
A Design Pattern for Model Based Software
Development for Automatic Machinery

Cesare Fantuzzi ∗ Marcello Bonfè ∗∗ Cristian Secchi ∗

∗ Università di Modena e Reggio Emilia, DISMI, Via Amendola, 2,
42100 Reggio Emilia - Italy, E-mail: cesare.fantuzzi@unimore.it.
∗∗ Università di Ferrara, Dip. Ingegneria, Via Saragat 1, 40100

Ferrara - Italy. E-mail: marcello.bonfe@unife.it

Abstract:
The paper presents the results of the application of object-oriented modeling techniques to the
control software design of complex manufacturing systems, with particular focus on automatic
machineries for production and packaging of food stuff, as milk, snacks, etc.
In this application fields there are some peculiar problems to tackle in order to develop effective
software control solutions, as for example the exception handling caused by product or packaging
material jam, the Human Machine Interface, the recipe production management etc.
The goal of this paper is to introduce design patterns developed in the framework of UML applied
to the development of automatic machineries software, aiming to define a set of predefined
modeling solutions to some class of recurrent design problems.

Keywords: Industrial control, PLC, UML, Object-oriented

1. INTRODUCTION

In recent years, the Object–oriented (O–O) modeling tech-
niques Rumbaugh et al. (1991) gained wide attention both
by the scientists and the practitioners as a design method-
ology that allows to tackle complexity in the development
process of mechatronic systems (i.e. mechanical systems
tightly coupled with their controllers), as automatic ma-
chineries.

The reasons of such a interest is in the effectiveness of
O–O basic concepts (abstraction, encapsulation, inheri-
tance) in managing complexity in many business software
applications. Thus it was a popular matter of research
in the past years to find if introducing O–O principles
and modeling would carry the same advantage in the
field of industrial control software development (see Storr
et al. (1997); Benitez Pina et al. (1999); Maffezzoni et al.
(1999); Bonfatti et al. (2001); Frey and Litz (2000); K.
Thramboulidis (2008)).

Unified Modeling Language (UML) Object Management
Group (2007) published by the Object Management Group
(OMG), became a standard for O–O methodology deploy-
ment, because it is well known and accepted in many
application fields, and, moreover, several software tools
for UML diagrams development are available ready on the
shelf, some of them also for free.

UML defines a set of graphical notations (nine differ-
ent kind of diagrams) to describe both architectural and
behavioral aspects of systems of any kind, but is not
necessarily associated to a specific methodology. In fact,
UML has been developed to support OO analysis and
design methods with a common language that can be
used in any phase of the development process, from re-
quirements specification to detailed design. For example,
system requirements can be expressed with the help of
Use Case Diagrams, structural views of the system can be
described by means of Class Diagrams, interaction views
by means of Collaboration Diagrams or Sequence Diagrams

and the event-oriented dynamic behaviour of each software
component can be specified with a Statechart. Moreover,
UML itself is defined by means of an extensible meta-
model, which allows the designer to adapt the syntax
and semantics of the language to a specific application
domain, by developing stereotyped elements and modeling
constraints expressed with OCL (Object Constraint Lan-
guage, Object Management Group (2007)), extending the
basic concepts of classes, objects, attributes and so on, in
order to represent more precisely domain-specific features.

The main issue in object oriented modeling have been
focused on software static structure, described by means of
UML Class and Object Diagrams, and software dynamic
behavior, developed by means of UML Statechart and
Sequence Diagrams. In particular, attempt to describe
mechatronic system dynamic behavior by means of state
machine started well in advanced with respect to the
introduction of Object-Oriented approach.

State machine languages as Grafcet David and Alla
(1992) and Sequential Function Chart (SFC) International
Electrotechnical Commission (2002) are both derived from
Petri Nets David and Alla (1992), in particular from
the subset of safe Petri Nets, but they have been en-
hanced with extensions for input/output interpretation
and data/timing processing, which are necessary for prac-
tical software implementation.

