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Abstract. In this paper, we are concerned with existence, qualitative
properties, and uniform Gaussian estimates of the global fundamental
solutions of a family of heat operators on Carnot groups. As a byprod-
uct, we obtain existence and uniqueness theorems of Thychonov type
for the Cauchy problem. Our effort here is also to provide simple and
direct proofs relying on few basic tools such as invariant Harnack in-
equalities and maximum principles. In our study, we thoroughly exploit
some structural properties of Carnot groups pointed out in the previous
paper [4].

1. Introduction

Let G = (RN , ◦) be a Carnot group and denote by

ΔG =
∑m

j=1X
2
j

its canonical sub-Laplacian. Given a positive definite symmetric matrix
A = (ai,j)i,j≤m, let us consider the following heat-type operator on R

N+1

HA = LA − ∂t =
∑m

i,j=1ai,j XiXj − ∂t. (1.1)

For a fixed Λ ≥ 1, we denote by MΛ the set of the symmetric m×m matrices
A such that

Λ−1|ξ|2 ≤ 〈A ξ, ξ〉 ≤ Λ |ξ|2, ∀ ξ ∈ R
m.

In this paper, we are concerned with existence, qualitative properties and
uniform Gaussian estimates of the global fundamental solutions ΓA for HA,
with A ∈ MΛ. We also deal with existence and uniqueness theorems for
Cauchy problems related to HA. Our main results are summarized in Theo-
rem 2.1 and Theorem 2.5 of Section 2. We would like to stress that Theorem
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2.1 contains several results, some of which are somehow already present in
literature. We provide complete and elementary proofs of all the results,
in order to make the paper self-contained and easier to read. Theorem 2.5
deals with uniform Gaussian estimates for ΓA and ΓA−ΓB with A, B ∈ MΛ.
Gaussian but not uniform estimates, for heat kernels Γ on Lie groups were
proved by Varopoulos, Saloff-Coste and Coulhon [23], via semigroup theory,
by Jerison and Sànchez-Calle [13], via Gevrey regularity methods, and by
Kusuoka and Stroock [15, 16], via probabilistic techniques. Uniform but not
Gaussian estimates, for families of Hörmander operators generalizing (1.1),
were proved by Rothschild and Stein [21] and by Bramanti and Brandolini
[6] via a technique relying on the subelliptic estimates of Kohn [14].

In this paper, the approach we follow is completely different from the
ones quoted above. We start by presenting a direct and simple proof of
non-uniform Gaussian estimates of ΓA from above, which only relies on the
maximum principle and the use of barrier functions of exponential type (see
Theorem 5.1). Although these estimates have already appeared in the past,
we emphasize that our techniques do not make any use of semigroup theory,
Gevrey classes or probability arguments which were heavily employed in
previous works, see e.g. [13, 15, 16, 23]. The non-uniform estimates from
below and the estimates of the derivatives of ΓA are readily derived, as usual,
from the invariant Harnack inequality for HA. We also give a direct proof
of this inequality. Our estimates, in particular, obviously hold for ΓG, the
fundamental solution for the canonical heat operator

HG = ΔG − ∂t.

To obtain uniform estimates for ΓA and ΓA − ΓB, we follow the näıve idea
to look for a diffeomorphism TA : R

N → R
N such that

ΓA(x, t) = JA(x) ΓG(TA(x), t), ∀x ∈ R
N , ∀ t ∈ R,

where JA is the Jacobian determinant of TA. Such a diffeomorphism does
exist if G is a free group but may not exist otherwise, as it has been recently
proved in [4]. That paper also contains the following result: every Carnot
group G can be lifted in the sense of Rothschild-Stein, to a free Carnot group
G̃ in such a way that LA and ΓG are lifted to L̃A and Γ

G̃
, respectively. By

using these two results and the above mentioned Gaussian bounds for Γ
G̃
,

we are able to obtain our uniform Gaussian estimates for ΓA and ΓA − ΓB

(see Theorem 7.10 and Theorem 7.12).
These estimates will be crucial tools in a forthcoming paper, in which we

shall construct the fundamental solution of the non-divergence form operator
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with “variable” coefficients∑m
i,j=1ai,j(x, t)XiXj − ∂t. (1.2)

Such a construction, based on the Levi’s parametrix method, is one of the
main motivation for the present paper. We would like to stress that operators
like (1.2) are linearizations of fully non-linear operators that naturally arise
in studying motion of surfaces by Levi-curvature (see [22, 19]).

The present paper is organized as follows. In Section 2, we first recall
some basic definitions on Carnot groups. Then, we summarize our results in
Theorems 2.1-2.5. Section 3 is devoted to a direct analytic construction of
the fundamental solutions for HA and LA previously found in [8, 9, 23].
In Section 4, we give a new proof of the well known invariant Harnack
inequality for non-negative solutions to HAu = 0. Our proof only relies
on a weak Harnack inequality of Bony [5], on a general result of abstract
potential theory concerning with the support of the harmonic measures and,
finally, on the homogeneity of HA with respect to a group of dilations. The
Gaussian non-uniform estimates of ΓA are proved in Section 5 and are used
in Section 6 to show the solvability of the Cauchy problem for HA and
uniqueness results of Thychonov-type. Section 7 is devoted to the proof of
the uniform Gaussian estimates for ΓA, γA, ΓA−ΓB and γA−γB. Finally, in
the Appendix we recall many basic properties that will be used throughout
the paper.

2. Main results

We start by giving the definition of a Carnot group. Our definition, which
is the most convenient for our purposes, may seem slightly different from the
one usually given in literature. As a matter of fact, as we observe below, the
two definitions are equivalent.

Let ◦ be an assigned Lie group law on R
N . Suppose R

N is endowed with
a homogeneous structure by a given family of Lie group automorphisms
{δλ}λ>0 (called dilations) of the form

δλ(x) = δλ(x(1), x(2), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)). (2.1)

Here x(i) ∈ R
Ni for i = 1, . . . , r and N1 + · · ·+ Nr = N . We denote by g the

Lie algebra of (RN , ◦), i.e., the Lie algebra of left-invariant vector fields on
R

N . For i = 1, . . . , N1, let Xi be the (unique) vector field in g that agrees at
the origin with ∂/∂xi. We make the following assumption: the Lie algebra
generated by X1, . . . , XN1 is the whole g. With the above hypotheses, we
call G = (RN , ◦, δλ) a homogeneous Carnot group. We also say that G is of
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step r and has m := N1 generators. The canonical sub-Laplacian on G is
the second order differential operator

ΔG =
∑m

i=1X
2
i .

If Y1, . . . , Ym is any basis for span{X1, . . . , Xm}, the second order differential
operator

L =
∑m

i=1Y
2
i

will be called a sub-Laplacian on G. In literature (see e.g. [8], [21], [23],
[12]) a Carnot group (or stratified group) H is defined as a connected and
simply connected Lie group whose Lie algebra h admits a stratification h =
V1⊕· · ·⊕Vr with [V1, Vi] = Vi+1, [V1, Vr] = {0}. It is not difficult to recognize
that any homogeneous Carnot group is a Carnot group according to the
classical definition. On the other hand, up to isomorphism, the opposite
implication is also true (see e.g. [4]).

We next give a list of known results about homogeneous Carnot groups.
Since X1, . . . , Xm generate the whole g, which has rank N at any point, any
sub-Laplacian L satisfies Hörmander’s hypoellipticity condition. Moreover,
the vector fields X1, . . . , Xm are homogeneous of degree 1 w.r.t. δλ and X∗

j

(the adjoint operator of Xj) is −Xj . In particular, L is a self-adjoint operator
in divergence form

L = div
(
ML(x)∇

)
, (2.2)

ML(x) being a suitable nonnegative-definite symmetric matrix. We denote
by Q =

∑r
j=1 j Nj the homogeneous dimension of G. Then meas(δλ(E)) =

λQmeas(E) for any measurable set E. Here meas(·) denotes the Lebesgue
measure on R

N . This measure is invariant w.r.t. the left and right trans-
lations on G. If Q ≤ 3, then G is the ordinary Euclidean group (RQ,+)
and ΔG is the classical Laplace operator. Hence, throughout the paper, we
shall always assume Q ≥ 4. In Section 3, we shall prove that there exists a
homogeneous norm dL on G such that

γ(x, y) =
(
dL(y−1 ◦ x)

)2−Q (2.3)

is a fundamental solution for L (see also [8] and [10]). We recall that a
homogeneous norm on G is a continuous function d : R

N → [0,∞), smooth
away from the origin, such that d(δλ(x)) = λ d(x), d(x−1) = d(x), and
d(x) = 0 iff x = 0. Hereafter, we also denote d(y−1 ◦ x) by d(x, y). The
following quasi-triangle inequality holds

dL(x, y) ≤ βL (dL(x, z) + dL(z, y)),
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for a suitable constant βL. We finally introduce the heat operator H, related
to the sub-Laplacian L, on G × R ≡ R

N+1:

H = L − ∂t.

Here we denote by z = (x, t) the point of R
N+1 (x ∈ G, t ∈ R). The operator

H is hypoelliptic by Hörmander Theorem. When L = ΔG, we shall denote
by HG = ΔG−∂t the canonical heat operator on G×R and by dG the related
homogeneous norm dΔG

.
We next give a survey of our main results. In what follows, G will be a

fixed homogeneous Carnot group.
The following theorem collects several results that will be proved in Sec-

tions 3 and 6.

Theorem 2.1. There exists a smooth function Γ on R
N+1 \ {0} such that

the fundamental solution for H is given by Γ(x, t; ξ, τ) := Γ(ξ−1 ◦ x, t − τ).
Γ has the properties listed below.

(i) Γ(x, t) ≥ 0 and Γ(x, t) = 0 iff t ≤ 0; moreover Γ(x, t) = Γ(x−1, t).
(ii) Γ(δλ(x), λ2t) = λ−QΓ(x, t); in particular Γ vanishes at infinity.
(iii) For every ζ ∈ R

N+1, Γ(·; ζ) is locally integrable and HΓ(·, ζ) = −δζ

(the Dirac measure supported at {ζ}).
(iv) For every test function ϕ ∈ C∞

0 (RN+1) and ζ ∈ R
N+1, the following

identities hold:

H
( ∫

RN+1

Γ(·; ζ)ϕ(ζ) dζ
)

=
∫

RN+1

Γ(·; ζ)Hϕ(ζ) dζ = −ϕ.

(v) Γ∗(z; ζ) = Γ(ζ; z) is the fundamental solution for the adjoint operator
H∗ = L + ∂t and it satisfies the dual statements of (iii) and (iv).

(vi) For every t > 0,
∫

RN Γ(x, t) dx = 1.
(vii) Suppose f is a continuous function in R

N satisfying the exponential
growth condition in Corollary 6.2. Then, there exists δ > 0 such
that the function u(x, t) :=

∫
RN Γ(ξ−1 ◦ x, t) f(ξ) dξ is well posed for

0 < t < δ and is a solution to the Cauchy problem

Hu = 0 in R
N × (0, δ), u(·, 0) = f.

(viii) Suppose u is a classical solution to the Cauchy problem

Hu = 0 in R
N × (0, r), u(·, 0) = 0, (2.4)

and assume that either u is non-negative or there exists μ > 0 such
that ∫ r

0

∫
RN

exp
(
− μ d2

L(x)
)
|u(x, t)|dxdt < ∞. (2.5)
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Then u vanishes identically.
(ix) For every x ∈ R

N , t > 0 and τ > 0, the following reproduction
property holds

Γ(x, t + τ) =
∫

RN

Γ(ξ−1 ◦ x, t) Γ(ξ, τ) dξ.

As a consequence, we obtain in a very natural and simple way the existence
of the fundamental solution γ for L, and we prove that γ is the power of a
suitable homogeneous norm. The latter result was first proved by Gallardo
[10] via probabilistic techniques. The following theorem will be proved in
Section 3.

Theorem 2.2. Setting

γ(x) :=
∫ ∞

0
Γ(x, t) dt, x ∈ R

N ,

then γ(x, ξ) := γ(ξ−1 ◦x) is the fundamental solution for L. Moreover, there
exists a homogeneous norm dL on G such that γ = d2−Q

L .

In Section 5, we prove Gaussian estimates for Γ and its derivatives. The
estimate from above is obtained by a direct proof based on a comparison
argument. The estimate from below is derived from the Harnack inequality
for the L-caloric functions. For this purpose, in Section 4 such Harnack
inequality is proved by using some basic properties of the harmonic sheaf
related to H and few general results of abstract Potential Theory.

