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ABSTRACT

An analog-based ensemble technique, the analog ensemble (AnEn), has been applied successfully to

generate probabilistic predictions of meteorological variables, wind and solar power, energy demand, and the

optimal bidding in the day-ahead energy market. The AnEn method uses a historical time series of past

forecasts from a meteorological model or other prediction systems and observations of the quantity to be

predicted. For each forecast lead time, the ensemble set of predictions is a set of observations from the past.

These observations are those concurrent with the past forecasts at the same lead time, chosen across the past

runs most similar to the current forecast. Recent applications have demonstrated that the AnEn introduces a

conditional negative bias when predicting events in the right tail of the forecast distribution of wind speed,

particularly when the training dataset is short. This underestimation increases when the predicted event

occurs less frequently in the available historical data. A new bias correction for the AnEn using wind ob-

servations frommore than 500U.S. stations is tested to reduce theAnEn’s underestimation of rare events. It is

shown that the conditional negative bias introduced by the AnEn in its standard application is significantly

reduced by our novel approach. Also, the overall probabilistic AnEn performances improve when predicting

wind speed higher than 10m s21 as demonstrated by lower values of the continuous ranked probability score.

These improvements can be attributed to an increased reliability achieved by introducing the proposed bias

correction algorithm.

1. Introduction

The analog ensemble (AnEn) technique has been

recently used to generate probabilistic predictions of 10-m

wind speed and 2-m temperature (Delle Monache et al.

2013, hereafter DM13) starting from a deterministic me-

teorological forecast. The theoretical basis for the analog

approach was provided by Hamill and Whitaker (2006)

who used it to calibrate probabilistic predictions of 24-h

accumulated precipitation from a numerical weather pre-

diction (NWP) ensemble.

The AnEn uses a conditional sample of past observa-

tions (or analysis values) of the quantity to be predicted,

appropriately chosen from a historical dataset, to build an

ensemble forecast. Given a forecast at any location, the

most similar forecasts are selected from a historical

dataset, and the concurrent past observations are used

to build the ensemble. An archive of NWPdeterministic

forecasts is used for that purpose, but other determin-

istic prediction systems (e.g., from statistical methods)

can be used as well. The AnEn aims at identifying past

meteorological conditions or weather regimes in which

the error (defined as the difference between forecast and

observation) probability density function (PDF) was

similar. If those past analog conditions are adequately

identified, then the past observations’ errors can be used

to infer the future error PDF, as they are samples from

the same distribution.

Unlike NWP dynamical ensembles, there is no need

for an initial perturbation strategy or stochastic physicsCorresponding author: StefanoAlessandrini, alessand@ucar.edu
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to initialize and run an NWP model multiple times. On

the other hand, a historical dataset of NWP runs with the

same configuration is necessary for the error PDF to

remain similar. This requirement very often limits the

possibility of building an archive longer than a few years.

Despite using a reforecast dataset from 12 to 15 months

long, DM13 demonstrated that the AnEn mean could

outperform the ensemble mean of Environment and

Climate Change Canada Regional Ensemble Prediction

System (REPS) in terms of accuracy up to 48h for 10-m

wind speed and 2-m temperature. Also, the AnEn

exhibited better probabilistic skills, such as statistical

consistency and reliability than a calibrated version of

REPS while using fewer computational resources.

Several studies have demonstrated the AnEn’s adapt-

ability to a wide range of applications. Here, of particular

interest is its application to renewable energies. TheAnEn

predictions are usually naturally calibrated and reliable in

the first 3days, which is often the time horizon of interest

for end users in the energy sector. Also, the AnEn can

generate power predictions without using a power curve,

which is a function used to compute solar or wind power

from solar radiation or wind speed values. In fact, once the

past analog dates are identified, the generated power at

those dates can be used to build the ensemble forecast.

Alessandrini et al. (2014, 2015a) and Junk et al. (2015) used

the AnEn for generating hourly wind speed and wind

power probabilistic predictions for up to 72h ahead. Sim-

ilar applications for solar power can be found in

Alessandrini et al. (2015b), Cervone et al. (2017), and with

an extension to regional power production in Davò et al.

(2016). A more recent contribution (Sperati et al. 2017)

used the AnEn to generate probabilistic predictions of 10-

m wind speed over a two-dimensional grid using values

from the analysis field as ground truth instead of mea-

surements. They showed that up to 72h the AnEn based

on the European Centre for Medium-Range Weather

Forecasts (ECMWF) deterministicmodel outperforms the

ECMWF Ensemble Prediction System (ECMWF-EPS)

over a domain slightly larger than the Italian peninsula,

using a fraction of the computational resources necessary

to generate ECMWF-EPS. Other AnEn applications in-

clude Alessandrini et al. (2018) for predictions of maxi-

mum intensity of tropical cyclones, Keller et al. (2017)

for downscaling a reanalysis dataset of precipitation,

Nagarajan et al. (2015) forAnEnapplications using several

variables and models, and Djalalova et al. (2015) for air

quality predictions.

