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Abstract

The computer algebra system MAGMA is used to search for BLT-sets of the nonsingular parabolic
quadricQ(4, q). In total, 28 newBLT-sets for 27≤ q ≤ 125 are presented, these giving rise to 158
new flocks of the quadratic cone inPG(3, q).
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their connections with a myriad of other geometric structures, BLT-sets have
become important objects of study in finite projective spaces. The present paper is intended
as a sequel to the paper of Penttila and Royle entitled “BLT-sets over small fields” [30]. In
that paper, the authors extended the computer searches of De Clerck and Herssens [10] for
flocks of the quadratic cone inPG(3, q) to q ≤ 25, by placing them in the more general
context of finding BLT-sets rather than individual flocks. Earlier computer-free results had
appeared in Thas [32] and De Clerck et al. [9]. The purpose of the present paper is to
continue the more general theme of searching for BLT-sets, and we present here results of
computer searches yielding 28 new BLT-sets. The techniques for searching are different
to those of the prequel paper, and have been implemented using the computer algebra
system MAGMA [8]. The techniques used by Penttila and Royle involved computing the
automorphism groups of the generalised quadrangles (GQs)Q(4, q) for q ≤ 25, even
though these are well known to bePΓ O(5, q). The implementation of PGO(5, q) in
MAGMA for q ≤ 97 removes the need for this computation, which in terms of computer
time, was by far the most expensive part of the work in [30]. Theoretical developments
have also provided an inexpensive and easily implemented check for determining if a set of
points of the quadricQ(4, q) is a partial BLT-set. Details of the new searches will be given
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later in the paper. For background and motivation to the study of BLT-sets, we refer to the
aforementioned paper of Penttila and Royle, as well as the papers of Law and Penttila [20]
and Johnson and Payne [15].

The construction of infinite families of BLT-sets is a difficult task, and can require
detailed analysis of existing data. Indeed, since the prequel paper, only two infinite families
have been described, and these were generalised from two examples in the first case and
just one example in the second (see [28], [20]). The wealth of existing data suggests the
possibility of more infinite families, and yet any new family discovered may only contain
one or two of these existing examples. This observation displays the value of continuing
these sorts of experimental searches, especially the value of continuing past the field of
order 25,where Penttila and Royle left off.

It should be noted, however, that this paper makes no attempt at classification of BLT-
sets for any particular values ofq. Theprequel paper classified BLT-sets forq ≤ 17; the
current paper simply presents new examples for some values ofq ≤ 125. A forthcoming
paper by the present authors classifies BLT-sets by computer forq ≤ 29 [21].

The theme of our searches is the use of nontrivial symmetry hypotheses. Since isomorph
rejection is expensive, we make no claim of completeness even under a particular symmetry
hypothesis. To paraphrase a good friend and colleague of ours, the searches are not
complete, only thorough.

The use of symmetry hypotheses involves the choice of a subgroupH of PΓ O(5, q)

and the determination of all BLT-sets that areH -invariant. Since we are only interested
in BLT-sets up to equivalence, we are only interested in conjugacy classes of subgroups.
Such a search determines, up to equivalence, all BLT-sets with stabiliser containing
a conjugate of H . The weakest nontrivial symmetry hypothesis is to use a minimal
subgroup of PΓ O(5, q). The minimal subgroups of a finite group—the atoms of the
lattice of subgroups—are the subgroups of prime order. So our basic philosophy is to
loop through the primesp dividing |PΓ O(5, q)| in descending order of magnitude, take
one representativeH of each conjugacy class of subgroups ofPΓ O(5, q) of order p,
and determine all BLT-sets that areH -invariant. This “prime-at-a-time” technique has
previously been used for hyperovals [22], [29].

Several caveats are necessaryhere. The first has been mentioned earlier: that we do not
determine the BLT-sets up to equivalence, but only up to certain invariants, such as the
order of the stabiliser, that we find appealing and that are inexpensive to compute. The
second is in the spirit of the first: since conjugacy is expensive to compute, we also do not
determine the conjugacy classes, but again work with computationally cheaper invariants.
The third is that small primes, particularly 2 and 3, are often beyond our means, so a
selection of subgroups properly containing such subgroups is chosen as an alternative. It
is worth remarking that, by Sylow’s theorem, the conjugacy classes of subgroups of prime
orderp are all represented within a single Sylowp-subgroup.

The determination of all BLT-sets admitting a subgroupH is achieved by enlarging
BLT-sets to the hereditary class of partial BLT-sets and then stitching togetherH -orbits.
Namely a graph with verticesH -orbits that are partial BLT-sets and edges pairs of vertices
with union a partial BLT-set is (perhaps only conceptually) formed. Every BLT-set is a
clique of this graph with union of the vertices containingq + 1 points ofQ(4, q), although
not every such clique needs to be a BLT-set.
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The availability of a computationally inexpensive check for being a partial BLT-set is a
key to our success.