Our main goal in the paper is to prove that the mentioned Gaussian
estimates are uniform in the class of the sub-Laplacians

LA =
∑m

i,j=1ai,j XiXj , A = (ai,j)i,j ∈ MΛ,

where MΛ is the set of m × m symmetric matrices A such that Λ−1|ξ|2 ≤
〈Aξ, ξ〉 ≤ Λ|ξ|2 (Λ ≥ 1 being a fixed constant). A natural question is to ask
whether the operators LA’s are all diffeomorphic to the canonical operator
ΔG. This is the case if G is a free Carnot group, i.e., if the Lie algebra of G

is isomorphic to fm,r for some m and r (fm,r denotes the free nilpotent Lie
algebra of step r and m generators).

Theorem A. Suppose G is a free homogeneous Carnot group and let A be
a given positive-definite symmetric matrix. Then, there exists a Lie group
automorphism TA of G such that(∑m

j=1(A
1/2)i,j Xj

)
(u ◦ TA) = (Xiu) ◦ TA, i = 1, . . . , m, (2.6)

LA(u ◦ TA) = (ΔGu) ◦ TA, (2.7)
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for every smooth function u : G → R. Moreover, TA has polynomial compo-
nent functions (but in general it is not a linear map) and it commutes with
the dilations of G.

This theorem has been recently proved in [4]. In that paper it is also
shown that in Theorem A the hypothesis G free cannot be removed. In [4]
the following estimates of TA are also given.

Theorem B. Under the hypotheses and with the notation of the above the-
orem, we set JA(x) = |detJTA

(x)|, for x ∈ G. Then, JA turns out to be
constant in x. Moreover, there exists a positive constant cΛ only depending
on Λ and on the structure of G such that

(cΛ)−1 ≤ JA ≤ cΛ, (2.8)

|JA1 − JA2 | ≤ cΛ ‖A1 − A2‖, (2.9)

(cΛ)−1 dG(x) ≤ dG(TA(x)) ≤ cΛ dG(x), (2.10)

dG(TA1(x), TA2(x)) ≤ cΛ ‖A1 − A2‖1/r dG(x), (2.11)

‖A−1/2‖ ≤ cΛ, ‖A1/2
1 − A

1/2
2 ‖ ≤ cΛ ‖A1 − A2‖, (2.12)

for every A, A1, A2 ∈ MΛ and x ∈ G. Here, ‖A‖ denotes the matrix norm
max|ξ|=1 |Aξ| and JTA

the Jacobian matrix of TA. We also recall that r is
the step of nilpotence of G and dG is defined by (2.3) when L = ΔG.

Theorem A allows us to obtain the fundamental solution ΓA for HA =
LA − ∂t and γA for LA, as the composition of TA with the fundamental
solution ΓG for HG and γG for ΔG, respectively.

Theorem 2.3. Suppose G is a free homogeneous Carnot group. For every
A ∈ MΛ, we have

ΓA(x, t) = JA ΓG(TA(x), t), γA(x) = JA γG(TA(x)), ∀ x ∈ R
N , t ∈ R.

By means of these results, we are able to obtain the desired uniform
estimates in the free case. In order to handle the case of an arbitrary Carnot
group G, our main tool is the lifting of G to a free group G̃, by using the
following result also proved in [4].

Theorem C. Let G be a homogeneous Carnot group on R
N . Then, there

exists a free homogeneous Carnot group G̃ on R
H (with H ≥ N) such that,

denoting by π : R
H → R

N the projection on the first N coordinates (up to a
permutation of the coordinates of R

H), we have

X̃i(u ◦ π) = (Xiu) ◦ π, ∀u ∈ C∞(RN ),
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where
∑m

i=1 X2
i and

∑m
i=1 X̃2

i are the canonical sub-Laplacians ΔG and Δ
G̃
,

respectively. Moreover π : G̃ → G is a Lie group morphism.

We refer to Theorem 8.3 in the Appendix for a more detailed statement.
As a consequence, the following relation holds between the fundamental
solutions ΓA and Γ̃A for the heat operators on G and G̃ respectively. A
similar relation holds analogously between γA and γ̃A.

Theorem 2.4. For every A ∈ MΛ, we have

ΓA(x, t) =
∫

RH−N

Γ̃A((x, x̂), t) dx̂, γA(x) =
∫

RH−N

γ̃A(x, x̂) dx̂,

x ∈ R
N , t ∈ R, where (x, x̂) denotes the point of R

N × R
H−N .

Combining all the above results, we are finally in position to derive our
uniform Gaussian estimates in the general case.

Theorem 2.5. Given any non-negative integers p, q, there exist positive
constants cΛ, cΛ,p, cΛ,p,q such that for every i1, . . . , ip ∈ {1, . . . , m} and for
every A, A1, A2 ∈ MΛ, we have

c−1
Λ t−Q/2 exp

(
− cΛ d2

G
(x)

t

)
≤ ΓA(x, t) ≤ cΛ t−Q/2 exp

(
− d2

G
(x)

cΛ t

)
,

∣∣Xi1 · · ·Xip(∂t)q ΓA(x, t)
∣∣ ≤ cΛ,p,q t−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
,∣∣Xi1 · · ·Xip(∂t)q ΓA1(x, t) − Xi1 · · ·Xip(∂t)q ΓA2(x, t)

∣∣
≤ cΛ,p,q ‖A1 − A2‖1/r t−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
,

for every x ∈ R
N , t > 0. Moreover,

c−1
Λ (dG(x))2−Q ≤ γA(x) ≤ cΛ (dG(x))2−Q,∣∣Xi1 · · ·Xip γA(x)

∣∣ ≤ cΛ,p (dG(x))2−Q−p,∣∣Xi1 · · ·Xip γA1(x) − Xi1 · · ·Xip γA2(x)
∣∣ ≤ cΛ,p ‖A1 − A2‖1/r (dG(x))2−Q−p,

for every x ∈ R
N \ {0}. We recall that r denotes the step of nilpotence of G.

Finally, for the reader’s convenience, in the Appendix we explicitly recall
the main properties of Carnot groups that will be used throughout the paper
(for all the proofs and a self contained presentation of Carnot groups, see
e.g. [4]).
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3. Construction of the fundamental solution

Let L be a (fixed) sub-Laplacian on G and let H = L−∂t be its associated
heat operator. In this section, we prove the existence of a fundamental
solution Γ for H vanishing at infinity.

Definition 3.1. We shall say that a function Γ : R
N+1 × R

N+1 → R is the
fundamental solution for H if and only if for every ζ ∈ R

N+1, we have

(i) Γ(·; ζ) ∈ Lloc(RN+1),
(ii) H(Γ(·; ζ)) = −δζ (the Dirac measure supported at {ζ}),
(iii) Γ(z; ζ) −→ 0, as |z| → ∞.

We explicitly remark that such fundamental solution (if it exists) is unique
by the weak maximum principle for H.

Following the lines of [17], we shall construct Γ as limit of a sequence
of Green functions related to an increasing sequence of regular domains in-
vading R

N+1. Finally, at the end of the section, we shall also obtain the
fundamental solution γ for L, by saturating the t variable of Γ.

We start our construction by fixing a bounded open neighborhood of the
origin O1 ⊆ R

N , such that δλO1 ⊆ O1, for every λ ∈ (0, 1] (so that Oλ :=
δλO1 ↗ R

N , as λ → ∞) and such that at any point x0 ∈ ∂O1 there exists
a L-non-characteristic outer normal to O1 (i.e., a vector ν �= 0 such that
{x ∈ O1 : |x0 + ν − x| < |ν|} = ∅ and 〈ML(x0) ν, ν〉 > 0, where ML
is the matrix defined by (2.2)). The existence of such a set O1 is clear,
observing that (ML)1,1 is a positive constant. Indeed, if L =

∑m
i=1 Y 2

i with
Yi =

∑m
j=1 bi,j Xj (where B = (bi,j)i,j is an invertible constant matrix), then

it is easy to recognize (see Theorem 8.2) that (ML)1,1 =
∑m

i=1 b2
i, 1 > 0. We

then define U1 = O1 × (−1, 1). Given any cylindrical domain U = O × (a, b)
(O open subset of R

N ), we shall use the notation

∂pU := (O × {a}) ∪ (∂O × [a, b]), Û := U ∪ ∂pU.

The following result is proved in the paper [17, Theorem 2.7] (see also [5]),
with direct methods in line with the scope of our presentation. We explicitly
remark that the hypothesis (H.3) of [17] is not used in the proof of the cited
theorem.

Theorem 3.2.
(i) For every f ∈ C(Û1) there exists a unique solution u ∈ C(Û1) to

the Dirichlet problem Hu = −f in U1, u|∂pU1 = 0 (in the sense of
distributions). We denote by G1f such a solution u.
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(ii) There exists a non-negative smooth function G1, defined out of the
diagonal of U1 × U1, such that

G1f(z) =
∫

U1

G1(z; ζ) f(ζ) dζ, for every f ∈ C(Û1) and z ∈ Û1; (3.1)

G1(·; ζ)|∂pU1 = 0, for every ζ ∈ U1; (3.2)

G1(x, t; ξ, τ) = 0, if t ≤ τ. (3.3)

(iii) Setting G∗
1(z; ζ) := G1(ζ; z), there hold statements analogous to (i),

(ii) w.r.t. the adjoint operator H∗ (of course, we have to replace ∂pU1

with ∂∗
pU1 = (O1 × {1}) ∪ (∂O1 × [−1, 1])).

We now set, for any λ > 0,

Uλ = δλO1 × (−λ2, λ2), (3.4)

Gλ(x, t; ξ, τ) = λ−QG1(δλ−1x, λ−2t; δλ−1ξ, λ−2τ), (3.5)

and we prove that Gλ is the Green function of Uλ.

Proposition 3.3. The assertions in Theorem 3.2 hold true replacing U1,
G1, G1 with Uλ, Gλ, Gλ, respectively.

Proof. Let g ∈ C(Ûλ) and set f(x, t) = g(δλx, λ2t), u = G1f and v(x, t) =
λ2u(δλ−1x, λ−2t). We claim that v =: Gλg is the solution to the Dirichlet
problem Hv = −g in Uλ, v|∂pUλ

= 0 (in the sense of distributions). Indeed
for any test function ϕ ∈ C∞

0 (Uλ), setting ϕλ(x, t) = ϕ(δλx, λ2t) and using
the homogeneity properties of H∗, by a change of variable we obtain∫

Uλ

vH∗ϕ = λQ+2

∫
U1

uH∗ϕλ = −λQ+2

∫
U1

f ϕλ = −
∫

Uλ

g ϕ.

This proves part (i), recalling that uniqueness follows from the parabolic
maximum principle. We now only need to observe that

Gλg(x, t) = λ2(G1f)(δλ−1x, λ−2t)

= λ2

∫
U1

G1(δλ−1x, λ−2t; y, s)g(δλy, λ2s) dyds =
∫

Uλ

Gλ(x, t; ξ, τ)g(ξ, τ) dξdτ.

This ends the proof. �
In the following, we agree to extend any function to be zero outside of its

domain of definition.

Lemma 3.4. We have Gλ1(z; ζ) ≤ Gλ2(z; ζ), if 0 < λ1 ≤ λ2.
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Proof. Since Gλ ≥ 0, we only have to consider z, ζ ∈ Uλ1 . We fix ζ and set
w = (Gλ2 − Gλ1)(·; ζ). By means of Proposition 3.3, for any test function
ϕ ∈ C∞

0 (Uλ1), we have, for i = 1, 2,

−ϕ(ζ) = G∗
λi

(H∗ϕ)(ζ) =
∫

Uλi

G∗
λi

(ζ; z)H∗ϕ(z) dz =
∫

Uλ1

Gλi
(z; ζ)H∗ϕ(z) dz,

and then ∫
Uλ1

wH∗ϕ = 0.

This proves that Hw = 0 in Uλ1 . Moreover, Gλ1(·; ζ)|∂pUλ1
= 0 yields

w|∂pUλ1
≥ 0. Hence, from the parabolic maximum principle, we infer that

w ≥ 0 in Uλ1 . �
We define

Γ(z; ζ) := sup
λ>0

Gλ(z; ζ) (= lim
λ→∞

Gλ(z; ζ)), z, ζ ∈ R
N+1.

Theorem 3.5.
(i) Γ is a non-negative function which is smooth away from the diagonal

of R
N+1 × R

N+1.
(ii) For every fixed z ∈ R

N+1, Γ(·; z), Γ(z; ·) are locally integrable.
(iii) G∞ : C∞

0 (RN+1) → C∞(RN+1), G∞ϕ(z) =
∫

RN+1 Γ(z; ζ)ϕ(ζ) dζ, is
well posed and

H(G∞ϕ) = G∞(Hϕ) = −ϕ.

(iv) Γ(x, t; ξ, τ) = 0 if and only if t ≤ τ .
(v) For every ζ ∈ R

N+1, H(Γ(·; ζ)) = −δζ (the Dirac measure supported
at {ζ}).

