
Theoretical Computer Science 301 (2003) 201–215
www.elsevier.com/locate/tcs

On three variants of rewriting P systems
Claudio Ferrettia, Giancarlo Mauria, Gheorghe P(aunb,

Claudio Zandrona ;∗
aDipartimento di Informatica, Sistemistica e Comunicazione, Universit�a di Milano-Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
bInstitute of Mathematics of the Romanian Academy, P.O. Box 1-764, 70700 Bucures.ti, Romania

Received 19 March 2002; received in revised form 1 June 2002; accepted 19 June 2002
Communicated by G. Rozenberg

Abstract

We continue here the study of P systems with string objects processed by rewriting rules,
by investigating some questions which are classic in formal language theory: leftmost deriva-
tion, conditional use of rules (permitting and forbidding conditions), relationships with language
families in Chomsky and Lindenmayer hierarchies.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Membrane computing; Regulated rewriting; Chomsky hierarchy; Lindenmayer systems

1. Introduction

One of the main classes of P systems is that where the objects are described by
strings and the evolution rules are based on string processing operations, in particular,
on rewriting. The reader is referred to, e.g., [1–3,5,9–13] (an up-to-date bibliography of
the area can be found at the internet web address http://bioinformatics.bio.disco.unimib.
it/psystems).
In the framework of P systems, in order to get characterizations of recursively enu-

merable languages, various additional features are considered, such as a priority rela-
tion on the set of rules from each membrane (see [14]) or the possibility to control
the membrane permeability (see [17]). We consider here three further variants of such

∗ Corresponding author. Tel.: +39-02-64487875; fax: +39-02-64487839.
E-mail addresses: ferretti@disco.unimib.it (C. Ferretti), mauri@disco.unimib.it (G. Mauri),

gpaun@imar.ro (G. P(aun), zandron@disco.unimib.it (C. Zandron).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00581 -9

http://bioinformatics.bio.disco.unimib.it/psystems
mailto:ferretti@disco.unimib.it
mailto:mauri@disco.unimib.it
mailto:gpaun@imar.ro
mailto:zandron@disco.unimib.it

202 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

systems, which are classic in formal language theory. In the case of imposing that
each string is rewritten in the leftmost possible position, we get a characterization of
recursively enumerable languages by systems with four membranes. Two membranes
are shown to suFce in the case of using forbidding conditions associated with rules,
in the form of symbols which should not be present in the string to be rewritten.
Somewhat surprisingly, the case of permitting conditions (certain symbols should be
present in the rewritten string) only leads to a characterization of languages gener-
ated by matrix grammars without appearance checking, hence this restriction does not
increase substantially the power of rewriting P systems. In fact, rewriting P systems
without restrictions in the use of the rules and with at least four membranes already
characterize the family of matrix languages; two membranes are enough for generating
such a family if permitting conditions are allowed.

2. Language theory prerequisites

In this section we introduce some formal language theory notions and notations
which will be used in this paper; for further details we refer to [16].
For an alphabet V , by V ∗ we denote the set of all strings over V , including the

empty one, denoted by �. By CF, RE we denote the families of context-free and of re-
cursively enumerable languages, respectively, while E0L and ET0L denote the families
of languages generated by extended interactionless Lindenmayer (E0L) systems and by
extended tabled 0L systems (ET0L systems). It is known that CF ⊂E0L⊂ET0L⊂RE,
all inclusions being proper.
For each recursively enumerable language L there exists a type-0 grammar in the

Ge<ert normal form [7], G=({S; A; B; C}; T; P; S), such that L(G)=L and P=Pcf ∪P�,
where Pcf only contains context-free productions of the form S→w with w∈ ({S; A; B;
C}∪T)∗ and P� only contains the unique (non-context-free) production ABC→ �.

In the proofs from the next sections we need the notion of a matrix grammar with
appearance checking; such a grammar is a construct G=(N; T; S;M; F), where N; T are
disjoint alphabets, S ∈N , M is a Hnite set of sequences of the form (A1 → x1; : : : ; An →
xn), n¿1, of context-free rules over N ∪T (with Ai ∈N; xi ∈ (N ∪T)∗, in all cases),
and F is a set of occurrences of rules in M (N is the nonterminal alphabet, T is the
terminal alphabet, S is the axiom, while the elements of M are called matrices).
For w; z ∈ (N ∪T)∗ we write w⇒ z if there is a matrix (A1 → x1; : : : ; An → xn) in M

and the strings wi ∈ (N ∪T)∗; 16i6n + 1, such that w=w1; z=wn+1, and, for all
16i6n, either wi =w′

iAiw′′
i ; wi+1 = w′

i xiw
′′
i , for some w′

i ; w
′′
i ∈ (N ∪T)∗, or wi = i+1,

Ai does not appear in wi, and the rule Ai → xi appears in F . (The rules of a matrix are
applied in order, possibly skipping the rules in F if they cannot be applied—one says
that these rules are applied in the appearance checking mode.)
The language generated by G is deHned by L(G)= {w∈T ∗ | S⇒∗ w}. The family

of languages of this form is denoted by MATac. When F = ∅ (hence we do not use the
appearance checking feature), the generated family is denoted by MAT .
It is known that CF ⊂MAT ⊂MATac =RE, all inclusions being proper. All one-letter

languages in the family MAT are regular, see [8]. Moreover, E0L is incomparable with

