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Preface 
This special issue of the Journal of Cybernetics and Information Technologies 
(CIT) contains the proceedings from the AIMSA’2012 Workshop on Advances in 
Robot Learning and Human-Robot Interaction that was held on 12th of September 
2012 in Varna, Bulgaria.  

The workshop is organized by the IEEE Technical Committee on Robot 
Learning, with chairs: Petar Kormushev, Edwin Olson, Ashutosh Saxena, and 
Wataru Takano. The focus is on recent advances in applying machine learning and 
AI approaches to robotics in general and in particular to the domain of human-robot 
interaction. The interest in applying machine learning approaches within the 
robotics community is continuously growing, in response to the fact that robot 
hardware is progressively becoming more complex. The conventional, manually-
engineered solutions to robot perception and control are reaching their limits, and 
there is an acute need for automated learning methods to cope with the ever-
increasing complexity of robots. 

This special issue contains nine selected papers, presenting results on a wide 
range of robotic platforms, such as robot arm manipulators, humanoid robots, and 
quadruped robots. Both theoretical and practical results are presented, on a variety 
of real-world scenarios for robot task learning and human-robot interaction. In 
addition, the issue contains abstracts of two invited talks, in which the invited 
speakers present the latest research developments in their respective fields. 
Assistant Professor Alexander Stoytchev, who is the Director of the Developmental 
Robotics Laboratory at Iowa State University, USA, presents an overview of the 
progress in the developmental approach to robotic intelligence, as well as the latest 
results in this field from his laboratory. Associate Professor Yukie Nagai, from 
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Osaka University, Japan, presents recent advances in human-robot interaction, with 
focus on how the interaction shapes the way robots learn. 

We hope that the readers will find this issue stimulating and inspiring further 
research. 

We would like to cordially thank the local organizer of the workshop, which is 
the Institute of Information and Communication Technologies (IICT), Bulgarian 
Academy of Sciences, and especially to Associate Professor Gennady Agre, for the 
support and guidance throughout the preparation of this workshop. 

Petar Kormushev, Italian Institute of Technology, Italy  
Edwin Olson, University of Michigan, USA  
Ashutosh Saxena, Cornell University, USA 

Wataru Takano, University of Tokyo, Japan 
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Which Object Comes Next? 
Grounded Order Completion by a Humanoid Robot 

C. Schenck, J. Sinapov, A. Stoytchev 
Developmental Robotics Laboratory Iowa State University, Ames IA, USA 
Emails: cschenck@iastate.edu           jsinapov@iastate.edu             alexs@iastate.edu 

Abstract: This paper describes a framework that a robot can use to complete the 
ordering of a set of objects. Given two sets of objects, an ordered set and an 
unordered set, the robot’s task is to select one object from the unordered set that 
best completes the ordering in the ordered set. In our experiments, the robot 
interacted with each object using a set of exploratory behaviors, while recording 
feedback from two sensory modalities (audio and proprioception). For each 
behavior and modality combination, the robot used the feedback sequence to 
estimate the perceptual distance for every pair of objects. The estimated object 
distance features were subsequently used to solve ordering tasks. The framework 
was tested on object completion tasks in which the objects varied by weight, 
compliance, and height. The robot was able to solve all of these tasks with a high 
degree of accuracy. 

Keywords: Developmental robotics, object exploration, grounding. 

1. Introduction 

Humans can detect order in an unordered set of objects at a very early age. Ordering 
tasks frequently appear on modern intelligence tests [7, 8]. They are also tightly 
integrated in many educational methodologies. For example, in the Montessori method 
[12], a 100-year-old method of schooling for children that has been shown to 
outperform standard methods [10, 11], children are encouraged to solve different object 
ordering tasks with specialized toys [16]. These strongly suggest that the ability to 
discover orderings among sets of objects is an important skill. Indeed, studies in 
 



psychology have revealed that this skill is learned at a very early age [22, 6, 2, 3].

Because order completion skills are so important for humans they should be im-

portant for robots that operate in human environments as well. Previous research has

shown that robots can successfully form object categories [15, 14, 13, 24] and solve

the odd-one-out task [19]. Object ordering tasks, however, have not received a lot of

attention from the robotics community to date.

This paper proposes a method for discovering orderings among groups of ob-

jects. The experiments were conducted with an upper-torso humanoid robot, which

interacted with the set of objects using a set of stereotyped exploratory behaviors.

The robot recorded both auditory and proprioceptive data during each interaction and

then extracted features from the sensory records. Using the extracted features for

each object, the robot was able to estimate a pairwise distance matrix between every

pair of objects. Then given three objects that form an ordered set, the robot’s model

was queried to pick one object from another group of four to complete the ordering

in the first set. The results show that the robot was able to pick the correct object that

completes the ordering with a high degree of accuracy and that different exploratory

behaviors and sensory modalities are required to capture different ordering concepts.

2. Related work

Object ordering tasks appear on multiple intelligence tests. For example, on the In-

telligence and Development Scales (IDS) test [7], children are asked to sort lines of

varying length. In a more common test, the Wechsler Intelligence Scale for Children

(WISC) [8], participants are asked to place images from a story into a logical se-

quence. While it is not currently feasible for a robot to understand the events taking

place in an image, these two tests show that, given an understanding of the objects,

knowledge of how to order them is a strong indicator of intelligence.

Several studies have shown that young children have a fundamental understand-

ing of the concepts underlying ordering. G r a h a m et al. [6] found that children

between the ages of 2 and 41
2

can easily judge an object as “big” or “small” when

compared to another object. Two studies by E b e l i n g and G e l m a n [2, 3]

found similar results. Interestingly, all three studies found that children were much

better able to judge an object as “big” or “small” when compared with immediately

viewable objects as opposed to making the judgment based on the object’s absolute

size [6], its normative size (i.e., how big it is compared to the typical object in the

category) [2], or its functional size (i.e., how big it is in relation to the function it is

to perform) [3]. The ability to compare an object to other directly viewable objects is

a prerequisite for successfully performing the task of ordering and since it is present

more strongly than other types of comparisons (absolute, normative, or functional) at

such an early age, it must be fundamental to intelligence.

In another study with 1 to 3-year-olds, S u g a r m a n [22] found that the order in

which children interact with objects tends to be influenced by the class and perceptual

similarity of the current object to the previously explored object. Additionally, it

was observed that the older children relied less on the class of the object to pick the
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(a) Weight Cylinders (b) Pressure Cylinders (c) Cones and Noodles
Fig. 1. The three sets of objects used in the experiments

next object and more on perceptual similarity. This paper uses a similar method to

determine orderings. The perceptual distances between each pair of objects is used

to determine the best object to complete the ordering.

In machine learning, the problem of ranking (i.e., placing a set of data in the

correct order) has been well studied [1]. There are many algorithms that can solve

ranking with a high degree of accuracy. It is difficult to use standard ranking meth-

ods, however, to perform order completion tasks, especially when the number of ob-

jects is small. Additionally, standard ranking methods are often supervised or semi-

supervised. On the other hand, the method proposed in this paper solves the task in

both unsupervised and supervised settings.

Not a lot of research has been done in robotics on discovering orderings in small

groups of objects. Measuring the similarity between objects, however, is a common

way to solve tasks in robotics. There have been numerous experiments that have

demonstrated robots’ ability to measure perceptual as well as functional object simi-

larity for varying tasks [15, 14, 13, 24, 23, 18, 4, 19]. Multiple studies [13, 17, 20, 18]

have used the similarity of perceptual features to categorize objects in an unsuper-

vised manner. In [19], perceptual distances between objects were used to solve the

odd-one-out task. This paper builds on this previous work by proposing a method to

solve the order completion task.

3. Experimental platform

All experiments were performed with the lab’s upper-torso humanoid robot, which

has two 7-DOF Barrett Whole Arm Manipulators (WAMs) as its actuators, each

with an attached Barrett Hand. The robot captured proprioceptive information from

the built-in sensors in the WAM that measure the angles and the torques applied to

each joint at 500 Hz. The robot also captured audio data through an Audio-Technica

U853AW cardioid microphone mounted in its head at the standard 16-bit/44.1 kHz

over a single channel.

The robot was tested on three ordering concepts: ordering by weight, ordering

by compliance, and ordering by height. Fig. 1 shows the three sets of objects that

were used in the experiments. The first two are standard Montessori toys. The weight

cylinders are composed of six pairs of objects (for a total of twelve objects) that vary

by weight, with the objects in each pair having the same weight. All the weight

cylinders are functionally identical except for their weight. The pressure cylinders

are composed in a similar manner (six pairs of objects) except that they vary by the
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amount of pressure required to depress the rod on top of the object. The cones and

noodles are composed of five green, styrofoam cones of varying sizes and five pink,

foam pieces (cut from a water noodle) ranging in size from small to large. Because

the object’s in the first two sets are visually identical, this task cannot be solved with

vision alone. In fact, the robot did not use vision at all to solve the ordering task.

The robot performed nine behaviors on each of the objects: grasp, lift, hold,

shake, drop, tap, poke, push, and press. Additionally, the behavior rattle was per-

formed on the weight cylinders and the pressure cylinders. Each behavior was en-

coded as a trajectory in joint-space for the left arm using the Barrett WAM API and

executed using the default PID controller. All behaviors were performed identically

on each object with the exception of grasp and tap, which were adjusted automati-

cally based on the current visually detected location of the object. Fig. 2 shows the

robot performing each behavior on one of the pressure cylinders.

At the start of each trial, the experimenter placed one of the objects on the table

in front of the robot. The robot then performed the exploratory behaviors on the

object, with the experimenter placing the object back on the table if it fell off. This

was repeated five times for each of the cones and noodles and ten times for the rest

of the objects. The data for the cones and noodles was collected at an earlier time

than for the rest of the objects, which is why only five repetitions were done and the

behavior rattle was not performed on them. During each behavior, the robot recorded

proprioceptive data in the form of joint torques applied to the arm over time and

auditory data in the form of a wave file. Visual input was used only to determine the

location of the object for the grasp and tap behaviors.

Fig. 2. The ten exploratory behaviors that the robot performed on the objects. From left to right and top

to bottom: grasp, lift, hold, shake, drop, tap, poke, push, press, and rattle. The rattle behavior wasn’t

performed on the cones and noodles. The object in this figure is one of the pressure cylinders. After

some of the behaviors (e.g., drop), the object was moved back to the red marker location on the table by

the experimenter.
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4. Feature extraction

4.1. Sensorimotor feature extraction

The auditory feedback from each behavior was represented as the Discrete Fourier

Transform (DFT) of the sound’s waveform, computed using 33 frequency bins. Thus,

each interaction produced a 33×n matrix, where each column represented the inten-

sities for different frequencies at a given point in time (i.e., n was the number of

samples). The DFT matrix was further discretized uniformly into 10 temporal bins

and 10 frequency bins. Thus, the auditory feature vector for each interaction was a

10×10 = 100 dimensional real-valued vector.

The proprioceptive feedback was represented as 7 time series of detected joint-

torques, one for each of the robot’s joints. To reduce the dimensionality of the data,

each of the series was uniformly discretized into 10 temporal bins. Thus, the propri-

oceptive features for each interaction were represented by a 7×10 = 70 dimensional

real-valued vector. As described next, the computed auditory and proprioceptive fea-

tures were used to estimate the pairwise distances for each pair of objects.

4.2. Object feature extraction

Let C be the set of sensorimotor contexts, i.e., each c ∈ C corresponds to a behavior-

modality combination (e.g., audio-shake), and let O denote the full set of objects. The

goal of the object feature extraction routine is to compute a distance matrix Wc such

that each entry W c
i j ∈ R encodes how perceptually different objects oi and o j are in

sensorimotor context c. Let the set X c
i = [x1, ...,xD]

c
i contain the sensorimotor feature

vectors detected for each of the D exploratory trials with object oi in context c. The

distance between two objects oi and o j in context c can be represented by the expected

distance between the feature vectors in X c
i and the feature vectors in X c

j , i.e.,

W c
i j = E[dL2(xa,xb)|xa ∈ X c

i ,xb ∈ X c
j ],

where dL2 is the L2-norm distance function. This expectation is estimated by:

W c
i j =

1

|X i
c |× |X j

c |
∑

xa∈X i
c

∑
xb∈X j

c

dL2(xa,xb).

The result is a set W of object distance matrices, where each Wc ∈W encodes the

pairwise perceptual distance for each pair of objects in O. The next section describes

how these matrices can be used to decide which one of a given set of objects best

completes a given order.

5. Methodology

5.1. Problem formulation

Each order completion task is formulated as follows. Let O denote the set of objects

explored by the robot. Let L denote an ordered subset of O, i.e., L = o1,o2, . . . ,oN

where each oi ∈O. Furthermore, let G ⊂O be an unordered set of M objects denoting

the set of candidate objects that could be selected to complete the order. Finally, let
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W be a set of distance matrices such that for a given sensorimotor context c, the

|O|× |O| matrix Wc ∈ W encodes the pairwise object distances in that context.

In this setting, the task of the robot’s model is to select one object from G that

correctly completes the order specified by the ordered set L . The idea behind the

approach presented here is to define an objective function that can evaluate the quality

of a proposed order and use that function to select an object from the set G . The next

sub-section describes the objective function as well as how that function is used to

pick an object that completes the order.

5.2. Selecting the best order completion candidate

Let q(L ,Wc) denote the objective function that measures the quality of the order L
with respect to the matrix Wc. That function is defined as:

q(L ,Wc) = ∑
oi∈L

∑
o j∈L

(

W c
i j −d(oi,o j,L)

)2
,

where the function d is defined as

d(oi,o j,L) = ∑
r=oi...o( j−1)∈L

W c
r(r+1).

In other words, the function d approximates the distance between objects oi and o j

by summing up the distances between adjacent elements in the ordered set L . Thus,

the function q measures the squared difference between the true distance matrix and

the one approximated by the proposed ordering. It is used by the robot’s model

to complete a given ordered set of objects as follows. For each object ok from the

unordered set G , let {L ,ok} denote the ordered set of objects produced by adding

object ok to the end of the ordered set L . In this setting, the model selects the object

ok that maximizes the objective function q({L ,ok},W
c).

5.3. Order completion using multiple sensorimotor contexts

The method presented so far can only use one distance matrix Wc that is specific

to one sensorimotor context c. For many tasks, however, it may be desirable to use

multiple sources of information about how objects relate to each other. For example,

if the given ordered set of objects L is ordered by weight, there may be several ex-

ploratory behaviors that capture relevant proprioceptive information for solving the

task (e.g., lifting and holding in place).

The set W contains multiple matrices encoding the pairwise object dissimilarities

computed for a given set of sensorimotor contexts. For each object ok ∈ G , let the

function completes(L ,ok,W
c) return 1 if ok is selected as the object completing the

order and 0 otherwise. Given the set of all matrices W , the ordered set L , and the

candidate set G , the model selects the object ok ∈ G that maximizes the following

function:

score(ok) = ∑
Wc∈W

wc × completes(L ,ok,W
c),

where wc is a weight that encodes the relevance of sensorimotor context c.

In the experiments described in the next section, three weighting methods are

evaluated. Whereas everything in this paper so far has been unsupervised, two of
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these weighting methods are supervised (methods 2 and 3). In the first method, the

weights are uniform. In other words, for all c, wc = 1.0.

In the second method, the weights are set to the estimated accuracy of using sen-

sorimotor context c to solve the specific ordering task. In other words, the robot’s

model estimates the accuracy of a context c by running the method described in the

previous subsection on a training set of tasks of the form [L ,G ] for which the cor-

rect answers are known. Once the weights for all contexts have been estimated, the

model uses those weights on subsequent tasks for which the answers are not known

in advance.

The third method that was used to combine sensorimotor contexts is boosting. It

was implemented using the AdaBoost algorithm [5]. It is briefly summarized here.

Given a set of m tasks [L1,G1], [L2,G2], ..., [Lm,Gm] for which the correct answers

o1
k ∈ G1,o

2
k ∈ G2, ...,o

m
k ∈ Gm are known, initialize the training weights as D1(i) =

1
m

for i = 1, ...,m. For each iteration t = 1, ...,T , select the sensorimotor context c∗(t)
such that c∗(t) = argmin

c∈C
ξc. The error ξc of a context c is computed as

ξc =
m

∑
i=1

Dt(i)
[

1− completes(Li,o
i
k,W

c)
]

,

where oi
k ∈ Gi is the object that correctly completes the ordering Li. Next, the param-

eter αt is computed as a function of ξc∗(t) as follows

αt =
1

2
ln

1−ξc∗(t)

ξc∗(t)
,

where ξc∗(t) is the error of the selected context in iteration t. After each iteration, the

training weights for all i = 1, ...,m are updated as follows

Dt+1(i) = Dt(i)exp
[

−αt(2∗ completes(Li,o
i
k,W

c∗(t))−1)
]

,

where Wc∗(t) is the object distance matrix of the context selected during iteration

t, and then normalized such that they sum to 1. It is worthwhile to note that the

expression −αt(2 ∗ completes(Li,o
i
k,W

c∗(t))− 1) comes out to +αt if context c∗(t)
incorrectly predicts the object to complete the ordering Li and −αt otherwise. In

essence, the training weights are altered such that tasks that context c∗(t) is incorrect

on are weighted higher and tasks that it is correct on are weighted lower.