(vi) Γ∗(z; ζ) := Γ(ζ; z) satisfies the dual statements of (iii) and (v) (w.r.t.
H∗).

Proof. The key point of the proof is Lemma 3.6 below. Once proved that
lemma, Theorem 3.5 will follow by using the same arguments of the proof
of [17, Theorem 1.1]. �

Lemma 3.6. Let 0 < λ0 < λ. For every ϕ ∈ C∞
0 (RN × (−λ2

0, λ
2
0)), we have

sup
Uλ

|Gλϕ| ≤ 2 λ2
0 sup |ϕ|.

Proof. We set u = Gλϕ, V0 = Oλ × (−λ2,−λ2
0), V1 = Oλ × (−λ2

0, λ
2
0),

V2 = Oλ × (λ2
0, λ

2). We shall make use of the parabolic maximum principle
on the domains V0, V1, V2. We explicitly remark that ∂pV0 ⊆ ∂pUλ. From
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Hu = −ϕ ≡ 0 in V0, u|∂pV0 = 0 we infer u ≡ 0 in V0 and in particular
u|∂pV1 = 0. Hence, setting w(x, t) := −(t + λ2

0) supUλ
|ϕ|, ω1 = u + w and

ω2 = u − w, we have Hω1 ≥ 0, Hω2 ≤ 0 in V1, ω1|∂pV1 ≤ 0, ω2|∂pV1 ≥ 0.
As a consequence ω1 ≤ 0, ω2 ≥ 0 in V1. In this way we have proved
that |u| ≤ −w ≤ 2 λ2

0 supUλ
|ϕ| =: M in V1. Finally, setting f1 = M + u,

f2 = M − u we have Hfi = 0 in V2, fi|∂pV2 ≥ 0, which yield fi ≥ 0 in V2

(i=1, 2). Therefore |u| ≤ M also in V2. �
From the definitions of Γ and of Gλ, we immediately obtain that Γ is

homogeneous w.r.t. the parabolic dilations of G × R. As a consequence, we
are able to prove that Γ vanishes at infinity.

Theorem 3.7. Γ has the following properties:

Γ(δλx, λ2t; δλξ, λ2τ) = λ−Q Γ(x, t; ξ, τ), (3.6)

Γ(z; ζ) −→ 0, as |z| → ∞, for every ζ ∈ R
N+1, (3.7)

Γ(z; ζ) −→ 0, as |ζ| → ∞, for every z ∈ R
N+1, (3.8)

lim sup
z→ζ

Γ(z; ζ) = ∞, for every ζ ∈ R
N+1, (3.9)

Γ(ξ,−τ ;x,−t) = Γ(x, t; ξ, τ) = Γ(ξ−1 ◦ x, t − τ ; 0, 0). (3.10)

In particular, Γ is the fundamental solution for H according to Definition
3.1. Moreover, given any homogeneous norm d on G, Γ satisfies the estimate

Γ(x, t; ξ, τ) ≤ c
(
d(x, ξ) + |t − τ |1/2

)−Q
, (3.11)

for a suitable positive constant c.

Proof. From (3.5) it follows that

Gn(δλx, λ2t; δλξ, λ2τ) =n−QG1(δλ/nx, λ2

n2 t; δλ/nξ, λ2

n2 τ) = λ−QGn/λ(x, t; ξ, τ).

Letting n go to infinity, we obtain (3.6). We now fix a homogeneous norm d

on G (which always exists) and set ρ(x, t; ξ, τ) = d(x, ξ)+ |t−τ |1/2, ρ(x, t) =
ρ(x, t; 0, 0). In order to prove (3.7), it is now sufficient to observe that
ρ(z) −→ ∞ as |z| → ∞ and to notice that (3.6) gives (z = (x, t), ζ = (ξ, τ))

Γ(z; ζ) = ρ−Q(z) Γ(δρ−1(z) x, ρ−2(z) t; δρ−1(z) ξ, ρ−2(z) τ), (3.12)

and then, by the continuity of Γ away from the diagonal,

0 ≤ Γ(z; ζ) ≤ ρ−Q(z) max
ρ(z′)=1, ρ(ζ′)≤ 1

2

Γ(z′; ζ ′),

for large |z|. The proof of (3.8) is analogous. Let us now prove (3.10). We
first want to show that Γ(·; ζ) = w, where we have set w(x, t) = Γ(ξ−1◦x, t−
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τ ; 0, 0), once ζ = (ξ, τ) ∈ R
N+1 is fixed. Recalling Theorem 3.5-(v) and (3.7),

we only need to prove that Hw = −δζ and to use the maximum principle.
On the other hand, Hw = −δζ easily follows from Theorem 3.5-(v) and the
left-invariance of L. We now set v(x, t) = Γ∗(x,−t; 0, 0) (= Γ(0, 0;x,−t)).
We want to show that v = Γ(·; 0). This would complete the proof of (3.10);
indeed we would have Γ(x, t; ξ, τ) = Γ(ξ−1 ◦x, t−τ ; 0, 0) = v(ξ−1 ◦x, t−τ) =
Γ(0, 0; ξ−1 ◦ x, τ − t) = Γ(x−1 ◦ ξ, t − τ ; 0, 0) = Γ(ξ,−τ ;x,−t). In order to
prove that v = Γ(·; 0), we make again use of the maximum principle. We
only need to observe that both v and Γ(·; 0) vanish at infinity by (3.8)-(3.7),
and that HΓ(·; 0) = −δ0 = Hv by Theorem 3.5-(v)-(vi). Finally, we prove
(3.9) and (3.11). (3.9) is an easy consequence of (3.6). From (3.10) and
(3.12) we derive

Γ(x, t; ξ, τ) = Γ(ξ−1 ◦ x, t − τ ; 0, 0) ≤ ρ−Q(x, t; ξ, τ) max
ρ(z′)=1

Γ(z′; 0).

This completes the proof. �
For the sake of brevity, in what follows we shall often use the notation

Γ(x, t) := Γ(x, t; 0, 0).

We explicitly note that, by (3.10), we have Γ(x, t; ξ, τ) = Γ(ξ−1 ◦ x, t − τ)
and

Γ(x, t) = Γ(x−1, t). (3.13)
We now turn to the construction of the fundamental solution for the sub-
Laplacian L.

Definition 3.8. We shall say that a function γ : R
N × R

N → R is the
fundamental solution for L if and only if for every ξ ∈ R

N , we have

(i) γ(·, ξ) ∈ Lloc(RN ),
(ii) L(γ(·, ξ)) = −δξ (the Dirac measure supported at {ξ}),
(iii) γ(x, ξ) −→ 0, as |x| → ∞.

We explicitly remark that such a fundamental solution (if it exists) is unique
by the weak maximum principle for L.

We prove the existence of the fundamental solution γ for L by a saturation
argument. Then, from the properties of Γ, we are able to prove that γ is a
power of a homogeneous norm (see also [8] and [10]).

Theorem 3.9. Let us set

γ(x, ξ) :=
∫ ∞

0
Γ(x, t; ξ, 0) dt, x, ξ ∈ R

N .
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Then γ is the fundamental solution for L. Moreover, there exists a homoge-
neous norm dL on G such that

γ(x, ξ) = (dL(ξ−1 ◦ x))2−Q, for every x �= ξ. (3.14)

In particular γ(x, ξ) = γ(ξ, x). As a consequence, setting

(γ ∗ ϕ)(x) =
∫

RN

γ(x, ξ)ϕ(ξ) dξ

for every ϕ ∈ C∞
0 (RN ), we have

L(γ ∗ ϕ) = γ ∗ (Lϕ) = −ϕ.

Proof. We first observe that γ0 := γ(·, 0) is δλ-homogeneous of degree 2−Q.
Indeed, from (3.6) we get

γ0(δλx) =
∫ ∞

0
Γ(δλx, t) dt = λ−Q

∫ ∞

0
Γ(x, t/λ2) dt

= λ−Q

∫ ∞

0
Γ(x, s) λ2 ds = λ2−Qγ0(x).

(3.15)

Moreover, by dominated convergence (see (3.11)), γ0 is continuous on R
N \

{0}. Since γ(x, ξ) = γ0(ξ−1 ◦ x) (by (3.10)), this is sufficient to get (i), (iii)
of Definition 3.8. We now prove (ii). Let ϕ ∈ C∞

0 (RN ) be a test function.
We set Φk(x, t) = ϕ(x)ψ(t/k), where ψ ∈ C∞

0 (R) is a fixed cut-off function
such that ψ(t) = 1 if |t| ≤ 1, ψ(t) = 0 if |t| ≥ 2. Since Γ is the fundamental
solution for H and Φk ∈ C∞

0 (RN+1), we obtain

−ϕ(ξ) = −Φk(ξ, 0) =
∫

RN+1

Γ(x, t; ξ, 0)H∗Φk(x, t) dxdt

−→
∫

RN+1

Γ(x, t; ξ, 0)Lϕ(x) dxdt,

as k → ∞ (by dominated convergence), being

H∗Φk(x, t) = ψ(t/k)Lϕ(x) + 1
k ϕ(x)ψ′(t/k) −→ Lϕ(x),

as k → ∞, and∣∣Γ(x, t; ξ, 0)
(
H∗Φk(x, t) − Lϕ(x)

)∣∣ ≤ cΓ(x, t; ξ, 0)
(
|Lϕ(x)| + |ϕ(x)|

)
∈ L1

(x,t)(R
N+1),

recalling that γ(·, ξ) ∈ Lloc(RN ). On the other hand,∫
RN+1

Γ(x, t; ξ, 0)Lϕ(x) dxdt =
∫

RN

γ(x, ξ)Lϕ(x) dx.
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Since L is self-adjoint, this gives L(γ(·, ξ)) = −δξ. Therefore, we have proved
that γ is the fundamental solution for L.

We now set dL(x) := (γ0(x))1/(2−Q), if x �= 0, dL(0) := 0. We remark that
γ0 > 0 in R

N \{0}, by Bony’s strong maximum principle for L (recalling that
Γ ≥ 0). It is easy to recognize that dL is a homogeneous norm on G. Indeed,
the smoothness of dL away from zero follows from the hypoellipticity of L;
the homogeneity of dL follows from (3.15) which also gives the continuity
at zero; finally dL(x−1) = dL(x) is a direct consequence of (3.13). The
last statement of the theorem straightforwardly follows, recalling that L is
self-adjoint. �

We would like to end this section with some remarks on the heat operators
related to sums of sub-Laplacians. Suppose we are given two homogeneous
Carnot groups X = (RN , ◦(1)), Y = (RM , ◦(2)) with dilations

δ
(1)
λ (x) = (λ x(1), . . . , λrx(r)), x ∈ X; δ

(2)
λ (y) = (λ y(1), . . . , λsy(s)), y ∈ Y

(x(i) ∈ R
Ni , i ≤ r, N1 + · · · + Nr = N ; y(i) ∈ R

Mi , i ≤ s, M1 + · · · +
Ms = M) and canonical sub-Laplacians ΔX =

∑N1
j=1 X2

j and ΔY =
∑M1

j=1 Y 2
j ,

respectively. We define a suitable homogeneous Carnot group G on R
N+M

in the way described below. We shall suppose r ≤ s. If (x, y) ∈ R
N × R

M ,
we consider the following permutation of the coordinates

P (x, y) = (x(1), y(1), . . . , x(r), y(r), y(r+1), . . . , y(s)).

We then denote the point of G ≡ R
N+M by z = P (x, y). We finally define

the group law ◦ and the dilations δλ on G in the natural way: for every
z = P (x, y), ζ = P (ξ, η) ∈ G, we set

z ◦ ζ = P (x ◦(1) ξ, y ◦(2) η), δλz = P (δ(1)
λ x, δ

(2)
λ y).

It is then easily proved that (G, ◦, δλ) is a homogeneous Carnot group on
R

N+M of step s and N1 +M1 generators. In other words, the direct product
of two homogeneous Carnot groups X, Y is, up to the permutation P , a
homogeneous Carnot group G. Moreover, the canonical sub-Laplacian on G

is the sum of the sub-Laplacians on X and Y:

ΔG = ΔX + ΔY =
∑N1

j=1X
2
j +

∑M1
j=1Y

2
j .

There is a remarkable relationship between the fundamental solution for the
heat equation on G and the fundamental solutions for the heat equations on
X and Y, as stated in the following result.



1168 A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni

Proposition 3.10. Let ΓG, ΓX and ΓY denote the fundamental solutions for
the operators HG = ΔG −∂t, HX = ΔX −∂t and HY = ΔY −∂t, respectively.
Then, we have

ΓG(P (x, y), t) = ΓX(x, t) ΓY(y, t), ∀ x ∈ R
N , y ∈ R

M , t ∈ R.