It is evident that the likelihood of finding good analogs

increases with longer training datasets. As a matter of

fact, the requirement of generating a reforecast dataset

by an NWP with the same configuration often limits the

available training length and some issues arise as explained

hereafter. The AnEn analogy is assessed through ranking

past forecasts by their L2 norm distance to the current

forecast computed in RN space, with N being the number

of predictors. If infinite training were available in a sta-

tionary climate, an infinite number of perfect analogs

(with a distance equal to zero) would be available (Hamill

andWhitaker 2006). In real cases, the shorter the training,

themore likely the points in theRN space representing the

selected analog forecast will be distributed farther away

from those corresponding to the current forecast. Also, the

finite number of analogs introduces a sampling error in

representing the predicted PDF which can affect the

quality of the predictions. In practice, if the distance

between the current and the analog forecast is high

enough, the verifying past observations might not be

samples from the same error PDF. The current study

demonstrates that this issue causes a negative bias in the

AnEn wind speed predictions when the deterministic

NWP wind speed forecast lies in the right tail of its cli-

matological distribution based on the available historical

dataset. This negative bias has also been observed by

Plenković et al. (2018). Also, Hamill et al. (2015) found

similar biases when the precipitation forecast was unusual

as measured in terms of its percentile relative to the cli-

matological distribution of forecasts (qf). To alleviate this

bias, their approach focused on both selecting a smaller

number of ensemble members for increasing qf, and on

extending the training by searching for analog forecasts at

near locations. In Hamill et al. (2015), the number of

analogs ranges from 100 (qf, 0.75) to 20 (qf. 0.95) with a

training’s length of 12 years. For most previous AnEn

applications the training dataset is shorter than 12 years

(we use 12–15months in the current study), and an optimal

performance in terms of RMSE is often obtained with

about 20 members even for qf, 0.75. Also, when working

with station networks instead of gridded data, extending

the training by searching for analogs at neighboring sta-

tions is generally not as straightforward, depending on the

observation density and location. This holds particularly

for wind speed predictions, for which the error distribu-

tion is often determined by small-scale topographic and

roughness features that are hardly similar in different

stations.

Alternatively, themethod proposed herein is based on

linear regression analysis and aims at reducing the

conditional bias without changing the number of analog

members depending on qf. A linear regression is per-

formed between observed and predicted wind speed

values at each lead time and location, and the resulting

slope is used to adjust the AnEn members when

the wind speed forecast exceeds a certain quantile of the

historical forecast wind speed distribution. Hence, the

proposed model is a combination of the original AnEn
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algorithm and linear regression. As a term of reference,

an ensemble is also generated by using only a multiple

linear regression analysis and the performances com-

pared with the new version of the AnEn.

This paper is organized as follows. In section 2, we

discuss the datasets used in the study. Section 3 describes

the AnEn method we use. Section 4 introduces our new

bias correction approach for rare events. Also, alternative

approaches for improving the analog forecast for rare

events proposed in the literature are described. Section 5

describes the multiple linear regression ensemble. The

performance verification of the AnEn and the bias cor-

rection are discussed in section 6. A summary and dis-

cussion are provided in section 7.

2. Datasets

The same dataset and experiment setup as DM13 are

used to show the improvement achieved by the AnEn

with the proposed bias correction method when com-

pared to its standard version. Observations and raw

model predictions used to generate the AnEn forecasts

are available over a 457-day period (1 May 2010–31 July

2011) with the last 100 days used as the verification

period. The AnEn requires a training dataset including

past forecasts and observations. As in DM13, to mimic a

real-time operational condition, the training period

consists of 12 months for the first forecast of the verifi-

cation period (initialized 23 April 2011) and increases to

15 months for the last one (initialized 31 July 2011).

The observational dataset comprises hourly 10-m

AGL wind speed observations from 550 routine avi-

ation weather reporting stations (METAR, surface).

The stations are located within CONUS (see Fig. 1),

and are characterized by different topographic, land-use

types, and climate conditions. The regional version of

the Environment Canada (EC) deterministic (15 km)

Global Environmental Multiscale (GEM) model is used

to generate the AnEn predictions. For each day in the

dataset, 0–48-h forecasts initialized at 0000UTC of 10-m

wind speed, 10-m wind direction, 2-m temperature, and

surface pressure at the station locations are available at

3-h intervals.

3. The analog ensemble

In this section, we briefly describe the AnEn algo-

rithm introduced by DM13. The basic idea behind the

AnEn is to exploit a dataset of past forecasts over a

specific location generated by anNWPmodel and a time

series of past observations at the same location. In this

application, 10-m wind speed is the predictand but the

algorithm can be applied to predict other variables as

demonstrated by several previously mentioned studies.

The dataset of past forecasts must contain a set of

meteorological variables used as predictors, which for

the current study are derived from the GEMmodel and

include 10-m wind speed, 10-m wind direction, 2-m

temperature, and surface pressure. In the AnEn con-

struction, the predictors are used to detect a given

number of past forecasts similar to a future forecast,

and the corresponding past concurrent verifying ob-

servations form the future ensemble forecast. The basic

idea is to find past situations when the model error PDF

(a distribution of the differences between predicted

and observed 10-m wind speed in this case) is similar to

the PDF of the future forecast. If such situations are

found then the past and the future verifying observa-

tion are sampled from the same PDF. The degree of

similarity of the future forecast at a given lead time t

and location (hereafter referred to as target forecast) to

past potential analog forecasts at the same lead time

(ta) and location is assessed by computing the distance

(Dt,ta), which is

D
t,ta

5�
P

w
P
D

P,t,ta
, (1)

where

D
P,t,ta

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(P

t
2P

ta
)2 1 (P

t23h
2P

ta23h
)2 1 (P

t13h
2P

ta13h
)2

q
,

(2)

and subscripts t and ta represent the lead time of a

forecast in the future and in the past, respectively. In

Eqs. (1) and (2), P is the value of the predictor nor-

malized by its standard deviation computed over the

historical dataset at the lead time t and wP is the weight

assigned to each predictor. The summation in Eq. (1) is

FIG. 1. Spatial distribution of the 550 stations from the routine

aviation weather reports (METAR, surface), providing the ob-

servations of 10-m wind speed and 2-m temperature used in this

study. Darker shading corresponds to higher terrain elevation,

rivers are indicated in light blue, and the U.S. state and in-

ternational borders in black (adapted from DM13).
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over the available predictors (P) which are four in this

application as mentioned earlier. This distance is com-

puted over a time interval of 63 h to also consider

similar trends in the past predictions (the 3-h window is

motivated by the 3-h time increment availability of the

forecasts in this dataset). For each target forecast in the

verification dataset, all the distances (Dt,ta) with the past

forecasts in the training dataset are computed. As in

DM13, the past forecasts with the 21 smallest distances

are selected and the corresponding 21 wind speed

observations used as ensemble members.

In DM13, the weightswPwere each specified as equal to

1, thus assigning the same importance to each predictor.

Several subsequent applications (Junk et al. 2015;

Alessandrini et al. 2015b) have demonstrated that a brute-

force weight optimization (which is computationally fea-

sible with a limited number of predictors, as in the current

study) can increase the AnEn performance and has also

been carried out in the current study. The weights’ opti-

mization is performed independently at each location by

choosing the combination that minimizes the continuous

ranked probability score (CRPS) over the training dataset.