Finally, the weight wc for each sensorimotor context is computed by

wc =
T

∑
t=1

αt [c ≡ c∗(t)],

where [c ≡ c∗(t)] is 1 if c was chosen during iteration t and 0 otherwise. In the exper-

iments described in this paper, T was set to 50. Results did not change significantly

with a higher value for T .

5.4. Evaluation

The model was evaluated independently on each of the three ordering concepts. Fifty

tasks were randomly sampled for each concept as follows: four objects were sampled

from the set O such that there existed a clear ordering amongst them (e.g., for the

11



weight cylinders, two objects from the same pair would not be sampled together).

The objects were then ordered (with the direction, forward or backward, determined

randomly) and the last object was removed. Thus, the first three ordered objects

formed the ordered set L for the given task. Three more objects were randomly sam-

pled from the remaining objects in O such that none validly completed the ordering.

These three objects, combined with the removed object, formed the set G . The per-

formance of the robot’s model was evaluated in terms of accuracy, i.e., the number

of tasks for which the robot’s model picked the correct object divided by the total

number of tasks.

For each concept, the performance of each sensorimotor context was evaluated.

The accuracy was also computed as more and more contexts were used by the model.

To estimate the context weights and to train the boosting method, five-fold cross-

validation was performed with the 50 sampled tasks (i.e., 10 tasks were randomly

assigned to each fold). The model was also evaluated as the number of tasks used for

training was varied from 1 to 49. In this case, all contexts were used.

6. Results

6.1. An example order completion task

Fig. 3 shows an example task in which the robot’s model is tasked with completing

an order of three objects that are ordered by height. In this case, the ordered input

set, L , consists of three pink noodles, while the candidate set, G , contains four ob-

jects – three cones and one noodle, such that only one of them is taller than the last

element in L . In this specific case, the input distance matrix encoded the perceptual

similarity of the objects in the press-proprioception sensorimotor context. The figure

shows an ISOMAP [25] embedding of the distance matrix, which makes it easy to

see that the matrix encodes an order between the objects. For this task, the model

correctly picked the cone from the set G that is taller than the tallest noodle object

in L . The next subsection describes a quantitative evaluation of the model in which

each sensorimotor context is evaluated on each of the three ordering tasks.

−3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

L :
?

G :

Fig. 3. An example task. The box on the left shows both the ordered set L and the unordered set of

objects G to choose from. The plot on the right shows the ISOMAP embedding of the distance matrix

between the objects. The blue circles denote the three objects in L , the red circle denotes the object in

G that is selected to complete the order.
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6.2. Ordering objects using a single sensorimotor context

For the first experiments, the performance of the model was evaluated using a single

sensorimotor context. Fig. 4 shows the accuracy for each context on each of the

3 concepts. As expected, lift (100%), drop (100%), hold (98.0%), shake (100%),

and rattle (98.0%) for proprioception perform very well on the task of ordering ob-

jects by weight. This is likely because the robot was supporting the full weight of

the object with its arm while performing these behaviors. For the pressure cylin-

ders, proprioception-lift (100%) and proprioception-tap (98.0%) achieve high per-

formance. The reason for this is likely due to the weight and moment of inertia dif-

ferences in the objects caused by the different springs inside the pressure cylinders.

Proprioception-press was able to achieve 100% accuracy on the cones and noodles

task as was expected since the moment at which the arm touched the object varied

depending on the object’s height. The other sensorimotor contexts did not perform as

well, with proprioception-push (84.0%) being the next highest performing context.
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Fig. 4. The accuracy of each context for each of the 3 concepts. Darker values indicate lower accuracies

with solid black being 0%; lighter values indicate higher accuracies with solid white being 100%.

6.3. Ordering objects using multiple sensorimotor contexts

Fig. 5 shows the performance of the robot on each concept as the number of contexts

varies from 1 to |C | when using the uniform, weighted, and boosted combination

methods as described in section 5.3.. The accuracy when picking just the single-best

context (based on the training tasks) is also shown for comparison. As the number of

combined contexts increases, the average accuracy also increases, which is consistent

with our previous results [17]. Additionally, in every case the weighted combination

method outperforms the uniform combination method. Also the boosted method al-

ways does at least as well as the weighted method and in most cases outperforms

it. For the weight cylinders (Fig. 5a), the weighted method reaches 98.0% accuracy

and the boosted method reaches 100% accuracy when all contexts are used. For the

pressure cylinders (Fig. 5b) the weighted and boosted combination methods reach

100% when all contexts are used. For the cones and noodles (Fig. 5c), the single-best

context is able to achieve 100%, but when all the sensorimotor contexts are combined

the robot was only able to achieve 72.0% accuracy using the weighted method. Using

the boosted method, however, it was able to reach 100%. We believe that since for the
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Fig. 5. The accuracy as the number of contexts is increased. The dark-gray line is the accuracy when

picking the single-best context; the black line is the accuracy when using uniform weights to combine

contexts; the gray line is the accuracy when the contexts are weighted in proportion to their individual

accuracies; and the light-gray line is the accuracy achieved when using AdaBoost to learn the weights.

height concept, unlike for the other two, there was only one context that performed

well, the noise from combining underperforming contexts outweighed the single best

performing context for the weighted method, but the boosted method was able to

learn this and weight the best context higher.

Fig. 6 shows the average accuracy as the number of tasks used for training is

varied from 1 to 49 when combining all sensorimotor contexts. Again the single-best

context (based on the training tasks) is shown for comparison. In every case, the

weighted method converges after no more than 6 training tasks are used to estimate

the weights. The boosted method always achieves 90% accuracy after no more than 4

training tasks and 95% accuracy after no more than 7. For weight, the boosted method

and the weighted method converge at approximately the same rate. For height, the

boosted method outperforms the weighted method by a large margin. For compliance,

the boosted method converges slower than the weighted method (weighted reaches

100% after 3 tasks are used while boosted doesn’t reach 100% until 40 tasks are

used). This is likely related to the result in fig. 5, where compliance is the only

task in which the uniform combination method reaches 100%. Interestingly, while

the boosted method and the single-best context (as determined by the training set)
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size from 1 to 49.
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converge to 100% for all three concepts, the boosted method converges much quicker

for both the weight cylinders and pressure cylinders, and at about the same rate for

the cones and noodles.

7. Conclusion and future work

In this paper we presented a theoretical model for performing order completion. We

evaluated this model using an upper-torso humanoid robot on three concepts: weight,

compliance, and height. The results show that the robot was able to select objects to

complete orderings with a high degree of accuracy. For each concept, there existed

at least one sensorimotor context that was able to achieve 100% accuracy, and there

were multiple such contexts for weight and compliance. When combining sensorimo-

tor contexts, on average, the best performance was achieved when all contexts were

used, though in every case the best single context did at least as well or better. This

suggests that when completing an ordering determined predominantly by only one

property (e.g., weight), if there exists at least one sensorimotor context that is able to

capture that property, then its predictions will typically align with the true ordering.

Given these results, what strategy should the robot use to solve a novel order

completion task? The results clearly show that the boosted combination method is

the best strategy for combining sensorimotor contexts because it always performs

as well as or better than every other method and because it usually takes very few

training tasks to train. The methodology used in this paper builds on our previous

work, in which we have shown that stereotyped exploratory behaviors can be used

to detect functional similarities between tools [18], perform object recognition [17],

perform object categorization [20], recognize surface textures [21], solve the odd-

one-out task [19], and now solve the order completion task. These results suggest

that a wide variety of tasks can be solved using a library of task-specific algorithms

applied on a common set of sensorimotor data extracted from exploratory behaviors.

A limitation of the method described in this paper is that while it can solve order

completion tasks in which the order is ascending or descending by one property, it

cannot solve more complicated tasks from the general domain of sequence comple-

tion. Therefore, future work will need to consider methods to solve completion tasks

in which the transitions between elements are more complex than simply increasing

or decreasing. Future work can also build on this model and others such as [19] and

[9] that analyze the structure among groups of objects by using the discovered prop-

erties to scaffold learning of more complex concepts. Pursuing this line of research

could allow robots to learn more complicated concepts that can be represented in

terms of simpler concepts such as the ones explored in this paper.
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Abstract: In this paper an autonomous intervention robotic task to learn the skill of 
grasping and turning a valve is described. To resolve this challenge a set of 
different techniques are proposed, each one realizing a specific task and sending 
information to the others in a Hardware-In-Loop (HIL) simulation. To improve the 
estimation of the valve position, an Extended Kalman Filter is designed. Also to 
learn the trajectory to follow with the robotic arm, Imitation Learning approach is 
used. In addition, to perform safely the task a fuzzy system is developed which 
generates appropriate decisions. Although the achievement of this task will be used 
in an Autonomous Underwater Vehicle, for the first step this idea has been tested in 
a laboratory environment with an available robot and a sensor.  

Keywords: Autonomous Underwater Vehicle (AUV), Imitation Learning, Fuzzy 
System, Extended Kalman Filter (EKF), Valve Turning. 

1. Introduction 

Nowadays, Autonomous Underwater Vehicle (AUV) robots are used in different 
applications like seabed survey, mine cleaning, cable or pipeline tracking [1], deep 
ocean exploration with visual mapping [2] or water quality observation [3]. For 
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intervention tasks, still Remotely Operated underwater Vehicles (ROV) are used 
due to the complexity and uncertainty of the work.  ROVs are operated by one or 
two persons, usually one to keep the robot stable and another to control the 
manipulators [4]. Recently, some positive results have been achieved in the task of 
recovering objects from the seabed ones using a robotic arm [5]. 

The main goal in the European project “Persistent Autonomy through 
learNing, aDaptation, Observation and Re-plAnning (PANDORA)”[6] is to develop 
and evaluate new computational methods to make human-built robots Persistently 
Autonomous. The goal is to reduce the frequency of assistance requests 
significantly and the key to this aim is the ability to recognize failure and respond to 
it autonomously. The PANDORA project is focused on three underwater tasks, one 
of them consisting in autonomous grasping and turning a valve with a free floating 
AUV.  

The AUV uses a manipulator to grasp the correct valve on a panel and open or 
close it. Since the vehicle does not dock, it needs to hover by swimming when 
counteracting reaction forces from the turning and from the sea currents and even 
minor turbulence from the manifold. Also it must ensure that the gripper position 
and orientation of the gripper after grasping does not cause significant shear forces 
in the valve handle (T-bar shape), and break it off. To overcome the difficulties in 
this task, imitation learning techniques [7] can offer a robust solution and an easy 
way to teach the robot trajectory using the data from a set of demonstrations. This 
kind of a learning method includes the most important desirable properties of 
movement planning which are: ease of representing and learning, compactness of 
the representation, robustness against perturbations and changes in a dynamic 
environment, ease of reuse for related tasks and easy modification for new tasks, 
and ease of categorization for movement recognition. However, no standard 
approach of movement planning exists that accomplishes all these goals [8-11]. 

This paper presents the preliminary work about autonomous valve turning 
done with a real manipulator in lab conditions, not underwater. Several sensors 
have been used to estimate the distance between the gripper and the valve. Also, an 
Extended Kalman Filter (EKF) [12] has been applied to improve the estimations 
and to avoid gaps in the data. Moreover, according to the instant dynamics of the 
valve, the robot has to decide if it can approach to the valve or not. To make this 
decision, a fuzzy system has been used. 

This paper has the following format. In Section 2 the general task and the 
proposed experimental environment are explained. In Section 3 the different 
methods and their combination to solve the task are described. The obtained results 
are showed in Section 4. And finally, conclusions are exposed in Section 5. 

2. Problem description and environment 

In PANDORA project, the task of grasping and turning the valve requires a set of 
actions that have to be done successfully before the final step. It must be noticed 
that in this paper the task of grasping and turning the valve is investigated, when the 
vehicle is in the work area in front of the desired valve. 
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This task will be accomplished by Girona500 [13], which is a compact and 
lightweight AUV, with hovering capabilities and can fulfil the particular needs of 
any application by means of mission-specific payloads and a reconfigurable 
propulsion system. In this case the AUV needs to be equipped with a robotic arm.  

Before attempting the valve turning task underwater, an approach system has 
been built in the facilities of Istituto Italiano di Tecnologia (IIT), using a light 
weight robotic arm (KUKA/DLR) and an Optitrack system. 

Fig. 1. Schematic diagram for the real scenarios 

The KUKA/DLR robotic arm will be used under Cartesian impedance control 
mode [14]. The robot’s position, orientation and the fixed joint or Cartesian 
stiffness commands will be sent to the KUKA controller using the DLR’s Fast 
Research (FR) Interface libraries [15].  

Although the KUKA/DLR is a different kind of manipulator than the one that 
is going to be attached to the Girona500 robot, the goal of this paper is to learn the 
attained trajectory during the experiment, not the specific kinematics of the 
manipulator. The available sensor in the AUV will be simulated using the Optitrack 
system, which lets you get the 3D position and orientation of a rigid body using a 
set of cameras and markers, see Fig. 1. This system gives the position and 
orientation with good precision and high frequency. In this problem we will focus 
our interest on the distance between the valve and the end effector; therefore we 
will mark these two elements to be tracked by the Optitrack system.  

The real AUVs can acquire data from one camera, but the precision and 
sampling frequency of the Optitrack’s data are much better. To improve the camera 
information, the robot has more sensors, in this case the gyro-enhanced Attitude and 
Heading Reference System (AHRS) will be used. The camera and the AHRS will 
be combined using an EKF to improve the estimation. Both sensors are simulated 
using the Optitrack’s data. 

Finally, the last difference between the two environments is the fact that 
underwater the valve will be fixed and the robot will move, but in the lab the 
situation is the opposite. 
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3. Experimental set-up and results 

In this section the experimental set-up details, the process, and the results are 
described step by step. The diagram of the set-up is shown in Fig. 2. 

 
Fig. 2. Flowchart of the system: This diagram represents how the data flow from the Optitrack system 
to the different phases of experiment to finally convert in commands to the robot. The learning phase 

is not included because it is done offline with the recorded data 

3.1. Data processing phase 

In this phase, an EKF is designed to estimate the position. The EKF is an extension 
of Kalman Filter (KF) [12], able to work with non-linear functions. The KF uses 
measurements with noise and an approximated model of the process studied to 
produce measures of the state, which are more accurate than those based on single 
measurements. Previous works have proved the advantages of using an EKF to 
track objects [16, 17]. 

In this task the movement of the end effector towards the valve is represented 
as a model with a constant acceleration, and the measurements of the system are the 
position of the valve obtained using a camera, and the acceleration of the vehicle 
obtained using an AHRS. The orientation of the vehicle is also considered as a 
control signal. 

The reference frame has the center in the valve position. In this way we avoid 
the differences between the two environments and solve the problem of changing 
the position of the valve. In this case, the mobile part in the coordinate system will 
be the end-effector and the base of the robot, all movements of the valve will be 
reflected in these two elements. The next equation shows the homogeneous 
transformation Matrix done to convert the data from the Optitrack frame to the 
valve frame, in this case a composed matrix is used with translation and standard 
rotation with RPY Matrix: 
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The two inputs of EKF are generated using different samples rates from the 

Optitrack’s data. The data selected to generate one sensor will never be used to 
generate the data of the other, making both sensors independents. Moreover, 
appropriate noise is added to the signals, using a precision similar to the sensors, for 
the camera it is ± 0.005 m, and for the AHRS it is ± 0.5 m/s2. 

3.2. Learning phase and trajectory execution 

A robot should be able to acquire new skills using various forms of learning and 
when direct physical contact to the robot is possible, kinaesthetic teaching offers a 
user-friendly and intuitive method to demonstrate new skills to a robot by manually 
guiding the robot’s arm through the motion. 

Briefly, using several demonstrations of a similar task, the robot creates a 
compact model of the skill by taking into account the variations and correlations 
observed along the movement. The positional constraints of the demonstrated skill 
are represented as a matrix of dynamical systems encoding robustly position 
trajectories. The Dynamic Movement Primitives (DMP) framework, which is used 
in this paper, was originally proposed by I j s p e e r t  et al. [7] and after that in  
[18-20]. 

M examples of a skill are demonstrated to the robot with different initial 
positions. Each demonstration { }Mm ,,1…∈  consists of a set of mT  positions x , 
velocities x�  and accelerations x��  of the end-effector in Cartesian space, where each 
position has three dimensions. Using the datasets from demonstrations, a mixture of 
K  proportional-derivative systems is created as a model of the skill [20].  

In this approach a decay term defined by a canonical system ss α−=�  is used 
to create an implicit time dependency property α)ln(st −= , in which the initial 
value for s  is 1 and converges to zero. Also for the backward movement, which is 
used in retracting mode, a complementary equation is used to generate time starting 
from the final time to the initial time.  