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 203

MAT (hence ET0L−MAT �= ∅, but it is not known whether also MAT −ET0L is non-
empty).
A matrix grammar G=(N; T; S;M; F) is said to be in the binary normal form if

N =N1 ∪N2 ∪{S; #}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:

(1) (S→ZB), with Z ∈N1; B∈N2,
(2) (X →Y; A→ x), with X; Y ∈N1; A∈N2; x∈ (N2 ∪T)∗; |x|62,
(3) (X →Y; A→ #), with X; Y ∈N1; A∈N2,
(4) (X → �; A→ x), with X ∈N1; A∈N2, and x∈T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules A→ #
appearing in matrices of type 3; # is called a trap-symbol, because once introduced, it
is never removed. A matrix of type 4 is used only once, in the last step of a derivation.
According to Lemma 1.3.7 in [4], for each matrix grammar there is an equiva-

lent matrix grammar in the binary normal form. For an arbitrary matrix grammar
G=(N; T; S;M; F), let us denote by ac(G) the cardinality of the set {A∈N |A→ �∈F}.
From the construction in the proof of Lemma 1.3.7 in [4] one can see that if we start
from a matrix grammar G and we get the grammar G′ in the binary normal form, then
ac(G′)= ac(G).
In [6] it is proved that each recursively enumerable language can be generated by a

matrix grammar G such that ac(G)62. Consequently, to the properties of a grammar
G in the binary normal form we can add the fact that ac(G)62. We will say that this
is the strong binary normal form for matrix grammars.

3. Rewriting P systems

We introduce here the class of P systems with string objects processed by rewriting
and without any other additional feature, then we will add further ingredients, able to
increase the generative power. (As usual, a membrane structure is represented by a
string of labeled parentheses, and with each membrane we associate a region, which
is referred to by the label of the membrane.)
An extended rewriting P system (ERP system) of degree m¿1, is a construct

� = (V; T; �;M1; : : : ; Mm; R1; : : : ; Rm);

where:

(1) V is the alphabet of the system;
(2) T ⊆V is the terminal alphabet;
(3) � is a membrane structure with m membranes (in this section, we assume that the

membranes are injectively labeled by 1; 2; : : : ; m);
(4) M1; : : : ; Mm are Hnite languages over V , representing the strings initially present in

the regions 1; 2; : : : ; m of the system;

204 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

(5) R1; : : : ; Rm are Hnite sets of rules of the form X → (u; tar), with X ∈V; u∈V ∗; tar ∈
{here; out; in}, associated with the regions of �. Often, the indication here is
omitted.

A system is said to be non-extended if V =T .
From a conHguration of the system we pass to another conHguration by rewriting,

in each region of the system, each string which can be rewritten by a rule from
that region, and following the target indication of the used rule. For instance, when
rewriting a string x1Xx2 by a rule X → (u; tar) we get the string x1ux2, which will be
communicated to the membrane indicated by tar (here means that the string remains
in the same region, out means that the string will exit, and in means that the string is
sent to one of the directly lower membranes, if any exists, otherwise the rule cannot
be applied). Note that all strings are processed at the same time, but each string is
rewritten by only one rule—or by none, if no rule can be applied to it.
A sequence of transitions forms a computation and the result of a halting computation

is the set of strings over T sent out of the system during the computation. In the case
of non-extended systems, all strings sent out are accepted. A computation which never
halts yields no result. A string which remains inside the system or, in the extended
case, which exits but contains symbols not in T does not contribute to the generated
language. The language generated in this way by a system � is denoted by L(�).
The family of all languages of this form, generated by P systems of degree at most
m;m¿1, is denoted by ERPm(free).
The reader can easily see that every language in ERPm(free) can also be generated

by a matrix grammar without appearance checking (see a stronger result in Theorem
10), hence it is necessary to increase the power of such P systems by adding further
features. The next three sections are devoted to such a topic.

4. Leftmost rewriting in P systems

We consider here a restriction in the use of rules of a rewriting P system: any
string is rewritten in the leftmost position which can be rewritten by a rule from
its region. That is, we examine the symbols of the string, one by one, from left to
right; the Hrst symbol which can be rewritten by a rule from the region of the string is
rewritten. If there are several rules with the same left-hand symbol, then any of them is
chosen.
We denote by Lleft(�) the language generated by a system � in this way and by

ERPm(left); m¿1, we denote the family of all such languages, generated by systems
with at most m membranes. If the degree of the systems is not bounded, then we
replace the subscript m by ∗.
In the regulated rewriting area it is known that the leftmost derivation (of a diLer-

ent type: only the Hrst rule of a matrix is used in the leftmost manner—see precise
deHnitions in [4]) increases the power of matrix grammars. This makes expected the
result from Theorem 3 below (the main diFculty is to Hnd a reasonably small number
of membranes which suFce).

