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a b s t r a c t

Here, using Mellin derivatives and a different notion of moment, we state a Voronovskaja
approximation formula for a class of Mellin–Fejer type convolution operators. This new
approach gives direct and simple applications to various important specific examples.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In [1,2] we studied Voronovskaja theorems for the pointwise convergence of Mellin type convolution operators (see [3]).
The main tool is a definition of algebraic moments of the kernel involved, which takes into account the multiplicative
structure of the group R+. Here we use a different and powerful approach which gives direct and immediate applications to
specific integral operators, e.g., the Mellin–Gauss–Weierstrass and Mellin–Poisson–Cauchy ones. The main idea is to use a
Taylor formula in terms of Mellin derivatives (Proposition 1) and to consider a notion of ‘‘logarithmic’’ moment of the kernel
(see also [4]). We treat the case of the Mellin–Fejer type kernels, which are the ‘‘multiplicative’’ counterparts of the classical
Fejer type kernels (see [5]). For classical convolution operators on the line group, using usual derivatives, related results can
be found in [6].

2. General theory

Let R+ be the multiplicative topological group endowed with the Haar measure µ =
dt
t , dt being the Lebesgue measure.

Wewill denote by Lp(µ, R+) = Lp(µ), 1 ≤ p ≤ +∞, the Lebesgue spaceswith respect to themeasureµ andwewill denote
by ‖f ‖p the corresponding norm of a function f ∈ Lp(µ).

In what follows we will say that f ∈ Ck locally at the point s ∈ R+ if there is a neighbourhood Us of the point s such that
f is continuously differentiable (k − 1) times in Us and the derivative of order k exists at the point s.

Let us consider the linear Mellin–Fejer convolution operator

(Twf )(s) =

∫
+∞

0
Kw(ts−1)f (t)

dt
t

=

∫
+∞

0
Kw(t)f (st)

dt
t

with Kw(t) = wK(tw) where K is a non-negative kernel function K : R+
→ R+

0 satisfying the following conditions:

(1) we have K ∈ L1(µ), and ‖K‖1 = 1,
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(2) there exists α ≥ 1 such that for every δ > 1 we have∫
R+\]1/δw ,δw [

K(t)
dt
t

= o(w−α), w → +∞.

It is easy to see that, for every w ≥ 1, ‖Kw‖1 = 1.
For every δ > 1 and j ∈ N we define the local logarithmic moment of order j of the functions K and Kw by

mj(K , δ) :=

∫ δ

1
δ

K(t)(log t)j
dt
t

, mj(Kw, δ) :=

∫ δ

1
δ

Kw(t)(log t)j
dt
t

.

We have

mj(Kw, δ) =
1
wj

mj(K , δw).

Moreover, we define the absolute logarithmic moment of order j ∈ N by

Mj(K) :=

∫
+∞

0
K(t)| log t|j

dt
t

.

In the following we will put

ℓj :=

∫
+∞

0
K(t)(log t)j

dt
t

.

In what follows we will use the Mellin differential operator, as introduced by Butzer and Jansche in [3]. The Mellin
differential operator Θ or the Mellin derivative Θf of a function f : R+

→ R is defined by

Θf (s) = sf ′(s), s ∈ R+,

provided the usual derivative f ′(s) exists. The Mellin differential operator of order r ∈ N is defined inductively by putting
Θ1

= Θ, Θ r
= Θ ◦ Θ r−1, Θ0

= I, I being the identity operator. From [3] we have the following representation result:

Θ r f (s) =

r−
k=0

S(r, k)f (k)(s)sk

where S(r, k), r ∈ N, 0 ≤ k ≤ r , denotes the Stirling numbers of the second kind.
We begin with the following Taylor type formula (see also [4]).

Proposition 1. Suppose that f ∈ Cn locally at a point s ∈ R+. Then there exists δ > 1 such that for t ∈]1/δ, δ[

f (st) = f (s) + Θf (s) log t +
Θ2f (s)

2!
log2 t + · · · +

Θnf (s)
n!

logn t + h(t) logn t

where h(t) → 0 as t → 1.

Proof. We first prove the proposition when n = 1 and n = 2. If f is differentiable at the point s ∈ R+ we have

lim
t→1

f (st) − f (s)
log t

= lim
t→1

f (st) − f (s)
ts − s

s(t − 1)
log t

= sf ′(s) = Θf (s)

and so the assertion follows for n = 1. Suppose now that f ∈ C2 locally at the point s ∈ R+. Then, putting F(t) :=

f (s) + sf ′(s) log t and using Hôpital’s rule, we get

lim
t→1

f (st) − F(t)
log2 t

=
s
2
lim
t→1

t(f ′(st) − f ′(s))
log t

+
sf ′(s)
2

lim
t→1

t − 1
log t

=
s2

2
f ′′(s) +

s
2
f ′(s) =

Θ2f (s)
2

and so the assertion follows for n = 2. For the general case, putting F(t) = f (s) + Θf (s) log t +
Θ2f (s)

2! log2 t + · · · +

Θn−1f (s)
(n−1)! logn−1 t we have

lim
t→1

f (st) − F(t)
logn t

= lim
t→1

Θn−1f (st) − Θn−1f (s)
n! log t

=
Θnf (s)

n!
,

where we apply the Hôpital rule (n − 1) times and the representation of the Mellin derivatives calculated at the point st in
terms of the Stirling numbers S(r, k). �
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Now we are ready to prove the main theorem.

