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BRIEF REVIEWS

IMMUNOLOGY

THE O
FJOURNAL

Mechanisms for Decreased Function of B Cells in Aged
Mice and Humans1

Daniela Frasca,*† Ana Marie Landin,* Richard L. Riley,* and Bonnie B. Blomberg2*

The immune system has been known for some time to be
compromised in aged individuals, e.g., both mice and hu-
mans, and in both humoral and cellular responses. Our
studies have begun to elucidate intrinsic B lymphocyte de-
fects in Ig class switch recombination, activation-induced
cytidine deaminase, and E47 transcription factor expres-
sion. These defects occur in both mice and humans. Our
studies have also shown that tristetraprolin is one of the
key players in regulating the decreased E47 mRNA stabil-
ity in aged B lymphocytes. These and current studies
should lead to improvements in B lymphocyte function in
aged populations. The Journal of Immunology, 2008,
180: 2741–2746.

A ging impacts Ab responses in mice and humans. Both
humoral and cellular immune responses are decreased
in aged humans and experimental animals (1–6).

This leads to increased frequency and severity of infectious dis-
eases and reduces the protective effect of vaccination. Not only
decreased Ab production but also shortened duration of protec-
tive immunity following immunization has been reported in ag-
ing (7, 8). The decreased ability of aged individuals to produce
high affinity protective Abs against infectious agents likely re-
sults from combined defects in required T cell signaling to B
cells (9), a relative absence of somatic hypermutation (SHM)3

in germinal center (GC) B cells (10), and/or an intrinsic VH

repertoire shift (2, 11). Studies conducted in mice have
shown that T cell help is diminished in senescence and T
cell-mediated suppression is increased; therefore, the age-re-
lated decrease in humoral immunity has often been attrib-
uted to alterations in T cell function (3, 11, 12). Although
memory generated by naive T cells from young mice func-
tions well, even 1 year after priming (13), memory generated
during old age is defective both in vitro and in vivo, suggest-
ing that naive CD4 T cells from aged mice are defective in
generating good memory. This defect likely contributes to
the reduced Ag-specific B cell expansion, GC development,
and IgG production observed in aging (13).

Generation of an effective Ab response occurs in the GC as
the result of Ag-driven SHM of Ig genes and the selection of
B cells with high affinity Ag receptors. The age-related defect
in affinity maturation resulting from diminished GC reac-
tion is responsible for the less protective Ab response ob-
served in old age (10). Potential regulation of aged B cell
function could occur at either costimulation (via CD40,
CD80, and CD86) or cytokine stimulation (e.g., IL-4) from
CD4 T cells. In both mice and humans the percentage and
level of CD28 on CD4 T cells has been shown not to be
decreased (14, 15), but the stimulation of CD4 T cells and
hence their cytokine production has been shown to be de-
creased with age (16, 17).

CD4 T cells from old mice have been shown to produce less
IL-2, proliferate and differentiate poorly upon Ag stimulation
(18), and show reduced CD40 ligand expression, crucial for
cognate B/T interaction (19). The production of other cyto-
kines is also altered in old age, thus contributing to reduced vac-
cine efficacy. In particular, Th1 responses are increased whereas
Th2 responses are decreased (20, 21). Moreover, naive T cells
produce mainly IL-2 and memory cells mainly IL-4 in young
mice, and the reciprocal is observed in old mice but the overall
levels are reduced in old compared with young mice (20). This
would have a deleterious effect on B cell class switching in old
mice and humans.