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 205

Before proving this assertion, let us give some preliminary results. Directly from
the deHnitions, we have ([E] means that the relation is true both with E in both its
members and with E in none of them):

Lemma 1. (1) RPm(left)⊆ERPm(left); m¿1.
(2) [E]RPm(left)⊆ [E]RPm+1(left); m¿1.

Lemma 2. ERPm(left)⊆RPm+1(left); m¿1.

Proof. Given �=(V; T; �;M1; : : : ; Mm; R1; : : : ; Rm), we construct a system �′ =(V ∪
{Y; Z}; V ∪{Y; Z}; [0�]0; ∅; M ′

1; : : : ; M
′
m; R0; R1; : : : ; Rm), with

M ′
i = {wY |w ∈ Mi}; 16 i 6 m;

R0 = {a → Z | a ∈ V − T} ∪ {Z → Z; Y → (�; out)}:

It is easy to see that Lleft(�′)=Lleft(�): a string can exit the skin membrane of �′

only by using the rule Y → (�; out). Because Y appears in the right-hand end of the
string, this means that the whole string is checked whether or not it contains any
symbol not in T (in such a case, the trap symbol Z is introduced and the computation
never stops).

Theorem 3. RE=RP5(left)=ERP4(left).

Proof. According to the previous lemma and to Turing–Church thesis, we only have
to prove the inclusion RE⊆ERP4(left).
Let G=({S; A; B; C}; T; P; S) be a grammar in the GeLert normal form.
We construct the extended P system of degree 4

� = (V; T; �;M1; M2; M3; M4; R1; R2; R3; R4)

with

V = {E; NE |E ∈ {A; B; C; S; Y} ∪ T} ∪ {D; F; Z};
� = [1[2[3]3]2[4]4]1;

M1 = {SY}; M2 = M3 = M4 = ∅;
R1 = {E → NE |E ∈ {A; B; C; S} ∪ T}

∪ {S → w | S → w ∈ Pcf}
∪ {A → (F; in); Y → (NY ; in)}
∪ {a → (a; out) | a ∈ T} ∪ R′

1;

R′
1 =

{ {Y → (�; out)} if � ∈ L(G) and

∅ if � =∈ L(G);

206 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

R2 = {B → (�; in); D → (�; out); F → �}
∪ {E → Z |E ∈ {A; C; S; Z} ∪ T};

R3 = {C → (D; out)} ∪ {E → Z |E ∈ {A; B; S; Z} ∪ T};
R4 = { NE → E |E ∈ {A; B; C; S} ∪ T}

∪ {F → Z; NY → (Y; out); NY → (�; out); Z → Z}:

Initially, we start with the string SY in membrane 1; assume that here in general we
have a string NvwU with v; w∈ ({A; B; C; S}∪T)∗ and U ∈{�; Y}.
For v=U = � we can send out a terminal word w∈T+; w= aw′ for some a∈T ,

by applying the rule a→ (a; out). If v �= �, an application of a rule a→ (a; out), a∈T ,
does not yield a terminal word outside the system, hence this string is “lost”. If
also �∈L(G), then Y → (�; out) yields the desired result � outside the system for
v=w= � and U =Y . The rule Y → (�; out) in the leftmost derivation mode can only
be applied in membrane 1 to a string of the form NvY ; for v �= � the application of
Y → (�; out) only yields the non-terminal (and therefore “useless”) string Nv outside the
system.
The rule Y → (NY ; in) in the leftmost derivation mode can only be applied in mem-

brane 1 to a string of the form NvY , too. If the resulting string Nv NY lands in membrane 2,
then the computation stops without having generated a result, whereas in membrane 4
from Nv NY we obtain v NY by applying the rules NE→E for E ∈{A; B; C; S}∪T . The rule
NY → (Y; out) sends out the string vY , whereas the application of the rule NY → (�; out)
yields only v in membrane 1.
The main idea of the simulation of the productions of G by leftmost applications of

rules in � is the following:
From left to right, the symbols from {A; B; C; S}∪T are barred. At any time, when-

ever possible, we may apply a rule S→w, for S→w∈Pcf , in order to simulate a
context-free production from G.
To start the simulation of the unique non-context-free production ABC→ �, we

choose the rule A→ (F; in). If a string of the form NvFw′U; v; w′ ∈ ({A; B; C; S}∪T)∗ and
U ∈{�; Y}; lands in membrane 4, we obtain vFw′U by applying the rules NE→E; E ∈
{A; B; C; S}∪T , and Hnally vZw′U , a string containing the trap symbol Z , which leads
to a non-halting computation in an inHnite loop with iterated applications of the rule
Z →Z . If, as is necessary for a correct simulation of the production ABC→ �; NvFw′U
appears in membrane 2, the next symbol in w′ must be a B, otherwise, after the ap-
plication of the rule F → �, either one of the rules E→Z; E ∈{A; C; S}∪T , leads to
a non-halting computation because of the rule Z →Z , or, if we have reached the end
(possibly the end symbol Y) of the current string, the computation stops without having
yielded a terminal result.
If w′ =Bw′′, then we get Nvw′′U in membrane 3. Here, if w′′ does not begin with a