Proof. Setting Γ(P (x, y), t) = ΓX(x, t) ΓY(y, t), we only have to prove that
Γ satisfies (i)-(ii)-(iii) of Definition 3.1 with H = HG. Applying Theorem
6.1 to ΓX, ΓY, (i) easily follows. Let us prove (ii). Let ϕ ∈ C∞

0 (G × R) be a
test function and let us denote ψ = ϕ ◦ P . We have∫

G×R

ΓH∗ϕ = lim
ε→0+

∫
RN

∫
RM

∫ ∞

ε
ΓX(x, t)ΓY(y, t)

(
ΔX+ΔY+∂t

)
ψ(x, y, t)dtdydx.

Moreover, the integral in the right hand-side is equal to

−
∫

RN

∫
RM

ΓX(x, ε) ΓY(y, ε)ψ(x, y, ε) dydx.

This follows integrating by parts, since (ΔX + ΔY − ∂t)ΓX ΓY = ΓY HXΓX +
ΓX HYΓY = 0 in R

N × R
M × (ε,∞). Finally, using Theorem 5.1 and The-

orem 6.1, it is a standard argument to prove that such integral goes to
−ψ(0, 0, 0) = −ϕ(0), as ε → 0+. This proves (ii). In order to prove (iii), it
is now sufficient to observe that Γ ∈ C∞(G×R\{0}) (by the hypoellipticity
of H) and to use the homogeneity properties of Γ, which follow directly from
the definition of Γ and from the homogeneity of ΓX and ΓY (see (3.6)). �

As a particular case of Proposition 3.10, one can obtain the formula al-
ready found by Gaveau [11] when ΔX = Δ (the Laplace operator) and
ΔY = ΔHn (the Kohn Laplacian on the Heisenberg group). We also re-
mark that explicit formulas for some heat kernels on two step nilpotent Lie
groups have been shown in the recent papers [2, 3].

4. Harnack inequality for H
Given an open set Ω ⊆ R

N+1, we denote by H(Ω) the linear space of the
L-caloric functions in Ω, i.e., of the smooth functions u : Ω → R such that
Hu = (L − ∂t)u = 0 in Ω. The map Ω �→ H(Ω) is a harmonic sheaf in
R

N+1 which we shall denote by H. The aim of this section is to show the
Harnack inequality for the L-caloric functions by using some basic properties
of H and few general results of abstract Potential Theory. Throughout the
section, L is a fixed sub-Laplacian on G and all the constants may depend
on L. To begin with, we prove a “parabolic” maximum principle for H.
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Proposition 4.1. Let Ω be a bounded open subset of R
N+1 and let z0 =

(x0, t0) be a point of Ω. Set

Ωz0 := {(x, t) ∈ Ω | t < t0},
(
∂Ω

)
z0

:= {(x, t) ∈ ∂Ω | t ≤ t0}.

Suppose u ∈ H(Ω) is such that

lim sup
Ωz0�z→ζ

u(z) ≤ 0, ∀ ζ ∈
(
∂Ω

)
z0

. (4.1)

Then u ≤ 0 in Ωz0.

Proof. For every ε > 0, define uε(z) = u(z)−ε/(t0− t), for z = (x, t) ∈ Ωz0 .
Then Huε = ε ∂t(t0 − t)−1 > 0 in Ωz0 . As a consequence, uε cannot have a
local maximum in Ωz0 . On the other hand, by the boundary condition (4.1),

lim sup
Ωz0�z→ζ

uε(z) < 0, ∀ ζ ∈ ∂(Ωz0).

It follows that uε ≤ 0 in Ωz0 . Letting ε go to zero, we obtain u ≤ 0 in
Ωz0 . �

We call H-regular any bounded set V ⊂ R
N+1 such that: for every real

function ϕ ∈ C(∂V ), there exists a function HV
ϕ ∈ H(V ) ∩ C(V ) satisfying

HV
ϕ = ϕ on ∂V . From the maximum principle of Proposition 4.1, it follows

that HV
ϕ is unique and the map ϕ �→ HV

ϕ is linear and monotone non-
decreasing. Then, for every z ∈ V ,

HV
ϕ (z) =

∫
∂V

ϕ dμV
z

for a suitable non-negative Radon measure μV
z on ∂V . μV

z is the H-harmonic
measure of V at z. The family of the H-regular set is a basis for the Euclidean
topology [5, Corollaire 5.2].

We call L-super-caloric in an open set Ω ⊆ R
N+1 any lower semicontinuous

function u : Ω → (−∞,∞] such that u < ∞ in a dense subset of Ω and
u(z) ≥

∫
∂V u dμV

z , for every H-regular set V ⊂ V ⊂ Ω and for every z ∈ V .
It is a standard matter to show that, for any fixed ζ ∈ R

N+1, the funda-
mental solution Γ for H with pole at ζ, i.e., the function z �→ Γ(ζ−1 ◦z) is L-
super-caloric in R

N+1. Moreover, the families {z �→ Γ(ζ−1 ◦ z) | ζ ∈ R
N+1},

{(x, t) �→ γ(ξ−1 ◦ x) | ξ ∈ R
N} separate the points of R

N+1. Then, by
Théorème 8.2 and Remarque 8.4 in [5], (RN+1, H) is a Bauer-harmonic space
satisfying the Doob convergence property. This enables us to apply an ab-
stract result by Bauer [1, Satz 1.4.4] in order to get the Harnack inequality
for the L-caloric functions. To this end, we fix the standard notations for
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the parabolic Harnack inequality. Given z0 = (x0, t0) ∈ R
N+1 and r > 0,

define

C(z0, r) := {(x, t) ∈ R
N+1 | dL(x, x0) < r, |t − t0| < r2},

and, for 0 < λ < 1/2,

Sλ(z0, r) := {(x, t) ∈ R
N+1 | dL(x, x0) < (1−λ) r, λ r2 < t0−t < (1−λ) r2}.

We recall that dL is defined by (3.14). Then the following result holds.

Theorem 4.2. For every λ ∈ (0, 1/2) there exists a positive constant c =
c(λ) such that

sup
Sλ(z0,r)

u ≤ cu(z0), (4.2)

for every non-negative L-caloric function u in C(z0, r) and for every r > 0
and z0 ∈ R

N+1.

Proof. Since H is homogeneous w.r.t. the δλ-parabolic dilations and invari-
ant w.r.t. the left translations on G × R, it is enough to prove (4.2) in the
case r = 1 and z0 = 0. We split the proof in three steps.

Step I. For brevity of notation, we denote by C the unit cylinder C(0, 1).
Following Bauer, we call absorbent set any closed set F ⊆ C such that the
support of the H-harmonic measure μV

z is contained in F for every z ∈ F
and for every regular set V ⊂ V ⊂ C, V � z. We denote by A0 the smallest
absorbent set containing 0. In Step II and III, we shall prove that

A0 = {(x, t) ∈ C | t ≤ 0}. (4.3)

Then, since Sλ(0, 1) is a compact set contained in the interior of A0, by Satz
1.4.4 in [1] (see also [7, Proposition 6.1.5]) we have supSλ(0,1) u ≤ cu(0), for
every non-negative L-caloric function u in C. The constant c only depends
on λ. Then, to complete the proof of the theorem, we only have to prove
(4.3).

Step II. The fundamental solution Γ restricted to C is L-super-caloric
and non-negative and its support is equal to {(x, t) ∈ C | t ≥ 0}. Then, by
Satz 1.4.1 in [1] (see also [7, Proposition 6.1.1])

A0 ⊆ {(x, t) ∈ C | t ≤ 0}. (4.4)

Step III. In this step we shall prove the opposite inclusion of (4.4). For
this we need two lemmas.

Lemma 4.3. For every r < 1, we denote by ∂pC(0, r) the parabolic boundary
of C(0, r):

∂pC(0, r) = ∂C(0, r) \ {t = r2}.
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Then, for every ϕ ∈ C(∂pC(0, r)), the boundary value problem{
Hu = 0 in C(0, r)
u = ϕ on ∂pC(0, r),

(4.5)

has a unique solution Hϕ ∈ H(C(0, r)) satisfying the boundary condition in
the following sense

lim
z→ζ

u(z) = ϕ(ζ), ∀ ζ ∈ ∂pC(0, r).

Proof. The uniqueness of Hϕ follows from Proposition 4.1. In order to
prove the existence, we first choose a continuous continuation ψ of ϕ to the
complete boundary ∂C(0, r). Let us denote by h the Perron-Wiener solution
to the generalized Dirichlet problem h ∈ H(C(0, r)), h|∂C(0,r) = ψ. Then, h
is L-caloric in C(0, r) and limz→ζ h(z) = ψ(ζ) for any H-regular boundary
point of C(0, r). On the other hand, by a result of Negrini [20], every point
of the parabolic boundary ∂pC(0, r) is H-regular. Then, since ψ = ϕ on
∂pC(0, r), the function h solves problem (4.5). �
Remark. Obviously, again by Proposition 4.1, ϕ �→ Hϕ(0) is linear and
monotone non-decreasing. Then,

Hϕ(0) =
∫

∂pC(0,r)
ϕ dμr

0,

where μr
0 is a suitable positive Radon measure on ∂pC(0, r). By Proposition

6.1.1 in [7],
spt(μr

0) ⊆ A0, for 0 < r < 1. (4.6)

The second lemma we need is the following one.

Lemma 4.4. For every r ∈ (0, 1) we have

∂pC(0, r) ∩ {t ≤ 0} ⊆ spt(μr
0). (4.7)

Proof. Suppose, by contradiction, the inclusion (4.7) is false. Then, there
exists a boundary continuous function ϕ such that: ϕ ≥ 0, ϕ is not identically
0, spt(ϕ) ⊆ ∂pC(0, r) ∩ {t ≤ 0} and Hϕ(0) = 0. Since ϕ ≥ 0 we also have
Hϕ ≥ 0. Thus, Hϕ is a L-caloric function in C(0, r) attaining its minimum
value at 0. As a consequence, by Bony’s Minimum Propagation Principle [5,
Théorème 3.2], Hϕ(x, t) = Hϕ(0, 0) = 0 for every (x, t) ∈ C(0, r), t ≤ 0. It
follows that

lim
C(0,r)�z→ζ

Hϕ(z) = 0, for every ζ = (ξ, τ) ∈ ∂C(0, r), τ < 0.
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On the other hand (see Lemma 4.3) limz→ζ Hϕ(z) = ϕ(ζ), for every ζ ∈
∂pC(0, r). Then, since spt(ϕ) ⊆ ∂pC(0, r)∩{t ≤ 0}, ϕ ≡ 0. This contradicts
our assumption on ϕ and completes the proof of the lemma. �

Together with (4.6), this lemma implies {(x, t) ∈ C | t ≤ 0} ⊆ A0, so that,
by the reverse inclusion (4.4), (4.3) holds. This ends the proof of Theorem
4.2. �

If we combine Theorem 4.2 with Théorème 7.1 in [5], we immediately get
the following corollary.

Corollary 4.5. For every p, q ∈ N ∪ {0} and for every λ ∈ (0, 1/2), there
exists a positive constant c = c(p, q, λ) such that

sup
Sλ(z0,r)

|Xi1 · · ·Xip(∂t)q u| ≤ c r−(p+2q) u(z0), (4.8)

for any non-negative L-caloric function u in C(z0, r) and for any z0 ∈ R
N+1,

r > 0, i1, . . . , ip ∈ {1, . . . , m}.
Proof. Since the vector fields Xj ’s and ∂t are homogeneous of degree 1 and
2 respectively w.r.t. the δλ-parabolic dilations and invariant w.r.t. the left
translations of G × R, it is enough to prove (4.8) in the case r = 1 and
z0 = 0. It is also non-restrictive to assume u > 0. By Théorème 7.1 in [5],
there exist z1, . . . , zk ∈ C(0, 1) ∩ {t < 0} such that

sup
Sλ(0,1)

|Xi1 · · ·Xip(∂t)q u| ≤ c′ (u(z1) + · · · + u(zk)), (4.9)

for every positive L-caloric function u in C(0, 1). On the other hand, there
exists μ ∈ (0, 1/2) such that {z1, . . . , zk} ⊆ Sμ(0, 1). Then, by Theorem 4.2,
u(z1) + · · · + u(zk) ≤ c′′ u(0). This inequality and (4.9) imply (4.8). �

5. Estimates of Γ

In this section we prove the Gaussian estimates of the fundamental solu-
tion Γ for H = L−∂t, constructed in Section 3. L is any fixed sub-Laplacian
on G and all the constants here may depend on L. The estimate from above
is obtained by a direct proof based on a comparison argument. The esti-
mate from below follows from the Harnack inequality for H by means of a
classical argument. Since (3.10) holds, we only need to study the function
Γ(x, t) (= Γ(x, t; 0, 0)).