Since only four predictors are used, four corresponding

weights can be set. All the possible combinations defined

with the constraint�4

P51wP 5 1, wherewi2 [0, 0.1, 0.2, . . . ,

1], are tested for the AnEn prediction over the training

dataset using a leave-one-out approach over the training

period. Specifically, for each forecast theAnEnpredictions

are issued for all possible combinations of weights using all

the remaining runs in the training for the analog search.

The weight distributions across the stations received by

each predictor after the brute-force optimization are pre-

sented in Fig. 2. It is worth noting that 10-m wind speed

generally gets the highest weight (about 0.6) as expected,

followed by 2-m temperature (about 0.3), by 10-m wind

direction (about 0.2) and surface pressure which receives

most of the time zero. Having the temperature as the

secondmost important predictor allows theAnEn to select

the past analog dates most likely in the same season which

indicates that there is a seasonal component in the GEM

10-m wind speed forecast error. Similar, positive weights

received by wind direction suggest that the errors are often

determined by local topographic features not adequately

represented in the GEM 10-m wind speed forecast.

4. AnEn bias correction for rare events

a. A combination of AnEn and linear regression
(AnEnBc)

To simplify the description of the bias correction (BC)

method, the assumptions of having 10-m wind speed as

the predictand and only one predictor (10-m wind speed)

for the analog selection are made. Also, the63h trend is

neglected. Equations (1) and (2) simplify as follows:

D
t,ta

5D
P,t,ta

, (3)

D
P,t,ta

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(P

t
2P

ta
)2

q
, (4)

where P represents 10-m predicted wind speed.

Figure 3 presents a scatter diagram for station 107 of

9-h wind speed predictions compared with correspond-

ing observations. In this example, the target forecast is

equal to 17.9m s21, indicated by a red3 in the plot, and

for simplicity only 10 analogmembers are generated; the

selected closest analog forecasts are the red circles.

The binned distribution of past wind speed predictions

FIG. 2. The distribution of the weights across the stations received by each predictor as a result of the brute force optimization using (top) the

standard analog technique (AnEn) and (bottom) the modified version with the bias correction (AnEnBc) as described in section 4a.
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at the same lead time and station is plotted in Fig. 4.

The wind speed range including the selected 10 analog

predictions is indicated in red. Here, 9 of the 10 analog

wind speed predictions are lower than the target

forecast. In fact, if the target prediction is located in

the right tail of the forecast distribution, given its de-

creasing trend, it is more likely to have analog wind

speed predictions lower than the target one. The

likelihood of finding analog forecasts lower than the

target one is more enhanced by a shorter training

which limits the possibility of finding similar pre-

dictions (with an infinite training dataset, an infinite

number of equal analog predictions would be avail-

able). Being the mean of the analog forecasts’ distri-

bution lower than the target forecast, a negative bias is

introduced when comparing the mean of the observed

wind speed corresponding to the analog forecasts and

the observed wind speed corresponding to the target

prediction.

For a wind speed prediction (P), the corresponding

observed wind speed (O) may be expressed as

O5b
0
P1b

1
1 « , (5)

where « is a random error and b0 and b1 are the co-

efficients (slope and intercept) resulting from a linear

regression with O as a response variable and P as an

explanatory variable. In general, there are some assump-

tions about the errors « that should be independent, nor-

mally distributed, and should have zero mean for all P.

Similarly, the following relationships of the analog and the

target forecasts to the corresponding observations are

obtained with

O
a
5b

0
P
a
1b

1
1 «

a
(6)

and

O
t
5b

0
P
t
1b

1
1 «

t
, (7)

where the subscripts a and t indicate the analog and the

target forecasts and the corresponding observations,

respectively. By first taking the mean over the analog

forecast events a in Eq. (6), then the mean over all the

forecast events of both Eqs. (6) and (7) and then sub-

tracting Eq. (6) from Eq. (7), the following can be

obtained:

hO
t
i2 hO

a
i5b

0
[hP

t
i2 hP

a
i]1 h«

t
i2 h«

a
i , (8)

where the overbar represents themean over the selected

members and h i over different forecast events. Given

that the bias of theAnEnmean (Oa) forecasts is equal to

hOti2 hOai, Eq. (8) shows that the bias has a systematic

component equal to 2b0[hPti2 hPai] and a random

component equal to h«ti2 h«ai. The systematic compo-

nent of the bias becomes significantly positive when the

FIG. 3. Scatter diagram of wind speed 9-h forecasts plotted

against observations at station 107. The red 3 symbol indicates

the target forecast of 17.9 m s21 used as an example. The ex-

pression Pt 2Pa is the distance between the dashed and the solid

red lines. The sloping black linear regression line is obtained by

using the observed wind speed as the response variable and the

predicted wind speed as the explanatory variable. On the x axis,

the filled and empty blue triangles represent the AnEn members

before (Oa) and after (Ôa) the bias correction. The blue squares

indicate the AnEn mean Oa before (filled) and after the correc-

tion (empty). It is worth noting that all the blue symbols have no

reference to the y axis.

FIG. 4. Binned distribution of the number of wind speed 9-h

ahead forecasts at station 107. The red 3 symbol indicates the

target forecast of 17.9m s21 used as an example for describing the

bias correction method. The red parentheses indicate the range of

wind speeds for the analog forecasts if 10 ensemble members

are chosen.
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target forecast Pt is within the right tail of the forecast

distribution, where it is more likely to be greater than

the mean of the analog forecast (Pa). In general, the

random component might not be equal to zero, but in

this study we aim at correcting only the systematic

component. Also, if h«ti5 0 can be considered a good

approximation over a large number of forecast events,

from the central limit theorem, h«ai5 0. In that case, the

random component of the AnEn bias tends to zero. The

proposed bias correction consists of adjusting the AnEn

members Oa for each forecast event by removing the

systematic component as follows,

Ô
a
5O

a
1b

0
[P

t
2P

a
] , (9)

where Ôa represents the bias-corrected members.