C, either the rules E→Z; E ∈{A; B; S}∪T , again lead to a non-halting computation or
else the computation stops without having produced a terminal string. If w′′ =Cw′′′,
then we obtain NvDw′′′U in membrane 2, where the application of the rule D→ (�; out)

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 207

leads to the string Nvw′′′U in membrane 1; hence, in total, we have obtained Nvw′′′U
from NvABCw′′′U .
If, by the applications of the rules E→ NE, E ∈{A; B; C; S}∪T , the end of the under-

lying string is reached, i.e., we have obtained NvU; v∈ ({A; B; C; S}∪T)∗ and U ∈{�; Y},
then the computation stops without yielding a terminal result, if U = �. By applying
Y → (NY ; in) to NvY , we obtain Nv NY in membrane 2 or in membrane 4. In membrane 2,
the computation halts, because no rule can be applied. In membrane 4, we get v NY by
applications of the rules NE→E; E ∈{A; B; C; S}∪T . Finally, by applying NY → (Y; out)
or NY → (�; out), we obtain vY or v, respectively, in membrane 1.

In sum, we can correctly simulate each production from G correctly; derivations in
G yielding a terminal word w∈T ∗ correspond with halting computations in � which
in the last step send out w. All other computations in � either halt without having
sent out a terminal string or else enter an inHnite loop with the trap symbol Z . Hence,
we conclude L(�)=L(G):

It is an open problem whether or not the previous result is optimal, or the number
of used membranes can be decreased.

5. Rewriting P systems with less than four membranes

As seen in the previous section, four membranes suFce to get universality. In this
section we are going to give some results with respect to rewriting P systems with less
than four membranes.

Theorem 4. ET0L⊂ERP3(left).

Proof. Each language L∈ET0L can be generated by an ET0L system with only two
tables, G=(V; T; w; P1; P2). Moreover, each derivation starts by using the Hrst table
and ends by using the second table; always, the second table is used only once, while
the Hrst table may be used several times in a row (see the proof of Theorem V.1.3 in
[15]). It is also important to remember that each table in an ET0L system is complete
(a rule a→ x exists in each table for each symbol a∈V). We construct the following
P system:

�= (V ′; T; [1[2[3]3]2]1; ∅; wY; ∅; R1; R2; R3);

V ′ = V ∪ {a′ | a ∈ V} ∪ {Y};

R1 = {a′ → x | a → x ∈ P2}

∪ {Y → (Y; in); Y → (�; out)};

R2 = {a → h(x) | a → x ∈ P1}

∪ {Y → (Y; out); Y → (Y; in)};

208 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

R3 = {a′ → a | a ∈ V}

∪ {Y → (Y; out)};
where h is the morphism deHned by h(a)= a′; a∈V .
In membrane 2 we simulate the use of table P1, applying the rules to each symbol,

from left to right, with the introduced symbols being primed; when we can also rewrite
the marker Y , the string is sent either to membrane 1 or to membrane 3. In membrane 3
we remove the primes and return the string to membrane 2, hence we can simulate again
the Hrst table. In membrane 1 we simulate the use of table P2, starting from primed
symbols and leading to a string composed of non-primed symbols. When all symbols
are rewritten, we can either iterate the procedure, by using the rule Y → (Y; in), or we
can send the string out, by using the rule Y → (�; out). Consequently, Lleft(�)=L(G),
which proves the inclusion ET0L⊆ERP3(left).
This inclusion is proper. Actually, a stronger assertion is true: the family RP3(left)

contains languages which are not in ET0L.
Indeed, let us consider the system

�= (V; V; [1[2[3]3]2]1; {cfd}; ∅; ∅; R1; R2; R3);

V = {a; a′; b; b′; b′′; c; c′; c′′; d; f};

R1 = {f → fa′b′; f → a′b′; a′ → (a; in); c′′ → (�; out)};

R2 = {b′ → bb′′; d → (d; in); c′ → (c; out); c′ → (c′′; out)};