Theorem 5.1. There exists a positive constant c such that

Γ(x, t) ≤ c t−Q/2 exp
(
− d2

L(x)
c t

)
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for every x ∈ R
N and t > 0. We recall that dL is the homogeneous norm

defined by (3.14).

Proof. We set A = {x ∈ R
N |dL(x) > 1} and Ω = A × (0, 1). We want to

compare Γ(x, t) with the function w(x, t) = exp(−σ (1−t)d2
L(x)) in Ω. Here,

σ is a positive constant to be chosen in the sequel. The following formula
holds for radial functions f(x) = F (dL(x)):

Lf(x) = |∇LdL(x)|2
(Q − 1

dL(x)
F ′(dL(x)) + F ′′(dL(x))

)
(5.1)

(we have denoted by ∇L the subelliptic gradient (Y1, ..., Ym), where L =∑m
j=1 Y 2

j (see Section 2)). Hence, a direct computation shows that Hw(x, t)
is equal to w(x, t)|∇LdL(x)|2{−2σ(Q−1)(1− t)+(4σ2d2

L(x)(1− t)2−2σ(1−
t))} − σd2

L(x)w(x, t). For (x, t) ∈ Ω, we obtain

Hw(x, t) ≤
(
4 σ2 |∇LdL(x)|2 − σ

)
d2
L(x)w(x, t) ≤ 0

if σ is chosen small enough (note that |∇LdL(x)| is bounded since it is
δλ-homogeneous of degree zero). Recalling that HΓ = 0 in Ω, that Γ is
continuous on Ω and that Γ vanishes at infinity and on A×{0} (see Theorem
3.5 and (3.7)), from the maximum principle we infer that

Γ ≤ cw in Ω

for a suitable constant c > 0. In particular, chosen t = 1/2, we obtain

Γ(x, 1
2) ≤ c exp

(
− σ d2

L(x)/2
)
, if dL(x) ≥ 1.

By the homogeneity (3.6) of Γ, we then deduce

Γ(x, t) = (2 t)−Q/2Γ(δ1/
√

2tx, 1
2) ≤ ct−Q/2 exp

(
−σd2

L(x)
4t

)
, if 0 < 2t ≤ d2

L(x).

On the other hand, if d2
L(x) < 2 t, then (3.11) directly yields

Γ(x, t) ≤ c t−Q/2 ≤ c t−Q/2 exp
(
− d2

L(x)
c t

)
.

This ends the proof. �

Theorem 5.2. There exists a positive constant c such that

Γ(x, t) ≥ c−1 t−Q/2 exp
(
− c

d2
L(x)
t

)
for every x ∈ R

N and t > 0.
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Proof. From Theorem 4.2, it follows that there exists a positive constant c
such that

u(x, t) ≤ cu(y, 2t) exp
(
c

d2
L(x, y)

t

)
, x, y ∈ R

N , t > 0, (5.2)

for every function u > 0 such that Hu = 0 in R
N × (0,∞). The proof of this

assertion is standard; however, for the reader’s convenience, we give it below.
We first observe that it is sufficient to prove (5.2) with dL replaced by dX

(see (8.1) in the Appendix), since such distances are equivalent. By means
of Theorem 4.2, we have u(x, s) ≤ cu(y, 2s) whenever u is in the above
class, dL(x, y) ≤

√
2s and s > 0. If we apply this result to the functions

ur(x, ·) = u(x, · + r), choosing r = t − s ≥ 0, we get

u(x, t) = ur(x, t − r) ≤ cur(y, 2(t − r)) = cu(y, t + s), (5.3)

if dL(x, y) ≤
√

2s and t ≥ s > 0. This proves (5.2) when dL(x, y) ≤
√

2 t
(we only have to choose s = t). On the other hand, if dL(x, y) >

√
2 t,

one can find a chain of points x0 = x, x1, . . . , xp = y ∈ R
N (laying on a

X-subunit path connecting x and y), with p “proportional” to d2
X(x, y)/t,

such that dL(xi, xi+1) ≤
√

2 s for s = t/p (proportional to (dX(x, y)/p)2).
Now, applying (5.3), we obtain u(xi, t+ i s) ≤ cu(xi+1, t+(i+1) s), whence
u(x, t) ≤ cp u(y, t + p s) ≤ cu(y, 2 t) exp(c d2

X(x, y)/t). This completes the
proof of (5.2).

Finally, applying (5.2) to u = Γ, we get

Γ(y, 2 t) ≥ c−1 Γ(0, t) exp
(
− c

d2
L(y)
t

)
= c−1 t−Q/2 Γ(0, 1) exp

(
− c

d2
L(y)
t

)
,

by the homogeneity (3.6) of Γ. �
Theorem 5.3. Given any non-negative integers p, q, there exist positive
constants c, cp,q such that for every i1, . . . , ip ∈ {1, . . . , m} we have∣∣Xi1 · · ·Xip(∂t)q Γ(x, t)

∣∣ ≤ cp,q t−(Q+p+2q)/2 exp
(
− d2

L(x)
c t

)
,

for every x ∈ R
N and t > 0.

Proof. The assertion is an easy consequence of Theorem 5.1 and the Harnack
inequality in Corollary 4.5. �

6. The Cauchy problem

In this section we establish some more properties of the fundamental so-
lution Γ for H, constructed in Section 3, and we obtain some existence and
uniqueness results for the Cauchy problem related to H.
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Theorem 6.1. For every x ∈ R
N and t > τ , we have∫

RN

Γ(x, t; ξ, τ) dξ = 1.

Proof. We first observe that the above integral is finite by Theorem 5.1.
Moreover, using (3.6) and (3.10), it is easy to see that it does not depend on
x, t, τ , i.e., there exists a positive constant α such that∫

RN

Γ(x, t; ξ, τ) dξ = α, for every x ∈ R
N and t > τ (6.1)

(α �= 0 since Γ is not identically zero in R
N+1). In order to prove that α = 1,

we shall test the identity
G∞(HΦ) = −Φ

(see Theorem 3.5-(iii)) on some suitable Φ ∈ C∞
0 (RN+1). Let us choose

ϕ ∈ C∞
0 ((−1, 1)) such that ϕ(0) = 1 and g ∈ C∞

0 (R) such that 0 ≤ g ≤ 1,
g(r) = 1 if |r| ≤ 1, g(r) = 0 if |r| ≥ 2. We define Φk(x, t) = ϕ(t)ψk(x) where
ψk(x) = g(dL(x)/k). We have HΦk(x, t) = ϕ(t)Lψk(x)−ψk(x)ϕ′(t). Hence

1 = Φk(0) = −G∞(HΦk)(0)

=
∫

RN+1

Γ(0, 0; ξ, τ)ψk(ξ)ϕ′(τ) dξdτ −
∫

RN+1

Γ(0, 0; ξ, τ)ϕ(τ)Lψk(ξ) dξdτ.

Moreover, using (5.1) it is easy to see that |Lψk(x)| ≤ c/k2. Therefore,
letting k → ∞ in the above identity and recalling Theorem 3.5-(iv) and
(6.1), we obtain

1 =
∫

RN+1

Γ(0, 0; ξ, τ)ϕ′(τ) dξdτ = α

∫ 0

−1
ϕ′(τ) dτ = α ϕ(0) = α.

This completes the proof. �
Corollary 6.2. Let f be a continuous function on R

N satisfying the growth
condition

|f(x)| ≤ c exp
(
μ d2

L(x)
)

for some constants c, μ ≥ 0. Then the function

u(x, t) =
∫

RN

Γ(x, t; ξ, 0) f(ξ) dξ, x ∈ R
N , t ∈ (0, T/μ)

is well posed (being T > 0 an absolute constant) and is a classical solution
to the Cauchy problem{

Hu(x, t) = 0, (x, t) ∈ R
N × (0, T/μ),

u(x, 0) = f(x), x ∈ R
N .
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Proof. The function u is well posed by means of Theorem 5.1. Moreover,
from Theorem 3.5-(v) and the estimates in Theorem 5.3, it follows that
Hu = 0. Finally, using Theorem 5.1 and Theorem 6.1, it is a standard
argument to prove that u(x, t) −→ f(x0) as (x, t) → (x0, 0). �
Corollary 6.3. For every x ∈ R

N , t > 0 and τ > 0, we have the following
reproduction property

Γ(x, t + τ) =
∫

RN

Γ(ξ−1 ◦ x, t) Γ(ξ, τ) dξ.

Proof. We fix τ > 0 and set v(x, t) = Γ(x, t + τ), u(x, t) =
∫

RN Γ(ξ−1 ◦
x, t) Γ(ξ, τ) dξ for (x, t) ∈ Ω = R

N ×(0,∞). We have Hv = 0 in Ω, v −→ 0 at
infinity (see Theorem 3.5 and (3.7)). Moreover, from Corollary 6.2 (see also
(3.10)) it follows that Hu = 0 in Ω, u|∂Ω = v|∂Ω. Hence, by the maximum
principle, in order to prove that u ≡ v in Ω, we only need to show that
u −→ 0 at infinity. This statement can be easily proved if we note that, by
Theorems 5.1 and 6.1, the following inequality holds:

0 ≤ u(x, t) ≤ cτ

∫
d(ξ)≤k

Γ(ξ−1 ◦ x, t) dξ + cτ exp(−c̃τ k2),

for every k > 0. �
We now want to establish a uniqueness result for the solutions to the

Cauchy problem related to H. To this purpose, we need the following lemma.

Lemma 6.4. Let r > 0 be fixed. Let u be a classical solution to the Cauchy
problem

Hu = 0 in R
N × (0, r), u(·, 0) = 0. (6.2)

Then, extending u(x, t) to be zero for t < 0, we have u ∈ C∞(RN ×(−∞, r)).

Proof. By the hypoellipticity of H, it is sufficient to prove Hu = 0 on
R

N×(−∞, r), in the weak sense of distributions. Let ϕ ∈ C∞
0 (RN×(−∞, r))

be a fixed test function. We introduce the family of cut-off functions ψσ(t) =
ψ(|t|/σ), (σ > 0) with ψ ∈ C∞([0,∞)), 0 ≤ ψ ≤ 1, ψ ≡ 0 on [2,∞), ψ ≡ 1
on [0, 1]. We have∣∣∣ ∫

uH∗ϕ
∣∣∣ ≤ ∫

|t|≤2σ

∫
x∈ spt(ϕ)

|u(x, t)||H∗(ϕψσ)(x, t)|dxdt+
∣∣∣ ∫

uH∗(ϕ(1−ψσ))
∣∣∣.

The second integral in the right hand-side vanishes since Hu = 0 in the sup-
port of ϕ (1−ψσ). On the other hand, |H∗(ϕ ψσ)|(x, t) ≤ |H∗(ϕ) ψσ|(x, t) +
1/σ |ψ′(|t|/σ)| |ϕ|(x, t) ≤ c/σ, for small σ. Hence, by the continuity of u and
since u(·, 0) = 0, the first integral in the right hand-side vanishes as σ goes
to zero. This completes the proof. �
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Theorem 6.5. Let r > 0 be fixed. Let u be a classical solution to the Cauchy
problem

Hu = 0 in R
N × (0, r), u(·, 0) = 0. (6.3)

Suppose that one of the following conditions holds: either u is non-negative
or there exists μ > 0 such that∫ r

0

∫
RN

exp
(
− μ d2

L(x)
)
|u(x, t)|dxdt < ∞. (6.4)

Then u vanishes identically.

Proof. We first prove that u ≡ 0 if (6.4) holds. It is sufficient to prove that
there exists ν = ν(μ) > 0 such that u = 0 on R

N × (0, ν) and to repeat
the argument finitely many times. Let ν > 0 be fixed as we shall specify
in the sequel and let z̄ = (x̄, t̄) ∈ R

N × (0, ν). We also set Bρ(x̄) = {x ∈
R

N | dL(x̄, x) < ρ}, for any ρ > 0. Let ψρ be a smooth function on [0,∞)
such that 0 ≤ ψρ ≤ 1, ψρ ≡ 0 on [ρ + 1,∞), ψρ ≡ 1 on [0, ρ] and such that
ψ′

ρ, ψ′′
ρ are bounded by a constant independent of ρ. We now define the

cut-off functions hρ(x) = ψρ(dL(x, x)) so that Xihρ, XiXjhρ are bounded
by a constant independent of ρ (when ρ ≥ 1) for every i, j ∈ {1, . . . , m}.