For the case of 9-h wind speed predictions at station

107 depicted in Fig. 3, Pt 2Pa is indicated by the dis-

tance between the dashed and the solid red line. The

black line is plotted according to the coefficients re-

sulting from the linear regression with the observed

wind speed as the response variable and the predicted

wind speed as the explanatory variable. On the x axis,

the filled and empty blue triangles represent the AnEn

members before (Oa) and after (Ôa) the bias correction.

The blue squares indicate the AnEn mean Oa before

(filled) and after (empty) the correction (Ôa 5Oa 1
b0[Pt 2Pa]). It can be seen that after the adjustment, the

AnEn mean (Ôa) underestimation with respect to the

verifying observation Ot is corrected.

The proposed method works if the assumption of a

linear relationship between predicted and observed

values is acceptable, which may not be true in general.

For variables other than wind speed, Eqs. (6) and (7)

should be adapted to account for the nonlinearity. For

example, in applications related to wind power pre-

diction (e.g., Junk et al. 2015; Alessandrini et al. 2015a)

using observed power and wind speed predictions, the

termsPa andPt on the right-hand side of Eqs. (6) and (7)

should be replaced by F(Pa) and F(Pt) with F being the

power curve function.

Also, Eq. (9) can be applied for any prediction Pt and

may be suitable if Pt ,Pa, which usually occurs when Pt

is in the left tail of the forecast distribution. For wind

speed, several empirical tests carried out over the

training dataset adopted in this work have shown that a

conditional application of Eq. (9) avoids a performance

degradation as measured by the root-mean-square error

(RMSE). These tests (not shown) have demonstrated

that an optimal RMSE is obtained if Eq. (9) is applied

when Pt . Q90(Pt), with Q90 being the 90th quantile of

the climatological forecast distribution independently

computed at any station and lead time. As a matter of

fact, without using the threshold the target forecast is

often very close to the analog forecasts mean, which

makes the BC adjustments small and noisy leading

to a degradation of the root-mean-squared error. This

threshold should be considered as a tuning parameter

for the AnEn application and might require a specific

optimization for variables other than wind speed or

different datasets. Also, for variables with a two-tail

distribution (e.g., 2-m temperature) adopting an ad-

ditional condition for the left tail of the PDF [e.g.,

Pt , Q10(Pt)] may also be beneficial.

b. Extending the training with observations from
neighboring stations

As already mentioned, Hamill et al. (2015) proposed

to extend the training dataset from which selecting the

analogs by including observations from supplemental

neighboring grid points. These additional grid points

were selected based upon the similarity of the observed

climatology of rainfall, the similarity of terrain charac-

teristics and some constraints on their distance. Clearly,

extending the training increases the likelihood that the

analog forecasts are very similar to the target forecast

even when the target forecast is rare, which should

alleviate the conditional negative bias for wind speed

predictions. In this work, three selection criteria to add

supplemental locations are tested. They are much sim-

pler than what proposed in Hamill et al. (2015) and are

meant to explore the potential feasibility for wind speed.

The first two criteria consist of extending the training

dataset of each station by including the training dataset

of supplemental stations only if their distance is lower

than 20 km (neigh_20km) and 50km (neigh_50km).

Respectively, only 31 and 173 stations had at least one

supplemental location within a range of 20 and 50 km.

The underlying assumption of this approach is that two

nearby locations might share similar error structure

determined by similar topography and land use. The

third selection method is to use the 10 supplemental

stations with the most similar bias (neigh_bias), defined

as the difference between the mean GEM wind speed

predictions and the observations.

5. Multiple linear regression ensemble

An ensemble based on a multiple linear regression

(MLR_En) is described in this section and used as a base

of reference for the AnEnBc in the subsequent analyses.

The use of linear regression–based techniques to

correct errors in NWPoutputs are commonly referred to

as model output statistic (MOS). The earliest applica-

tion goes back to the work of Glahn and Lowry (1972) in

which predicted wind speeds and wind components at
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different pressure levels were used as predictors in a

multiple linear regression with surface wind speed ob-

servations as the predictand.

Since the novel version of the AnEn, as described in

section 4a, is a combination of the AnEn and a linear

regression analysis, we aim at comparing it with a

simpler model based only on the latter technique.

Similar to Glahn and Lowry (1972), a multiple linear

regression is used here to correct the GEM wind speed

forecast.

At each station and for each forecast lead time an

independent multiple regression analysis is carried out

on the training dataset (see section 2) by computing the

regression parameters (b) in the equation:

ws
obs

5 b
0
1 b

1
ws

f
1 b

2
y
f
1 b

3
u
f
1 b

4
P

f
1 b

5
T
f
, (10)

where wsf, yf, uf, Pf, and Tf are, respectively, 10-m wind

speed, 10-m y and u components, the surface pressure,

and the 2-m temperature from GEM while wsobs is the

observed 10-m wind speed. To check whether adding

predictors other than wsf improves the regression, we

compared the adjusted R2 of the Eq. (10) with the one

from the regression using wsf as the only predictor. For

each station, Eq. (10) is used only if the adjusted R2 is

higher, which happens in about 95% of the cases. In the

remaining 5% of the cases, we used wsf as the only

predictor. The ensemble members are then generated

by taking the values corresponding to the quantiles of

the Gaussian distribution of the regression’s residuals

and adding them to the wind speed predicted by

Eq. (10). Also, for consistency with AnEn, 21 members

are used to build the MLR_En. It is worth noting that

for each location the MLR_En spread, defined as the

standard deviation of the members about their mean,

depends only on the forecast lead time but not on the

predicted wind speed. Hence, differently from AnEn,

MLR_En’s ensemble spread cannot be considered flow

dependent.

6. Results

In this section, the AnEn’s performance with the

novel bias correction method (AnEnBc) is assessed and

compared to the original version (AnEn) and toMLR_En

using common verification metrics for evaluation of

deterministic and probabilistic predictions. It is worth

noting that both AnEn and AnEnBc methods used in

this study employ optimized weights (section 3) while in

DM13 equal weights were assigned to the predictors.