Although T cell alterations play a significant role in age-re-
lated humoral immune changes, alterations in B cells also occur.
Overall B lymphocyte numbers in the spleens of senescent mice
do not change appreciably, but significant alterations are seen in
B lymphopoiesis within the bone marrow (22–25). Available
Ab repertoires to particular Ags and pathogens are markedly dif-
ferent in old vs young splenic or peripheral blood B cells (8,
26–29). Furthermore, substantial alterations in mature B lym-
phocyte composition are seen in the periphery with increased
frequencies of B-1 B lymphocytes (30) as well as chronically
activated, Ag-experienced B lymphocytes (31). Peripheral B
lymphocytes in aged mice exhibit reduced turnover rates possi-
bly associated with the decline seen in B lymphopoiesis within
the bone marrow (32, 33).
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In contrast with mouse B cells, human peripheral B cell per-
centages and numbers significantly decrease with age (34–38).
Although the absolute numbers of B cell precursors in the bone
marrow decline with normal age and particularly during ado-
lescence (39), B lymphopoiesis is active throughout life (40).
The percentage of IgM memory B cells, which are responsible
for the response to Streptococcus pneumoniae infection, is signif-
icantly decreased whereas that of naive B cells is increased in old
individuals (35, 37). The reduction in IgM cells has been sug-
gested to cause reduced specific Ab titers in elderly individuals
vaccinated against pneumococcal polysaccharides (37). Others
have shown that the percentage of total CD27� memory B cells
increase with age, but not significantly (41), and we have fur-
ther results (see below). In contrast, in the human tonsil naive B
cells have been shown to increase with age (42). No data have
been reported so far on the age-related changes in naive and
memory B cells in mice due to the lack of a memory B cell
marker equivalent to CD27 in humans.

The Abs generated in old mice (20 mo of age or older) and
humans (65 years of age or older) are less protective compared
with the Abs generated in the young (43, 44). High affinity Abs
are produced in the GC of B cell follicles as a consequence of
affinity maturation processes. A progressive decline in GC for-
mation during aging has been reported in mice (10, 45, 46),
and this leads to decreased Ab affinity maturation, decreased
SHM of Ig genes, and also diminished recirculating, Ag-spe-
cific, long-lived, Ab-secreting plasma cells in the bone marrow
(10, 45–47).

Specific Ab responses in humans immunized with vaccines
against tetanus toxin, encephalitis viruses, Salmonella, or pneu-
mococcus decrease with age (2). The total IgG response to an
influenza vaccine is also decreased in the elderly (�65 years of
age) (2, 10, 43, 45–48).

Molecular mechanisms for the reduced activity of B cells in aged mice

Decrease in class switch recombination (CSR), activa-
tion-induced cytidine deaminase (AID), and E47. The
inability of B cells from old individuals to respond to vaccina-
tion is due to a defect in the molecular events leading to the
production of secondary isotypes, known as class switch recom-
bination or CSR. CSR is extremely important in the humoral
immune response because it generates Abs of the same specific-
ity but with different effector functions. This is a highly regu-
lated process controlled by cytokines, as well as by cellular in-
teractions, involving B cell-expressed CD40 and its ligand
(CD40L/CD154) on T cells. CSR is a DNA recombination
event taking place between two switch regions (S regions), one
located upstream (5�) to the � CH (donor site) and one 5� to
one of the other CH regions (�, �, or �) (acceptor site) to pro-
duce IgG, IgE, or IgA. CSR initially requires chromatin open-
ing of a particular S region, which is mediated by cytokine-in-
duced germline transcription from the intron promoter located
5� of the particular S region (49, 50). In this process, activation-
induced cytidine deaminase or AID is clearly required (50).
AID initiates CSR by deamination of cytidine residues in S re-
gions, thus creating uracils, and the resulting mismatches are
recognized by specific enzymes and excised, leading to DNA
double strand breaks (50, 51). AID is also necessary for SHM.
AID initiates SHM by deaminating cytidine residues in DNA
and generating mismatches recognized by the specific enzymes.
Mutations can also be introduced by coupling with replication

of the mismatches (52, 53). Alternatively, AID might be a cy-
tosine deaminase that edits mRNAs to produce proteins essen-
tial for initiating the CSR and SHM reactions (53, 54). In both
models, recognition and repair of these double strand breaks are
critical for successful completion of CSR (49, 50, 53, 55). In
humans, mutations in the AID gene are associated with the ab-
sence of secondary Abs and SHM and produce hyper-IgM syn-
drome, a disease associated with increased susceptibility to in-
fections (56–58).

