2010). As it concerns 
male fertility disorders, the aetiology remains elusive 
and 25% of these cases are idiopathic. A growing 
number of studies sustain the idea that alteration of BAs 

homeostasis could impact testicular physiology and 
male fertility. BAs have been described as molecules  
that signal through the nuclear FXR (Makishima et  al. 
1999, Parks et  al. 1999, Wang et  al. 1999), thus the 
FXR action in the regulation of male fertility has been 
hypothesised (Sèdes et al. 2017). Herein, we showed for 
the first time the FXR expression in human sperm and 
its localisation in the midpiece. Besides, FXR activation 
by specific ligands such as CDCA or a synthetic agonist, 
GW4064, deregulated several sperm functional features.

In our study, we showed that FXR is expressed 
in human sperm by Western blotting and 
immunofluorescence analyses. Expression of FXR in 
the male gamete is a novel intriguing finding since it 
may have an important role in the regulation of sperm 
activities. The immunocytochemical data corroborating 
the Western blot analysis evidenced the localisation 
of FXR specifically in the middle piece where sperm 
contains the mitochondria. Taking into account the 
extreme polarisation of sperm cell, the position of a 
molecule may be indicative of its role; therefore, FXR in 
our context might have an action on sperm metabolism.

FXR is activated by BAs and several studies identified 
particularly CDCA, as the most potent endogenous 
ligand for FXR (Zhang 2010). By evaluating the effects 
of increasing CDCA and of GW4064 6 µM, a specific 
synthetic activator of FXR, on human sperm motility 

Figure 5 FXR alters sperm lipid metabolism. (A) Sperm tryglicerides 
levels; (B) lipase activity after the previous indicated treatments 
(Fig. 2), furthermore, the lipase activity was determined with three 
control media: one without the substrate (-Su), another without the 
colipase (-Co) and the third without either substrate or co-enzyme 
(-Su and Co). NC, non-capacitated sperm. Columns represent 
mean ± s.e.m. of six independent experiments each done in duplicate. 
*P < 0.05, **P < 0.001 vs control.

Figure 6 FXR reduces sperm glucose metabolism through the PPP. (A) 
Sperm G6PDH activity after the previous indicated treatments 
(Fig. 2). NC, non-capacitated sperm. The enzymatic activity was 
determined with three control media: one without glucose-6-
phosphate as substrate (G1), another without the coenzyme (NADP+) 
(G2) and the third without either substrate or coenzyme (G3). 
Columns represent mean ± s.e.m. of six independent experiments each 
done in duplicate, *P < 0.05 vs control, **P < 0.001 vs control.
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and viability, we showed a negative effect on these 
peculiar sperm functions. It is important to point out 
that the concentrations we used are supra-physiological, 
and this may account for a cytotoxic effect of elevated 
concentration of CDCA on human spermatozoa. 
Indeed, the potential link between BAs concentrations 
and male fertility disorders has been reported in several 
liver troubles where the increase of BA plasma levels is 
a common disturbance from the earliest stages of the 
disease (Yamazaki et al. 2013). In fact, during the last 
decade, several studies have reported the links between 
BA signalling pathways, male testicular physiology and 
subsequent fertility disorders. Given the importance of 
cholesterol regulation into sperm capacitation and the 
implication of FXR in this process in other tissues, we 
investigated whether the receptor is implicated in this 
sperm feature. Intriguingly, from our data, it emerges 
that both the FXR-agonists used in the study, CDCA and 
GW4064, were able to break capacitation and acrosome 
reaction processes, really exclusive of the sperm cell. All 
these effects were reversed, at least in part, by using anti-
FXR Ab as well as the FXR-specific synthetic inhibitor 
(Z)-Guggulsterone, discovering a novel and unsuspected 
field of action for this nuclear receptor.

BAs/FXR signalling is able to modulate lipid, glucose 
and energy homeostasis (Mangelsdorf et  al. 1995, 
Claudel et  al. 2005, Kalaany & Mangelsdorf 2006, 
Scotti et  al. 2007). Bile salts exert a broad regulatory 
role in systemic lipid metabolism via FXR, and gallstone 
patients treated with CDCA showed decreased plasma 
triglyceride levels (Ghosh Laskar et al. 2017). Conversely 
in our study, we observed an increase of the triglyceride 
levels, in agreement with a reduced lipase activity. The 
FXR blockage by pre-treating with the specific Ab anti-
FXR or (Z)-Guggulsterone did not affect the triglyceride 
content as well as the lipase activity. Instead, it seems 
that activated FXR exerted a lipogenetic effect on human 
sperm lipid metabolism.