This choice is motivated by previously documented su-

perior performance when the weights are optimized,

(e.g., Junk et al. 2015).

a. Bias

A deterministic, single-valued forecast can be ob-

tained from any ensemble prediction by taking themean

of the ensemble members at any forecast lead time. In

this study, we analyze the performance of the AnEn

membersmean ( f ). A total of 21members are used to be

consistent with DM13.

The bias, also known as the systematic error, is defined

as

bias5 h f i2 hoi , (11)

where h i indicates the mean over all the available ob-

servation/forecast pairs. The bias measures the average

under/overestimation of the forecasts compared to ob-

servations. In Fig. 5, the bias is computed for both the

AnEn and AnEnBc ensemble means, as a function of

the mean wind speed from the Global Environmental

Multiscale (GEM) model computed for equally popu-

lated bins. To gain insight on the analog models’

performances, tests have been carried out both with

the whole 1-yr-long training (starting 1 May 2010) and

with the shorter 9-month-long training (starting 1

August 2010).

Without the BC, the AnEn conditional negative bias

gets larger (in absolute value) for higher values of the

GEMwind speed deterministic predictions on which the

AnEn is based. On the other hand, AnEnBc is not af-

fected by the same conditional bias even though a slight

positive bias is evident with the shorter training.

A similar analysis to evaluate the methods based on

the additional locations (neigh_bias, neigh_50 km and

neigh_20 km) as described in section 4b is presented in

Fig. 6. All three methods exhibit a slight improve-

ment over the standard AnEn in terms of reducing the

FIG. 5. AnEn and AnEnBc ensemble mean bias as a function of

the wind speed from the Global Environmental Multiscale (GEM)

model averaged over equally populated bins. The 1-yr training

period and the shorter 9-month training periods are used for both

AnEn and AnEnBc. The error bars indicate the 95% bootstrap

confidence intervals.
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conditional negative bias for high wind speed. How-

ever, when looking at the root-mean-squared error,

all three methods show significantly worse perfor-

mance than AnEn (not shown). For this reason, they

have not been included in the evaluation presented

from now on.

In Fig. 7, bias as a function of the forecast lead time is

shown for AnEn, AnEnBc, and MLR_En for the whole

set of observations (case 0) and for two subsets restricted

to observed wind speed greater than 5ms21 (case 5) and

10ms21 (case 10). According to the 5%–95% bootstrap

confidence intervals, for all three cases, AnEnBc im-

proves AnEn by reducing the negative bias a statistically

significant amount at all the lead times. For observed

wind speed greater than 10ms21, the negative bias

worsens in the standard version of the AnEn and is only

partially alleviated by AnEnBc, with a reduction (in

absolute value) of about 1ms21 at all lead times.

Regarding MLR_En, its bias usually ranges between

AnEn and AnEnBc for case 0, getting very similar to

AnEnBc for cases 5 and 10. It is worth noting the diurnal

cycle in the bias trend for all the models, especially for

cases 5 and 10. The absolute value of the bias is lower

around 0900 UTC, which corresponds to early morning

over CONUS and is also the time of the day with the

highest observed mean wind speed over all the stations

(not shown).

b. Root-mean-squared error and centered
root-mean-squared error

The root-mean-square error (RMSE) is a common

verification metric for deterministic predictions, and

is a quadratic score index, that gives higher weights to

larger forecast errors. The RMSE measures both sys-

tematic error (bias) and random errors and is defined as

follows:

FIG. 6. AnEn (black), and (left) AnEn neigh_bias (red), (middle) AnEn neigh_50 km (red), and (right) AnEn neigh_20 km (red)

ensemble mean bias as a function of the wind speed from the Global Environmental Multiscale (GEM) model averaged over equally

populated bins. For the plots including the models neigh_50 km and neigh_20 km, the bias has been computed considering only the

stations for which at least one supplemental location has been used. The error bars indicate the 95% bootstrap confidence intervals.

FIG. 7. Bias as a function of the forecast lead time for the AnEn, AnEnBc, and MLR_En ensemble means for 10-m wind speed using

(a) all the observations, (b) wind speed greater 5m s21, and (c) 10m s21 using AnEn (dashed line, black), AnEnBc (solid line, red), and

MLR_En (dot–dashed, blue). Note the different ranges of the vertical axis in (a)–(c). The error bars indicate the 5%–95% bootstrap

confidence intervals. They are plotted only for AnEn and AnEnBc to reduce the clutter.
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RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

( f
i
2 o

i
)2

s
, (12)

where N is the total number of forecast events.

If the bias is removed from each forecast error, the

centered root-mean-squared error (CRMSE) can be

obtained, which includes random errors and residual

conditional biases. The CRMSE is defined as follows:

CRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51
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i
2 h f i)2 (o
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2 hoi)]2

s
. (13)

In Figs. 8 and 9 , the RMSE and the CRMSE as a

function of the forecast lead time for the AnEn and

AnEnBc are plotted using the whole set of observations

and the two subsets (cases 5 and 10).

For the RMSE, the AnEnBc outperforms AnEn at all

lead times and in all the three cases. The improvements

are statistically significant only up to 12h ahead for case

0, at all the lead times except at 48 h for case 5, and at all

the lead times for case 10. More significant improve-

ments gained from using AnEnBc in case 10 are con-

sistent with the AnEn members being corrected by the

BC algorithm only if Pt . Q90(Pt). Thus, AnEn and

AnEnBc predictions are different only for the 10% of

the forecast events that are likely corresponding to

higher wind speed observations. ForMLR_En, RMSE is

worse than both AnEn and AnEnBc for case 0, be-

coming more similar to AnEnBc for cases 5 and 10.

For CRMSE, AnEnBc improves over AnEn for case

0, but generally gets worse thanAnEn for cases 5 and 10,

which means that the BC algorithm introduces random

errors. In all the three cases and at all the lead times, the

FIG. 8. Root-mean-square error (RMSE) as a function of the forecast lead time for the AnEn, AnEnBc, andMLR_En ensemble means

for 10-m wind speed using (a) all the observations, (b) wind speed greater 5m s21, and (c) 10m s21 using AnEn (dashed line, black) and

AnEnBc (solid line, red). Note the different ranges of the vertical axis in (a)–(c). The error bars indicate the 5%–95% bootstrap confi-

dence intervals.