Moreover, control design models must be graphically rep-
resented in modular and hierarchical forms, in order to be
of practical use in real cases. In fact, both the languages
mentioned above and, among others, the one described in
Frey (2001), admit hierarchy between sub-nets, while some
authors have formalized modular extensions for traditional
Finite State Machines Shah et al. (2002) or adopted spec-
ification languages derived from Object-Oriented (O-O)
Software Engineering methods Bonfatti et al. (2001); Storr
et al. (1997).

Another key issue, in the industrial practice, is the design
and representation of exceptions handling mechanisms. In

that sense, it is worth to remark that the visual language
of Statecharts Harel (1987), which has been embodied in
UML specification which also supports hierarchy and con-
currency, have a significant advantage over Grafcet or SFC,
which derives from the possibility to define explicitly inter-
level transitions (i.e. transitions crossing the boundaries of
states hierarchy), very useful to model preemption of sub-
sequences and recovery from faults or alarms.

Some authors have tried to improve the expressiveness of
Grafcet/SFC-like diagrams Johnsson (1999), or to inte-
grate SFC and Statecharts Bauer and Engell (2002), in
order to fill this gap, while some others have developed
translation mechanisms to design PLC programs directly
with Statecharts Machado et al. (2001); Chester et al.
(1998).

Currently, the programming languages adopted by PLC
producers are those described in the international standard
IEC 61131-3 International Electrotechnical Commission
(2002), of which the most used is Ladder Diagram, a low-
level language that, without a proper definition of modular
structures, would make even programs for small machines
quite complicated.

However, as reported by several authors, the straightfor-
ward translation of O-O techniques from Business domain
into Industrial domain is not possible, mainly because the
following reasons:

• It allows to take into account the peculiarity of the
mechatronic context. To manage system complexity,
the object decomposition must be carefully shaped,
that means that objects have little interactions or
these interactions can be precisely defined. Here is the
point where the O–O paradigm comes in hand, as it
is helpful to identify the physical objects candidate to
represent a reusable module and to describe how their
interactions can be modeled in the control program.
With this approach, the electronic and mechanical
parts of the machine modules becomes so tightly
coupled together and with their control software,
that are referred as mechatronic objects Bonfè et al.
(2001).

• The language implementation constraints. As matter
of fact, devices like Industrial Controllers (i.e. PLCs)
are historically programmed with low-level languages,
with poor modularization and information hiding
facilities and, especially, strictly tied to the hardware
producer.

• Practical approaches to software developments. The
lost of the encapsulation bounds for the designed
software modules is in the application domain a disad-
vantage, since many technicians working on manufac-
turing machine test and maintenance on the field are
able to read and modify only the PLC code directly
running on the installed system, either because of
cultural background or because of practical reasons.

Starting from the above notes, the work described in
this paper introduces proper design patterns (a unified
solution to common design problems) based on O–O
paradigms which can support the design engineer in the
whole development and implementation process.

The entire work came from a strict collaboration between
academic and industrial partners, in which has been con-
sidered a complete development process, from the con-
ceptual thinking and preliminary requirement capture, to
final code generation. The process targets to describe a
generic control structure (e.g. compliant to IEC61131-3
standard for the development of industrial controllers),

which is based on an “Industrial Automation” UML profile
(introduced in Sec. 2). Some details of the implementation
in an industrial packaging machine platform are presented
in Sec. 3. Sec. 4 present some conclusive remarks.

2. AN OBJECT-ORIENTED DESIGN PATTERN
DESIGN METHODOLOGY FOR MANUFACTURING

SYSTEMS CONTROL

The efficiency of machine engineering process would be
greatly enhanced by systematic approaches that consider
modularity and reusability of the control software as
cardinal principles. Therefore, the control design activity
should produce a model of the software application that
is modular, precise but easy to understand (especially for
engineers with different backgrounds), correct and, finally,
easy to implement in the target programming platform. At
the end, but not less important, the design specification
model would be an efficient support also for the testing,
documentation and maintenance phases.