A set of K Gaussians is defined in time space, with centres T
iμ  equally 

distributed in time, and variance parameters set to a constant value inversely 
proportional to the number of states. By determining the weights )(thi  through the 
decay term s , the system will sequentially converge to the set of attractors in 
Cartesian space defined by centres X

iμ  and stiffness matrices ki
P , which are 

learned from the observed data, either incrementally or in a batch mode. 
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The desired acceleration to generate the trajectory is computed using the next 
equation, where x  and �x  are the current position and velocity and kv  defines the 
damping factor: 

(2) ( )
1

ˆ ( ) .
K

P X v
i i i

i

x h t k x k xμ
=

⎡ ⎤= − −⎣ ⎦∑�� �  

 

 
Fig. 3. In dense line you can see all the trajectories in 2D, given by demonstration. The broken line 

ellipsoids are the states learned by the algorithm to represent the trajectory and in dotted line you can 
see one trajectory produced using the learning part 

It can be seen that for parts of the movement where the variations across the 
different demonstrations are large, the reference trajectory does not need to be 
tracked precisely. By using this information, the controller can focus on the other 
constraints of the task, such as collision avoidance. On the other hand, for other 
parts of the movement, exhibiting strong invariance across the demonstrations 
should be tracked precisely. 

3.3. Reproduction phase 

A fuzzy system is used to generate a decision command based on linguistic 
variables and rules.  In a fuzzy system the fuzzifier section maps the crisp inputs 
into some fuzzy sets. Then the fuzzy inference engine uses fuzzy IF-THEN rules 
from the defined rule base to reason for the fuzzy output. The generated output in a 
fuzzy term is converted back to the crisp value by the defuzzifier section [21]. 

Since we are using EKF to make estimation and fill in the gaps from our 
sensor data, when we do not receive data for a while the uncertainty becomes bigger 
and bigger. In addition, the robot or the operator needs to know about the dynamics 
of the valve and decide if it can be approached, because if the relative movement 
exceeds the normal range we may miss the valve or break it off. Therefore, the first 
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input for our fuzzy system is an estimated movement between the valve and the 
arm. And the second input is receiving the data delay from the sensor. The output of 
the fuzzy system is a numerical command in the continuous range of grasping, 
waiting, and retracting actions [−1, 1].  

Here, we use Sugeno inference which consists of product inference engine, 
singleton fuzzifier, and center average defuzzifier. We use Gaussian membership 
functions in our fuzzy sets, and the designed fuzzy rule base is showed in  
Table 1. 

Table 1. Fuzzy rule base 

 Relative Movement 

Sensor 
Delay 

 Small Medium Big 
Low Forward Stop Backward 

Medium Forward Stop Backward 
High Stop Backward Backward 

After defining the rules for the system, let w  be the output value of each step 
and z  be the weight for each rule, then the final output of the fuzzy system is [21]:  

(3) 
1

1

FinalOutput .

N

i i
i

N

i
i

w z

w

=

=

=
∑

∑
 

Finally, with the input of the distance between the end effector and the valve, 
and with the decision of the fuzzy system the learning part generates a proportional 
movement with respect to the position to move the robot. The result is evaluated 
and if the condition of grasping the valve is completed, an instruction is sent to turn 
the valve, in the other case the new position is sent to the KUKA robotic arm. 

3.4. Complete experiment 

 

  
(a) (b) (c) 

Fig. 4. This set of images represents the process of one demonstration of the task of  
grasping the valve 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

Fig. 5. The set of images show the whole process of reproducing the task with perturbations. 
Images (a) and (b), the robot reaches the initial common position, from any position. Images (c) 
and (d), the valve is not stable and the robot moves to a safer position. Image (e). Image (f), the 
valve is stable in a new position, so the robot moves to grasp it. Image (g), the robot has grasped 

the valve and finished the trajectory. Images (h) and (i), the robot does the 90º turning 
 

 

 

Fig. 6. In this set of images we can see two different trajectories which are done by the end effector to 
grasp and turn the valve. In the left figure we can see the changes in the trajectory, moving forward or 
backward, depending on the stability of the valve position. On the other side, the trajectory on the right 
figure shows a clean trajectory going only forward to the valve, in this case the valve has been stable 

during the process
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In the final experiment all steps of the operation (from learning until valve 
turning) in a complete loop are accomplished by the robot appropriately and 
effectively, see Figs 4, 5 and 6. The designed system is capable of providing a 
smooth trajectory, compensating small perturbations in sensors, analysing the 
safeties of the situation and moving forward or backward with smooth changes, 
tracking the trajectory efficiently, and detecting the end of the trajectory and turning 
the valve. In future works the turning phase will be learned by the robot instead of 
using pre-programmed commands. 

4. Conclusions 

The proposed combination of techniques in this paper has allowed a robotic arm to 
learn the skill to follow a trajectory, grasp a valve and turn it. This experiment has 
been done as a simulated scenario of an underwater operation with an AUV. 

During this experiment the robot has been tracking the distance between the 
valve and the end effector of the robotic arm, doing a mixture of different kind of 
measurements using the EKF which generates a smooth movement of the robot and 
more stability in the control of the position. Moreover, the learning part has 
provided the ability to extract the important restrictions of a set of trajectories and 
offer the adaptability and robustness to follow the trajectory. In addition, the 
method has proved the possibility of utilizing a fuzzy system to study the dynamic 
behaviour of the valve and choose a proper action. 
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Abstract: Learning by demonstration is a natural approach that can be used to 
build a robot’s task repertoire. In this paper we propose an algorithm that enables 
a learner to generalize a task representation from a small number of 
demonstrations of the same task. The algorithm can generalize a wide range of 
situations that typically occur in daily tasks. The paper also describes the 
supporting representation that we use in order to encode the generalized 
representation. The approach is validated with experimental results on a broad 
range of generalizations. 

Keywords: Learning by Demonstration, Generalized Representation, Graph Task 
Representation, Behavior Graphs, Robotics. 

1. Introduction 

The ability to learn new knowledge is essential for any robot to be successful in 
real-world applications where it would be impractical for a robot designer to endow 
it with all the necessary task capabilities that it would need during its operational 
lifetime. Therefore, it becomes necessary that the robot is able to acquire this 
information in a human-like teaching approach. While significant research has been 
performed in the area of learning motor behavior primitives from a teacher’s 
demonstration, the topic of learning of the general task knowledge has not been 
sufficiently addressed. In learning general task knowledge, the main challenge for 
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the learner is to extract all the necessary information pertaining to the task, 
eliminate all the observations that are irrelevant and generalize the correct task 
representation in the case when multiple, possibly different demonstrations are 
given. In this paper we propose an algorithm that enables generalization of correct 
and complete task knowledge from a small number of demonstrations of the same 
task, under the assumption of possibly very different demonstrations provided to the 
learner. 

In our proposed approach we will assume that a learner robot is equipped with 
a basic set of capabilities or skills; the robot is aware of the goals each of these 
skills accomplish and also under which conditions these skills can or should be 
executed. During the learning stage, the learner robot is presented with a set of 
training examples with which it makes a generalized representation graph structure 
for each of the skills. These generalized representation graphs are then used in the 
execution part to create an execution sequence that achieves the task at hand. 

A significant advantage of the proposed method is these generalized 
representation graphs are always consistent with the training samples. In addition, 
our approach allows the robot to execute the learned tasks in collaboration with a 
human user: the user can help the robot by performing some parts of the task and 
the robot takes into account the user’s actions in order to finish up the task.  

The remainder of the paper is structured as follows: Section 2 summarizes 
related work in the field of learning by demonstration. Section 3 presents the 
generalization problems this paper is attempting to address and it describes the 
proposed method used to solve these problems. Section 4 presents the experimental 
results, Section 5 discusses these results and future work, and finally Section 6 
concludes our paper. 

2. Related work 

A significant challenge in designing robot systems that learn from demonstration is 
the interpretation of observations gathered from the instruction, as the robot has to 
process the continuous stream of data coming from its sensors, and then translate it 
into appropriate skills or tasks. In most cases this consists of segmenting the data 
stream into meaningful units, and then mapping them to a set of existing behavior 
primitives (S c h a a l  [1]). There is a large spectrum of approaches to the problem 
of segmentation, including Principal Component Analysis (PCA) (V o y l e s, 
M o r r o w & K h o s l a [2]), gesture interpretation (V o y l e s & K h o s l a  [3]), 
Learning Vector Quantization (LVQ) (P o o k & B a l l a r d  [4]), motion contact 
(T o m i n a g a, T a k a m a t s u, O g a w a r a, K i m u r a & I k e u c h i  [5], I k e u c h i, 
K a w a d e & S u e h i r o  [6]) and geometric interpretation of the demonstration  
(K u n i y o s h i & I n o u e [7]).  

Several recent approaches to learning by demonstration also use a graph/tree 
representation. Feature decision trees have been used to find the next behavior for a 
soccer player (A v r a h a m i - Z i l b e r b r a n d & K a m i n k a  [8]), topological 
task graphs using longest common sequences has been used in path planning 
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(A b b a s & M a c D o n a l d  [9]), and skill trees have been successfully applied to 
the pinball domain (K o n i d a r i s, K u i n d e r s m a, G r u p e n & B a r t o [10]). 
All of these approaches differ from the generalization graphs proposed in this paper 
in that the graph/trees represent different elements of the learned tasks. 

3. Task learning from generalizations 

3.1.  Classes of generalization problems 

Approaches to learning by demonstration or from observation are significantly 
influenced by performance of the demonstrator. The challenge for the learner is to 
extract all the relevant information pertaining to the task and eliminate all 
observations that are irrelevant. During learning from demonstrations there are 
various aspects of the task that could and should be refined through generalizations. 
In this paper our goal is to address the following generalization problems: 

1. Generalization 1.    Learning to distinguish between: 
a. Tasks for which the ordering of the demonstration steps is important. 

Under this case, the exact demonstrated path needs to be reproduced. 
b. Tasks for which the ordering of the task’s steps is not important, but 

where achieving the final goal is the main focus of the demonstration. 
Under this case, multiple ways of achieving the goal could be possible. 

c. Tasks for which the ordering of certain steps is important but the 
ordering of the rest of the steps is not important. Under this case, 

i. A step or set of steps needs to come before another step or set 
of steps but is unrelated to the other steps in the task. 

ii. A sequence of steps may need to be performed together but can 
appear anywhere during the task. 

iii. A step may need to be done at the same point in time. 

2. Generalization 2.    Learning to distinguish which steps in the demonstration are 
relevant, and which steps do not bring any contribution to the task. This will be 
done by monitoring the steps that do not appear in every demonstration. 

3. Generalization 3.    Learning to distinguish the number of times a step needs to 
be repeated since this number may change in each demonstration. This will be 
done by monitoring the post conditions of the repeated step after all the 
repetitions. 

3.2.  Collaborative behavior during task execution 

Another goal of the proposed approach is to handle situations, in which a teacher or 
another user helps out the robot that is currently carrying out a learned task. In this 
case the learner will need to detect that some of the behaviors may have been done 
while the learner was performing a different behavior in the task. The learner also 
needs to make sure the behavior that the other person performed met the post 
conditions of the behavior and if not, the learner will need to complete that 
behavior. 
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3.3.  Representation of generalized tasks 

In this work a task is represented as a sequence of symbols where each symbol 
corresponds to a behavior that a robot can perform. A sequence of such symbols, 
provided from a teacher’s demonstration, constitutes a training sample. In this 
context, a learner is given a set of sequences, potentially different, that all achieve 
the same target task. We base our generalization strategy on the preconditions of 
behaviors shown in the demonstration, based on what other behaviors have 
occurred prior to their execution. For instance, if behaviors a and b come before d 
in all training samples, but c can appear before or after d, we can generalize that 
behaviors a and b are preconditions for behaviord as they may achieve goals that 
are necessary for d’s execution. Our goal is to build, for each behavior present in 
the demonstrated task, a generalized representation of behavior preconditions that 
encapsulates the information contained in all training samples. This representation 
could afterwards be used by the learner to perform the same observed task. 

The representation for generalized preconditions in this approach is a graph 
that is mainly a tree structure with the added feature that leaf nodes in the graph can 
contain an edge pointing back to the root of the graph. The root of the graph is a 
behavior for which we build the generalized preconditions and the branches of the 
graph are the behaviors that came before the current behavior in the training 
examples. Thus, each behavior in the training example has its own graph. 

To demonstrate how the generalized precondition graphs for a task are created, 
let us consider an example in which the following training samples have been given 
for a particular task: 

• abcd 
• cadb 
• cdba 

Our approach works by starting at the first behavior in the first sequence which 
in this case is a. A new graph is created with a becoming the root node and a node 
with the name NULL added as a child, because no behavior has been executed 
before a, and therefore the behavior has no preconditions. This child node is then 
marked as final state; the final state signifies that the behavior represented by the 
root node can be performed after the behavior marked as a final node in the current 
sequence. Also the number of times a final node appears before the behavior is 
recorded and is used at the execution stage to decide which behavior to perform in a 
sequence when multiple behaviors are applicable and can be chosen at the same 
time. Next the algorithm creates the precondition graph for behavior b; the graph 
starts with b as the root node and a as a final state child node, because a was 
executed before it in the first training sample. A new graph is then created for 
behavior c and the branch with nodes a and b is added. Finally the graph for d is 
created and a, b, and c are added as a branch. The graphs created are shown in Fig. 
1. The numbers appended to the behaviors in the graph have the following meaning: 
the first number appended signifies the level that it is located in the graph and the 
second number is only appended to the final state nodes, representing the number of 
times the node was a final state in the training samples. 
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Fig. 1. Graphs created after the first sequence of behaviors 

After the second training sequence is added, all the precondition graphs are 
refined as follows. Behaviorc is the first in the training sample, so a null child node 
is added to its graph, indicating that it can also be the first one executed in the task. 
Then, behavior c is added as a child node in behavior a’s graph, a branch containing 
behaviorsc and a are added to d’s graph, and finally c, a, and d become a branch in 
b’s graph. Fig. 2 shows the graphs after adding the second training sample. 

 
Fig. 2. The behaviour graphs after the second sequence has been added 

Lastly the third training sample is incorporated using the same strategy as 
above. The resulting generalized precondition graphs can be seen in Fig. 3. 
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Fig. 3. The behaviour graphs after the third and last sequence has been added 

If a behavior occurs in a training sample two or more times, the children nodes 
in the generalized precondition graph will point back to the parent node. Consider 
the sequence: 

• abcfdefg 
When a graph for behavior f is created, a branch containing the behaviors a, b, 

and c will be added to f’s graph and the c node will have an edge pointing to f’s 
node. A branch containing d and e is also added to the graph. f’s graph can be seen 
in Fig. 4. 

 
Fig. 4. Example of a graph whose behaviour appears one or more times in a sequence 

Additionally, the graphs keep track of the number of training samples each 
behavior appears in. This number can be used to calculate the percentage of times a 
behavior appeared in the training example which in turn is used to find behaviors 
that did not appear in every sample. Depending on this percentage, we can choose 
to keep the behavior’s graph or completely remove it.  

Finally, the generalized precondition graphs keep track of whether a behavior 
appeared two or more times in a training sample. In our representation, these 
behaviors are aggregated into special behaviors which are just behaviors that the 
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learner repeats in the task as efficiently as possible until the post conditions are met. 
At the beginning of the learning period, the learner is provided a list of behaviors 
that can be performed and the possible parameters for these behaviors. 
Conclusively, these special generalized representation graphs are always consistent 
with the training samples.  