FIG. 9. Centered root-mean-square error (CRMSE) as a function of the forecast lead time for the AnEn, AnEnBc, and MLR_En

ensemble means for 10-m wind speed using (a) all the observations, (b) wind speed greater 5m s21, and (c) 10m s21 using AnEn (dashed

line, black) and AnEnBc (solid line, red). Note the different range of the vertical axis in (a)–(c). The error bars indicate the 5%–95%

bootstrap confidence intervals.
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differences between the two models are not statistically

significant. For MLR_En, CRMSE as RMSE is the

worst for case 0 and very similar to AnEnBc for cases 5

and 10. Comparing the results in Figs. 7–9, we conclude

that the RMSE improvements of AnEnBc over AnEn

result from a significant reduction of the systematic

component of the errors (bias), which can compensate

the increased random component (CRMSE). A similar

conclusion can be drawn when comparing MLR_En

with AnEn on cases 5 and 10. Also, MLR_En’s worst

performance in terms of RMSE over the whole dataset

(case 0) can be attributed to a higher random component

of its errors.

c. Pearson correlation coefficient (CC)

The CC is defined as

CC5
1

N

�
N

i51

( f
i
2 h f i)(o

i
2 hoi)

s
f
s
o

, (14)

where sf and so are the standard deviations of the

forecasts (AnEn mean) and the observations,

respectively. The CC measures the strength of the

linear association between two variables. It ranges

between [21, 1] with 1 being the best achievable

correlation.

In Fig. 10, the CC as a function of the forecast lead

time for the AnEn and AnEnBc are plotted using the

whole set of observations and the two subsets (cases 5

and 10). The CC is very similar for AnEn and AnEnBc

when calculated for the entire dataset. For cases 5 and 10

AnEnBc outperforms AnEn, but with the bootstrap

intervals indicating statistically significant improve-

ments only for few lead times. The conditional bias

reduction in AnEnBc compared to AnEn compensates

the introduction of some noise enough not to worsen the

CC. MLR_En correlation values are very similar to

AnEnBc except for case 0 where AnEnBc signifi-

cantly outperforms MLR_En indeed because of a

lower CRMSE.

d. Rank histograms

A rank histogram can be used to assess the statistical

consistency of an ensemble, and indicates whether the

members of an ensemble system are statistically

indistinguishable from the observations. In a consistent

ensemble, an observation ranked among the corre-

sponding ordered ensemble members is equally likely to

take any rank in the range of the whole forecast PDF

(Anderson 1996). An ensemble is perfectly statistically

consistent when its rank histogram is flat and has a

uniform rank probability of 1/(n 1 1) (Hamill 2001),

with n equal to the number of ensemble members. A

rank histogram can be presented together with the

missing rate error (MRE), which is the fraction of

observations lower (higher) than the lowest (highest)

ranked prediction above or below the expected missing

rate of 1/(n 1 1). A larger positive (negative) MRE

reveals a more under dispersive (over dispersive)

ensemble.

In Fig. 11, a rank histogram is compiled for AnEn,

AnEnBc, and MLR_En together with their corre-

sponding MRE values. The overall negative bias af-

fecting AnEn is evident by the bins on the right side of

the histogram being more populated than those on the

left. The improvement in overall bias of AnEnBc com-

pared to AnEn is also characterized by its flatter rank

histogram. TheMRE values are very low for bothAnEn

and AnEnBc, which indicates a good statistical consis-

tency for the methods. For MLR_En, it is the worst

model in terms MRE with an over dispersive behavior

FIG. 10. Pearson correlation coefficient as a function of the forecast lead time for the AnEn, AnEnBc, and MLR_En ensemble means

for 10-m wind speed using (a) all the observations, (b) wind speed greater 5m s21, and (c) 10m s21 using AnEn (dashed line, black) and

AnEnBc (solid line, red). The error bars indicate the 5%–95% bootstrap confidence intervals.
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indicating that the assumption of a Gaussian residual

distribution does not hold in general.

e. Spread–skill

Binned spread–skill diagrams can assess the ability of

an ensemble system to quantify its own uncertainty

(Fortin et al. 2014; Hopson 2014). In a spread–skill di-

agram, the ensemble spread is compared to the RMSE

of the ensemble mean over small class intervals (i.e.,

bins) of spread, instead of considering its overall average

(Van den Dool 1989; Wang and Bishop 2003). A good

correlation in the spread–skill diagram is an indication

that an ensemble system is able to forecast its own error

(Hopson 2014). Binned spread–skill diagrams for both

AnEn and AnEnBc are presented in Fig. 12. Each bin

has the same number of forecast/observation pairs,

which results in bins of different width.

Note that introducing the BC leads to a slight re-

duction of the RMSE for the bins on the right. This is

consistent with the lower RMSE for AnEnBc compared

to AnEn (Fig. 8). The overall spread–skill relationship

looks very similar for the two models even though the

reduction of the RMSE in the highest bins for AnEnBc

is noticeable with a more significant departure from the

diagonal. In fact, it is worth to notice that the BC tech-

nique does not modify the AnEn spread, but only the

ensemble mean that in turn affects the RMSE.

MLR_En also exhibits an excellent spread–skill re-

lationship. Considering that for MLR_En the spread

does not change with respect to the predicted wind

speed for a fixed station and lead time, it can be

FIG. 11. Rank histograms for probabilistic prediction of 10-m wind speed for (a) AnEn, (b) AnEnBc, and (c) MLR_En with annotated

missing rate error (MRE) results. The gray histogram bars show the frequency of occurrence of the observation in each rank. The dashed

line indicates a perfect, uniform probability for a 21-member ensemble.