An important aspect that must be discussed is the correct
interpretation of “objects” in the domain of manufacturing
systems. In fact, a manufacturing machine module would
have reusability features if it consists of a tight aggregate
of mechanical parts, sensors, actuators and control soft-
ware routines, specifically related to a given part of the
manufacturing process.

In this context, it is valuable to define a module of that
kind as a Mechatronic Object. With regards to objects in-
teractions, several authors (e.g. Selic et al. (1994)) suggest
that the most suitable interface for a real-time software
module should be based on signals and events, rather
than explicit operation invocation. Therefore, a “mecha-
tronic object” should have a signal-based interface, in
order to send and receive synchronization and interlocking
information, rather than an operation-based interface, like
remote procedure calls, typically used in busness software
environments.

From the above considerations, the software part of a
“mechatronic object” should fatures the following char-
acteristics:

• an input/output interface of signals and data parame-
ters that permits the interactions and synchronization
with the rest of the control system.

• an input/output interface of sensory information and
actuator commands required to control the physical
part of the mechatronic object; this interface should
be considered as a “private” part of the mechatronic
object.

• a private data set to store status information.
• a control algorithm, which determines the dynamic

behaviour of the mechatronic ensemble, in order to
match the functional requirements.

The features described above are fulfilled by the Function
Block (FB) software structure, as described primarily by
IEC 61131-3 and extended in IEC 61499-1 for distributed
architectures. Even if the two documents actually propose
a different execution semantics Bonfè and Fantuzzi (2003),
the generic interpretation of FBs as “mechatronic object”
controllers can be schematized as shown in Figure 1.

The notation of UML Class Diagrams can be adapted
to mechatronic objects modeling by means of the UML
class stereotypes described in the following. The software
component that controls a mechatronic object is defined as
a class stereotyped as �mechatronic�, which is subject
to the following rules:

FB type

Input
Interface

Output
Interface

FB instance

Algorithm

Internal Variables

EN ENO

Other
M echatronic
Objects

Other
M echatronic
Objects

 M echatronic
Object

Fig. 1. Schematic representation of the Mechatronic Ob-
ject concept

• the public attributes of a �mechatronic� class must
be stereotyped as �input�, in which case they will
be modifiable exclusively from outside the class, or
�output�, which are instead modifiable only by the
internal behaviour of the class;

• attributes not stereotyped as described before cannot
have public visibility;

• operations, which may be used to model internal
data-processing activities, cannot have public visibil-
ity;

The choice to define the external interface of a�mechatronic�
class exclusively in terms of I/O signals is similar to the
one adopted in the Real-Time profile for UML described
in Selic and Rumbaugh (1998), that introduces the con-
cept of capsule, a highly de-coupled and reusable software
component, communicating with its surroundings through
ports. In our approach, each I/O attribute can be viewed
as an independent “port”, that can be connected with any
consistent signal source or sink.

Another extension of the modeling language is necessary
to model the I/O connections between the physical part
and the software part of a mechatronic object. As said
before, these signals should be considered a private part
of the object. In order to specify this concept in UML
models, it is necessary to introduce another class stereo-
type, that we have called �hardware�. A �hardware�
class should always be related by means of a composition
link (also called “strong aggregation” or “include by value”
relationship) with a �mechatronic� class and its stereo-
typed attributes (�input� and�output�) represent the
hardware-related I/O ports of the mechatronic object. The
notation of the proposed class stereotypes is shown by the
UML Class Diagram of Figure 2. Notice that inputs of a
�hardware� class are outputs of the controller and vicev-
ersa. The definition of separate class stereotypes for the
software part and the hardware part of the mechatronic
object, leaves to the implementation phase the definition of
an efficient protection mechanism for the physical I/Os of a
control module, according to the features of the execution
platform (e.g. VAR CONFIG variables, with instance-specific
location assignment, in IEC 61131-3 or Service Interface
Function Blocks in IEC 61499-1).