Theorem 1. Let s ∈ R+ and f ∈ L∞(µ) be fixed. Then:
(i) If ℓ1 ≠ 0,M1(K) < ∞ and f ∈ C1 locally at the point s we have

lim
w→+∞

w[(Twf )(s) − f (s)] = sf ′(s)ℓ1 = Θf (s)ℓ1.

(ii) If ℓ1 = 0,M2(K) < ∞, α > 2 and f ∈ C2 locally at the point s we have

lim
w→+∞

w2
[(Twf )(s) − f (s)] =

s
2
f ′(s)ℓ2 +

s2

2
f ′′(s)ℓ2 =

Θ2f (s)
2

ℓ2.

Proof. We prove only (ii), the proof of (i) being similar. We have

(Twf )(s) − f (s) =

∫
+∞

0
Kw(t)(f (st) − f (s))

dt
t

=

∫ 1/δ

0
+

∫ δ

1/δ
+

∫
+∞

δ


Kw(t)(f (st) − f (s))

dt
t

= I1 + I2 + I3.

We consider first I2. By Proposition 1 we obtain

I2 = Θf (s)m1(Kw, δ) +
Θ2f (s)

2
m2(Kw, δ) +

∫ δ

1/δ
Kw(t)h(t) log2 t

dt
t

.

As to the last integral, for ε > 0 suppose that δ > 1 with |h(t)| < ε for t ∈]
1
δ
, δ[. Hence

w2
∫ δ

1/δ
Kw(t)h(t) log2 t

dt
t

 ≤ ε

∫
+∞

0
K(t) log2 t

dt
t

= εM2(K).

As regards I1 (and analogously for I3) we have

|I1| ≤ 2‖f ‖∞

∫ 1/δw

0
K(t)

dt
t

= o(w−α)

so limw→+∞ w2
|I1| = 0. The proof follows by limsup and liminf arguments. �

Remarks.
(i) The above theorem can be proved also for functions f ∈ Lp(µ), for p ≥ 1 under suitable assumptions on the family of

kernels Kw and using the Hölder inequality (for details see [1]).
(ii) When the kernel K is a symmetric function with respect to 1 i.e. K(t) = K(1/t) then we get easily ℓj = 0 for every odd

j and ℓj = 2
 1
0 K(t) logj t dt

t for every even j. Thus for even kernels we get a Voronovskaja formula of order 2.

3. Applications to specific operators

3.1. The Mellin–Gauss–Weierstrass operator (see [3])

Let us consider the function

K(t) =
1

√
4π

exp


−


1
2
log t

2


, t ∈ R+.

This function generates the Mellin–Gauss–Weierstrass operator

(Gwf )(s) =
w

√
4π

∫
+∞

0
exp


−

w

2
log t

2
f (ts)

dt
t

.

It is easy to see that property (1) holds and the function K is symmetric with respect to 1, so ℓ1 = 0. Moreover property (2)
holds for every α ≥ 1 and

ℓ2 =
1

√
4π

∫
+∞

0
exp


−


1
2
log t

2

log2 t

dt
t

=
16

√
4π

∫
+∞

0
e−z2z2dz = 2.

So we get the following corollary.

Corollary 1. Suppose that f ∈ L∞(µ). Then if f ∈ C2 locally at the point s ∈ R+,

lim
w→+∞

w2
[(Gwf )(s) − f (s)] = sf ′(s) + s2f ′′(s) = Θ2f (s).
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3.2. The modified Mellin–Poisson–Cauchy operator

Let us consider the function, for every p ≥ 2,

K(t) =
2p−1(p − 1)!
π(2p − 3)!!

1
(1 + log2 t)p

, t ∈ R+.

Here (2n + 1)!! = 1 · 3 · · · (2n + 1) and (−1)!! = 1. This function generates the modified Mellin–Poisson–Cauchy operator

(Pwf )(s) =
2p−1(p − 1)!
π(2p − 3)!!

∫
+∞

0

w

(1 + w2 log2 t)p
f (ts)

dt
t

.

Using the properties of the Beta function, we obtain that property (1) holds and the function K is symmetric with respect
to 1, so ℓ1 = 0. Moreover property (2) holds for α = 2p − 2 and for every p ≥ 2,

ℓ2 =
2p−1(p − 1)!
π(2p − 3)!!

∫
+∞

0

1
(1 + log2 t)p

log2 t
dt
t

=
2p(p − 1)!
π(2p − 3)!!

∫
+∞

0

z2

(1 + z2)p
dz =

1
2p − 3

.

So we get the following corollary:

Corollary 2. Suppose that f ∈ L∞(µ). Then if f ∈ C2 locally at the point s ∈ R+,

lim
w→+∞

w2
[(Pwf )(s) − f (s)] =

1
2(2p − 3)

(sf ′(s) + s2f ′′(s)) =
1

2(2p − 3)
Θ2f (s).

A general class of (classical) Poisson–Cauchy singular operators was considered in [7].

3.3

Let us consider the function

K(t) =


(4/(4 + π))t, 0 < t ≤ 1

(4/(4 + π))
1

(1 + log2 t)2
, t > 1.

Taking into account the previous example it is easy to see that (1) and (2) hold. Moreover M1(K) < +∞ and ℓ1 = −
2

4+π
.

So by Theorem 1, for the corresponding operator Awf we obtain the following corollary:

Corollary 3. Suppose that f ∈ L∞(µ). Then if f ∈ C1 locally at the point s ∈ R+,

lim
w→+∞

w[(Awf )(s) − f (s)] = −
2

4 + π
f ′(s)s = −

2
4 + π

Θf (s).
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