3.4.  Usage of generalization graphs 

The generalized representations we built through the method presented above can 
be used by the learner to reproduce the task that has been demonstrated. Given that 
multiple demonstrations have been provided, the learner needs to find an execution 
sequence that achieves the same goal and is consistent with all the training 
examples. To do this, the system goes through all the precondition graphs and finds 
the behaviors that have the current execution sequence as a branch in their graph. If 
two or more behaviors fit the criteria, we pick the behavior that has been visited the 
most at the current time behavior in the training examples or if all the behaviors 
have been visited equally, we randomly pick a behavior as the next one in the 
sequence. To demonstrate this, considered the previous example and graphs in  
Fig. 3: 

• t0: Current sequence: null Behaviors that qualify: a and c Choose: c 
• t1: Current sequence: c Behaviors that qualify: a and d Choose: d 
• t2: Current sequence: cd Behaviors that qualify: b Choose: b 
• t3: Current sequence: cdb Behaviors that qualify: a Choose: a 
• t4: Current sequence: cdba   

4. Experimental results 

The system was tested in the context of a task for making the dough for chocolate 
chip cookies. A training example was a set of sequences that were made up of 
strings representative for the behaviors needed for this task. The list of behaviors 
for this task and the parameters that these behaviors can take are as follows: 

Add Sugar (Su) 0.5 cup,  
Add Salt (Sa) 1 tsp,  
Add Baking Soda (BSo) 1 tsp,  
Add Flour (F) 0.5, 1, 2 cup,  
Add Chocolate Chips (CC) 0.5, 1, 2 cup,  
Add Brown Sugar (BSu) 1, 2 cup,  
Add Vanilla (V) 1 tsp,  
Add Butter (B) 0.5, 1, 2 cup,  
Add Eggs (E) 1, 2 egg,  
Add Nuts (N) 0.5, 1, 2 cup,  
Stir (St) 1, 2, 3, 4 time. 
The results for our system depended on whether or not the generalized 

representations produced an execution trace consistent with all the training 
examples. In most cases, this meant that the order of the behaviors matched one of 
the sequences given to our system. However, when the examples had repeated 
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behaviors or behaviors that only appeared in a small percent of the sequences, this 
was not necessarily the case. When there were repeated behaviors, the number of 
times the behavior was repeated depended on what amounts the learner could add to 
meet the post conditions. Furthermore, when a behavior appeared in a small percent 
of the input sequences, the behavior did not appear in the execution sequence when 
it was in less than 50% of the input sequences. In addition, as mentioned earlier, in 
the execution phase the robot can collaborate with a human user, who may help the 
robot by performing some of the steps in its task. This human intervention may alter 
the path that the learner would have chosen to perform the task, while still obeying 
all the constraints of the training samples. Also, if the human user performs a 
behavior only partially the learner will need to complete it. When a human user 
performs an incomplete behavior, the number of times a behavior was repeated may 
not match a seen training example but it will obey the rules represented in the 
training examples. It is important to note that the human user can perform any 
behavior in the execution sequence but the following examples show only the cases 
where user input had a significant impact on the final execution sequence. In all of 
the examples the numbers in the parenthesis represent the parameter values for each 
behavior; the units can be found in the list above. We tested eight different 
scenarios, which cover all of the generalization cases presented in Section 3. These 
examples and the results are presented below. 

Scenario 1. This constitutes an example where the training sequences were 
identical and it shows that the system can correctly encode tasks from 
generalization 1.a: 

• F(2)Sa(1) BSo(1)B(2)BSu(1)Su(0.5)V(1) E(2) CC(2) 
• F(2)Sa(1) BSo(1)B(2) BSu(1)Su(0.5)V(1) E(2) CC(2) 
• F(2) Sa(1)BSo(1)B(2) BSu(1)Su(0.5)V(1) E(2) CC(2) 
There is no variation in the training examples and thus the execution sequence 

produced by the system is identical to the training examples: 
• F(2)Sa(1) BSo(1) B(2) BSu(1) Su(0.5) V(1) E(2) CC(2) 
In this scenario, the helper performs the behavior add one egg which does not 

fully achieve the postconditions of that behavior.Our program is able to perform the 
behavior again to create an execution sequence consistent with the training 
examples; the execution sequence looks as follows: 

• F(2)Sa(1) BSo(1)B(2) BSu(1) Su(0.5) V(1) E(1) E(1) CC(2) 

Scenario 2. This scenario aims to illustrate that the system can identify and 
encode the type of generalizations described in 1.b: 

Example 1. In a first setup, the learner is provided with the following 
demonstrations: 

• F(2) Sa(1) BSo(1) B(2) BSu(1) Su(0.5)V(1) E(2) CC(2) 
• CC(2)V(1) F(2) BSu(1) E(2) Su(0.5) B(2) Sa(1) BSo(1) 
• BSo(1) E(2)BSu(1) V(1) Su(0.5)Sa(1)CC(2) B(2)F(2) 
In this scenario the training examples were all different, with very few 

ordering constraints that are consistent throughout all the examples. The system 
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produces an execution sequence similar to one of the training examples (in this 
case, the third): 

• BSo(1) E(2)BSu(1) V(1) Su(0.5) Sa(1) CC(2) B(2) F(2) 
If in this example a helper performs a behavior at the beginning of the task, 

then the robot may take a different path to finish the task. The execution sequence 
above was chosen at random but if the helper performs the behavior F first, then the 
following sequence will be executed: 

• F(2) Sa(1) BSo(1)B(2) BSu(1)Su(0.5)V(1)E(2) CC(2) 

Example 2. In a first setup, the learner is provided with the following 
demonstrations: 

• BSo(1)Sa(1) Su(0.5) CC(2) E(2)F(2) BSu(1)B(2) V(1)  
• V(1) F(2) B(2) Su(0.5) E(2) CC(2) Sa(1) BSu(1) BSo(1)  
• B(2)E(2) CC(2) Sa(1) BSo(1)BSu(1)F(2)V(1)Su(0.5)  
• E(2)F(2) Su(0.5)BSu(1)CC(2) V(1)Sa(1) B(2)BSo(1) 
• B(2)E(2)CC(2)BSo(1) Sa(1) Su(0.5) F(2)V(1) BSu(1)  
In this scenario the training examples were all different, with no ordering 

constraints that are consistent throughout all the examples. There were two cases 
that started with the same three steps and thus the robot choose to start with those 
three steps since they had occurred the most in those positions. At this point in the 
program, the approach will randomly choose between Sa and BSo. In this example 
the helper assisted the robot after the first three steps, by performing BSo. Our 
approach was able to successfully find the next step that obeyed all the rules of the 
training data.  

• B(2)E(2) CC(2)BSo(1) Sa(1) Su(0.5) F(2)V(1) BSu(1) 

Scenario 3. This scenario falls under the generalization problem 1.c.i: 
• CC(2)Sa(1) V(1) Su(0.5)BSu(1) B(2)BSo(1)E(2)F(2) 
• BSo(1) F(2)BSu(1) Sa(1)CC(2)E(2) B(2)Su(0.5) V(1) 
• Su(0.5) V(1)B(2) CC(2) Sa(1)F(2)BSu(1) E(2)BSo(1) 
The above scenario is representative of cases in which a behavior needs to be 

executed before another behavior but not necessarily immediately before. In the 
training sequences above, add salt (Sa) always came before add eggs (E) but never 
right before it. The system produces an execution sequence similar to one of the 
training examples (in this case, the first): 

• CC(2)Sa(1) V(1) Su(0.5) BSu(1)B(2)BSo(1)E(2)F(2) 

Scenario 4. This scenario aims to show that the system can identify and 
encode the types of situations illustrated by generalization category 1.c.ii: 

• CC(2)F(2) Sa(1) BSo(1) BSu(1) B(2) E(2) V(1) Su(0.5) 
• F(2)Sa(1)BSo(1)BSu(1) Su(0.5)CC(2)B(2)E(2)V(1) 
• B(2)E(2) V(1) Su(0.5) CC(2) F(2)Sa(1) BSo(1)BSu(1) 
In this set of training examples, F always came before Sa which always came 

before BSo and BSo always came before BSu. Also B always came before E which 
always came before V. Fig. 5 shows the precondition graphs for two of the 
behaviors, one is a generalized behavior, F+Sa+BSo+BSu, and CC. The system 
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produces an execution sequence similar to one of the training examples (in this 
case, the third): 

• B(2)E(2) V(1)Su(0.5)CC(2)F(2)Sa(1) BSo(1) BSu(1) 

 
Fig. 5. Preconditions for Scenario 4 (behaviors B+E+V, F+Sa+BSo+BSu, and CC) 

Scenario 5. This scenario aims to demonstrate that the system can successfully 
generalize problems of category 2: 

Example 1. In a first setup, the learner is provided with the following 
demonstrations: 

• E(2) B(2) Su(0.5) BSu(1) F(2)BSo(1) N(2) Sa(1) V(1) CC(2) 
• Sa(1) Su(0.5) E(2) CC(2) BSo(1) F(2) V(1) B(2)BSu(1) 
• BSo(1) BSu(1) B(2) CC(2) E(2)F(2)Sa(1) Su(0.5) V(1) 
In this example, behavior N occurs in only one of the three sequences;this is 

lower than our threshold. Therefore N’s graph is removed from the set of possible 
behaviors and is not present in the execution sequence produced by the system: 

• E(2) B(2) Su(0.5) BSu(1) F(2) BSo(1) Sa(1) V(1) CC(2) 
Example 2. In a second setup, the learner is provided with these 

demonstrations: 
• E(2)B(2) Su(0.5) BSu(1)F(2)BSo(1) N(2) Sa(1)V(1) CC(2) 
• Sa(1)Su(0.5) E(2)CC(2) BSo(1)F(2)V(1) B(2) BSu(1) 
• BSo(1) N(2) BSu(1) B(2)CC(2) E(2) F(2) Sa(1)Su(0.5) V(1) 
In this example, behavior N appeared in two of the three training examples, 

and thus it is included as shown by the execution sequence being generated: 
• BSo(1) N(2) BSu(1) B(2)CC(2)E(2)F(2)Sa(1) Su(0.5) V(1) 
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Scenario 6. This scenario aims to show that the system can identify and 
encode the types of situations illustrated by generalization category 1.c.iii: 

• CC(2)BSu(1)BSo(1) F(2) B(2) Su(0.5) Sa(1) V(1) E(2) 
• V(1)CC(2) F(2)Sa(1)B(2) BSu(1)E(2)Su(0.5)BSo(1) 
• Sa(1) Su(0.5)E(2) V(1) B(2)BSo(1) F(2)BSu(1)CC(2) 
In this case, the behavior add butter (B) was executed the fourth in each 

sequence in the example producing an execution sequence consistent with 
theexamples: 

• Sa(1)Su(0.5) E(2)V(1)B(2) BSo(1) F(2) BSu(1) CC(2) 

Scenario 7. This scenario aims to demonstrate that the system can successfully 
generalize problems of category 3: 

Example 1. In the first setup, the learner is provided with these 
demonstrations: 

• Su(0.5)Sa(1)BSo(1) F(2)CC(2)St(1) St(2)St(1) St(1)BSu(1) V(1)B(2)E(2) 
St(3)St(2) 

• BSu(1)BSo(1) E(2) Sa(1) CC(2) St(1) St(1) St(1) St(1) St(1) V(1) F(2) 
B(2)Su(0.5) St(4) St(1) 

• B(2)V(1)E(2)BSu(1) Su(0.5)St(2) St(2) St(1) F(2) BSo(1) CC(2) Sa(1) St(2) 
St(2) St(1) 

Behavior St was repeated five times in two different places. Fig. 6 shows the 
precondition graph for St. The system detected the repeated behavior and at 
execution time it produced a sequence of St that used the most efficient way to stir 5 
times:  

• BSu(1)BSo(1) E(2) Sa(1) CC(2)St(4) St(1) V(1) F(2) B(2) Su(0.5) St(4) St(1) 

 
Fig. 6. Precondition Graph for Scenario 7 (Example 1: Behavior St) 

Example 2. In the second setup, the learner is provided with these 
demonstrations: 
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• Su(0.5) F(1) F(1)F(0.5) BSu(1)Sa(1) B(2) V(1) E(2) BSo(1) CC(2) 
• E(2) BSo(1)Sa(1)B(2)F(1)F(0.5)F(0.5)F(0.5)BSu(1)V(1) CC(2) Su(0.5) 
• CC(2)V(1) BSu(1) BSo(1) Su(0.5) E(2) F(1)F(1)F(0.5) Sa(1)B(2) 
In the second example the behavior F was repeated until there was 2.5 cups 

added in each sequence. The system detected the repeated behaviors and at 
execution time, produced a sequence whose post conditions met the training 
examples. 

• E(2) BSo(1) Sa(1) B(2) F(2) F(0.5) BSu(1) V(1) CC(2) Su(0.5) 

5. Discussion and future work 

The experimental results presented above demonstrate that our system can 
successfully generalize the problems presented in Section 3. Furthermore the 
experiments establish that our system can successfully generate an execution 
sequence that is always consistent with the training samples.  

However, our system could create a better execution sequence for the current 
environment if the state of the environment was recorded after a behavior was 
executed. This information would be used to figure out how many times a repeated 
behavior should occur.Along with this, future work also includes testing the 
proposed solution on a simulated and physical platform. 
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On Global Optimization of Walking Gaits for the Compliant 
Humanoid Robot, COMAN Using Reinforcement Learning 

Houman Dallali, Petar Kormushev, Zhibin Li, Darwin Caldwell 

Abstract: In ZMP trajectory generation using simple models, often a considerable 
amount of trials and errors are involved to obtain locally stable gaits by manually 
tuning the gait parameters. In this paper a 15 degrees of Freedom dynamic model 
of a compliant humanoid robot is used, combined with reinforcement learning to 
perform global search in the parameter space to produce stable gaits. It is shown 
that for a given speed, multiple sets of parameters, namely step sizes and lateral 
sways, are obtained by the learning algorithm which can lead to stable walking. 
The resulting set of gaits can be further studied in terms of parameter sensitivity 
and also to include additional optimization criteria to narrow down the chosen 
walking trajectories for the humanoid robot. 

Keywords: Humanoid robot walking, compliance, reinforcement learning. 

1.  Introduction 

Walking trajectory generation for a humanoid robot is a challenging control 
problem. Humanoid robots have many Degrees of Freedom (DoF), with unstable, 
nonlinear and underactuated dynamics. Moreover, humanoid robots need to adapt 
their walking gait based on the environment, for instance to avoid an obstacle the 
robot needs to adapt its walking gait to take a different step size while keeping the 
same average speed.  

Due to the complexity of the walking model several studies in the literature 
have approached the walking problem using machine learning techniques [1]. For 
example, in [2] a model-based reinforcement learning method was used for bipedal 
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walking on a planar 5 DoF robot fixed to a rotating boom. Learning was applied to 
learn the Poincare return map of the bipedal robot. The learning algorithm was used 
to minimize the torques while keeping a certain height to avoid falling. In [3] 
Central Pattern Generators (CPG) for QRIO humanoid were tuned using a policy 
gradient method and stable gaits were shown in simulation and in experiments. The 
robot’s pelvis states were used to describe the motion of the robot. In [4] a 
stochastic policy gradient reinforcement learning was applied to a toy robot with a 
carefully designed passive mechanical dynamics and resulted in stable walking 
mainly due to the passive dynamics design. In [5] a map was constructed offline for 
a given trajectory to verify the feasibility of an step size. The set of all possible 
steps was considered to be a 6 dimensional space. The set was constrained to have a 
one to one correspondence between each trajectory and step size. Geometric and 
Zero Moment Point (ZMP) constraints where used to verify the feasibility of the 
desired walking step. In [6] reinforcement learning was used on a compliant bipedal 
legs to reduce the electrical energy consumption by changing the centre of mass of 
the robot during walking. 

In terms of walking models, often simplified ones such as the inverted 
pendulum model [7-8] or the compass gait model [9] are used in trajectory 
generation and stability analysis while detailed and accurate models are used in 
simulation studies. 

In addition to use of centre of mass, limit cycle criterion and capture point, one 
of the most commonly used stability criteria for humanoid walking is Zero Moment 
Point (ZMP) which is often formulated as a closed form solution of the linear 
inverted pendulum model of walking [10-11]. In a dynamically stable gait ZMP of a 
robot is the same as the centre of pressure. 

Despite using simplified models for walking trajectory generation, a 
considerable effort in manual tuning is needed before the generated trajectory can 
be applied in practice on an actual humanoid robot. In order to address this 
problem, in this study an automatic way of tuning a walking gait using 
reinforcement learning methods is investigated. The goal of learning is to find 
dynamically stable gait parameters for a desired walking speed. In summary, 
reinforcement learning varies the walking gait parameters such as the step size and 
lateral sway amplitude to generate walking trajectories using the inverted pendulum 
model [8]. The produced gaits are verified in terms of stability walking speed using 
dynamic simulation of the compliant humanoid robot with 15 DoF. The simulation 
output, i.e. multibody stability and achieved walking speed are evaluated as a 
reward function for the learning algorithm to better tune the gait parameters. 
Applying this method on the robot is time consuming and can be risky, but in 
simulation we can obtain many stable solutions that can be further narrowed down 
using additional criteria such as energy efficiency. Hence, using the simulator the 
gaits are tested in advance, which creates a more reliable and feasible gait for the 
experiments. 

In this paper, instead of using state-action based reinforcement learning which 
suffers from the curse of dimensionality, direct policy search reinforcement learning 
is used. This method works in a low dimensional policy space which bypasses the 
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dimensionality problem of the state-action space. The contributions of this study are 
twofold. Firstly, the method performs global search in the walking gait parameter 
space to yield multiple alternative solutions which can then be narrowed down 
using further optimization criteria such as energy. Secondly, it investigates the 
importance of different parameters on the walking gait. 

This paper is organized as follows. In Section 2, the mechanical overview of 
COMAN humanoid robot and the dynamic walking simulator are described. In 
Section 3 the trajectory generation method is briefly described. The reinforcement 
learning algorithm is described in Section 4. The results of using this algorithm are 
presented in Section 5, and finally the conclusions and future work are briefly 
discussed. 