A complete and realizable structural model for a machine
control system should be defined by Class Diagrams in
which the hierarchical architecture derived by machine
modularization is modeled with composition links between
mechatronic classes. Well-formedness rules for mecha-
tronic object models should prescribe that there must be a
single “top-level” class (i.e. the machine) and composition
links must be qualified with fixed and unambiguous mul-
tiplicity, since dynamic creation of mechatronic objects is
not consistent with their physical interpretation. In this
way, the set of control modules for a given machine is

<<hardware>> Class_Nam e2

<<input>>
Input1 :DATATYPE1
...
<<output>>
Output1 :DATATYPE2
...

Outputs of the
controller

Inputs of the
controller

Internal behaviour
can m odel the plant

<<m echatronic>> Class_Nam e

<<input>>
+ Input_Par1:DATATYPE1
+ Input_Par2:DATATYPE2
...
<<output>>
+ Output_Par1:DATATYPE3
...
- Private_Var :DATATYPE4
...

Internal behaviour
described by a Statechart

Fig. 2. UML stereotypes for mechatronic object models

exactly determined by the instantiation of the top-level
class.

With regards to the specification of mechatronic objects
interactions, the syntax of UML Collaboration Diagrams,
based on methods invocation, should be modified in order
to describe the signal/data-flow interconnections between
object instances, with a graphical syntax that emphasize
the interpretation of �input� and �output� attributes
as “ports” of the system components. The notation of
stereotyped Collaboration Diagrams, that we have called
Mechatronic Data-Flow Diagram, should permit to specify
the association between inputs and outputs of two objects
as textual expressions upon the interaction link, as is
briefly described by the simple example shown in Figure
3.

InstanceA
:ClassName1

Output1_A :Input1_B
Output2_A :Input1_B

Input1_A :Output1_B
...

InstanceB
:ClassName2

Fig. 3. Interaction between two mechatronic objects

Considering then the development of a generic machine
control application, it is important to understand that
a manufacturing machine is very often a composition of
mechanical parts that handle and process the incoming
product to achieve the desidered functionality (e.g. prod-
uct packaging), acting like a “chain process”: those parts
act in a sequential manner on the products, and, generally,
it’s possible to extract a modular decomposition of the
overall system from this functional view. This approach
leads to develop well defined processing modules (e.g. a
cutting module) that can be reused in subsequent projects.
So that, the design of a manufacturing machine can be
very often connected to the composition of sub-processing
solutions developed in previous projects. These modules
consist of a well-defined set of mechanical parts, sensors
and actuators, which are related to a well-defined set of
control specifications.

The general design pattern of module composition can be
described by means of a hierachy of a Machine Controller
which acts as a system global supervisor, that coordi-
nates the behaviour of the physical functional modules
described using mechatronic objects (Figure 4. The Ma-
chine Controller is a virtual entity which describes the
macro behaviour of the whole machine, and it acts as a
orchestra director which coordinates the action of each
performer. In particular, to assure system modularity and
interchangability, only communication between Machine
controller and each mechatronic object are allowed.

Fig. 4. Machine Controller supervises Mechatronics Ob-
jects.

Given the architectural specification of the control system,
the last essential part of the model is the behavioural
specification. With the proposed approach, the functional
requirements of the manufacturing machine are mapped
into an operational input/output model of each module
of the machine controller. Since these modules are highly
reactive, the language of Statecharts, introduced in UML
as a variation of the original language of Harel Harel
(1987), is perfectly adequate for the behavioural specifi-
cation of mechatronic objects: each �mechatronic� class
will be associated with a Statechart diagram representing
the control action necessary for that module, while the
behaviour of �hardware� classes, which can also be
specified with a Statechart, will represent the behaviour
of the uncontrolled plant.

The features of concurrency and hierarchy provided by
Statecharts are very important for an efficient and intuitive
description of complex event-driven dynamics. Moreover,
the possibility to define inter-level transitions permit to
include very easily in the specification alarms and excep-
tions (as shown by Figure 5), which is a critical aspect for
real manufacturing machines.