R3 = {c → c′; b′′ → b′; d → (d; out)}:
We start by producing a string c(a′b′)nd; n¿1, in membrane 1; after removing the
symbol f, we have to replace the leftmost a′ by a and the string is sent to mem-
brane 2. Here, each b′ introduces an occurrence of b and gets one more prime; when
all occurrences of b′ have been rewritten, we can use the rule d→ (d; in). The string
is sent to membrane 3, where all b′′ are replaced by b′, and the string is sent back to
membrane 2 (with c replaced by c′). If in membrane 2 we use the rule c′ → (c; out),
then the process is iterated, and this can be done in at most n steps, because at each
step we erase a prime from one occurrence of a′. If we use the rule c′ → (c′′; out),
then in the skin membrane we have to use the rule c′′ → (�; out) and the string is sent
out. Consequently, we have

Lleft(�) ∩ {a; b; b′}∗{d} = {(abnb′)nd | n¿ 1}:
The family ET0L is a full AFL, hence we can erase the symbols b′ and d by a
morphism and we get the language {(abn)n | n¿1}, which is not in ET0L (see [16,
Vol. 1, p. 272]). Therefore, Lleft(�) =∈ET0L.

Theorem 5. 0L⊂RP2(left); E0L⊆ERP2(left).

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 209

Proof. Let G=(V; w; P) be a 0L system. We construct the P system

�= (V ′; V ′; [1[2]2]1; {w′c}; ∅; R1; R2);

R1 = {a′ → x | a → x ∈ P} ∪ {c → (c; in); c → (�; out)};
R2 = {a → a′ | a ∈ V} ∪ {c → (c; out)};

where V ′ = {a′ | a∈V}∪ {c}, and w′ is the string obtained by priming all symbols of
w. The equality Lleft(�)=L(G) is obvious, hence we have the inclusion 0L⊆RP2(left).
The inclusion is proper, because there are Hnite languages which are not in 0L, but,
clearly, each Hnite language is in RP1(left).
If we start from an E0L system G=(V; T; w; P) and we construct � as above, with

the terminal alphabet T , then we obtain the inclusion E0L⊆ERP2(left) (for which we
do not know whether it is proper or not).

Theorem 6. MAT ⊂ERP4(left); MAT ⊆ERP4(free).

Proof. Because 0L⊆RP2(left) (Theorem 5) and 0L−MAT �= ∅ (0L contains one-letter
non-regular languages), it follows that RP2(left) − MAT �= ∅, hence we only have to
prove the inclusions.
To this aim, we start by considering a matrix grammar (without appearance checking)

G=(N; T; S;M), in the binary normal form, that is, with N =N1 ∪N2 ∪{S}, and with
the matrices in M of the forms (S→ZB); (X → �; A→ x), for Z; X ∈N1; �∈N1 ∪{�},
A; B∈N2; x∈ (N2 ∪T)∗. We replace each matrix (X → �; A→ x) with (X →f; A→ x),
where f is a new symbol. Assume the two-rule matrices (from M or modiHed as
above) labeled in a one-to-one manner with mi; 16i6k (note that (S→ZB) is the
unique matrix of this form in M). We construct the P system

� = (V; T; [1[2[3[4]4]3]2]1; BZ; ∅; ∅; ∅; R1; R2; R3; R4)

with

V =N1 ∪ N2 ∪ T ∪ {f;f′}
∪ {X ′ |X ∈ N1} ∪ {A′ |A ∈ N2}
∪ {Xi;j | 16 i; j 6 k} ∪ {Ai;j | 16 i; j 6 k};

R1 = {C → C′ |C ∈ N2}
∪ {A → (Ai;1; in) |mi : (X → �; A → x); 16 i 6 k}
∪ {f → (�; out)};

R2 = {X → (Xi;1; in) |mi : (X → �; A → x); 16 i 6 k}
∪ {Xi;j → (Xi;j+1; in) |X ∈ N1; 16 j ¡ i 6 k}
∪ {�′ → (�; out) | � ∈ N1 ∪ {f}};

210 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

R3 = {Ai;j → (Ai;j+1; out) |A ∈ N2; 16 j ¡ i 6 k}

∪ {Ai;i → (x; in) |mi : (X → �; A → x); 16 i 6 k}

∪ {�′ → (�′; out) | � ∈ N1 ∪ {f}};