FIG. 12. Binned spread–skill diagram of 10-m wind speed for

AnEn (black), AnEnBc (red), andMLR_En (blue) calculated over

all forecast lead times. The error bars indicate the 95% bootstrap

confidence interval. The diagonal 1:1 line represents a perfect

spread–skill trend. For each diagram, the ensemble spread is bin-

ned into 20 equally populated class intervals.
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concluded that most of the RMSE variability depends

on the lead time and location.

f. CRPS

The continuous ranked probability score (CRPS) is a

metric used to assess the overall quality of an ensemble

system (Carney and Cunningham 2006). It can generally

be expressed as:

CRPS5
1

N
�
N

i51

ð‘
2‘

[Ff
i (x)2F0

i (x)]
2
dx , (15)

where F
f
i (x) is the cumulative distribution function

(CDF) of the probabilistic forecast and F0
i (x) is the CDF

of the observation for the ith ensemble prediction/

observation pair, and N is the number of available

forecast events. It has been shown (Hersbach 2000) that

the CRPS is equivalent to the mean absolute error if

evaluating a deterministic (single valued) forecast. A

lower value of CRPS indicates better performances,

with 0 indicating a perfect score. CRPS has the same

units as the forecasted variable. In Fig. 13, the CRPS as a

function of forecast lead time is shown for both AnEn

and AnEnBc for the three cases (cases 0, 5, and 10).

Similar to RMSE, CRPS improvements for AnEnBc

compared to AnEn are larger for case 10, which means

that the BC improves the overall probabilistic skill of

AnEn when predicting events with observed wind speed

higher than 10ms21. The improvements are statistically

significant up to 36h ahead except for lead time 0 and

lead time 18 where the confidence intervals barely

overlap.

When comparing MLR_En to AnEn and AnEnBc,

it is evident that MLR_En is competitive only for

case 5. For case 0, it is the worst model while for

case 5 it slightly outperforms AnEn, but it is worse

than AnEnBc.

The different components of the CRPS contain

information about which attributes of a probabilistic

prediction leads to the improvement of the AnEnBc

over the AnEn. We have used the function ‘‘crpsDe-

compostion’’ provided by the R package ‘‘verifica-

tion’’ (NCAR Research Applications Laboratory

2014) to compute the CRPS and its components that

will be discussed hereafter. As demonstrated by

Hersbach (2000), the CRPS can be decomposed into

three components similarly to the Brier score (Brier

1950; Murphy 1973). These three components are the

reliability (REL), resolution (RES), and uncertainty

(UNC). The REL component measures how well the

forecasted probabilities match the observed proba-

bilities, with smaller REL indicating a better match.

The REL attribute may also be assessed by compiling

the previously discussed rank histograms. The RES

component measures the system improvements com-

pared to a climatological probabilistic forecast, which

is a single probability value of an event observed in the

dataset. In general, the resolution attribute of a sys-

tem reflects how well the different forecast frequency

classes can separate the different observed frequen-

cies from the climatological mean. The UNC compo-

nent measures how the situations in the dataset are

predictable by a climatological forecast. UNC is re-

lated to the variability of the observations and

therefore depends on the observations only. For a

more detailed demonstration of how to derive the

three components, we refer the reader to Hersbach

(2000). For the purpose of this paper, we just note that

CRPS can be expressed as CRPS 5 REL 1
CRPSPOT, where CRPSPOT 5 UNC 2 RES is the

FIG. 13. Continuous ranked probability score (CRPS) as a function of the forecast lead time for the probabilistic prediction of 10-mwind

speed using (a) all the observations, (b) wind speed greater 5m s21, and (c) 10m s21 using AnEn (dashed line, black), AnEnBc (solid line,

red), and MLR_En (dot–dashed line, blue). Note the different ranges of the vertical axis in (a)–(c). The error bars indicate the 95%

bootstrap confidence intervals.
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potential CRPS. The potential CRPS is the CRPS in a

perfectly reliable (REL 5 0) forecasting system.

The values of CRPS (with bootstrap confidence

intervals), CRPSPOT, and REL computed over all the

lead times are reported in Table 1. The confidence

intervals show that AnEnBc significantly outperforms

AnEn only for case 10 in terms of the overall CRPS. We

note that CRPSPOT is very similar for the two models

and the improvements of the CRPS can be mainly

attributed to a reduction of REL (i.e., AnEnBc is better

than AnEn in terms of reliability). AnEn, being affected

by a negative bias, tends to be underconfident, which

means that underestimates the probabilities of occur-

rences of high wind speed, a problem that is alleviated

with the introduction of BC. Regarding MLR_En, its

lowest resolution (highest CRPSPOT) leads to the worst

CRPS for case 0. On the contrary, improvements for

case 5 (where MLR_En exhibits the lowest CRPS) and

10 are achieved for a better resolution that cannot

compensate for the degrading reliability to still out-

perform AnEnBc on case 10.

g. ROCSS

The receiver operating characteristic (ROC) is an

approach commonly used to assess the ability of a

probabilistic forecasting system to distinguish situations

leading to the occurrence and nonoccurrence of an event

which is also called discrimination (Mason 1982). For a

probabilistic forecast, a ROC curve is obtained by

plotting the false alarm rate (i.e., false alarms divided by

total of nonoccurrence of the event) against the hit rate

(i.e., the correct forecasts divided by the total occur-

rences of the event) for different probability thresholds.

For each threshold, an event is considered a hit/false

alarm if both the predicted probability is higher than the

threshold and the event occurred/did not occur. The

area delimited by the ROC curve is the ROC index,

with a greater area corresponding to a higher number of

hit rates, showing a better ability of the forecast system

to discriminate. ROC index is widely used in decision

making. For instance, the decision to undertake actions

based on likelihood of occurrence of a particular mete-

orological event can depend on the forecasted proba-

bility of the same event exceeding a certain threshold.

ROC skill score (ROCSS) is the translation of the ROC

score into a standard skill score, with a value equal to 1

corresponding to a perfect forecast and values lower

than 0 denoting a system performing worse than clima-

tological forecasts.

In Fig. 14, ROCSS as a function of forecast lead times

is shown for AnEn and AnEnBc with events having

wind speeds exceeding 5ms21 (Fig. 14a) and 10m s21

(Fig. 14b). For the 5ms21 threshold, there is no differ-

ence evident betweenAnEn andAnEnBc. However, for

the 10m s21 threshold, AnEnBc outperforms AnEn at

all lead times even though the confidence intervals

indicate that the improvements are not statistically sig-

nificant. MLR_En exhibits the worst ROCSS at case 5

and it is still generally worse than AnEnBc at case 10.