-Idle-

-PowerO n-

-W orking-

Norm alStop

W orkIdle Running

Synchronize

[Power] [Power]

Stop

Stop

Alarm

RunningError

SyncError

ResetAlarm s

Run[Sync]

Run[¬Sync]

[¬Sync]

[Sync]

H

Fig. 5. Example of Statechart

Textual expressions, like transition labels or state actions,
needs a more detailed discussion, since they are the ele-
ments of the model that have major impact on implemen-
tation details. In particular, Statechart’s transition labels
are, for the most generic case, in the form:

trigger[guard]/actions,

where trigger is an expression of events, guard is a
boolean expression and actions is a list of data-processing

activities or events “generated” at the firing instant. State
actions are instead expressed in the form:

when / action

in which when is a qualifier that can be entry, exit,
do or a specified event, and action can be only a data-
processing activity. The correct semantics of these textual
expressions must take into account the features of IEC
61131-3 and IEC 61499-1, in which the concept of “event”
and data-processing activities should be interpreted as
boolean equation.

3. APPLICATION

The methodology described in previous section, has been
applied for the definition of a design model for the super-
visory control of Tetra Brik Aseptic R©packaging machines
developed at Tetra Pak Carton Ambient S.p.A., which are
complex manufacturing systems whose purpose is to fill
special carton packages with liquid products, like milk,
fruit juices and so on. The machines we have considered
belong to the aseptic type, which means that the packaging
material has to be sterilized before filling it with product,
and the machine part where the package is actually formed
must be kept in sterile conditions. The so-called “vertical
filling&forming” packaging process is schematized in Fig-
ure 6.

Fig. 6. Packaging material path in a Tetra Brik Aseptic
R©machine.

According to the decomposition guidelines described
above, the filling machine can be modularized as is de-
scribed in Figure 7, which shows the top-level hierarchical
decomposition according to UML Class Diagram notation.
In detail, diamond-head arrows show the aggregation rela-
tionship between the machine supervisor and each module,
while simple arrows shows generalization of some modu-
les, which can have several possible variants. The model
represents then a family of machines, which differs in the
“instantiation” of modules at configuration time.

A very critical set of operations for this manufacturing
system regards sterilization and preparation of the packag-
ing material and the filling system, because the packaging
process requires filling a tube of packaging material from
above and then cutting the package around the product.
When production ends, some operations are still neces-
sary before leaving the machine inactive, in particular the
aseptic chamber has to be ventilated in order to elimi-
nate dangerous peroxide vapours, and then external and
internal cleaning are performed. To describe accurately the
machine global behaviour, a statechart for the machine

FillingMachine

Automatic
Strip
Splicing
Unit

JS TBA/22JS TBA/21FFU TBA/22FFU TBA/21

Cleaning in
Place

Waste
System

Final
Folder Unit

Jaw System

Filling
System

Tube
Forming
System

Sterilization
System

Automatic
Splicing
Unit

Fig. 7. UML Class Diagram of a Tetra Brik Aseptic
R©filling machine

supervisor module has been defined. Figure 8 shows a
simplified version of the statechart diagram.

MACHINE ACTIVE

MACHINE STERILE

TIGHT PACKAGING

TUBE

CLEANING IN

PLACE

OPEN ASEPTIC

CHAMBER

EXTERNAL

CLEANING

WAITING FOR

PRODUCTION

VENTING

PRODUCTION

STERILIZATION

PREPARATIONIDLE

/ POWER ON POWER

OFF

CLEANING DONE

CLEANING DONE

STERILIZATION ERROR PROTECTION STOP

CRITICAL STERILIZATION

ERROR

EMERGENCY STOP

CIP SELECT

EXTERNAL CLEANING SELECT

EXTERNAL CLEANING SELECT

CIP SELECT

STEP UP

Fig. 8. Global behaviour of the machine considered

The machine modules are activated or deactivated ac-
cording to synchronization signals generated opportunely
by the supervisor module. For example, if the machine
is in the “Sterilization” phase, the parts of the machine
devoted to cutting and forming packages, namely the “Jaw
System” and the “Final Folder Unit”, should remain in-
active, while during production the “Sterilization System”
behaviour is different from that of the initial sterilization
sequence. In this way, modules can be considered as in-
dipendent entities, relying only on the supervision module
to perform correctly their contribution to the packaging
process.