E2A activity is necessary for CSR (56, 57, 59, 60), because
the E47 transcription factor has been shown to be important in
transcriptional regulation of Aicda, the gene encoding AID
(61). Several cis-regulatory elements (E-box) in the Aicda locus
has been identified and shown to be activated by E proteins.
E47 together with E12, arising through differential splicing of
the exon encoding for the basic helix-loop-helix domain of the
E2A gene (62), regulate many processes involved in B cell com-
mitment and differentiation. In particular, they initiate Ig rear-
rangements and regulate the expression of the surrogate light
chain, the recombination activating enzymes RAG-1 and
RAG-2, the enzyme terminal deoxynucleotidyl transferase, the
IL-7 receptor �-chain (which, together with the common
�-chain (�c), comprises the high affinity IL-7 receptor or IL-
7R), and the genes encoding the signal transduction molecules
Ig� (mb-1) and Ig� (B29) (63–66). In B lymphocytes, the ac-
tive DNA binding complex consists of an E47 homodimer as
opposed to E12/E12 or E12/E47 complexes, whereas in the
bone marrow pro-B/early pre-B cells the predominant form is
E12/E47 (67). The formation and function of the homodimer
or heterodimer depend on the balance between the E2A-en-
coded proteins, other class I basic helix-loop-helix proteins
(HEB and E2-2), and the E protein inhibitory proteins, Id 1–4,
which lack the DNA-binding domain and function as domi-
nant negative inhibitors of E proteins (68). Mice expressing a
transgene for Id proteins have a phenotype similar to that of the
E2A�/� mice (59). These mice display the same block in B cell
development, and its severity is dependent on the level of ex-
pression of the transgene.

In senescent mice, we have previously shown that in vitro
stimulated splenic B cells are deficient in the production of mul-
tiple class switch isotypes and CSR (69, 70). This occurs con-
comitant with decreased induction of E47 and AID. Although
B cells may suffer from a lack of adequate T cell help in aging, as
we have discussed above, we have demonstrated that intrinsic
changes in B cells also occur and have a significant impact on Ab
production. The reduced CSR observed in old splenic activated
B cells is not the consequence of defective B cell proliferation, as
B cells from old mice can be effectively activated in vitro, but
their capacity to undergo CSR is impaired. Our results are con-
sistent with previous reports showing that expression of the re-
ceptors for CD40 and IL-4 are unaffected by aging in mice and
humans, as already reported (10, 41, 70–72). Both DNA bind-
ing (EMSA) and expression (Western blotting) of E47 are de-
creased in stimulated splenic B cells from old mice. We have
previously shown (67) that the endogenous E47 DNA binding
is low and, importantly, 2-fold lower than that in unstimulated
young spleen cells. Activation of B cells up-regulates E47 DNA
binding in young and to a significantly lower extent in old mice
(levels in old mice are 4-fold lower than those in young mice)
(Fig. 1). Therefore, both basal and activated levels of E47 are
decreased in splenic B cells in aged mice. These findings suggest
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that the down-regulation of this transcriptional regulator may
help explain not only decreased CSR in activated splenic B cells
from old mice but also age-related changes in affinity matura-
tion and SHM affecting the quality of the Ab response. Other
results from our laboratory showing that CSR is perturbed in
E2A�/� mice further support the important role of this tran-
scription factor in the generation of Abs with different isotypes
(70).

The transcription factor NF-�B has also been shown to be
important for Ig class switch (73, 74). NF-�B has been shown
to be strongly activated by anti-CD40/IL-4, but not by anti-
CD40 or IL-4 stimulation alone in splenic B cells, and to be
involved in CSR to IgG1/IgE in both humans (75) and mice
(73, 76–78). It has also been shown to be the key transcription
factor in mouse or human B cells undergoing CSR in response
to BAFF, the B cell-activating factor, also called BLyS, TALL-1,
THANK, ZTNF4, or TNF13B (79–81). We have recently in-
vestigated the ability of BAFF/IL-4, as compared with anti-
CD40/IL-4, to induce CSR to �1 in splenic B cells from young
and old mice (82). We found that NF-�B is not involved in
the decreased response of old B cells to anti-CD40/IL-4. In
particular, the age-related decrease in CSR induced by anti-
CD40/IL-4 is primarily associated with a decrease in E47,
whereas the response to BAFF/IL-4, which is also decreased
but to a lesser extent, is associated with decreases in both E47
and NF-�B. These differences in B cell responses to CD40/
IL-4 and BAFF/IL-4 may help to explain at least a partial
maintenance of the thymus-independent (more BAFF/IL-4-
dependent) vs thymus-dependent responses in senescent
mice (83, 84).
Mechanisms for decreased E47 in aged mice. In deter-
mining a mechanism for the age-related decrease in the