2.  Dynamic model of the humanoid robot COMAN 

In this section, first, the mechanical description of the compliant humanoid robot 
COMAN is given. Next, an overview of the dynamic walking simulator and its 
features are discussed.  

2.1.  Overview of the mechanical model 

COMAN (stands for COmpliant huMANoid) is powered by series elastic actuators 
and is being developed within the AMARSI European project [12] at the Italian 
Institute of Technology (IIT) as a derivative of the original iCub, and cCub [13] 
which added passive compliance in the major joints of the legs (see Fig. 1 (a)). The 
use of passive compliance provides shock protection, robust locomotion, safer 
interaction and potentially energy efficient locomotion. Currently, COMAN has 23 
DoF, with passive compliance in the pitch joints in the legs, the waist, and the pitch 
and roll shoulder joints. In addition, COMAN uses brushless DC motors and 
harmonic drives, which are modeled in the dynamic simulator described in 
Subsection 2.2. In terms of control software architecture, currently COMAN uses a 
decentralized PID control architecture. Further details about the first prototype of 
COMAN, cCub are available in [13] with the major kinematic difference being the 
addition of passive compliance in the hip pitch and the orders of the ankle and the 
waist pitch and roll joints being swapped. 

The coupled mechanical model of the robot is described in (1), where M, C 
and G are mass-inertia, Coriolis and gravity matrices. ,q q  and q  are positions, 
velocities and accelerations of all joints in vector form. Similarly, ,m mq q  and mq
are the positions, velocities and accelerations of the motors. J and Bm are the 
motors’ inertia and damping matrices. Bs and Ks are the passive compliance 
damping and stiffness matrices. mτ  is the motors’ torque expressed in vector form, 

(1) ( ) ( )
( ) ( )

.s m s m

m m m s m s m m

Mq Cq Gq B q q K q q
Jq B q B q q K q q τ

⎧ + + = − + −⎪
⎨ + + − + − =⎪⎩

 

In the next section, the dynamic walking simulator under Matlab is described. 
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(3) 0

0

0
.z
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z z
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K z D z z z
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= ⎨− Δ − Δ <⎩
 

There are four points at each corner of the foot where the ground models are 
introduced as external forces as shown in Fig. 2. The parameters of the ground 
model are given in Table 1. 

Table 1.  Ground model coefficients 

Symbol Description Value Units 
KG Vertical spring 150 000 N/m 
DG Vertical damper 150 (N.s)/m 
KF Friction stiffness 150 000 N/m 
DF Friction damper 150 (N.s)/m 
μ   Friction coefficient 0.9 〈unitless〉 

 
Having developed a realistic simulation of walking for COMAN, the next 

section discusses the method used for walking trajectory generation. 

3.  Trajectory generation 

A trajectory generator computes the reference trajectory for the robot’s joints. This 
control system translates the desired walking parameters such as foot locations, step 
length, walking speed and walking direction into feasible and stable joints’ 
trajectories. In this paper, the preview control method of ZMP based on the cart 
table model, proposed in [10], is used. The advantages of using this method are the 
ability of the robot to modify the reference trajectories according to the walking 
path and low computational cost which makes it suitable for online calculations. A 
brief description of this method is given below. 

In this method, the cart-table linear model (Fig. 3) is used to formulate the 
relation between the centre of mass motion and the ZMP. This model has linear and 
decoupled dynamics in sagittal and lateral planes due to the constraint on the height 
of the centre of mass, which moves along a plane. This simplification in the 
nonlinear dynamics of an inverted pendulum results in derivation of the closed form 

equation between centre of mass and zero moment point c
x

zp x x
g

= − , where x 

denotes the position of centre of mass and px is the position of the zero moment 
point in x direction. Since the dynamics are decoupled (constant height), the same 
equation holds for the y direction. 

 
Fig. 2. Four ground contact point is introduced under each foot 
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In order to generate the motion of the centre of the mass using (1) the initial 
position of the CoM and the ZMP should coincide. Based on the foot paths of the 
robot, a reference ZMP is derived as shown in Fig. 4 which shows the trajectory for 
three steps with 0.1 m step size. The continuous time based ZMP reference can be 
designed by using either linear or spline interpolation of a set of ZMP points with 
respect to time. The overall pattern generation scheme as well as the dynamic 
simulator and the learning algorithm are shown in Fig. 5. The objective locomotion 
parameters such as the walking speed and foothold planning are assumed to be 
given. Further details about the trajectory generator are provided in [10]. 

 

 
However, this method has a number of limitations. Firstly, the cart-table model 

only considers the overall CoM therefore the multi-body dynamics is not 
considered. Secondly, the control scheme assumes ideal position tracking and the 
dynamic effect of the springs in the compliant joints is not included. Therefore, the 
process of generating models using the simple cart table model and applying it to 
the full multibody system with compliance involves a considerable number of trial 
and errors. In other words, this method has only been applied before to find a 
locally stable gait, while for the first time in this paper, reinforcement learning for 
global search is proposed to explore the whole parameter space using the accurate 
dynamic walking simulation of COMAN. The result of the search yields multiple 

Fig. 4. The centre of mass and ZMP trajectories in sagittal and lateral planes 
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stable solutions which can then be studied further for walking sensitivity analysis to 
gait parameter variations and also to include additional optimization criteria such as 
energy efficiency to choose among the dynamically feasible gaits. The learning 
algorithm is described in the next section. 

 
 

Fig. 5. Diagram of the overall learning based trajectory generation method is illustrated. The Cartesian 
position of the CoM of the robot is defined by xcom, ycom and zcom. The reference ZMP trajectory is pref 

and p is the ZMP feedback signal from the Cart table model which consists of xZMP and yZMP. The 
objective locomotion parameters namely, lateral sway and step size are provided by RLPF for a 

desired walking speed 

4. Reinforcement learning 

This section describes a recently proposed Reinforcement Learning algorithm 
based on Particle Filters (RLPF) for global search in policy space, which is capable 
of finding multiple alternative optimal policies [1]. The algorithm performs global 
search in the policy space, therefore eliminating the dependency on the policy 
initialization, and it has the ability to find the globally optimal policy. 

Linking particle filters and RL is explained by the following observation. The 
landscape, defined by the reward function ( )R θ ∈ over the whole continuous 

domain of the parameter spaceθ ∈Θ , can be viewed as defining an Improper 
Probability Density Function (IPDF).  An IPDF is similar to probability density 
function except that the integral of it does not have to be equal to one. This is 
possible even if the reward function ( )R θ has negative values in its range, because a 
constant positive number can be added to the reward to obtain a non-negative 
reward function ( )R θ′ which has exactly the same set of optimizers *θ ∈Θ  as
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( )R θ . Hence, optimizing ( )R θ′ will also optimize ( )R θ . Based on this assumption 
that ( )R θ is an IPDF, the RL problem can be reformulated as follows. Each trial 

( )( )τ π θ  
(τ  denotes each trial and π is the policy for a given parameter vectorθ ) 

can be considered as an independent sample from the unknown IPDF. The RL 
algorithm chooses a finite number of sample points to find the values and modes 
of the unknown IPDF. 

The main idea of RLPF is to use particle filtering as a method for choosing the 
sampling points, i.e. for calculating a parameter vector θ  for each trial, which 
consist of the step size and lateral sway. A policy particle ip  is defined to be the 
tuple , ,i i i i ip Rθ τ ω= , where the particle ip  represents the outcome of a single 

trial iτ  performed by executing an RL policy ( )iπ θ , where iθ is a vector of policy 
parameter values modulating the behavior of the RL policyπ . The policy particle 
also stores the value of the reward function evaluated for this trial ( )( )( )i i iR R τ π θ= . 

The variable iτ contains task-specific information recorded during the trial 
depending on the nature of the task. The information in iτ is used by the reward 
function to perform its evaluation. The variable iω is the importance weight of this 
policy particle, and the way of its calculation is explained as follows. 

It is assumed that the set of particles { }ip  is an approximate implicit 
representation of the underlying unknown IPDF defined by ( )R θ . Therefore, in 
order to select a new particle consistent with the real IPDF distribution, the samples 
are taken from the approximate distribution while correcting for the discrepancy. 
The mechanism for this correction is provided by the importance weights{ }iω . 

Firstly, each policy particle ip  is assigned a scalar importance weight iω  
derived from its corresponding reward iR  using a transformation function g, such 

that ( )i ig Rω ∝ . In the simplest case, ( )g ⋅  could be the identity, but in the general 
case, it could be an arbitrary non-negative function. The function g is applied in 
such a way, that the importance weights are normalized, in the sense that

0 1i iω ω∀ < < , and also 1iω =∑ . Secondly, an auxiliary function ( )
u

uh u duω
−∞

= ∫ is 

constructed, which takes the form ( )
1

k

j
j

h k ω
=

=∑ in the discrete case. This function can 

be thought of as the (approximate) Cumulative Density Function (CDF) of the 
unknown PDF. Indeed, due to the way we create the importance weights, it follows 

directly that 1uduω
+∞

−∞

=∫ , and thus ( )h u  is a proper CDF. This is important because, 
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creasing and 
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Thirdly, a random variable z is introduced which is uniformly distributed in the 
interval (0, 1). Now, it can be shown that the random variable y defined as 

( )1y h z−=  is distributed (approximately) according to the desired unknown PDF, 
see e.g. [17]. 

The goal of RLPF is not to approximate the expectation of a function, but 
rather, to find the mode (or modes) of the unknown function ( )R θ . The pseudo-
code for RLPF is given in Algorithm 1. In the results section the reward function, 
number of trials, and gait parameter space are provided. 

5. Simulation results 

In this section, the results of applying RLPF algorithm to find optimal gait 
parameters for two desired walking speeds are presented. The reward function is 
defined in (4) where θ denotes the gait parameters, namely the step size and the 
lateral sway, B is a Boolean variable which is zero when the robot falls in the last 
trial and one otherwise, Vd is the desired average walking speed and V is the 
achieved walking speed in the dynamic simulator. The coefficients c1 and c2 are 
chosen to be 1000, and c3 is 100. The goal of the reward function in (4) is to 
distinguish between the dynamically stable and unstable gaits and to feed back the 
achieved walking speed to the learning algorithm.  
(4) ( ) ( )2

3
1 2(1 ) .dc V VR c B c eθ −= − +  

Initially the desired speed was set to 0.05 m/s and learning was used in 120 
trials, where both a stable gait and the desired walking speed were achieved. The 
reward function is shown in Fig. 7. It can be seen that after the 30th trial the robot 
has not fallen since the reward is above 1000 points and the algorithm is only 
adjusting the walking speed. Moreover, the reward of each trial is color coded and 
plotted in Fig. 8 which shows that two clusters of parameters are found which gives 
the highest rewards (i.e., gaits which are stable and close to the desired walking 
speed). These two clusters of stable gaits have a vertical spread which suggests the 
lateral sway parameter has less sensitivity on stability compared to the step length. 
The lateral sway parameter is related to the dynamics of the robot in the lateral 
plane which has stiff joints (no passive compliance) and the step length parameter is 
directly related to the sagittal dynamics of the robot with passive compliance in the 
ankles, knees and the hips. Therefore, for a fixed passive compliance and using 120 
trials a set of step sizes are derived which are between 1-3 cm. increasing the 
number of trials can further explore the parameter space and provide walking gaits 
with larger step sizes as shown in second experiment of this section. Also, this 
effect is due to the joint servo designs which are controlling the motors’ positions to 
track the walking trajectories. Designing the servo controllers to control the link 
positions can improve the range of step sizes, while the achieved walking speed will 
depend on the bandwidth of the servo controllers. The robot will only be able to 
walk with trajectories speeds which are within its tracking bandwidth. The snapshot 
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Moreover, the desired walking speed was set to 0.15 m/s and the RLPF 
algorithm was applied to 400 trials. This speed is above the tracking bandwidth of 
the current PID controllers set in the simulation and the robot achieved stable 
walking but the maximum achieved walking speed was lower (0.75 m/s).  

 

 
Fig. 10. Reward values in the walking gait parameter space with desired speed of 0.15 m/s 

The reward values are shown in Fig. 9, which essentially distinguishes 
between the stable and unstable gaits, since the extra reward of walking close to the 
desired speed of 0.15 m/s is not obtained in the dynamic simulations. However, it 
can be seen that the falling frequency is decreasing with the number of trials and the 
learning is converging to higher rewards. The reward values in the parameter space 
are shown in Fig. 10, which shows the robot has taken steps sizes between 1-12 cm 
and has been stable. 

 

 
Fig. 9. Reward values during learning for desired speed of 0.15 m/s 
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6. Conclusion 

In this paper the common problem of ZMP trajectory generation using simplified 
cart-table model which involves considerable amount of trials and errors to find 
locally stable gaits was considered. A reinforcement learning algorithm was 
combined with a dynamic walking simulator to perform automated global search for 
stable gaits in the walking parameter space. The algorithm was tested on two 
relatively low (0.05 m/s) and high (0.15 m/s) walking speeds and it found multiple 
sets of stable walking for a given speed with different step lengths and lateral sway. 
The result of this algorithm can be used to study the sensitivity of the gaits to 
parameter changes as well as including additional optimization criteria (such as 
energy efficiency) to narrow down the set of stable gaits.  

In the future work, the designed walking gaits will be applied on the real robot, 
and in a possible future study to investigate the energy efficiency of a certain gait 
using simple models and learning methods to predict the optimal step length for a 
given walking speed. Also the simple reward function used in this study can be 
improved to better distinguish among different type of gaits. 
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Abstract: We consider the problem of optimization in policy space for 
reinforcement learning. While a plethora of methods have been applied to this 
problem, only a narrow category of them proved feasible in robotics. We consider 
the peculiar characteristics of reinforcement learning in robotics, and devise a 
combination of two algorithms from the literature of derivative-free optimization. 
The proposed combination is well suited for robotics, as it involves both off-line 
learning in simulation and on-line learning in the real environment. We 
demonstrate our approach on a real-world task, where an Autonomous Underwater 
Vehicle has to survey a target area under potentially unknown environment 
conditions. We start from a given controller, which can perform the task under 
foreseeable conditions, and make it adaptive to the actual environment. 

Keywords: Reinforcement learning, policy search, derivative-free optimization, 
robotics, autonomous underwater vehicles 

1. Introduction 

Reinforcement Learning (RL) is the learning paradigm in which an agent improves 
its behavior on a given task by exploring the environment through trial and error. Its 
mathematical formulation consists in the maximization of a reward function, which 
measures the agent’s performance. As an optimization problem it is a peculiar one, 
because many aspects of the task on which the performance must be optimized are  
 



unknown to the agent. In particular, the function to be maximized has often no ana-
lytical expression, and must be sampled by acting in the environment. Each function
evaluation costs the agent resources, which is especially critical in robotics. Robotic
agents act in real-world environments, consume power, are subject to wearing and
tearing, and work in real time. This imposes a careful use of trials, favoring on-line
learning to off-line, batch, learning.

Policy gradient methods have largely been used in robotics [17] owing to char-
acteristics that make them particularly suitable. In high-dimensional domains, find-
ing good value function representations is difficult, while structuring the policy may
come naturally from the task. Encoding the policy appropriately, policy search meth-
ods can benefit from previous knowledge. Usually fewer parameters are needed than
with value function approximators, and the methods have strong theoretical founda-
tions. Moreover, policies can be changed gradually, so that the behavior of the robot
can be ensured withing the operation limits. Nonetheless, estimating the gradient is
still a costly procedure, that requires many trials around the current policy. Noisy
environments can make gradient estimation extremely difficult, either affecting the
estimate greatly, or requiring a large number of trials.

While the local aspect of policy-gradient methods is favorable to robots, it is
also a double-edged sword. On the one hand, policy-gradient approaches a local
optimum slowly and smoothly, producing behaviors that don’t deviate sharply from
one another. On the other hand, there’s no guarantee about the presence of global
optima elsewhere. A broader exploration can be performed in simulation, but the so
called reality gap [4, 11], the inevitable difference between the real and simulated
domains, makes learning in simulation more brittle than in the actual environment.

In this paper, we explore direct derivative-free optimization algorithms for policy
search in episodic reinforcement learning. Reinforcement learning imposes particu-
lar constraints on optimization algorithms. For instance, industrial applications are
usually parallelized, while this is not possible for on-line RL. We combine the bene-
fits of local methods for on-line learning, with a global search in simulation to obtain
good starting points. While being able to benefit from all the advantages mentioned
for policy-gradient algorithms, local derivative-free ones do not have the burden to
estimate the gradient, which is particularly relevant with noisy reward functions.
Derivative-free algorithms used in RL so far are pure global optimization algorithms,
for the largest part evolutionary [1, 9]. We chose to combine two different derivative-
free algorithms: a global stochastic search [3], and a line search [16]. The former
allows to identify a policy in whose neighborhood the global optimum is most likely
to be. The latter then refines this policy, going through its neighborhood without at-
tempting to estimate the gradient. Learning in simulation is therefore coarse-grained,
for the environment is only an approximation of the one the agent will really face. A
more refined learning is performed on-line on the actual environment, in a local and
smooth fashion. Different combinations of global and local methods are possible,
and more sophisticated methods can be employed.