R4 = {Xi;i → (�′; out) |mi : (X → �; A → x); 16 i 6 k}

∪ {C′ → C |C ∈ N2}:
Let us examine how � works in the leftmost mode. Assume that we have a string of
the form wX in membrane 1 (initially, we have the string BZ , for (S→ZB) being the
start matrix of G). From left to right, we can prime the non-terminals of w and in any
moment we can use a rule A→ (Ai;1; in), for some 16i6k, and the string is sent to
membrane 2 (if all symbols are primed, then the string will remain forever unchanged).
The only applicable rule in membrane 2 is X → (Xj;1; in), for some 16j6k, and the
string is sent to membrane 3. Here the second component of the subscript of A is
increased by one and the string is sent to membrane 2, where we do the same with
the second component of the subscript of the symbol X , and the string is sent to
membrane 3 again. Note that the subscripted symbols are unique from N1 and N2,
hence the leftmost restriction is observed. The string circulates between membranes 2
and 3 until one of the symbols gets a subscript of the form i; i or j; j. If i¡j, then this
happens for Ai; i, a string of the form w′Xj; i is sent to membrane 4 and it gets stuck
here. If we have j¡i, then the string gets stuck in membrane 2, in the form w′Xj; j. In
both cases, we have no output. If i= j, then the string is sent to membrane 4 by the
rule Ai; i → (x; in) and here, after using the rules C′ →C; C ∈ N2, for all primed non-
terminals, we use the rule Xi; i → (�′; out). Because of �′, the string is sent to membrane
2 and from here to membrane 1, with � non-primed. The process can be iterated as
long as we do not have �=f. If any non-terminal is still present, then we can use the
rules of the form C→C′ for all of them and then we can send out the string by using
the rule f→ (�; out), or we can use the rule A→ (Ai;1; in), which blocks the string in
membrane 2. Thus, only if the string is terminal, it belongs to Lleft(�). Consequently,
Lleft(�)=L(G) and we have the inclusion MAT ⊆ERP4(left).

The reader can easily see that Lleft(�)=L(�): the rules C→C′; C′ →C, for C ∈N2,
are both useless and harmless in the free mode of derivation, we generate the same
language irrespective whether we use them or not. Thus, we also have the inclusion
MAT ⊆ERP4(free). (In Section 6 we will see that, in fact, this is an equality.)

6. Permitting and forbidding conditions in P systems

We introduce now two further restrictions in the use of rules of a rewriting P system,
classical in formal language theory. First, we consider P systems where the rules are
applied with respect to some forbidding conditions. This means that the rules are of
the form 〈X → x;F〉, where F ⊆V , and the rule X → x can be applied only to the
strings which do not contain any symbol from F (when F = ∅ this means that the

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 211

rule is applied without any restriction, in the free mode). We denote by Lforb(�) the
language generated by a P system � using such rules, and by ERPm(forb); m¿1,
we denote the family of all such languages, generated by systems with at most m
membranes. Then, we consider the application of the rules with permitting conditions;
the rules are still of the form 〈X → x;F〉, where F ⊆V , but now the rule X → x can
be applied only to the strings which contain all symbols in F (again, F = ∅ means no
restriction, hence the free application of the rule). We denote by Lperm(�) the language
generated by a P system � using such rules and by ERPm(perm); m¿1, we denote
the family of all such languages, generated by systems with at most m membranes.
As previously said, if the degree of the systems is not bounded, then we replace the
subscript m by ∗.
First of all, we give some preliminary results analogous to the results in Lemma 1.

Directly from the deHnitions, we have

Lemma 7. (1) [E]RPm(free)⊆ [E]RPm(perm); m¿1;
(2) RPm(perm)⊆ERPm(perm); m¿1;
(3) [E]RPm(perm)⊆ [E]RPm+1(perm); m¿1.

Lemma 8. (1) [E]RPm(free)⊆ [E]RPm(forb); m¿1;
(2) RPm(forb)⊆ERPm(forb); m¿1;
(3) [E]RPm(forb)⊆ [E]RPm+1(forb); m¿1.

In the next theorem we show that, when we use forbidding conditions associated
with rules, two membranes suFce to generate all RE languages, and this is true even
for non-extended systems:

Theorem 9. RE=RP2(forb)=RP∗(forb)=ERP2(forb)=ERP∗(forb):

Proof. According to the Turing–Church thesis and to Lemma 8, we only have to prove
the inclusion RE⊆RP2(forb). Consider a matrix grammar with appearance checking
G=(N1 ∪N2; T; S;M; F) in the binary normal form. We assume the matrices labeled in
a one-to-one manner with m1; : : : ; mk1 (matrices of type 2), mk1+1; : : : ; mk2 (matrices of
type 3), mk2+1; : : : ; mn (matrices of type 4).
We build the P system

� = (V; [0[1]1]0; {ZB}; ∅; R0; R1);

where V =N1 ∪N2 ∪T ∪{f}∪ {Xi |X ∈N1; 16i6n} and the rules of R0 and R1 are
deHned as follows.
In R1 we place the rules
〈Xi → (Y; out); ∅〉, s.t. mi =(X →Y; A→ x); 16i6k1, is a type 2 matrix
〈Xi → (f; out); ∅〉, s.t. mi =(X → �; A→ x); k2 + 16i6n, is a type 4 matrix.
For each matrix of type 2, mi =(X →Y; A→ x); 16i6k1, and of type 4, mi =

(X → �; A→ x); k2 + 16i6n, we place in R0 the rules
〈X →Xi; ∅〉,
〈A→ (x; in); {X }∪ {Xj | j �= i}〉.