As an example of detailed design for a control module, we
can focus on the part of the machine named “Automatic
Strip Splicing Unit” (ASSU), whose job is to attach a
plastic strip to the packaging material, which is needed
to seal the material in order to make the packaging tube.
The ASSU must also guarantee continuity of the plastic
strip flow, which is made possible by an automatic splicing
of the strip contained in two different reels, when the one
currently attached to the packaging material is over.

The ASSU module can be further decomposed in three
other components, each one with a different role in the
strip control functionality. One entity is the sealing head
that attaches the strip to the packaging material, one is
the motion system that permits a correct unrolling of the

strip reel, and another is the sealing head that performs the
strip splicing. Internal hierarchy of the ASSU is described
by a UML Class Diagram that describes all the entities
aggregated to the module, together with their sensors and
actuators, as shown in Figure 9.

<<m echatronic>>
Splicing Unit

<<input>>
PowerOn:BOOL
RunCm d:BOOL
Alarm Reset:BOOL

<<output>>
Norm alStopAlarm :BO OL

<<m echatronic>>
Sealing Head

<<input>>
PowerOn:BOOL

<<output>>
Splicing :BOOL
ChangeM otor :BO OL

<<m echatronic>>
M otion System

<<input>>
PowerOn:BOOL
RunCm d:BOOL
StartSplice:BO OL
ChangeM otor:BOOL
Alarm Stop:BO OL

<<output>>
DriveError :BO OL

<<hardware>>
Frequency Converter

<<input>>
Enable :BOOL
Run :BOOL
SpeedRef : REAL

<<output>>
Fault :BOOL

<<hardware>>
Switches

<<input>>
Bobbin1Running:
BO OL
Bobbin2Running:
BO OL

<<hardware>>
Splice Sensors/Actuators

<<input>>
PushHead:BO OL
HeatHead:BO OL

<<output>>
Bobbin1Em pty:BO OL
Bobbin2Em pty:BO OL
M anualSpliceRequest :
BO OL

<<hardware>>
Dancer

<<output>>
DancerPosition: REAL

<<hardware>>
M onitoring Sensors

<<output>>
Alarm s:BO OL
Alarm sInRunning :
BO OL
DoorsOpened :BO OL

Fig. 9. UML Description of the ASSU Module

To completely specify the behaviour of this particular part
of the machine, four statecharts have been defined: one for
the module supervision, one for the strip splicing sequence,
one for the activation steps of the strip applicator and one
to describe the behaviour of the motion control system (the
latter three omitted because paper length constraints).

-Off-

-Powered-

-W orking-

Norm alStop

Idle Running

Splice

Power ¬Power

Run[¬SealingHead.Splicing]

¬Run

SealingHead.Splicing ¬SealingHead.Splicing
 [Run]

SealingHead.Splicing
[Run]

¬SealingHead.Splicing
 [¬Run]

Alarm s

Alarm sInRunning

DoorsOpened

Alarm Reset

Fig. 10. UML Statechart for the ASSU supervisor

Similar considerations have been applied for the definition
of the other modules not described here, obtaining a global
description of system architecture and behaviour strongly
oriented to modularity and flexibility.

4. CONCLUSION

The paper presented a viable methodology for the appli-
cation of advanced software engineering methodologies for
the design and realization of automatic machineries for
smart manufacturing processes.

The requirement for system flexibility, cost reduction and
performance improvement has pushed for massive intro-
duction of intelligent components (motion control, smart

sensors, etc.) into the machine design. The methodologies
presented in this paper had the objective of defining an ad-
vanced techniques to drive the control software program-
mer in the development stage, to cope with the increasing
system complexity, preserving efficiency under real-time
constraints.