We set v = hρ Γ(z̄; ·) and we integrate the Green’s identity vHu−uH∗v =
div(v ML∇u− u ML∇v)− ∂t(u v) on the domain Bρ+1(x̄)× (0, t̄− ε), where
ML is defined by (2.2) and ε > 0 is small. We explicitly remark that, by
Lemma 6.4, u is smooth up to the boundary of that domain. As ε → 0 we
obtain

u(z̄) = lim
ε→0

∫
Bρ+1(x̄)

u(x, t−ε)hρ(x)Γ(x̄−1◦x, ε) dx =
∫ t̄

0

∫
Bρ+1(x̄)

u(x, t)H∗v(x, t) dxdt.

The first equality follows by a standard argument using Theorem 6.1 and
Theorem 5.1. Since H∗Γ(z̄; ·) = 0 away from z̄ (see Theorem 3.5-(vi)), then

u(z̄) =
∫ t̄

0

∫
Bρ+1(x̄)\Bρ(x̄)

u(x, t)H∗v(x, t) dxdt. (6.5)

On the other hand, by (3.13) and Theorems 5.1 and 5.3,

|H∗v(z)| =
∣∣∣Γ(z̄; z)Lhρ +

m∑
i=1

Xihρ XiΓ(x̄−1 ◦ x, t̄ − t)
∣∣∣

≤ c (t̄ − t)−(Q+1)/2 exp
(
− d2

L(x̄, x)
c (t̄ − t)

)
.
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Hence,

|u(z̄)| ≤ c
∫ t̄

0

∫
Bc ρ(0)\Bρ/c(0)

|u(x, t)| (t̄ − t)−(Q+1)/2 exp
(
− d2

L(x̄, x)
c (t̄ − t)

)
dxdt

≤ c
∫ t̄

0

∫
Bc ρ(0)\Bρ/c(0)

|u(x, t)| exp
(
− μ d2

L(x̄, x)
)
dxdt,

if ν(μ) is suitably chosen (recall that t̄ ≤ ν(μ)). Finally, letting ρ go to
infinity, and using (6.4), we obtain u(z̄) = 0. This proves that u ≡ 0 if (6.4)
holds.

We now consider the case when u is a non-negative solution to (6.3). We
set, for fixed τ ∈ (0, r), ρ > 0,

wτ
ρ(x, t) :=

∫
RN

Γ(x, t; ξ, τ) f τ
ρ (ξ) dξ, x ∈ R

N , t ∈ (τ, r),

where f τ
ρ (ξ) = u(ξ, τ) if dL(ξ) ≤ ρ, f τ

ρ (ξ) = 0 otherwise. It is a standard
argument (see also Corollary 6.2) to prove that

Hwτ
ρ = 0 in R

N × (τ, r); lim
(x,t)→(y,τ)

wτ
ρ(x, t) = f τ

ρ (y), for dL(y) �= ρ.

Since u ≥ 0 this readily implies that

lim inf
(x,t)→(y,τ)

(
u(y, τ) − wτ

ρ(x, t)
)
≥ 0, y ∈ R

N .

Here, we have used the fact that, if dL(y) = ρ, then wτ
ρ(y) ≤ wτ

2ρ(y) −→
u(y, τ). Moreover, it is easy to see that lim infdL(x)→∞

(
u(y, τ)−wτ

ρ(x, t)
)
≥

0, uniformly in t ∈ (τ, r). Applying the parabolic maximum principle, we
obtain wτ

ρ ≤ u in R
N × (τ, r). Now, we take x = 0 and we fix t ∈ (0, r).

Letting ρ go to infinity in wτ
ρ ≤ u and integrating in τ , we get

(t − ε)u(0, t) ≥
∫ t−ε

0

∫
RN

Γ(0, t; ξ, τ)u(ξ, τ) dξdτ

≥ c
∫ t−ε

0

∫
RN

exp
(
− c d2

L(ξ)
ε

)
u(ξ, τ) dξdτ

by Theorem 5.2. Using the first part of the proof, this implies that u vanishes
on R

N × (0, t − ε). Since t ∈ (0, r) is arbitrary, the theorem is completely
proved. �
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7. Uniform estimates for a family of fundamental solutions

In the first part of this section, we restrict our attention to the special case
of free Carnot groups and we derive the uniform estimates using Theorem A
and Theorem B. In the second part of the section, we shall prove the uniform
estimates for general Carnot groups: using the lifting procedure recalled in
Theorem C, we shall reduce to the free case.

Throughout the section, we shall use the notations of Section 2. In par-
ticular Λ ≥ 1 will be a fixed constant and MΛ will denote the set of m×m
symmetric matrices A such that Λ−1|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Λ|ξ|2 . We shall de-
note by cΛ, c̃Λ, . . . any positive constant depending only on Λ and on the
structure of G.

I - The free case. In this first part of the section, we shall suppose that
G = (RN , ◦, δλ) is a free Carnot group.

Theorem 7.1. Suppose G is free. For every A ∈ MΛ we have

ΓA(x, t; ξ, τ) = JA · ΓG(TA(x), t;TA(ξ), τ), x, ξ ∈ R
N , t, τ ∈ R.

We recall that ΓA denotes the fundamental solution for HA = LA − ∂t and
ΓG the fundamental solution for HG = ΔG −∂t, while JA and TA are defined
in Theorem A and Theorem B.

Proof. Setting Γ(x, t; ξ, τ) = JA · ΓG(TA(x), t;TA(ξ), τ), we only have to
prove that Γ satisfies (i)-(ii)-(iii) of Definition 3.1 with L = LA. Recall-
ing that TA is a diffeomorphism, (i) and (iii) follow immediately from the
analogous properties of ΓG. Let us prove (ii). Let ϕ ∈ C∞

0 (RN+1) be a
test function and set ψ(x, t) = ϕ(T−1

A (x), t). By (2.7) we have ΔGψ(x, t) =
(LAϕ)(T−1

A (x), t). Since also ψ ∈ C∞
0 (RN+1) we have∫

RN+1

Γ(x, t; ξ, τ)H∗
Aϕ(x, t) dxdt

=
∫

RN+1

ΓG(TA(x), t;TA(ξ), τ)H∗
Aϕ(x, t)JA(x) dxdt

=
∫

RN+1

ΓG(x′, t;TA(ξ), τ)H∗
Gψ(x′, t) dx′dt = −ψ(TA(ξ), τ) = −ϕ(ξ, τ).

This completes the proof. �
From Theorem 7.1 and Theorem 3.9, we also immediately get the following

relation between the fundamental solutions for the sub-Laplacians on G.

Corollary 7.2. Suppose G is free. For every A ∈ MΛ we have

γA(x) = JA · γG(TA(x)), x ∈ R
N ,
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where γA, γG denote the fundamental solutions for LA,ΔG, respectively.

Theorem 7.3. Suppose G is free. There exists a positive constant cΛ such
that

c−1
Λ t−Q/2 exp

(
− cΛ d2

G
(x)

t

)
≤ ΓA(x, t) ≤ cΛt−Q/2 exp

(
− d2

G
(x)

cΛ t

)
,

x ∈ R
N , t > 0, for every A ∈ MΛ. We recall that dG is defined by (3.14)

when L = ΔG.

Proof. The assertion follows from Theorem 7.1, from the estimates of ΓG

(see Theorem 5.1 and Theorem 5.2) and from the good properties of TA

established in Theorem B. Indeed, recalling that TA(0) = 0, we have

ΓA(x, t) = JA · ΓG(TA(x), t) ≤ cΛ ΓG(TA(x), t) (by (2.8))

≤ cΛ t−Q/2 exp
(
− d2

G
(TA(x))
c t

)
(by Theorem 5.1)

≤ cΛ t−Q/2 exp
(
− d2

G
(x)

cΛ t

)
(by (2.10)).

The estimate from below is analogous. �

Theorem 7.4. Suppose G is free. Given any non-negative integers p, q,
there exist positive constants cΛ and cΛ,p,q such that∣∣Xi1 · · ·Xip(∂t)qΓA(x, t)

∣∣ ≤ cΛ,p,qt
−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
, x ∈ R

N , t > 0,

for every i1, . . . , ip ∈ {1, . . . , m} and for every A ∈ MΛ.

Proof. We set Yi =
∑m

j=1(A
1/2)i,j Xj and we recall that (2.6) holds. Setting

for brevity B = A−1/2, we have Xi =
∑m

k=1 bi,kYk. Hence, from Theorem
7.1, we get∣∣Xi1 · · ·Xip(∂t)q ΓA(x, t)

∣∣
= JA

∣∣∣∣ m∑
k1,...,kp=1

bi1,k1 · · · bip,kpYk1 · · ·Ykp

(
(∂t)qΓG(·, t) ◦ TA

)
(x)

∣∣∣∣
= JA

∣∣∣∣ m∑
k1,...,kp=1

bi1,k1 · · · bip,kp

(
Xk1 · · ·Xkp(∂t)qΓG

)
(TA(x), t)

∣∣∣∣ (by (2.6))

≤ cΛ,p,q t−(Q+p+2q)/2 exp
(
− d2

G
(TA(x))
c t

)
. (7.1)
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The last inequality follows from Theorem 5.3, (2.8) and (2.12). Recalling
(2.10), the proof is complete. �
Theorem 7.5. Suppose G is free. There exists a positive constant cΛ such
that ∣∣ΓA1(x, t) − ΓA2(x, t)

∣∣ ≤ cΛ‖A1 − A2‖1/rt−Q/2 exp
(
− d2

G
(x)

cΛ t

)
,

x ∈ R
N , t > 0, for every A1, A2 ∈ MΛ.

In the proof of Theorem 7.5, we shall use the following result.

Lemma 7.6. There exists a positive constant c, such that

|u(x1) − u(x2)| ≤ c dG(x1, x2) sup
dG(y,x1)≤c dG(x1,x2)

(
|X1u(y)| + · · · + |Xmu(y)|

)
for every x1, x2 ∈ R

N and for every function u : R
N → R regular enough.

Proof. Since dG is equivalent to the Carnot-Carathéodory distance dX (see
(8.1)), we may prove the lemma with dX instead of dG. The assertion then
easily follows arguing with X-subunit paths α : [0, δ] → R

N connecting x1

and x2 and writing u(x2) − u(x1) =
∫ δ
0

d
ds(u(α(s))) ds. �

Proof of Theorem 7.5. Applying Lemma 7.6 to the function u = ΓG(·, t)
and using Theorem 5.3, we obtain∣∣ΓG(TA1(x), t) − ΓG(TA2(x), t)

∣∣ (7.2)

≤ cdG(TA1(x), TA2(x))t−(Q+1)/2 sup
dG(y,TA1

(x))≤cdG(TA1
(x),TA2

(x))
exp

(
− d2

G
(y)
ct

)
≤ cΛ‖A1 − A2‖1/rdG(x)t−(Q+1)/2 sup

dG(y,TA1
(x))≤cΛ‖A1−A2‖1/rdG(x)

exp
(
− d2

G
(y)
ct

)
.

The last inequality follows from (2.11). Since dG(TA1(x)) ≥ cΛ
−1dG(x) by

(2.10), there exists a positive constant σΛ ≤ 1 such that, if ‖A1 − A2‖ <
σΛ, then the supremum in the far right hand-side of (7.2) is smaller than
exp(−d2

G
(x)/(cΛ t)). Thus, for ‖A1 − A2‖ < σΛ, from (7.2), we get∣∣ΓG(TA1(x), t) − ΓG(TA2(x), t)

∣∣ (7.3)

≤ cΛ ‖A1 − A2‖1/rt−Q/2 dG(x)√
t

exp
(
− d2

G
(x)

cΛ t

)
≤ c̃Λ ‖A1 − A2‖1/r t−Q/2 exp

(
− d2

G
(x)

cΛ t

)
.
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On the other hand, by Theorem 7.1,

|ΓA1(x, t) − ΓA2(x, t)|
≤ |JA1 − JA2 |ΓG(TA1(x), t) + JA2 |ΓG(TA1(x), t) − ΓG(TA2(x), t)|.

Therefore, when ‖A1−A2‖ < σΛ, the thesis follows using (7.3), Theorem 5.1,
(2.8), (2.9) and (2.10). If on the contrary ‖A1 − A2‖ ≥ σΛ, then the thesis
straightforwardly follows from Theorem 7.3, writing |ΓA1(x, t)−ΓA2(x, t)| ≤
|ΓA1(x, t)| + |ΓA2(x, t)|. �
Theorem 7.7. Suppose G is free. Given any non-negative integers p, q,
there exist positive constants cΛ and cΛ,p,q such that∣∣Xi1 · · ·Xip(∂t)q ΓA1(x, t) − Xi1 · · ·Xip(∂t)q ΓA2(x, t)

∣∣
≤ cΛ,p,q ‖A1 − A2‖1/r t−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
, x ∈ R

N , t > 0,

for every i1, . . . , ip ∈ {1, . . . , m} and for every A1, A2 ∈ MΛ.