We implemented our approach on a real-world problem, where an Autonomous
Underwater Vehicle (AUV) has to survey an area under unpredictable disturbances.
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The AUV is equipped with a controller able to perform the task under normal oper-
ation conditions. When unexpected environment disturbances make it fail, the agent
learns a policy that corrects the given controller. The experiments have been per-
formed on a realistic simulator, taking into account real battery life. The method
introduced in this paper proves to be able to learn a policy to perform the task in a
few tens of trials, taking a time largely within the robot mission duration.

2. Background and notation

In this section we provide the background behind policy search in RL.
A Markov Decision Process is a tuple MDP = 〈S,A,T,ρ〉 where: S is a set of

states, A is a set of actions, T : S×A×S→ [0,1] is the transition function. T (s,a,s′)=
Pr(st+1 = s′|st = s,at = a) is the probability that the current state changes from s to
s′ by executing action a. ρ : S×A×R→ [0,1] is the reward function. ρ(s,a,r) =
Pr(rt+1 = r|st = s,at = a) is the probability to get a reward r from being in state s and
executing action a. In our setting both states and actions are continuous, while time
is discrete.

The behavior of the agent is represented as a function π : S×A→ [0,1] called a
(stationary) policy, where π(s,a) is the probability of selecting action a in state s. A
policy π and an initial state s0 determine a probability distribution dπ over the possible
sequences ω =(〈st ,at ,rt+1〉, t ≥ 0). Given such a sequence, we define the cumulative
discounted reward as

R = ∑
t≥0

γ
trt+1

where 0 < γ≤ 1 is the discount factor. The reward is accumulated by executing a in
s and following π thereafter.

A state is said to be absorbing if once entered cannot be left. An MDP with
absorbing states is said to be episodic. In the rest of this paper we focus on episodic
MDPs, where the duration of the episode is given by the first time step in which an
absorbing state is entered. Therefore, from now on we set γ = 1 and sum over an
unknown finite duration T .

Policies are parametrized through a vector θ. This allows to add structure to the
policy, which is then changed by modifying the parameters. The value of a policy π

is defined, through its parameters, as:

(2) J(θ) =
∫

S
dπ(s)

∫
A

π(s,a)r(s,a)dsda

where r(s,a) is extracted from ρ(s,a, ·).
Policy gradient methods try to estimate the gradient of the function in Equation

2, in order to make an update to the parameters along it:

(3) θi+1 = θi +α∇θJ(θi)
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Direct derivative-free algorithms, on the other hand, perform hill-climbing up-
dates without estimating the gradient. The function our method will maximize, over
a finite horizon and from a single initial state, is:

(4) J(θ) =
T

∑
t=0

∫
S

dπ

t (s)
∫

A
π(s,a)r(s,a)dsda

3. Related work

A large number of policy search methods have been developed in the field, although
only few of them have found successful application in robotics [14]. Most of those
are local algorithms, the vast majority of which is gradient-based. Episodic REIN-
FORCE [26] is one of the earliest gradient-based learning algorithm for episodic RL.
As previously mentioned, gradient-based methods estimate the gradient at a given
policy, and perform an update along its direction according to Equation 3. More
recent policy gradient [22] RL algorithms are G(PO)MDP [2], natural policy gradi-
ent [12], and natural actor-critic [19] methods. All of the mentioned policy gradient
methods differ in how the gradient is estimated. A different approach, based on Ex-
pectation Maximization (EM), has been proposed and applied to several algorithms,
the most recent of which is PoWER [18, 14]. In EM-based methods, the lower bound
on the expected cumulative return is maximized. Another notable local algorithm is
Policy Improvements with Path Integrals (PI2) [23], which belongs to the category of
path integrals method applied to stochastic optimal control.

The algorithm we are going to apply for local search is a line search, as in
gradient-based methods, but the direction used is not the gradient. Therefore, it can
avoid the extremely costly operation of estimating it. Nonetheless, the algorithm is
guaranteed, under appropriate conditions, to converge to the optimal solution.

On the side of global algorithms, a huge range of methods has been employed.
Simulated Annealing [13] and Ant Colony Optimization [6] are well-known global
methods, although the most studied one is the set of evolutionary approaches, in
particular genetic algorithms [8]. Tabu search [7] attempts to escape local minima
by performing temporary worsening moves, and using history to prevent steps that
would lead back to the minimum just left. Last, we mention RLPF [15] and pattern
search [24] belonging to the class of global random optimization algorithms used in
RL. The global algorithm we are going to use is a clustering algorithm similar to
pattern methods, where the search is random and controlled. In our random search,
an initially random point cloud tends to gather around the global optimum, as will be
described in Section 4.1.

4. Derivative-free algorithms

It is well known that extensive useful information is contained in the derivatives of
any function one wishes to optimize. For a variety of reasons, however, there have
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always been many instances where (at least some) derivatives are unavailable or un-
reliable. Nevertheless, under such circumstances it may still be desirable to carry
out optimization. Consequently, a class of nonlinear optimization techniques called
derivative-free methods has been developed in the literature. In the following, we
describe the methods we are going to combine, highlighting the features that make
them suitable for the different learning phases. The first method, a random search,
was developed in the original paper with both a global and a local search. We re-
moved the local part, and substituted it with the line search described in Section 4.2.
This line search fits better with the RL setting, according to the arguments on locality
introduced in Section 1. In the following, the algorithms will be described for min-
imization problems, in order to comply with the literature on optimization. Since in
our RL implementation we maximize the reward (instead of minimizing costs) the
sign of the reward function will simply be inverted.

4.1. Random global serach

Many algorithms have been proposed in the literature to solve unconstrained global
optimization problems [10, 25]. In this paper, however, we are interested to tackle
the particular difficult case of a problem in which:
• the evaluation of the objective function is very expensive;
• the values of the objective function can be affected by the presence of noise;
• the derivatives of the objective function are not available.

The method we use is a version of the Controlled Random Search Algorithm [20]
in which the efficiency is improved by using a weighted centroid and a weighted
reflection [3].

4.1.1. Controlled Random Search Algorithm
Data: a positive integer m≥ n+1, ε > 0

Step 0. Set k = 0 and compute the initial set:

Sk = {θk
1, . . . ,θ

k
m}

where the points θk
i , i = 1, . . . ,m are chosen at random over a box D; evaluate J at

each point θk
i , i = 1, . . . ,m.

Step 1. Determine the points θk
max, θk

min and the values Jk
max, Jk

max such that:

Jk
max = J(θk

max) = max
θ∈Sk

f (θ)

Jk
min = J(θk

min) = min
θ∈Sk

f (θ);

if Jk
max− Jk

min ≤ ε then STOP
Step 2. Choose at random n+1 points θk

i0 ,θ
k
i1 , . . . ,θ

k
in over Sk, where

J(θk
i0)≥ J(θk

i j
), j = 1, . . . ,n;

determine the centroid

ck =
n

∑
j=0

wk
jθ

k
i j
,
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and determine the trial point θ̄k given by

θ̄
k = ck−α

k(θk
i0− ck),

where

wk
j =

ηk
j

∑
n
r=0 ηk

r
, η

k
j =

1
J(θk

i j
)− Jk

min +φk
, α

k = 1−
J(θk

i0)−∑
n
j=0 wk

jJ(θ
k
i j
)

Jk
max− Jk

min +φk
,

and

φ
k = n

(Jk
max− Jk

min)
2

J0
max− J0

min
;

if θ̄k /∈ D go to Step 2; otherwise compute J(θ̄k).
Step 3. If J(θ̄k)≥ Jk

max then take

Sk+1 = Sk;

set k = k+1 and go to Step 2
Step 4. If J(θ̄k)< Jk

max then take

Sk+1 = Sk ∪ {θ̄k} − {θk
max};

set k = k+1 and go to Step 1
The initial population of points is expected to cluster in the region where the

global optimum is most likely to be. In practice, the possibility of locating a global
minimum point rests on the fact that the number of points randomly chosen at the
initial step is not small, and that global minimum points do not have narrow region of
attraction. From this point of view, it appears clearly that the described algorithm is
a heuristic. In this respect, we refer to section 7.2 of Torn and Zilinskas’ book [25],
where it is reported a thorough discussion on why heuristics are necessary and on
how many the heuristics elements in global optimization are.

4.2. Local refinement

Numerical experience seems to indicate that the algorithm described in Section 4.1 is
efficient enough at the global search, while it is not able to perform a sufficiently fast
local minimization when the algorithm has produced an estimate θ̃ “good enough”. A
local refinement procedure seems to be a better way to compute the global minimizer
when a point θ̃ near the global minimum is provided by the global method. In fact
derivative-free local methods have better convergence properties than global ones and
the risk to compute a local minimizer that is not global is unlikely by starting the local
method from θ̃.

In this paper, for the local refinement, we use a direct-search method that is a
line-search version of the coordinate-search algorithm. Direct-search methods are
derivative-free methods that sample the objective function at a finite number of points.
At each iteration, they decide which actions to take solely based on those function
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values, and without any explicit or implicit derivative approximation or model build-
ing [5]. Two particular subclasses of globally convergent direct-search methods are
pattern-search methods and line-search methods. Pattern-search methods present the
distinguishing feature of evaluating the objective function on specified geometric pat-
terns. Line-search methods, on the contrary, draw their inspiration from the gradient-
based minimization methods and perform one dimensional minimization along suit-
able directions. These two classes of methods present different interesting features.
Pattern search methods can accurately sample the objective function in a neighbor-
hood of a point. Hence, they can identify a “good” direction, namely, a direction
along which the objective function decreases significantly. Line search algorithms
can perform large steps along the search directions and, therefore, can exploit to a
large extent the possible goodness of the directions. The algorithm used here com-
bines these approaches in order to determine “good” directions and to perform “sig-
nificant” step lengths along such directions [16].

4.2.1. Coordinate-Search Algorithm With Line-Search Expansions
Data: θ0 ∈ Rn, α̃0

1, . . . , α̃
0
n > 0, σ ∈ (0,1), γ ∈ (0,1), δ > 1, ε > 0

Step 0. Set k = 0
Step 1. If max

i=1,...,n
{α̃k

i } ≤ ε then STOP; set i = 1, yk
1 = θk, xk = θk

Step 2. If J(yk
i + α̃k

i ei)≤ J(yk
i )− γ(α̃k

i )
2 and J(yk

i + α̃k
i ei)< J(xk) then

set αk
i = α̃k

i and xk = yk
i +αk

i ei
while J(yk

i +δαk
i ei)≤ J(yk

i )− γ(δαk
i )

2 and J(yk
i +δαk

i ei)< J(xk)
set αk

i = δαk
i and xk = yk

i +αk
i ei

end while
set α̃

k+1
i = αk

i
else set αk

i = 0 and α̃
k+1
i = σα̃k

i
Step 3. Set yk

i+1 = yk
i +αk

i ei
Step 4. If i < 2n then set i = i+1 and go to Step 2
Step 5. Set θk+1 = xk, k = k+1 and go to Step 1

5. Experimental evaluation

We carried out our experiments on a simulator of the vehicle Girona500 [21]. Girona-
500 is a reconfigurable autonomous underwater vehicle designed for a maximum
operating depth of up to 500 m. The vehicle has passive stability in pitch and roll,
making it suitable for imaging surveys. The most remarkable characteristic of Girona
500 is its capacity to reconfigure for different tasks. On its standard configuration, the
vehicle is equipped with typical navigation sensors (DVL, AHRS, pressure gauge and
USBL) and a basic survey equipment (profiler sonar, side scan sonar, video camera
and sound velocity sensor). In addition to these sensors, almost half the volume of the
lower hull is reserved for mission-specific payload such as a stereo imaging system
or an electric arm for manipulation tasks. The same philosophy has been applied
to the propulsion system. The basic configuration has 4 thrusters, two vertical to
actuate the heave and pitch and two horizontal for the yaw and surge. However, it is
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Fig. 1. The robot Girona500

possible to reconfigure the vehicle to operate with only 3 thrusters (one vertical and
two horizontal) and with up to 8 thrusters to control all the degrees of freedom.

We performed our experiment using the Under Water Simulator (UWSim)1 and
the Robot Operating System (ROS)2.

The robot’s mission is a survey task, in which the agent has to reach a black
box on the bottom of the seabed to take images and compose a mosaic. The target
of the robot is to stay within the distance of 1m from the given point as long as
possible, despite the disturbances in the environment. A current with velocity 0.6m/s
has been simulated at depth higher than 2m, while the target point is 4.8m deep.
Therefore, the agent cannot avoid the current and has to navigate trough it. The
setting is represented in Figure 2. The current is too strong to be fully compensated

Fig. 2. The experimental setting. A strong current pushes the vehicle below 2m depth

by the thrusters, and once entered the robot slowly drifts away from the target point.
We assume the agent is provided with an initial controller, able to perform the task

1http://www.irs.uji.es/uwsim/
2http://www.ros.org
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under normal operation conditions. In our experiment this was a simple PD controller.
The trajectory produced by the given controller is shown in Figure 3.

Fig. 3. The initial trajectory, produced by the PD controller alone, without learning.

Any robust controller can react to the environment but cannot counteract in ad-
vance unpredictable disturbances. Once the robot has entered the current there is little
to do other then slow down the drifting. Therefore, the trajectory must be modified
before entering the current, foreseeing its effect and counteracting them in advance.
This is only possible by exploring the environment and learning about its character-
istics. It requires to face the same task several times to make use of past experience
to predict actions’ effects. This is the focus of this paper: making a given controller
adaptive and able to perform a task on which it would otherwise fail.

We assume an episodic scenario where the agent is able to return to the initial
location (which is not inside the current) and start again. The battery power of
Girona500 allows for 5 to 6 hours of operation, therefore we allocate for the on-line
learning of behaviors no longer than 1 hour.

The reward function is given by:

J(θ) =
{
−d if d ≥ D
tD−D if d < D

where D is a distance threshold, d is the minimum distance reached from the target,
and tD is the time spent at a distance from the target lower than D. In our experiments,
D = 1m. Both d and tD depend on θ through the policy, as expressed in Equation 4.
Intuitively, the agent tries to maximize the time spent within 1m from the given point,
using the distance as a heuristic when it is far from the target.

The policy computed and optimized is a correction to the given controller, whose
output is velocity. Therefore, the actions are the continuous velocities summed to
the controller’s one. The policy has 18 parameters, and is a linear combination of
position and velocity along the three axes for each component of the action.
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5.1. Results

We first ran the global algorithm with an initial population of 100 samples. This
phase is an off-line learning, and its aim is to provide a good starting point for the
local search. Since, in this paper, we are going to run the second phase in simulation
as well, we account for the discrepancy between the simulator and the actual environ-
ment by having a slightly different current in the two phases. The results are shown in
Figure 4. After a few hundred trials, the algorithm finds a point above the threshold,

Fig. 4. The results of the trials during the initial random search

that is where the agent is able to approach the target point closer than 1m.
We took the best point found in this phase, and used it to initialize the policy

for the local search. In this second phase, the current is the real one, which without
learning produces the trajectory in Figure 3. We limited learning to 150 episodes,
which take about one hour of real time. The policy learned during the first phase,
when applied to the current of the second phase produces the trajectory shown in Fig-
ure 5. It manages to reach the point by staying higher than the current for as long as
possible, and then entering it. Although learned under slightly different environment
conditions, this behavior is already a good one. At this stage the agent is able to get
within 1m from the target, therefore being able to perform the survey task. Local
learning will attempt to maximize the time spent in this area, despite the real current.

The results of the local search are shown in Figure 6. The plot shows the learn-
ing curves from both the initial policy given from the first phase, and from the zero
vector, which corresponds to no correction to the given controller. The local algo-
rithm proved fast enough to reach the desired zone (-1 threshold in the reward) within
the hour allocated for on-line learning. This shows that even with no prior informa-
tion, this version of line search is well suited for Reinforcement Learning. Moreover,
starting from the policy obtained through global learning, it performed better from
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Fig. 5. The trajectory obtained by the first phase of learning, with the current of the real environment.
The current in this picture is different from the one during learning.

Fig. 6. Results of local learning from the initial point determined during the first phase and from the
zero vector, which corresponds to no correction.

the first trials, reaching a even higher reward. The global random search, therefore,
has been able to find a point with a better neighborhood than the natural initial point,
that is when no correction is applied to the given controller.