BAs also modulate glucose homeostasis, reducing 
blood glucose levels and activating the PPP (Tiangang 
et  al. 2012). In human sperm, the beneficial effect of 
glucose on the acquisition of fertilising ability on gamete 
fusion is mediated by glucose metabolism through the 
PPP (Urner & Sakkas 1999a, Urner et al. 2001), where 
G6PDH is the key rate-limiting enzyme that regulates the 
production of NADPH (Urner & Sakkas 1999b). From 
our data, the G6PDH activity was significantly reduced, 
while the immune-neutralisation of the receptor as 
well as the use of (Z)-Guggulsterone abated the effect, 
indicating that the glucose metabolism through the PPP 
is slowed. Sperm, during his lifetime, passes through 
two different physiological stages: a steady state, as 
uncapacitated, during which the gamete economises 
and/or stores energy, and a state of functional maturation, 
during which the gamete becomes precisely capacitated 
with considerable energy expenditure. Generally, it 
might be believed that the uncapacitated gamete is 

associable to an anabolic metabolism, while in the 
capacitated state to a catabolic one. Capacitated sperm 
display an increased metabolic rate and overall energy 
expenditure, presumably to affect the changes in sperm 
signalling and function during the capacitation process. 
From our data, it appears that activated-FXR impedes the 
switch of sperm into the capacitation, since it decreases 
both glucose and lipid metabolism.

Furthermore, in our finding, CDCA seems to be more 
effective with respect GW4064 in sperm and this may 
be consistent with the higher affinity of CDCA for FXR, 
which has been observed in MCF7, MDA-MB 231 and 
MDA-MB468 breast cancer cell lines (Alasmael et  al. 
2015). This could be also due to the concentration of 
the agonist we used.

Interestingly, we can establish the physiopathologic 
correlates of our findings considering that the association 
between liver disorders and fertility troubles has been 
validated and specified using several experimental 
models. Bile duct ligation in rat or chicken males leads 
to bile accumulation in the liver (Kiani et  al. 2009), 
related with a loss of hepatocytes function and steatosis 
development, characteristics of cholestatic disorders 
(Houten 2007). These findings have also highlighted 
a decrease in plasma testosterone concentration 
independent of the hypothalamo–pituitary axis and 
associated with a loss of the germ cells. Therefore, data 
obtained from animal models suggest that the effects of 
liver disorders on male reproductive function might alter 
both endocrine and exocrine functions of the testis. While 
it is well known that liver disorders are pathological 
conditions in which BA concentration reached high 
levels, not much is known about the molecular links 
between liver diseases and male fertility disorders. In 
this study, we think that an important link between liver 
disorders and male infertility has been highlighted.

Furthermore, derivatives of BAs have been proposed 
as molecules for the treatment of diseases such as 
diabetes or obesity. However, the consequences of 
a long-term exposure to BAs signalling molecules in 
mouse models, although improved some metabolic 
syndrome parameters, impaired male fertility and 
testicular physiology (Watanabe et al. 2006, Vega et al. 
2015). In addition, BAs can also have deleterious effects 
on organs involved in post-testicular maturation such as 
the epididymis or seminal vesicles. Indeed, it has been 
shown that a BA enriched diet induces a decrease of the 
seminal vesicles weight (Baptissart et al. 2014).

Collectively, these observations and our data support 
and highlight the proposition that BAs/FXR signalling 
pathways play a role on fertility troubles and could 
participate to infertility. Particularly, our study evidenced 
that sperm itself express the FXR, and it is responsive to 
specific ligands of the receptor, therefore, BAs impact 
this cell both in male and in female genital tracts. It 
might be hypothesised that BA levels could be involved 
in infertility with idiopathic origin as these compounds 
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are not systematically measured in men undergoing to 
assisted medically assisted procreation.
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