7. Summary

A new bias correction (BC) method for improving the

analog ensemble (AnEn) model for wind speed pre-

dictions of rare events has been presented. It has been

demonstrated that the AnEn, in its earliest formulation

(Delle Monache et al. 2013) is affected by a conditional

negative bias when predicting events in the right tail of

the forecast distribution. This conditional negative bias

increases as the deterministic wind speed prediction is

larger and as the training dataset gets shorter. The

proposedmethod is based on a linear regression analysis

between forecast and observations performed in-

dependently at each lead time and location. Each

member is adjusted by adding a factor proportional to

the difference between the target forecast and the mean

of the past analog forecasts multiplied by the coefficient

obtained after the linear regression analysis. In contrast

TABLE 1. Decomposition of the continuous ranked probability score (CRPS) for AnEn, AnEnBc, and MLR_En predictions of 10-m

wind speed using all the observations (case 0), wind speed greater 5m s21 (case 5), and 10m s21 (case 10). The best CRPS, CRPSPOT, and

REL scores for each case are in bold font.

Threshold (m s21) CRPS CRPSPOT REL

AnEn 0 0.723 , 0.726 , 0.729 0.722 0.004

AnEnBc 0 0.719 , 0.721 , 0.723 0.718 0.003

MLR_En 0 0.767 , 0.769 , 0.772 0.764 0.005

AnEn 5 1.140 , 1.146 , 1.153 0.849 0.297

AnEnBc 5 1.100 , 1.106 , 1.112 0.872 0.234

MLR_En 5 1.070 , 1.074 , 1.081 0.826 0.248

AnEn 10 2.319 , 2.371 , 2.421 1.040 1.331

AnEnBc 10 1.929 , 1.970 , 2.015 1.131 0.839

MLR_En 10 2.072 , 2.116 , 2.132 0.984 1.133
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to previous approaches (Hamill et al. 2015), the pro-

posed BC aims to keep the same number of members

regardless of the magnitude of the target forecast. Also,

other approaches similar to those previously explored

by Hamill et al. (2015) for rainfall predictions have been

tested. They consist of searching for analogs in neigh-

boring stations or in stations where theGEMwind speed

forecasts exhibit similar biases. In both cases, the novel

BC approach was more effective for reducing the AnEn

conditional bias as well as the RMSE. In fact, NWP

prediction errors for wind speed are more likely de-

pendent on topographic and roughness features at a

lower spatial scale than those of rainfall. It is then harder

to find stations with similar features unless a very dense

observation network is available.

The AnEn with the BC method (AnEnBc) has been

compared to the original AnEn using the same dataset

as that used in Delle Monache et al. (2013), which is

constructed from a 457-day period of hourly 10-m

AGL wind speed observations from 550 aviation

routine weather-reporting stations across the contig-

uous United States (CONUS) and meteorological

predictions at these stations from the regional version

of the Environment Canada (EC) deterministic

(15 km) Global Environmental Multiscale (GEM)

model. We have shown that AnEnBc improves AnEn

by reducing the conditional negative bias for wind

speed. The overall bias is more significantly improved

when the verification is for higher wind speeds (cases 5

and 10 corresponding to wind speed greater than

5 and 10m s21). The overall centered root-mean-

squared error (CRMSE) is very similar for AnEn

and AnEnBc but slightly deteriorates for cases 5 and

10. This means that the BC method introduces a

random error, which because of the bias reduction,

does not spoil the overall root-mean-square error

(RMSE) reduction obtained with AnEnBc. In addi-

tion, the correlation coefficient is slightly improved

with AnEnBc.

AnEn and AnEnBc have also been compared for

several different attributes of a probabilistic prediction.

In particular, AnEnBc has a better continuous ranked

probability score than AnEn. The improvements are

more significant when restricting the dataset to wind

speed greater than 10m s21 (case 10). By looking at the

different components of the CRPS, it is possible to at-

tribute the overall CRPS improvements to an increased

reliability of AnEnBc. AnEnBc also outperforms AnEn

in terms of discrimination even though the improve-

ments are not statistically significant when looking at the

singles lead times.

An ensemble generated by sampling the quantiles

from the residuals’ distribution of a multiple linear

regression (MLR_En) has been used as a reference

throughout the whole verification. As for the deter-

ministic verification, MLR_En is, in general, compet-

itive in terms of bias with AnEn, and slightly worse

than AnEnBc. Over the whole dataset (case 0), the

RMSE of MLR_Ens is the worst due to the highest

random component of the errors (CRMSE). For larger

wind speed (cases 5 and 10), AnEn can generally

outperform MLR_En only when coupled with the

BC technique. Similar conclusions can be drawn

when looking at the probabilistic verification (CRPS).

FIG. 14. Relative operating characteristic skill score (ROCSS) as a function of the forecast lead time for the

probabilistic prediction of 10-m wind speed greater than (a) 5m s21, and (b) 10m s21 using AnEn (dashed line,

black), AnEnBc (solid line, red), and MLR_En (dot–dashed line, blue). Note the different ranges of the vertical

axis in (a) and (b). The error bars indicate the 95% bootstrap confidence intervals.
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MLR_En’s CRPS is the worst for case 0, but competitive

with AnEnBc for cases 5 and 10.

These conclusions suggest that the AnEn is more

suitable than linear regression–based techniques in sit-

uations with a weak linear correlation between pre-

dictand and the predictor (for wind speed lower than

5ms21). When a linear relationship holds better (for

wind speed larger than 5ms21), MLR_En becomes

more competitive and could outperformAnEn if the BC

technique was not introduced.

The proposed BC method has been tested for wind

speed predictions but could be applied to any other

variable. However, some adjustments might be neces-

sary, since a linear relationship between model pre-

dictions and observations might not hold in general.

Also, the choice of the quantile threshold to activate the

BC should be optimized for different datasets. In terms

of computational time, the introduction of BC did not

require any significant additional costs.
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