amounts of E47 protein in nuclear extracts, we found that E47
mRNA levels were decreased (4-fold) in stimulated splenic B
cells from old mice as compared with young mice. RNA stabil-
ity assays showed that the rate of E47 mRNA decay was accel-
erated (6-fold) in stimulated splenic B cells from old mice, but
E47 protein degradation rates were comparable in young vs
aged B cells, indicating that the regulation of E47 expression in
activated old splenic B cells occurs primarily by mRNA stability
(85, 86). In contrast with splenic activated B cells, E47 mRNA
expression is comparable in bone marrow-derived IL-7-ex-
panded pro-B/early pre-B cells from young and old mice (84,
87). Thus, the reduced expression and DNA binding of the
E12/E47 transcription factor in aged B cell precursors in the
bone marrow is a different mechanism than the one we have
shown for B lymphocytes in the periphery due to reduced pro-
tein stability (87, 88) mediated presumably via the ubiquitin-
proteasome pathway (89, 90).

The stability of labile mRNA may be controlled by signal
transduction cascades, where the final product of the cascade
phosphorylates a protein that interacts with adenylate/uridy-
late-rich elements (ARE) in the 3� untranslated region (UTR)
of mRNA and modifies its stability (91, 92). ARE sequences
have been found in the 3�-UTR of many mRNAs, including
those for transcription factors. ARE motifs have been previously
classified into at least three categories based in part upon the
distribution of AUUUA pentamers. Class I AREs, found in
early response gene mRNAs like c-Fos and c-Myc, contain mul-
tiple isolated AUUUA motifs; class II AREs, found exclusively
in cytokine mRNAs, contain two or more overlapping copies of
the AUUUA motif; class III AREs contain no AUUUA motifs
but generally contain U-rich or AU-rich regions and possibly
other unknown features for their destabilizing function. The
E47 mRNA is a class I/III mRNA, because it has one AUUUA
sequence and multiple AU/U-rich regions. At least part of the
decreased stability of E47 mRNA seen in aged B cells is medi-
ated by proteins. We have found that tristetraprolin (TTP), a
physiological regulator of mRNA expression and stability, is in-
volved in the degradation of the E47 mRNA. Because many
studies have shown TTP expression and function in macro-
phages, monocytes, mast cells and T cells but little is known
about the expression and function of TTP in primary B cells, we
have investigated TTP mRNA and protein expression in splenic
B cells from young and old mice. Our recently published results
(86) show that TTP mRNA and protein levels are higher in
stimulated splenic B cells from old mice as compared with
young mice. TTP has been described to be directly phosphor-
ylated by p38 MAPK in macrophages (93–95). We show that
inhibition of the p38 MAPK signaling pathway significantly
reduces TTP protein phosphorylation in B cells. Old B cells
in response to LPS make less phosphorylated p38 MAPK
(85) (and also in response to anti-CD40/IL-4 as we showed
previously; Ref. 86) and therefore, as would be expected,
make less phosphorylated TTP. This leads to an increase in
the amount of TTP bound to the 3�-UTRs and therefore
decreased mRNA stability (including E47) in old B cells.
Our studies demonstrate for the first time that TTP is reg-
ulated in activated B cells during aging and is involved in the
degradation of E47 mRNA, and we show a molecular mech-
anism for the decreased expression of E47, AID, and CSR in

FIGURE 1. Relative values of immune markers in young/old mice/humans.
Values indicate fold differences for immune markers in young vs old splenic
CD19� B cells (mice) or peripheral blood-derived CD19� B cells (humans).
CSR was measured by semiquantitative PCR of circle transcripts. AID and the
E47 transcription factor were measured by real-time PCR. TTP and phosphor-
ylated TTP (p-TTP) were measured by Western analyses. The pairs of mice
analyzed were �10 for CSR, AID, and E47 and 15 for TTP and phosphory-
lated TTP. Results for human B cells are based on preliminary results from 15
young and old pairs of subjects, with most variability seen for E47 in old sub-
jects. Young mice were 2–4 mo old, the old mice were 22–27 mo old, the young
humans were 18–30 years old, and the old humans were �65 years old. ND,
Not done.