6. Conclusion

The two algorithms we combined fit well with the paradigm of reinforcement learn-
ing in robotics. Simulators are fundamental tools, which are often used in place of
the real robot for dangerous exploration. Off-line learning, however, cannot alone
achieve adaptivity in unknown environments and go beyond what has been modeled
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in the simulator. We showed how derivative-free line-search algorithms can be effec-
tive in reinforcement learning, and provide an alternative to gradient-based methods
while retaining most of the features that made them so popular in robotics. With the
two-phased learning strategy presented in this paper, we tailored an optimization al-
gorithm for both off and on-line learning, obtaining the best from the global and the
local method. Notably, this provides a very general methodology to wrap a learning
framework around a given controller, increasing its robustness and ability to adapt
the environments, especially under unmodeled circumstances.
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Abstract: Legged robots are uniquely privileged over their wheeled counterparts in 
their potential to access rugged terrain. However, designing walking gaits by hand 
for legged robots is a difficult and time-consuming process, so we seek algorithms 
for learning such gaits to automatically using real world experimentation. 
Numerous previous studies have examined a variety of algorithms for learning 
gaits, using an assortment of different robots.  It is often difficult to compare the 
algorithmic results from one study to the next, because the conditions and robots 
used vary. With this in mind, we have used an open-source, 3D printed quadruped 
robot called QuadraTot, so the results may be verified, and hopefully improved 
upon, by any group so desiring. Because many robots do not have accurate 
simulators, we test gait-learning algorithms entirely on the physical robot. Previous 
studies using the QuadraTot have compared parameterized splines, the HyperNEAT 
generative encoding and genetic algorithm. Among these, the research on the 
genetic algorithm was conducted by (G l e t t e et al., 2012) in a simulator and tested 
on a real robot. Here we compare these results to an algorithm called Policy 
learning by Weighting Exploration with the Returns, or RL PoWER. We report that 
this algorithm has learned the fastest gait through only physical experiments yet 
reported in the literature, 16.3% faster than reported for HyperNEAT. In addition, 
the learned gaits are less taxing on the robot and more repeatable than previous 
record-breaking gaits. 

Keywords: Evolvable splines, parameterized gaits, HyperNEAT, machine learning, 
quadruped. 
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1. Introduction 

Various learning algorithms have been proved to be effective for legged robots.  Al- 
gorithms, such as HyperNEAT (Y o s i n s k i  et  al. [12]), Genetic Algorithms  
(C h e r n o v a  and V e l o s o [10]) and others (H o r n b y  et al. [7]; Z y k o v et 
al. [13]; T e´ l l e z  et al. [2]; V a l s a l a m  and  M i i k k u l a i n e n [11]) have 
been tested to be effective for automatic learning gaits for robots. Despite 
competitive performance, a major task is usually hidden in the published results: 
tuning the parameters for these evolutionary algorithms (K o r m u s h e v  et al. 
[9]).  Here we present results using a different way of learning gaits:  a 
Reinforcement Learning algorithm called Policy learning by Weighting Exploration 
with the Returns, or RL PoWER, proposed by K o b e r  and  P e t e r s [8]. In our 
experiment, the main focus of the research is on the applicability of RL PoWER to 
quadruped robot gait learning. Another motivation is to compare the state-of-the-art 
neural network algorithm, HyperNEAT, with our proposed method in quadruped 
robot gait learning. 

 
Fig. 1. The open source, 3D printed QuadraTot robot used in this research. The white 

printed booties are new additions to prevent sliding on surfaces and to minimize 
measurement error 

2. Problem definition 
As in Y o s i n s k i et al. [12], we define the gait learning problem to be the search 
for a gait that maximizes some specific metric. Mathematically, we define a gait as 
a function that specifies a vector of commanded motor positions for a robot over 
time. Gaits without a feedback − also called open-loop gaits, can be defined as 

࢞ ൌ ݃ሺݐሻ 
According to this definition, open-loop gaits are deterministic. One particular 

gait should behave exactly the same when it is run from a trial to a trial. However, 
the actual robot motion and fitness measured will vary due to the errors and 
uncertainty of the real world physics. In our trials, the gaits generated were sent to the 
robot and executed in an open loop manner. We will measure and analyze the 
performance between HyperNEAT and RL PoWER, the latter of which will be the 
focus of discussion in this paper. The metric used for the fitness in this paper will be 
described later.  
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3. Related work 

Many attempts have been made on robot gaits learning using machine learning 
algorithms, producing competitive results (C h e r n o v a  and  V e l o s o [2]; 
H o r n b y  et al. [7]; Z y k o v  et  al. [13]; C l u n e  et  al. [3, 4]; T e l l e z  et al. [10]; 
V a l s a l a m  and  M i i k k u l a i n e n [11]). In fact, Jason et al. tested and 
compared six different algorithms for quadruped robot gait learning in their studies. 
HyperNEAT, a generative encoding neural network algorithm, achieved the best 
performance among all six methods. A following research done by Kyrre et al., 
using a tuned simulator, generated even more competitive results. In K o r m u s h e v 
et al. [9] bipedal robot energy reduction research, a reinforcement learning 
algorithm was used to optimize the performance. The results from Kormushev’s 
research showed this algorithm’s potential for walking problems. This 
reinforcement learning method still needs more tests for explorations.  

4. Methods 

4.1. Policy representation by splines 

The simplest model with back-compatibility is geometric splines. For example, for 
a given model f(x) with K knots, we can preserve the exact shape of the generated 
curve while adding extra knots to the original spline. If we put one additional knot 
between every two consecutive knots of the original spline, we end up with a 2K – 1 
knots and a spline that has the same shape as the original one. In order to do this, we 
need to define an algorithm for evolving the parameterization from K to L knots    
(L > K), which is formulated as in 1.  Without loss of generality, the policy 
parameters are normalized into [0, 1], and appropriately scaled and shifted as 
necessary upon use. 

Algorithm 1. EvolvePolicy-Spline (Pcurrent : current policy, 
L:  desired new number of parameters) 
1:  K ← Pcurrent numberOf P arameters 
2:  Xcurrent  ←[0,     1     ,     2     , ..., 1] 

                                                          K −1   K −1 
3:  Ycurrent  ← Pcurrent .parameter values 
4:  Scurrent  ← ConstructSpline(Xcurrent , Ycurrent ) 
5:  Xnew ← [0,    1     ,       2     , ..., 1] 

                                            L−1       L−1 
6:  Ynew  ← EvaluateSplineAtKnots(Scurrent , Xnew ) 
7:  Snew  ← ConstructSpline(Xnew , Ynew ) 
8:  Pnew .numberOf P arameters ← L 
9:  Pnew .parameterValues ← Snew .Ynew 

10:  return Pnew 
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4.2. Parameterized gaits by RL PoWER 

Here we used an RL approach to change the complexity of the policy representation 
dynamically while the trial is running. In earlier studies on reducing energy 
consumption for bipedal robots (K o r m u s h e v  et al. [9]), a mechanism that can 
evolve the policy parameterization was used. The method starts from a very simple 
parameterization and gradually increases its representational capability. The method 
was tested to be capable of generating an adaptive policy parameterization that can 
accommodate increasingly more complex policies. Presented in the studies of 
K o r m u s h e v et al. [9], the policy generated by this approach can reach the global 
optimum at a fast rate when applied to the energy reduction problem. Another 
property found about this method is its chance of converging to a suboptimal 
solution is reduced, because in the lower-dimensional representation this effect is 
less exhibited. 

K o b e r  and  P e t e r s [8] proposed a RL algorithm named Policy learning by 
Weighting Exploration with the Returns (RL PoWER).  

 
 
 
 

Number of knots = 4 
 
 
 
 

Number of knots = 8 
 
 
 
 

Number of knots = 16 
 
 
 
 

Number of knots = 32 

Fig. 2. An example for an evolving policy parameterization based 
on spline representation of the policy. The set of spline knots is the 

policy parameterization. The spline knots are the actual policy 
parameter values.  This original parameterization starts from 4 

knots and grows up to 32 knots 

Maximization algorithm. The reason for using this is its relatively fewer 
parameters that need tuning. We evolved the policy parameterization only on those 
past trials ranked the highest by the importance sampling technique used by the 
PoWER algorithm. The intuition behind is that highly ranked parameterizations 
have more potential to evolve even better in the future. Besides, evolving all the 
parameterizations increases the exploring space. Since our experiment is done on a 
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physical robot, exploring all the variations of every parameterization is not 
practical. Future work may incorporate simulations into the studies, as illustrated in 
B o n g a r d  et  al. [1]. 

For the experiment, we set the splines to have 3 knots for each servo, and 
there are 8 servos in total.  The servo in the hip is not used in our experiment.  
Previous work has verified that quadruped gaits perform better when they are 
coordinated (C l u n e  et  al. [4]; V a l s a l a m and M i i k k u l a i n e n  [11]). For 
each spline, we calculate its corresponding parameterized gait for one unit time cycle 
of 1.8 seconds and then apply the same pattern to every cycle throughout the 12 
seconds of one trial.  Specifically, each spline (a set of 3 knots) is interpreted to its 
corresponding servo positions as in the following equation and in Table 1. 

(1) ݃ሺݐሻ ൌ  ቄܴ ൉ ݂ሺ1ݏ, ,2ݏ 3ሻݏ ൅ ܥ
0 ൅ ܿܥ

. 

Table 1. The RL PoWER motion model parameters 
Parameters in θ Description Range 

f ሺs1, s2, s3ሻ Spline function [0, 1] 
R Position multiplier [256, 768] 

5. Experimental setup 

The quadruped robot used, QuadraTot, was assembled from parts purchased online 
and parts printed by the Objet Connex 500 3D Printing System. The robot actuation 
system consists of 5 AX-18+ Dynamixel servos and 4 AX-12+ Dynamixel servos: 
one inner joint with one AX-18+ servo and one outer joint with AX-12+servo in 
each of the four legs, and one AX-18+ servo at the center. To avoid the formerly 
reported problem with AX-18+ servos are used in this robot because of their 
stronger actuation power than that of AX-12+. Each servo could be set to a position 
in the range [0, 1023] by using pydynamixel library, corresponding roughly to a 
physical range  [–120◦, +120◦]. Also, to prevent collisions with the robot body, the 
control module filter out the commands to a safe range. This range was [–85◦, +60◦] 
for the inner leg servos, [–113◦, +39◦] for the outer leg servos, and [–28◦, +28◦] for 
the central hip servo. In the studies of this paper, tethered cables powered both the 
computer and the servos. It measures approximately 39.5 centimeters from leg to 
opposite leg in the crouch position shown in Fig. 1. Our performance metric was the 
displacement over the evaluation period of 12 seconds for each. Same as 
Y o s i n s k i  et al. [12], the displacement was measured using a Wii remote that was 
placed on the ceiling. Different from the original model described in Y o s i n s k i et 
al. [12], the quadruped robot was equipped with a three-infrared-LED cluster on top 
rather than just one. The reason for this setup is that when fierce gaits were 
executed, the Wii remote loses tracking of the robot position due to the limited 
visible angle of a single LED. These three LEDs were placed tightly together to act 
as one signal emitter. Each LED was tilted outwards in order to maximize the 
visible range. A separate tracking server ran on the robot PC interacted with the Wii 
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6. Results
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exploring can be easily fixed by tuning the noise parameter.  RL PoWER 
converges to optimality at a higher rate. This is due to the more heuristically 
guided reinforcement learning of RL PoWER. HyperNEAT, on the other hand, has 
a larger dimension to explore due to its generative encoding method. While the 
evolvable spline representation used by RL PoWER has lower dimensions. The 
convergence of HyperNEAT is thus slower. 
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Fig. 8. A typical well performing HyperNEAT gait’s pattern of motor positions, reproduced from 
Y o s i n s k i  et al. [12] 

7. Conclusions and future work 

We have presented results from a recently introduced reinforcement-learning-based 
algorithm for optimizing a quadrupedal gait for linear speed, tested on a physical 
robot. We implemented the algorithm, Policy learning by Weighting Exploration 
with the Returns (a.k.a RL PoWER), for parameterized gaits and compared its 
results with those produced by HyperNEAT generative encoding and GA in a 
refined simulator. Each of the three methods resulted in an improvement over the 
robots’ previous naı̈ve gaits.  

Over 900 trials have been made to investigate the applicability of RL PoWER 
to quadruped robots. It is difficult to gather the enough trials that would be 
necessary to properly rank the methods. One direction for future work could be to 
obtain many more trials. But due to the physical limitations, obtaining one solution 
to this is simulation. The results from Glette et al.’s GA algorithm, as seen in  
Table 2, show how simulation can help accelerate the experimentation process. 
Because of the low cost of simulation, it would produce the necessary volume of 
trials to allow the learning methods to be effective, and the hardware trials would 
serve to continuously ground and refine the simulator. 

One hypothesis supported by this study is that for feedback-oriented tasks, 
reinforcement learning methods are more fit by the nature of gait learning tasks. 
Despite the complexities of HyperNEAT, a structurally simpler algorithm, such as RL 
PoWER delivered better performance in general. Also, evolvable spline interpolation 
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is shown to be simple and representationally powerful at the same time. Evolvable 
splines can serve as a general representation for various other learning problems. 
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Abstract: COMAN is a compliant humanoid robot. The introduction of passive 
compliance in some of its joints affects the dynamics of the whole system. Unlike 
traditional stiff robots, there is a deflection of the joint angle with respect to the 
desired one whenever an external torque is applied. Following a bottom up 
approach, the dynamic equations of the joints are defined first. Then, a new model 
which combines the inverted pendulum approach with a three-dimensional 
(Cartesian) compliant model at the level of the center of mass is proposed. This 
compact model is based on some assumptions that reduce the complexity but at the 
same time affect the precision. To address this problem, additional parameters are 
inserted in the model equation and an optimization procedure is performed using 
reinforcement learning. The optimized model is experimentally validated on the 
COMAN robot using several ZMP-based walking gaits. 

Keywords: Humanoid robot, Reinforcement learning, Dynamic walking. 

1. Introduction 

The majority of the existing humanoid robots are powered by stiff actuation 
systems as in Asimo, HRP-3, iCub, LOLA and Hubo [1-11]. In fact, the 
predominant approach consists of using non-backdrivable, stiff transmission 
systems and high-gain PID controllers. This solution provides high-precision and 
high-load disturbance rejection but at the same time it makes the robot unsafe 
during interaction with humans as the environment. Moreover, the performance in 
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terms of energy efficiency, peak power limit and overall adaptability to the 
environment is very limited compared to the human being.  

      
Fig. 1. Lower body of COMAN robot 

Following a bioinspired approach, the new COmpliant huMANoid (COMAN) 
robot (Fig. 1) has been built implementing physical compliance inside the actuation 
system [12]. In details, passive elastic mechanism is inserted in some joints of the 
robot (knees and ankles) between the motor and the link. The elastic transmission 
gives many improvements to the robot during walking reducing the effect of foot 
impact with the ground. At the same time it adds extra dynamics to the system that 
is not presented in the common stiff robot. 

In this study, a reduced model able to represent the motion of the robot 
including the effect of compliance is presented, then a learning technique is used to 
improve the performance of the model. The presentation of the work is organized as 
follows: In Section 2, the working principle of the model as well as the main 
equations of the model are presented, in Sections 3 and 4, the model parameters and 
the proposed optimization approach are reported. 

2. Compliant humanoid model 

The COMAN robot is a multi degree-of-freedom (dof), non-linear, spring-mass 
system because of the introduction of passive compliance in the joints. In this 
section, the modeling procedure to obtain a compact model of the system is 
reported. Following a bottom-up approach, joint dynamics is identified and then the 
resultant effects of all the joints are modeled using a Cartesian spring-mass-damper 
model at the level of the Center of Mass (CoM) [14]. 

2.1. Joint model 

In COMAN, there are two types of joints. In the first type, the motor actuates the 
link through a harmonic reduction drive group. These joints are called “stiff” joints 
because the stiffness, due to the harmonic gearbox ܭ୦, is very high. “Compliant” 
joints are the second type of joints where an additional physical elasticity is 
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incorporated in the actuation. In particular, a passive elastic mechanism is inserted 
in these joints between the electrical motor and the link. The additional elastic 
mechanism is in series with the harmonic drive and is characterized by stiffness  ܭୱ. 