Proof. Following the notation in the proof of Theorem 7.4, we set

(Y (h))i =
m∑

j=1

(A1/2
h )i,j Xj (h = 1, 2), i = 1, ..., m.

From Theorem 7.1 and (2.6), arguing as in (7.1) and using the identity
a1 · · · an − b1 · · · bn =

∑n
j=1 a1 · · · aj−1(aj − bj)bj+1 · · · bn, we get

|Xi1 · · ·Xip
(∂t)qΓA1(x, t) − Xi1 · · ·Xip

(∂t)qΓA2(x, t)| =
∣∣∣ m∑

k1,...,kp=1

(
JA1(A

− 1
2

1 )i1,k1

· · · (A− 1
2

1 )ip,kp
(Y (1))k1 · · · (Y (1))kp

(
(∂t)qΓG(·, t) ◦ TA1

)
(x)

− JA2(A
− 1

2
2 )i1,k1 · · · (A

− 1
2

2 )ip,kp(Y (2))k1 · · · (Y (2))kp

(
(∂t)qΓG(·, t) ◦ TA2

)
(x)

)∣∣∣
≤

m∑
k1,...,kp=1

(
|JA1 − JA2 |

∣∣(A− 1
2

2 )i1,k1 · · · (A
− 1

2
2 )ip,kp

∣∣|Xk1 · · ·Xkp
(∂t)qΓG(TA2(x), t)|

+
( p∑

j=1

JA1

∣∣(A− 1
2

1 )i1,k1 · · · (A
− 1

2
1 )ij−1,kj−1

∣∣ ∣∣(A− 1
2

1 )ij ,kj
− (A− 1

2
2 )ij ,kj

∣∣·
∣∣(A− 1

2
2 )ij+1,kj+1 · · · (A

− 1
2

2 )ip,kp

∣∣ |Xk1 · · ·Xkp(∂t)qΓG(TA2(x), t)|
)

+ JA1

∣∣(A− 1
2

1 )i1,k1 · · · (A
− 1

2
1 )ip,kp

∣∣·∣∣Xk1 · · ·Xkp(∂t)qΓG(TA1(x), t) − Xk1 · · ·Xkp(∂t)qΓG(TA2(x), t)
∣∣).
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The thesis now follows from Theorem 5.3 and from (2.8), (2.9), (2.10), (2.12).
We apply Lemma 7.6 to the function Xk1 · · ·Xkp(∂t)qΓG(·, t) and we use the
same arguments as in the proof of Theorem 7.5. Theorem 7.4 is also used,
to treat the case when ‖A1 − A2‖ is not small. �

II - The general case. From now on, we shall consider the case when
the Carnot group G = (RN , ◦, δλ) is not free. By Theorem 8.3, we know
that there exists a free homogeneous Carnot group G̃ = (RÑ , ◦̃, δ̃λ) which
lifts G in the following sense. Denoting by x = (x(1), . . . , x(r)) the point of
G = R

N = R
N1 × · · · × R

Nr , by

x̃ = (x̃(1), . . . , x̃(r)) = (x(1), . . . , x(i0), (x(i0+1), x̂(i0+1)), . . . , (x(r), x̂(r))) ≡ (x, x̂)

the point of G̃ = R
Ñ = R

Ñ1 × · · · × R
Ñr = R

N1 × · · · × R
Ni0 × (RNi0+1 ×

R
N̂i0+1)× · · · × (RNr ×R

N̂r) ≡ R
N ×R

N̂ , and by π : G̃ → G, x̃ = (x, x̂) �→ x
the natural projection, we have (setting m = N1)

X̃i(u ◦ π) = (Xiu) ◦ π, ∀u ∈ C∞(RN ), i ∈ {1, ..., m}, (7.4)

where ΔG =
∑m

i=1 X2
i and Δ

G̃
=

∑m
i=1 X̃2

i are the canonical sub-Laplacians
on G, G̃. Moreover π is a Lie group morphism.

Given A ∈ MΛ, we shall use the notation

LA =
∑m

i,j=1ai,j XiXj =
∑m

i=1Y
2
i , Yi =

∑m
j=1(A

1/2)i,j Xj ,

L̃A =
∑m

i,j=1ai,j X̃iX̃j =
∑m

i=1Ỹ
2
i , Ỹi =

∑m
j=1(A

1/2)i,j X̃j ,

for the related sub-Laplacians on G, G̃. Moreover we shall denote by ΓA, Γ̃A

the fundamental solutions for the associated heat operators HA = LA − ∂t,
H̃A = L̃A − ∂t on G × R, G̃ × R.

Theorem 7.8. We have, for every (x, t) ∈ R
N+1, A ∈ MΛ,

ΓA(x, t) =
∫

RN̂

Γ̃A

(
(x, x̂), t

)
dx̂,

Proof. Setting Γ(x, t) =
∫

RN̂ Γ̃A((x, x̂), t) dx̂, we only have to prove that Γ
satisfies (i)-(ii)-(iii) of Definition 3.1, with H = HA and ζ = 0. (i) easily
follows from Theorem 6.1 and Theorem 3.5-(iv) (applied to Γ̃A) observing
that ∫ R

−R

∫
RN

Γ(x, t) dxdt =
∫ R

0

∫
RÑ

Γ̃A(x̃, t) dx̃dt = R.

Let us prove (ii). Let ϕ ∈ C∞
0 (RN+1) be a test function. We set ϕ̃k(x̃, t) =

ϕ̃k((x, x̂), t) = ϕ(x, t) ψk(x̃), where ψk(x̃) = ψ(d
G̃
(x̃)/k) and ψ ∈ C∞

0 (R) is a
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fixed cut-off function such that ψ(t) = 1 if |t| ≤ 1, ψ(t) = 0 if |t| ≥ 2. Since
(7.4) holds, we have

H̃∗
Aϕ̃k(x̃, t) = ψk(x̃)H∗

Aϕ(x, t) + ϕ(x, t)L̃Aψk(x̃) + 2
m∑

i=1

Yiϕ(x, t)Ỹiψk(x̃).

(7.5)
We have to prove that

∫
RN+1 ΓH∗

Aϕ = −ϕ(0). By the definition of Γ, we
have∫

RN+1

Γ(x, t)H∗
Aϕ(x, t) dxdt =

∫
RÑ+1

Γ̃A(x̃, t)H∗
Aϕ(x, t) dx̃dt

= lim
k→∞

∫
RÑ+1

Γ̃A(x̃, t)ψk(x̃)H∗
Aϕ(x, t) dx̃dt,

by dominated convergence. On the other hand,∫
RÑ+1

Γ̃A(x̃, t) H̃∗
Aϕ̃k(x̃, t) dx̃dt = −ϕ̃k(0) = −ϕ(0),

since Γ̃A is the fundamental solution for H̃A and ϕ̃k ∈ C∞
0 (RÑ+1). Thus,

recalling (7.5), we only have to prove that∫
RÑ+1

Γ̃A(x̃, t)
(
ϕ(x, t) L̃Aψk(x̃) + 2

m∑
i=1

Yiϕ(x, t) Ỹiψk(x̃)
)
dx̃dt −→ 0

as k → ∞. This follows by dominated convergence. Indeed, setting for
brevity d̃ = d

G̃
, we have Ỹiψk(x̃) = 1

kψ′(d̃(x̃)/k) Ỹid̃(x̃) and

L̃Aψk(x̃) =
m∑

i=1

( 1
k2

ψ′′(d̃(x̃)/k) (Ỹid̃(x̃))2 +
1
k

ψ′(d̃(x̃)/k) Ỹ 2
i d̃(x̃)

)
,

where Ỹid̃ and Ỹ 2
i d̃ are δ̃λ-homogeneous of degree 0 and of degree −1 respec-

tively, thus bounded for large x̃. Whence∣∣∣Γ̃A

(
ϕL̃Aψk + 2

m∑
i=1

(Yiϕ)(Ỹiψk)
)∣∣∣ ≤ c

k

(
|ϕ| +

m∑
i=1

|Yiϕ|
)
Γ̃A ∈ L1(RÑ+1),

being ϕ ∈ C∞
0 (RN+1). This concludes the proof of (ii). Finally, in order to

prove (iii) it is sufficient to observe that Γ is smooth away from the origin (by
the hypoellipticity of HA) and it is homogeneous of degree −Q (w.r.t. the
parabolic dilations). Indeed the change of variable ŷ = (ŷ(i0+1), . . . , ŷ(r)) =
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(λi0+1x̂(i0+1), . . . , λrx̂(r)) gives

Γ(δλx, λ2t) =
∫

RN̂

Γ̃A((δλx, ŷ), λ2t) dŷ = λQ̃−Q

∫
RN̂

Γ̃A(δ̃λx̃, λ2t) dx̂

= λ−Q

∫
RN̂

Γ̃A(x̃, t) dx̂ = λ−Q Γ(x, t),

being Γ̃A homogeneous of degree −Q̃ (see 3.6). �

Remark 7.9. From Theorem 7.8 and Theorem 3.9, we also get

γA(x) =
∫

RN̂

γ̃A(x, x̂) dx̂, ∀ x ∈ R
N .

Theorem 7.10. There exists a positive constant cΛ such that

c−1
Λ t−Q/2 exp

(
− cΛ d2

G
(x)

t

)
≤ ΓA(x, t) ≤ cΛ t−Q/2 exp

(
− d2

G
(x)

cΛ t

)
,

x ∈ R
N , t > 0, for every A ∈ MΛ.

Proof. The statement will directly follow from Theorem 7.8 and Theorem
7.3 if we prove that

cΛt−Q/2 exp
(
− cΛ d2

G
(x)

t

)
≤

∫
RN̂

t−
Q̃
2 exp

(
−

d2
G̃
(x, x̂)

cΛt

)
dx̂

≤ cΛt−Q/2 exp
(
− cΛ d2

G
(x)

t

)
(7.6)

(where cΛ is used to denote different constants). In order to prove (7.6), we
introduce the functions

ρ(x) = ρ(x(1), . . . , x(r)) =
( r∑

i=1

Ni∑
j=1

|x(i)
j |

2
i

)1
2
,

ρ̃(x̃) = ρ̃(x̃(1), . . . , x̃(r)) =
( r∑

i=1

Ñi∑
j=1

|x̃(i)
j |

2
i

)1
2
,

ρ̂(x̂) = ρ̂(x̂(i0+1), . . . , x̂(r)) =
( r∑

i=i0+1

N̂i∑
j=1

|x̂(i)
j |2/i

)1/2
.

These functions have been defined in such a way to give

ρ̃ 2(x, x̂) = ρ2(x) + ρ̂ 2(x̂). (7.7)
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Moreover, since both ρ and dG are continuous, positive away from zero, and
δλ-homogeneous of degree 1, they are equivalent in the sense that c−1dG(x) ≤
ρ(x) ≤ c dG(x), x ∈ G, holds for a suitable positive constant c. Analogously
ρ̃ and d

G̃
are equivalent on G̃. As a consequence, it is sufficient to prove (7.6)

with ρ̃, ρ instead of d
G̃
, dG, respectively. Now, exploiting (7.7), the change

of variable x̂ = (x̂(i0+1), . . . , x̂(r)) = (t(i0+1)/2 ŷ(i0+1), . . . , tr/2 ŷ(r)) gives∫
RN̂

t−Q̃/2 exp
(
− ρ̃2(x, x̂)

cΛ t

)
dx̂

= t−Q/2 exp
(
− ρ2(x)

cΛ t

) ∫
RN̂

t
Q−Q̃

2 exp
(
− ρ̂2(x̂)

cΛ t

)
dx̂

= t−Q/2 exp
(
− ρ2(x)

cΛ t

) ∫
RN̂

exp
(
− ρ̂2(ŷ)

cΛ

)
dŷ = cΛ t−Q/2 exp

(
− ρ2(x)

cΛ t

)
.

This completes the proof. �

Lemma 7.11. For every non-negative integers p, q and for every i1, . . . , ip ∈
{1, . . . , m}, A ∈ MΛ, we have, for x ∈ R

N , t > 0

Xi1 · · ·Xip(∂t)q ΓA(x, t) =
∫

RN̂

X̃i1 · · · X̃ip(∂t)q Γ̃A((x, x̂), t) dx̂.

Proof. We shall prove the lemma in the case p = 1, q = 0. The general case
can be proved with the same arguments. Let us fix t > 0 and set

Γ(x) = ΓA(x, t), Γk(x) =
∫
|x̂|≤k

Γ̃A((x, x̂), t) dx̂,

Γ(i)(x) =
∫

RN̂

X̃iΓ̃A((x, x̂), t) dx̂.