2743The Journal of Immunology

 by guest on July 23, 2018
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


aged B cells. We are currently also exploring other possible
mechanisms for the increased mRNA degradation in aged B
cells including microRNA analyses.

We have recently been able to demonstrate that it is possible
to rescue AID levels and CSR in B cells from old mice to levels
comparable or higher than those observed in young mice (A. M.
Landin, D. Frasca, B. Blomberg, manuscript in preparation).
Briefly, young and old B cells were transduced with a vector
containing the coding region of E47 (pMXs-E47-IG or
pMXs-IG as control) 24 h after LPS/IL-4 stimulation. Results
show that at day 2 (peak of E47 expression) 90% of young B
cells and 61% of old B cells express cytoplasmic E47. At day 7,
the peak of membrane IgG1 expression, almost 65% of both
young and old B cells have switched their membrane Ig as
compared with 23% in young and 9% in old untransduced
or vector control-transduced cells. In both young and old B
cells there was a linear relationship between E47 and IgG1
expression at the per cell level. This suggests that the age-
related difference in Ig class switch can be rescued by retro-
viral transduction of E47 in splenic activated B cells and of-
fers us promise for additional experiments to improve mouse
and human humoral immune responses.

Aged human B cells look like aged murine B cells

We have recently extended our studies on murine B cells to hu-
man B cells to investigate whether aging also affects Ab CSR,
E47 and AID expression in B cells isolated from the peripheral
blood of human subjects. Our results obtained with activated
CD19� B cells show that the expression of E47, AID, and Ig�1
circle transcripts progressively decrease with age. We also show
an age-related decline in the percentage of switch memory B
cells (IgG�IgA�CD27�), an increase in that of naive B cells
(IgG�IgA�CD27�) for most individuals, and no decrease in
that of IgM memory cells, consistent with our data on the de-
crease seen in CSR in vitro (35). Our results provide a possible
molecular mechanism for a B cell-intrinsic defect in the hu-
moral immune response with aging. Although there are defects
in T cells as well as in B cells during aging, our results suggest
that improving the intrinsic B cell defect may require methods
to directly amplify the function of these cells as well as T cells in
elderly individuals.

To understand whether the age-related decrease in E47
mRNA expression in human B cells is also due to mRNA
stability as it is in mice, we started a series of experiments in
which we transduced the MCF7 (breast cancer) or BJAB
(Burkitt B cell lymphoma) human cell lines with a retroviral
vector containing DsRed and the 3�-UTR of the human E47
mRNA. Preliminary results (A. M. Landin et al., manuscript
in preparation) show that in both transduced MCF7 and
BJAB the DsRed mRNA was less stable when the 3�-UTR of
E47 was attached to its 3�-end. Moreover, the stability of the
DsRed mRNA was more severely impacted in BJAB than in
MCF7. This result suggests that the 3�-UTR of E47 contains
instability sites causing mRNA degradation. Furthermore,
proteins or microRNAs targeting the 3�-UTR for degrada-
tion appear to be more prominent in this B cell (tumor) than
in another cell type. We have also recently measured TTP
mRNA expression in these two cell lines and found that
BJAB expresses almost 4-fold more TTP mRNA than
MCF7. This result may help to explain why the stability of

E47 3�-UTR mRNA is lower in BJAB than in MCF7 and we
are further pursuing this approach.

Conclusions
We have shown intrinsic B lymphocyte defects in aged mice and
humans. These include decreased ability to produce Ig class
switch (CSR), AID, the enzyme required for CSR and SHM,
and the transcription factor necessary for AID, E47. The major
mechanism for reduced E47 in aged B cells is reduced mRNA
stability, as a result of reduced phosphorylated TTP. These and
our current studies should lead to improving the ability of B
lymphocytes to respond better, e.g., to vaccines and infectious
agents.
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