REFERENCES

Bauer, N. and Engell, S. (2002). A comparison of Sequen-
tial Function Charts and Statecharts and an approach
towards integration. In H. Ehrig and M. Grosse-Rhode
(eds.), Proc. 2nd Int. Workshop on Integration of Speci-
fication Techniques for Applications in Engineering, 58–
69. Technische Universität Berlin.

Benitez Pina, I., Vazquez Seisdedos, L., and Villafru-
ela Loperana, L. (1999). Including object–oriented prop-
erties in the plc’s programming languages. In IEEE
(ed.), ETFA ’99, volume 2, 1029–1043.

Bonfatti, F., Gadda, G., and Monari, P. (2001). PLC
software modularity and co-operative development. In
Proc. of AIM2001, volume 2, 775–780. IEEE/ASME.

Bonfè, M. and Fantuzzi, C. (2003). Design and verification
of mechatronic object-oriented models for industrial
control systems. In Proc. of 9th IEEE Int. Conf. on
Emerging Technologies and Factory Automation.

Bonfè, M., Fantuzzi, C., and Poretti, L. (2001). PLC
object-oriented programming using IEC 61131-3 norm
languages: an application to manufacture machinery. In
Proc. of the European Control Conference 2001, 3235–
3240.

Chester, E., Bates, I., and Kinniment, D. (1998). Auto-
matic generation of IEC 1131 PLC code from Statemate
Statecharts. In 4th International Workshop on Discrete
Event Systems, Cagliari, Italy.

David, R. and Alla, H. (1992). Petri Nets and Grafcet:
Tools for modelling discrete events systems. Prentice–
Hall.

Frey, G. (2001). SIPN, hierarchical SIPN and extensions.
Technical Report I19/2001, Institute of Automatic Con-
trol, University of Kaiserslautern.

Frey, G. and Litz, L. (2000). Formal methods in PLC
programming. In Proc. IEEE Conf. on Systems Man
and Cybernetics (SMC) 2000, 2431–2436.

Harel, D. (1987). Statecharts: a visual formalism for
complex systems. Science of Computer Programming,
8, 231–274.

International Electrotechnical Commission (2002). IEC
61131-3. Programmable Controllers - Part 3: Program-
ming Languages (2nd Edition). Final Draft Interna-
tional Standard (FDIS).

Johnsson, C. (1999). A Graphical Language for Batch Con-
trol. Ph.D. thesis, Department of Automatic Control,
Lund Institute of Technology.

Machado, J., Louni, F., Faure, J., Lesage, J., Ferreira Da
Silva, J., and Roussel, J. (2001). Modelling and imple-
menting the control of automated production systems
using Statecharts and PLC programming languages. In
Proc. of the ECC 2001, 1019–1024. Porto, Portugal.

Maffezzoni, C., Ferrarini, L., and Carpanzano, E. (1999).
Object–oriented models for advanced automation engi-
neering. Control Engineering Practice, 7(8), 957–968.

Object Management Group (2007). UML, v.
2.1.2, OMG. Document N. formal/2007-11-04.
Http://www.omg.org/spec/UML/2.1.2/.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. (1991). Object–Oriented Modeling and
Design. Prentice–Hall.

Selic, B., Gullekson, G., and Ward, P. (1994). Real-Time
Object-Oriented Modeling. John Wiley & Sons.

Selic, B. and Rumbaugh, J. (1998). Using UML
for complex real-time systems. ObjecTime Limited,
www.rational.com/media/whitepapers/umlrt.pdf.

Shah, S., Endsley, E., Lucas, M., and Tilbury, D. (2002).
Reconfigurable logic control using modular FSMs: de-
sign, verification, implementation, and integrated error
handling. In Proc. of ACC 2002. Anchorage, USA.

Storr, A., Lewek, J., and Lutz, R. (1997). Modeling and
reuse of object-oriented machine software. In Proc. of
European Conference in Integration in Manufacturing,
475–484.

K. Thramboulidis. (2008) Challenges in the Development
of Mechatronic Systems: The Mechatronic Component.
In Porc. of 13th IEEE Int. Conf. on Emerging Tech-
nologies and Factory Automation.