 
Fig. 2. Joint model 

The schematic model of the joint is shown in Fig. 2. Adapting the model from 
[13] to this representation, the joint can be described by the following equations: 

ሷߠ୫ܫ  (1) ൅ ݀୫ߠሶ ൌ ߬ െ ௝݇ሺߠ െ  ,ሻݍ

ሷݍ୪ܬ  (2) ൅ ݀୪ݍሶ=߬௟ ൅ ௝݇ሺߠ െ  ,ሻݍ

where ߠ ,ߠሶ  and ߬ are the position, velocity and torque of the motor, respectively, 
reflected at the link side after the gear reduction: 

ߠ  (3) ൌ ଵ
ே

 ,୫ߠ

(4)  ߬ ൌ ܰ߬୫, 

where N is the gear ratio (N=100:1), ߠ୫ and ߬୫ are the position and torque of the 
motor; ܫ୫ and ݀୫ are the inertia and damping of the motor reflected to the link side 
as follows: 

୫ܫ  (5) ൌ ܰଶܬ୫, 

(6)  ݀୫ ൌ ܰଶ ቀܦ୫ ൅ ௄ഓ௄ౘ౛ౣ౜
ோౣ

ቁ, 

where ܭఛ and ܭୠୣ୫୤ are the torque sensitivity and back EMF constant, ܴ୫ is the 
stator resistance and ܦ୫ is the physical damping of the motor. Finally, ݍ ,ݍሶ , ߬௟, ܬ௟ 
and ݀௟ are the position, velocity, torque, inertia and damping of the link respectively 
and  ௝݇ is the resultant joint stiffness ( ௝݇ ൌ ୦   for the stiff joints and ௝݇ܭ ൌ ௄౞௄౩

௄౞ା௄౩
 in 

the case of compliant joints). In the case of the compliant joints, it is possible to 
approximate the resultant joint stiffness with ܭୱ since ܭ୦ ൎ 8000 ሺN. mሻ/rad is 
much larger than  ܭୱ ൎ 100 ሺN. mሻ/rad. From the stiffness and damping value of 
each joint it is possible to define the joint stiffness and damping matrix as:  
୨ܭ ൌ diag൫ ௝݇

௜൯ and ܦ୨ ൌ diagሺ ݀௟
௜ሻ, i={1, 6}. Both of them are 6×6 diagonal positive 

definite matrices.  

2.2.  Cartesian model at the CoM 

Based on the compliant joint model introduced in the previous section, the 
compliant robot behaviour is approximated by an equivalent Cartesian spring-mass-
damper model at the level of the CoM. 



 79

 
Fig. 3. Robot model and associated support foot reference frame 

For each leg, the Jacobian matrix ܬC୭M from the foot base frame placed below 
the ankle, to the frame placed at the CoM of the robot has been computed (Fig. 3). 
Using the joint stiffness matrix  ܭ୨, the resultant Cartesian stiffness matrix 
Cܭ א  ܴ଺ൈ଺  at the pelvis level (CoM) can be obtained by the following equation: 
Cܭ  (7) ൌ C୭Mܬ

ିT C୭Mܬ୨ܭ
ିଵ  

where ܬC୭M
ିT  is the inverse transposed Jacobian matrix. In a similar manner, the 

resultant Cartesian damping matrix ܦC א   ܴ଺ൈ଺  at the pelvis level (CoM) can be 
obtained as follows: 
Cܦ  (8) ൌ C୭Mܬ

ିT C୭Mܬ୨ܦ
ିଵ  

where ܦ୨  is the joint stiffness matrix defined in the previous section. Equations (7) 
and (8) are an approximation of the complete relationship due to the fact that they 
do not take into account the change of the Jacobian matrix during the deflection 
movement [15]. Consequently, the approximation is valid when the deflection is 
small which occurs during the model experiments. 

2.3.  Working principle of the model 

The dynamics model of COMAN is developed with the following assumptions in 
mind: 
(A1) The joints’ positions ߠ are controlled with a stiff PID loop. 

(A2) The elasticity in the joint transmission system is due to the harmonic drive 
compliance as well due to additional physical elasticity integrated in the knee 
and ankle pitch joints of the leg. 

(A3) A single mass approximation is used for the robot model. 

The first assumption allows the reduction of the model’s complexity. In fact, 
in the case of an ideally stiff position control (motor position tracking error equal to 
zero) and high reduction ratio (back-drivability approximately zero), the dynamics 
of the motor in (1) can be ignored when the robot is subject to external force 
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perturbations. In this case, (2) approximates the overall joint/link dynamic because 
the dynamics of the controlled actuator is much faster than the dynamics of the 
transmission. 

During walking experiments, the position deflection of the CoM with respect 
to the desired position is large along the directions x and z and smaller along the 
lateral direction y according to foot frame (Fig. 3). This is a consequence of (A2), in 
fact, the level of compliance is high in the sagittal plane of the humanoid robot (due 
to additional elasticity in the knee and ankle pitch joints) while in lateral direction 
the robot is stiffer (only the compliance of the harmonic reduction drive contributes 
to this). Because of that, in y direction the movement can be approximated by a stiff 
system. 

Finally, (A3) is an approach which has been extensively used in trajectory 
generation and control of humanoid robots [16]. Therefore, according to this 
assumption, the dynamics of the robot is approximated to the dynamics of the single 
mass placed at the pelvis (CoM position). 

According to the previous consideration and considering equations (7) and (8), 
the forces generated at the pelvis (CoM) frame when the CoM position  
࢖ ൌ ሾݖ ݕ ݔሿT א   ܴଷ deflects with respect to its reference position vector  
୰ሿTݖ ୰ݕ ୰ݔୀሾܚ࢖ א   ܴଷ, can be expressed as follows: 

CTܨ  (9) ൌ െܭCTሺ݌ െ ୰ሻ݌ െ ሶ݌CTܦ  

where ܭCT, CTܦ  א    ܴଷൈଷ are sub-matrices of ܭC,  C related to the linear motionܦ 
along x, y and z. In case of diagonal matrices x, y and z dynamics are completely 
decoupled but in this case the off-diagonal elements of the matrices in (7) and (8) 
are different from zero. Therefore, decoupling the movement of the robot is not 
possible. 

The linear passive dynamics of the single-mass model can be described by the 
following expression: 

ሷ݌ܯ  (10) ൌ ,݌CTሺܨ ሶሻ݌ ൅  CTܩܯ

where the mass-matrix ܯ ൌ diagሺ݉, ݉, ݉ሻ א   ܴଷൈଷ with ݉ being the total mass of 
the robot placed at the CoM, ܨCT ൌ ሾ ௖݂௫ ௖݂௬ ௖݂௭ሿT א   ܴଷ is the Cartesian forces 
given by (9) and  ܩCT ൌ ሾ0 0 െ ݃ሿT א   ܴଷ represents the gravity. 

Considering only the passive dynamics along the sagittal and vertical 
directions and referring to equation (9), (10) can be written in a matrix form as 
follows  

(11)  ቂ ݉ݔሷ
ሷݖ݉ ቃ ൌ െ ൤ܭ௫௫ ௫௭ܭ

௭௫ܭ ௭௭ܭ
൨ ቂ

ݔ െ ௥ݔ
ݖ െ ௥ݖ

ቃ െ ൤ܦ௫௫ ௫௭ܦ
௭௫ܦ ௭௭ܦ

൨ ቂݔሶ
ሶቃݖ ൅ ቈ

 
0

െ݉݃
቉ 

where ܭ௫௫, ܭ௫௭, ܭ௭௫ and ܭ௭௭ are the relevant elements of ܭC; ܦ௫௫, ܦ௫௭, ܦ௭௫, ܦ௭௭ 
are the relevant elements of ܦC; ݔ௥ and ݖ௥ are Cartesian position reference of the 
CoM; and ݔ ,ݖ ,ݔሶ ሷݔ ,ሶݖ   ሷ are position, velocity and acceleration of the CoM when itݖ ,
is subject to external loads. The passive dynamic of the CoM of the robot in 
Cartesian space during stance phase is described by (11). 
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2.4.  Reference trajectory generation 

The reference trajectories used later in the learning technique and in the 
experimental evaluation of the model were generated based on the ZMP approach. 
The desired gait can be defined by a minimum set of data: step length (sl), single 
support duration ( ୱܶୱ), double support duration (ܶୢ ୠ). During the single support the 
robot was approximated with a single mass linear inverted pendulum as in [16], 
[17] The ZMP trajectory was computed in order to achieve the desired gait. The 
reference position of CoM ݌୰  can be obtained from the defined ZMP 
reference  ݌ZMP ൌ ሾݔZMP ݕZMP 0ሿT א   ܴଷ.  

୰ሷݔ  (12) െ ௚
௓ౙ

୰ݔ ൌ െ ௚
௓ౙ

 ,ZMPݔ

୰ሷݕ  (13) െ ௚
௓ౙ

୰ݕ ൌ െ ௚
௓ౙ

 ZMPݕ

where ܼୡ is the fixed CoM height. 

3. Model implementation 

The model in (11) has been developed exploiting the characteristics of the system 
and adopting some approximation based on the three assumptions reported in 
Section 2.3. These approximations allow to reduce the complexity of the equations 
but at the same time they introduce an error in the model. The model equations can 
be rearranged as follows: 
ଵߦ  (14) ൌ ሷݔ ൌ െߙଵ

௄ೣೣ
௠

ሺݔ െ ୰ሻݔ െ  βଵ
௄ೣ೥
௠

ሺݖ െ ୰ሻݖ െ  γଵ
஽ೣೣ
௠

ሶݔ െ ଵߝ 
஽ೣ೥
௠

 ,ሶݖ

ଶߦ  (15) ൌ ሷݖ ൌ െ݃ െ ଶߙ
௄೥ೣ
௠

ሺݔ െ ୰ሻݔ െ βଶ  ௄೥೥
௠

ሺݖ െ  ୰ሻݖ

െγଶ  ஽೥ೣ
௠

ሶݔ െ ଶߝ  ஽೥೥
௠

 ,ሶݖ

where ߙ௜, ߚ௜, γ௜ and ߝ௜, i={1, 2} are parameters inserted to compensate model errors 
due to the approximation used as well as other errors from the identification of the 
joint stiffness and damping parameters. 

Equations (14) and (15) describe the robot behavior during single support. In 
this phase, the robot stands on one leg therefore the robot movement is mostly 
affected from the compliant joints of the supporting leg. Otherwise, during double 
support phase, both feet are on the ground hence the compliant joints of both legs 
contribute to the robot movement. To take into account the effect of the second leg 
during this phase, the same procedure used to derive equations (9) can be reiterated 
for the other leg and included in the model equation. In order to reduce the 
complexity of the model, another approach has been adopted. Assuming that during 
the double support phase the two feet on the ground do not move relative to each 
other, the forces developed from the two legs are different because of the different 
configuration of the legs and different displacements. The effect of the second leg 
has been included to the model scaling equations (14) and (15) as follows: 

ଵߦ  (16) ൌ ሷݔ ൌ ଵߟ ቀെߙଵ
௄ೣೣ
௠

ሺݔ െ ୰ሻݔ െ  γଵ
஽ೣೣ
௠

ሶݔ െ  βଵ
௄ೣ೥
௠

ሺݖ െ ୰ሻݖ  െ ଵߝ 
஽ೣ೥
௠

 ,ሶቁݖ
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ଶߦ  (17) ൌ ሷݖ ൌ െ݃ ൅ ଶߟ ቀെߙଶ
௄೥ೣ
௠

ሺݔ െ ୰ሻݔ െ γଶ  ஽೥ೣ
௠

ሶݔ  

െ βଶ  
௭௭ܭ

݉
ሺݖ െ ୰ሻݖ  െ ଶߝ  

௭௭ܦ

݉  .ሶ൰ݖ
Equations (16) and (17) are used during the double support phase. The scaling 

coefficients ߟଵ,  ଶ are computed from experimental data which evaluates the x andߟ
z forces measured by the force/torque sensors mounted at the feet of the robot [14]. 

4.  Optimization of the model using reinforcement learning 

The proposed compact model captures well many of the characteristics of the 
passively compliant robot. However, it does not perfectly predict the behaviour of 
the robot, which is due to two main reasons: (i) the simplifying assumptions, which 
are necessary to keep the model compact, but also introduce approximation errors, 
and (ii) measurement inaccuracies when estimating the physical properties of the 
robot, e.g. the stiffness of the springs, etc. A common simplification assumption is, 
for example, that the left and the right leg have the same properties and therefore 
behave identically. In reality, this is not entirely true, because of the complexity of 
series elastic actuation, where it is normal to observe differences between the right 
and left leg’s motors, passive compliance unit, friction, and so on. 

One way to minimize the modelling error is to make the model more complex. 
This, however, would diminish the advantage of having a compact model, and 
would impede its use as a fast predictor of the robot’s behaviour instead of the robot 
itself. Therefore, in this paper we concentrate our effort on optimizing the proposed 
compact model in order to achieve the best modelling precision without 
unnecessarily increasing the model complexity. 

More concretely, by optimization of the model we mean the search for optimal 
values of some important parameters of the model. From equations (14)-(17) we 
have identified 8 important parameters whose values are crucial for the performance 
of the model. These parameters are as follows: ߙଵ and γଵ affect the relationship 
between the force generate along x direction and the position and velocity of the 
CoM in the same direction, βଶ and ߝଶ affect the relationship between the force 
generate along z direction and the position and velocity of the CoM in the same 
direction, finally βଵ, ߝଵ, ߙଶ and γଶ affect the coupling between the orizontal and 
vertical movement of the CoM. 

Initially, the parameter values are all set to be equal to 1.0. The goal of the 
optimization is to find other values for these parameters which reduce the overall 
model error. The model error is estimated using a ground truth data set, recorded 
from real-world experiments with COMAN, where the reference trajectories are 
known, and the actual response trajectories are compared to the model output. 
Using this data set, we have defined a cost function to be minimized, equal to the 
mean squared error of the model prediction with respect to the actual response 
trajectories. 

Many alternative optimization approaches exist, which can be used to 
minimize this cost function. In this paper we have selected a reinforcement learning 
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approach, based on direct policy search. In this approach, the policy is 
parameterized by a set of parameters, and the reinforcement learning algorithm is 
trying to optimize their values by performing a sequence of trials and evaluating its 
performance using the defined cost function (which is a form of reward function).  

In particular, we have selected the POWER algorithm (POlicy learning by 
Weighting Exploration with the Returns [18]) for implementing the optimization, 
for the following reasons: (i) it does not require a learning rate parameter; (ii) it re-
uses efficiently trials using importance sampling; (iii) it has been already applied 
successfully on the COMAN robot for another task, to optimize the walking gait by 
varying the center-of-mass height and thus reduce the energy consumption [19]. 

The optimization algorithm has been executed on reference trajectories with 
duration of 30 s (30 000 samples) and the corresponding trajectories performed by 
the robot computed through forward kinematics. The gait parameters are sl=0.03, 

ୱܶୱ=0.5 s and ܶୢ ୠ= 0.2 s. 
Table 1.  Parameter values after the optimization 

Parameter ߙଵ βଵ  γଵ ߝଵ ߙଶ βଶ γଶ ߝଶ 
Value 0.9827 1.0357 1.0560 1.1335 0.9792 0.9561 1.0072 1.1053 

Table 1 contains the optimal values of the parameters found by the algorithm. 
The results from the optimization show that the modelling error can indeed be 
reduced by only changing the values of the selected eight parameters 
,ଵߙ) βଵ , γଵ, ,ଵߝ ,ଶߙ βଶ, γଶ,  ଶ). In Fig. 4 the results of the model before and after theߝ
optimization process are compared. 

 

 
Fig. 4. Comparison of the model results before and after optimization 
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The base assumptions of the model reduce the precision of the inertia 
representation more than the gravity. The movement along the walking direction is 
mostly affected by the inertia of the system because there are important 
accelerations and decelerations. Instead vertical movement is mostly affected by 
gravity force. The consequence is that the movement along x directions benefit of 
the optimization procedure more than z direction.  

5. Conclusion  

In this work a reduced model of the dynamic of the CoM motion of the robot has 
been described. The model is based on some assumptions that reduce the 
complexity of the equations but at the same reduce the precision of the results. To 
improve the performances of the model some parameters have been inserted in the 
model equations in order to compensate the errors due to the reductions. The value 
of these parameters has been optimized using learning technique. An improvement 
of the model performance has been reached. 

The set of parameters found has been also used to perform walking with 
different gaits than the one used in the optimization process. Also, in these cases the 
performance reached by the optimized model is better than the original model.  
Acknowledgment. This work is supported by the FP7 European project AMARSI (ICT-248311). 
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Individual Recognition from Gait Using Feature Value Method 
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Abstract: We propose a novel framework to recognize individuals from gait, in 
order to improve HRI. We collected the motion data of the torso from 13 persons’ 
gait, using 2 IMU sensors. We developed Feature Value Method which is a PCA 
based classifier and we achieved an average individual recognition rate of 94% 
through cross-validation. 

Keywords: Gait, Recognition, PCA, Feature vector, Exclusion method. 

1. Introduction 

In order to develop truly intelligent systems for Human-Robot Interaction, it is 
necessary to improve their ability to understand non-verbal communication. When 
sharing the same space as humans, robots must know whom they are interacting 
with. The actions to take with a stranger or a known user are different. As well 
within a group of users, needs and information accessibility may differ. Motion 
based biometrics provide a unique contact-less and non-verbal way to recognize 
moving individuals. It is considered as soft biometrics as it preserves privacy; and it 
is relatively difficult to counterfeit. It is grounded in psychological studies that have 
shown that one can recognize known individuals in the absence of anatomical cues 
by looking solely at the motion [1-7]. 

Techniques to record motions using motion capture are already well spread  
[8-9]. However, post processes based on inverse kinematics and geometrical models 
to calculate the joint angles from marker positions’ information are necessary. In 
this paper we replace optical motion capture by IMU sensors. IMU sensor measures 