212 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

For each matrix of type 3, mi =(X →Y; A→ #); k1 + 16i6k2, we place in R0 the rule

〈X → Y ; {A}〉:
Moreover, we add to R0 the rule 〈f→ (�; out);N1 ∪N2〉.
Consider a string of the form Xw in membrane 0 (initially we have X =Z and

w=B). The only rules which can be applied are the rules of the form 〈X →Xi; ∅〉 and
〈X →Y ; {A}〉, which simulate the Hrst production of a matrix.

If we apply a rule 〈X →Xi; ∅〉, where i is the label of a matrix of type 2, then we can
only simulate the second production of the same matrix with the rule 〈A→ (x; in); {X }∪
{Xj | j �= i}〉. In fact, the forbidding condition for the rule, {X }∪ {Xj | j �= i}, prevents
the application of the second production of a diLerent matrix. Then, the string is sent
to membrane 1 where we complete the simulation of the matrix and we send back in
membrane 0 a string ready for the simulation of another string.
If we apply a rule 〈X →Xi; ∅〉, where i is the label of a matrix of type 4, then the

process is similar. The only diLerence is that the string which is sent from membrane
1 to membrane 0 is of the form fw. If w is terminal, then we can apply the rule
〈f→ (�; out);N1 ∪N2〉, which sends out of the system a terminal string. This rule
cannot be applied if w contains non-terminal symbols, due to the forbidding condition
N1 ∪N2.
The simulation of a type 3 matrix is done with the rules 〈X →Y ; {A}〉. These rules

can be applied only if the string does not contain the corresponding symbol from N2,
and, once applied, the simulation of the type 3 matrix is completed, thus the string is
ready for the simulation of another matrix. It is easy to see that L(G)=Lforb(�).

Surprisingly enough, the use of permitting conditions with ERP systems not only
does not lead to a characterization of RE languages, but it simply does not increase
the power of rewriting P systems: the class of languages generated by such systems
coincides with the class of languages generated by matrix grammars without appearance
checking.

Theorem 10. MAT =ERP∗(perm)=ERP2(perm):

Proof. The inclusion ERP2(perm)⊆ERP∗(perm) follows directly from Lemma 7.
The inclusion MAT ⊆ERP2(perm) can be proved by using a construction very sim-

ilar to the one in the previous proof. The only diLerence is that the rules of the
form 〈A→ (x; in); {X }∪ {Xj | j �= i}〉 (with forbidding conditions) are replaced by rules
〈A→ (x; in); {Xi}〉 (with permitting conditions): the second production of the matrix i
is simulated only if the string contains the symbol Xi.

To prove the inclusion ERP∗(perm)⊆MAT , let us consider an ERP system with per-
mitting conditions, �=(V; T; �;M1; : : : ; Mn; R1; : : : ; Rn) generating the language Lperm(�).
We consider the skin membrane labeled with 1.
Clearly, each string present at any time in the system is rewritten independently with

respect to the other strings present in the system at the same time. The only possible
mutual inRuence is the fact that if a string can be rewritten forever, then no output of
the computation is accepted. Thus, if Lperm(�) �= ∅ (otherwise, the language is trivially

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 213

in MAT), then there is an axiom w which leads to a string in T ∗ which exits the
system, while other axioms either lead to strings which leave the system or to strings
to which no rule can be applied. Thus, the axioms and their descendant strings can
be assumed to evolve independently to each other, without taking care whether or not
other strings can be rewritten forever.
We build a matrix grammar (without appearance checking) G=(N; T; S;M), gener-

ating the same language as � in the following way (h is the morphism deHned by
h(a)= a′; a∈V):

N = {a′ | a ∈ V} ∪ {[i] | 16 i 6 n} ∪ {E; S};

M = {(S → [i]h(w)) |w ∈ Mi; 16 i 6 n}

∪ {([i] → [i]; a′1 → a′1; : : : ; a
′
k → a′k ; A

′ → h(x)) |

〈A → (x; here); {a1; : : : ; ak}〉 ∈ Ri; 16 i 6 n}

∪ {([i] → [j]; a′1 → a′1; : : : ; a
′
k → a′k ; A

′ → h(x))|

〈A → (x; in); {a1; : : : ; ak}〉 ∈ Ri; 16 i 6 n; and j is the label

of a membrane placed directly inside membrane i}

∪ {([i] → [j]; a′1 → a′1; : : : ; a
′
k → a′k ; A

′ → h(x))|

〈A → (x; out); {a1; : : : ; ak}〉 ∈ Ri; 26 i 6 n; and j is the label

of the membrane surrounding membrane i}

∪ {([1] → E; a′1 → a′1; : : : ; a
′
k → a′k ; A

′ → h(x))|

〈A → (x; out); {a1; : : : ; ak}〉 ∈ R1}

∪ {(E → E; a′ → a) | a ∈ T}

∪ {(E → �)}:
It is easy to see that the symbols [i]; 16i6n, control the work of the grammar G
in such a way that the computations in � are correctly simulated: the symbols [i]
indicate the rules to be used as well as the membrane where the corresponding string
is placed in the next conHguration. At the same time, the mode of working speciHc to
matrix grammars, makes possible the checking of the permitting conditions by using
rules of the form a′ → a′, for a being an element of a permitting conditional set of a
rule. In this way, all computations in � can be simulated by derivations in G, working
with primed symbols. When a string is to be sent out of the system, the symbol E is
introduced, no further rule from � can be simulated, and the symbols of T lose their
primes. If no symbol from V–T is present and if the unpriming is complete, then we
get a string in L(G). Consequently, Lperm(�) = L(G), which completes the proof.