Since Theorem 7.8 holds, Γk(x) −→ Γ(x) point-wise, for every x ∈ R
N . If

we prove that

XiΓk(x) −→ Γ(i)(x), as k → ∞, uniformly in x ∈ R
N , (7.8)

we shall get XiΓ(x) = Γ(i)(x) for every x ∈ R
N , which is our thesis. In-

deed, taking any integral path α of the vector field Xi, α(0) = x0, α′(s) =
Xi(α(s)), we have Γk(α(s)) − Γk(α(0)) =

∫ s
0 XiΓk(α(σ)) dσ and (Γ(α(s)) −

Γ(α(0)))/s −→ XiΓ(x0) as s → 0. Therefore we only have to prove (7.8).
Since (7.4) holds, we can write X̃i = Xi+X̂i where X̂i is a vector field operat-

ing only in the x̂-variables, i.e., in the form X̂i =
∑r

j=i0+1

∑N̂j

h=1 p
(j)
h (x, x̂)∂

x̂
(j)
h
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(moreover p
(j)
h are polynomials δ̃λ-homogeneous of degree j − 1, see the Ap-

pendix; in particular X̂∗
i = −X̂i). Then, we have

XiΓk(x) =
∫
|x̂|≤k

XiΓ̃A(x̃, t) dx̂ =
∫
|x̂|≤k

X̃iΓ̃A(x̃, t) dx̂−
∫
|x̂|≤k

X̂iΓ̃A(x̃, t) dx̂.

The first integral in the far right hand-side goes to Γ(i)(x), as k → ∞,
uniformly in x ∈ R

N . This can be easily proved using the Gaussian estimates
of X̃iΓ̃A and the arguments in the proof of Theorem 7.10. Thus, we only
have to prove that∣∣∣ ∫

|x̂|≤k
X̂iΓ̃A(x̃, t) dx̂

∣∣∣ −→ 0, as k → ∞, uniformly in x ∈ R
N . (7.9)

On the other hand, since X̂∗
i = −X̂i, the divergence theorem yields (H

N̂−1

denotes the (N̂ − 1)-dimensional Hausdorff measure)∣∣∣ ∫
|x̂|≤k

X̂iΓ̃A(x̃, t) dx̂
∣∣∣ =

∣∣∣ ∫
|x̂|=k

Γ̃A(x̃, t)
〈
X̂i(x̃), x̂/|x̂|

〉
dH

N̂−1
(x̂)

∣∣ ≤
(arguing as in the proof of Theorem 7.10 and with the notation introduced
in that proof)

≤ c(Λ, t) exp
(
− ρ2(x)

c(Λ, t)

) ∫
|x̂|=k

|X̂i(x, x̂)| exp
(
− ρ̂ 2(x̂)

c(Λ, t)

)
dH

N̂−1
(x̂).

Recalling that X̂i has polynomial component functions, (7.9) easily follows.

Theorem 7.12. Given any non-negative integers p, q, there exist positive
constants cΛ and cΛ,p,q such that for x ∈ R

N , t > 0,∣∣Xi1 · · ·Xip(∂t)q ΓA(x, t)
∣∣ ≤ cΛ,p,q t−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
,∣∣Xi1 · · ·Xip(∂t)q ΓA1(x, t) − Xi1 · · ·Xip(∂t)q ΓA2(x, t)

∣∣
≤ cΛ,p,q ‖A1 − A2‖1/r t−(Q+p+2q)/2 exp

(
− d2

G
(x)

cΛ t

)
,

for every i1, . . . , ip ∈ {1, . . . , m} and for every A, A1, A2 ∈ MΛ.

Proof. It follows from Lemma 7.11, Theorem 7.4 and Theorem 7.7, arguing
as in the proof of Theorem 7.10. �

From the above estimates and from Theorem 3.9, we can also easily deduce
uniform estimates for the fundamental solutions for the sub-Laplacians on G.
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Corollary 7.13. Given any non-negative integer p, there exist positive con-
stants cΛ, cΛ,p such that

c−1
Λ (dG(x))2−Q ≤ γA(x) ≤ cΛ (dG(x))2−Q,∣∣Xi1 · · ·Xip γA(x)

∣∣ ≤ cΛ,p (dG(x))2−Q−p,∣∣Xi1 · · ·Xip γA1(x) − Xi1 · · ·Xip γA2(x)
∣∣ ≤ cΛ,p ‖A1 − A2‖1/r (dG(x))2−Q−p,

for every i1, . . . , ip ∈ {1, . . . , m}, for every A, A1, A2 ∈ MΛ and for every
x ∈ R

N \ {0}.

8. Appendix.

Throughout this Appendix, G = (RN , ◦, δλ) is a fixed homogeneous Carnot
group with Lie algebra g. Moreover, we suppose G is of step r and has N1

generators. For the proofs of all the results we are going to recall, see e.g.
[4].

If τx denotes the left-translation by x on G, then a vector field X belongs
to g if and only if X(x) = Jτx(0)X(0), for every x ∈ G (Jτx denotes the
Jacobian matrix of τx). Furthermore, the map J : R

N → g, η �→ X defined
by X(x) = Jτx(0) η is an isomorphism of vector spaces. As a consequence,
any basis for g is the image via J of a basis of R

N . We call the Jacobian basis
of g the one resulting from the canonical basis of R

N , i.e.,the basis of vector
fields in g agreeing at the origin with the coordinate partial derivatives. It
is significant to notice that the Jacobian basis is simply obtained by the N
columns of the matrix Jτx(0). We also remark that, if X1, . . . , Xm belong
to g, then they are linearly independent if and only if they are linearly
independent at every point or equivalently at one point at least.

We now recall the definition of the exponential map on g. If X ∈ g, then,
for every fixed x ∈ G, the system of ODE’s

γ̇(t) = (XI)(γ(t)), γ(0) = x,

has a unique C∞ solution defined on the whole R. If γ is such solution, we
denote exp[X](x) = γ(1). The exponential map is defined as

Exp : g → G, Exp (X) = exp[X](0).

When g is equipped with Jacobian coordinates, the Jacobian matrix of
exp[ · ](x) at the origin is Jτx(0). In particular, the Jacobian matrix of Exp
at the origin is the identity matrix of order N , whence Exp is a diffeomor-
phism from a neighborhood of 0 ∈ g onto a neighborhood of 0 ∈ G. Where
defined, we denote by Log the inverse map of Exp .
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A real function a(x) defined on R
N is called δλ-homogeneous of degree

β ∈ R if, for every x ∈ R
N and λ > 0, it holds a(δλ (x)) = λβa(x). A linear

differential operator X is called δλ-homogeneous of degree β ∈ R if, for every
ϕ ∈ C∞(G) and λ > 0, it holds X

(
ϕ ◦ δλ

)
= λβ

(
Xϕ

)
◦ δλ. With reference

to the form (2.1) of the dilation δλ, we define a homogeneous weight of a
multi-index γ ∈ (N∪ {0})N , |γ|G :=

∑r
i=1

∑Ni
j=1i γ

(i)
j . With this notation, it

is easy to see that the only smooth δλ-homogeneous functions of degree β are
the polynomial functions of the form

∑
|γ|G=β cγ xγ , cγ ∈ R. In particular,

a smooth vector field δλ-homogeneous of degree k ≤ r (k ∈ N) has the
following form∑Nk

j=1a
(k)
j (∂/∂x

(k)
j ) +

∑r
i=k+1

∑Ni
j=1a

(i)
j (x(1), . . . , x(i−k)) (∂/∂x

(i)
j )

where a
(i)
j is a δλ-homogeneous polynomial of degree i − k.

Remark 8.1. If X is a smooth vector field δλ-homogeneous of non-negative
degree, then its adjoint X∗ is −X and X2 is a divergence form operator.

The following result describes in an “explicit” form the composition law
of a homogeneous group.

Theorem 8.2. Following the notation in (2.1) x ◦ y = ((x ◦ y)(1), . . . , (x ◦
y)(r)), we have

(x◦y)(1) = x(1)+y(1), (x◦y)(i) = x(i)+y(i)+Q(i)(x, y), 2 ≤ i ≤ r, where

(1) Q(i) depends only on x(1), . . . , x(i−1) and y(1), . . . , y(i−1);
(2) the component functions of Q(i) are sums of mixed monomials in x

and y;
(3) Q(i)(δλx, δλy) = λiQ(i)(x, y).

Moreover, we have

Jτx(0) =

⎛⎜⎜⎜⎜⎝
IN1 0 · · · 0

J
(1)
2 (x) IN2

. . .
...

...
. . . . . . 0

J
(1)
r (x) · · · J

(r−1)
r (x) INr

⎞⎟⎟⎟⎟⎠
where In is the n × n identity matrix, whereas J

(i)
j (x) is a Nj × Ni matrix

whose entries are δλ-homogeneous polynomials of degree j − i. In partic-
ular, if we let Jτx(0) =

(
Z(1)(x) · · ·Z(r)(x)

)
(where Z(i)(x) is a N × Ni

matrix), then the column vectors of Z(i)(x) (the Jacobian basis for g) define
δλ-homogeneous vector fields of degree i.
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Finally, Exp : g → G and Log : G → g are globally defined diffeomor-
phisms with polynomial components and they commute with the dilations δλ

(we suppose g is identified with R
N via the Jacobian coordinates).

Moreover, the Jacobian matrices of Exp , Log , right and left translations
on G are lower triangular matrices with entries in the main diagonal all equal
to 1. The Jacobian matrix of the map x �→ x−1 is a lower triangular matrix
with entries in the main diagonal all equal to −1. In particular, right and
left translations and the inversion on G preserve the Lebesgue measure.

Let
∑m

j=1 X2
j be the canonical sub-Laplacian on G. An absolutely con-

tinuous curve γ : [0, T ] → R
N is called X-subunit if and only if there exist

measurable functions c1, . . . , cm such that γ̇(t) =
∑m

j=1cj(t) Xj(γ(t)) and∑m
j=1c

2
j (t) ≤ 1 for almost every t ∈ [0, T ]. For x, y ∈ R

N we set

dX(x, y) := inf{T > 0 | ∃ γ : [0, T ] → R
N X-subunit, γ(0) = x, γ(T ) = y}.

(8.1)
Since X1, . . . , Xm satisfy Hörmander’s hypoellipticity condition, then by the
Carathéodory-Chow Theorem, R

N is X-connected (i.e., any pair of points
in R

N is joined by a X-subunit curve) and dX defines a continuous distance
on R

N which is called the Carnot-Carathéodory distance on R
N related to

X (see, for example, [12]). We remark that dX(·, 0) is a continuous homoge-
neous norm. This follows since, for every x, y ∈ G, we have

dX(δλ(x), δλ(y)) = λ dX(x, y), ∀λ > 0,

dX(α ◦ x, α ◦ y) = dX(x, y), ∀α ∈ G.

To end the Appendix, we recall the following Lifting Theorem proved in
[4]. Here, fm,r denotes the free nilpotent Lie algebra of step r and with m
generators.

Theorem 8.3. Let G be a homogeneous Carnot group on R
N of step r and

m (= N1) generators. Then, there exists a free homogeneous Carnot group
G̃ on R

H (H = dim fm,r) with the properties (i) and (ii) stated below.
We fix the following notations:

δλ(x) = δλ(x(1), x(2), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)),

δ̃λ(x̃) = δ̃λ(x̃(1), x̃(2), . . . , x̃(r)) = (λx̃(1), λ2x̃(2), . . . , λrx̃(r))

denote the dilations on G and G̃, respectively (x(i) ∈ R
Ni i = 1, . . . , r, N1 +

· · · + Nr = N ; x̃(i) ∈ R
Ñi, i = 1, . . . , r, Ñ1 + · · · + Ñr = H); Z

(i)
j (i ≤ r,
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j ≤ Ni) denote the Jacobian basis of the Lie algebra g of G and Z̃
(i)
j (i ≤ r,

j ≤ Ñi) denote the Jacobian basis of the Lie algebra g̃ of G̃.

(i) G̃ has step r and m generators and its Lie algebra is isomorphic to
fm,r.

(ii) For a certain i0 ∈ {1, . . . , r}, we have

Ñi = Ni (i = 1, . . . , i0) and Ñi > Ni (i = i0 + 1, . . . , r);

moreover, if π(i) : R
Ñi → R

Ni denotes the projection on the first Ni

coordinates and
π : R

H → R
N is defined by π(x̃) = (π(1)(x̃(1)), . . . , π(r)(x̃(r))), then

Z̃
(i)
j (u ◦ π) =

(
Z

(i)
j u

)
◦ π, ∀u ∈ C∞(RN ), i ≤ r, j ≤ Ni, (8.2)

i.e., Z̃
(i)
j lifts Z

(i)
j . Moreover, π is a Lie group morphism.
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