214 C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215

Combining the results in Theorems 6 and 10, we obtain the following unexpected
result:

Corollary 11. MAT =ERP4(free)=ERP∗(free)=ERP2(perm)=ERP∗(perm).

7. Final remarks

We have investigated P systems with string objects processed by rewriting rules, in
particular, by considering some restrictions in the use of the rules which are classic
in formal language theory: leftmost derivation and conditional use of rules. When
using extended rewriting P systems with leftmost derivations, four membranes suFce
to obtain universality. The universality can be obtained using non-extended rewriting
P systems with forbidding conditions, with only two membranes. Surprisingly enough,
we cannot obtain the same result when using permitting conditions, even if we use
extended rewriting P systems with an unbounded number of membranes.
Several problems still remain open, mainly concerning the optimality of the number

of membranes used in these results.

Acknowledgements

We are very much indebted to two anonymous referees, who have carefully read the
initial version of the paper. In particular, the present form of Theorem 3, improving the
original result, has been suggested by one of the referees. We thank him very much.

References

[1] P. Bottoni, A. Labella, C. Martin-Vide, Gh. P(aun, Rewriting P systems with conditional communication,
in: W. Brauer, H. Ehrig, J. Karhumaki, A. Salomaa (Eds.), Formal and Natural Computing, Essays
Dedicated to Gregorz Rozenberg, Lecture Notes in Computer Science, 2300, Springer, Berlin, 2002,
pp. 325–353.

[2] C. Calude, Gh. P(aun, Computing with Cells and Atoms, Taylor & Francis, London, 2000.
[3] J. Castellanos, A. Rodriguez-Paton, Gh. P(aun, Computing with membranes: P systems with

worm-objects, IEEE Seventh Internat. Conf. on String Processing and Information Retrieval, SPIRE
2000, La Coruna, Spain, pp. 64–74.

[4] J. Dassow, Gh. P(aun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[5] R. Freund, C. Martin-Vide, Gh. P(aun, Computing with membranes: three more collapsing hierarchies,

2000, manuscript.
[6] R. Freund, Gh. P(aun, On the number of variables in graph-grammars, programmed, and matrix

grammars, Proc. MCU Conf., ChiVsin(au, Lecture Notes in Computer Science, vol. 2055, Springer, Berlin,
2001, pp. 214–225.

[7] V. GeLert, Context-free-like forms for the phrase-structure grammars, Proc. MFCS’88, Lecture Notes
in Computer Science, vol. 324, Springer, Berlin, 1988, pp. 309–317.

[8] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars, Acta Inform. 31
(1994) 719–728.

[9] S.N. Krishna, R. Rama, On the power of P systems with sequential and parallel rewriting, Internat J.
Comput. Math. 77 (1–2) (2000) 1–14.

C. Ferretti et al. / Theoretical Computer Science 301 (2003) 201–215 215

[10] S.N. Krishna, R. Rama, P systems with replicated rewriting, J. Automata Languages Combin. 6 (3)
(2001) 345–350.

[11] V. Manca, C. Martin-Vide, Gh. P(aun, On the power of P systems with replicated rewriting, J. Automata
Languages Combin. 6 (3) (2001) 359–374.

[12] C. Martin-Vide, Gh. P(aun, Computing with membranes, One more collapsing hierarchy, Bull. EATCS
72 (2000) 183–187.

[13] C. Martin-Vide, Gh. P(aun, String objects in P systems, Proc. Workshop on Algebraic Systems, Formal
Languages and Computations, Kyoto, 2000, RIMS Kokyuroku, Kyoto Univ., 2000, pp. 161–169.

[14] Gh. P(aun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143 (see also Turku
Center for Computer Science-TUCS Report No. 208, 1998, www.tucs.H).

[15] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.
[16] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Heidelberg, 1997.
[17] Cl. Zandron, G. Mauri, Cl. Ferretti, Universality and normal forms on membrane systems, in: R. Freund,

A. Kelemenova (Eds.), Proc. Internat. Workshop Grammar Systems 2000 Bad Ischl, Austria, July 2000,
pp. 61–74.

http://www.tucs.fi

	On three variants of rewriting P systems
	Introduction
	Language theory prerequisites
	Rewriting P systems
	Leftmost rewriting in P systems
	Rewriting P systems with less than four membranes
	Permitting and forbidding conditions in P systems
	Final remarks
	Acknowledgements
	References