In the following sections, we give a brief survey of the theory of BLT-sets and related
structures: flocks of the quadratic cone, GQs, translation planes, and hyperbolic fibrations.
We include an exposition of the theory underlying our cheap method of testing that a set
of points is a partial BLT-set. We then go on to describe our techniques for searching,
based upon the computer algebra system MAGMA, and present our results explicitly using
coordinates. Finally, we briefly analyse some of the examples obtained.

2. Theory and background

As mentioned earlier, BLT-sets are connectedwith many varied geometric structures.
They originally arose through the study offlocks of the quadratic cone inPG(3, q),
partitions of the points of the cone minus the vertex intoq disjoint conics, and hence are
connected with the many structures arising from such flocks.

A linespread of PG(3, q) is a partition of the points into lines, namely, a set ofq2 + 1
lines, no two intersecting. Given a linespread ofPG(3, q), one can construct a translation
plane of orderq2 via the André/Bruck-Bose construction. Anovoid of the Klein quadric
Q+(5, q) is a set ofq2 + 1 points, no two collinear. In 1976, both Walker [33] and Thas
independently described theconstruction of an ovoid ofQ+(5, q) from a flock of the
quadratic cone. By the Klein correspondence, an ovoid ofQ+(5, q) is equivalent to a
linespread ofPG(3, q), and so for each flock of the quadratic cone, we can construct a
translation planeof orderq2. In 1987, Hiramine et al. [12] gave an amazing construction
of a linespread ofPG(3, q2) from a linespread ofPG(3, q), for q odd. The following
year, Johnson [13] extended the construction toq even. Thus for each linespread of
PG(3, q), one can construct an infinite family of linespreads, and hencean infinite family
of translation planes of ordersq2n

, n = 1, 2, . . .. Furthermore, inequivalent linespreads of
PG(3, q2) can arise from the same equivalence class of linespreads ofPG(3, q). Hence to
each flock of the quadratic cone corresponds many infinite families of translation planes,
and indeed, application of this construction to a plane (linespread) arising from a flock
need not give a plane (linespread) arising from a flock.

A (finite) GQ of order (s, t) is an incidence structureof points and lines with a
symmetric incidence relationI, such that each point (line) is incident witht + 1 lines
(s+ 1 points), two distinct points (lines) are incident with at most one line (point), and for
anonincident point-line pair(P, l ) there is aunique pointQ and a unique linem suchthat
P I m I Q I l . The standard reference is [27]. In the early 1980’s, a great deal of work was
done by both Kantor [16] and Payne [23] on constructing particular types of GQs, namely,
elation generalised quadrangles (EGQ). A GQS is an EGQ if there is a pointP of S
and a subgroupG of the automorphism group AutS of S which fixes every line onP and
acts regularly on the set of points not collinear withP. This work described a group coset
geometry construction of EGQs of order(q2, q) via the notion of aq-clan, a family of q,
2× 2 matrices overGF(q) such that the quadratic form described by the difference of any
two distinct matrices is anisotropic. In 1987, Thas [32] connected flocks of the quadratic
cone with EGQs of order(q2, q) usingq-clans, showing that to every flock there arises a
corresponding EGQ, and conversely.
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These connections motivated the concentrated study of flocks of the quadratic cone,
and in 1990, Bader et al. [3] described a process of constructingq flocks from a given
flock whenq is odd. This process was calledderivation, andgave riseto the concept of
a BLT-set of the nonsingular quadricQ(4, q), namely, a set ofq + 1 points of Q(4, q),
q odd, such that no point ofQ(4, q) is collinear with more than 2 points of the set. The
name is due to Kantor [17]. Given a flock of a quadratic cone ofPG(3, q) embedded as a
hyperplane ofPG(4, q), one constructs a BLT-set ofQ(4, q) with a distinguished pointP
(it is the vertex of the cone). For each choiceQ of the remainingq points of the BLT-set,
one constructs a flock of the quadratic coneQ⊥ ∩ Q(4, q) with vertexQ. Theseq flocks
are said to bederivedfrom the original flock.

Two flocksF1 andF2 of the quadratic coneK of PG(3, q) are said to be isomorphic if
and only if there exists an element ofPΓ L(4, q) which fixesK and mapsF1 toF2. Bader,
Lunardon and Thas showed that two pointsP1 andP2 of a BLT-setP are in the same orbit
of the stabiliserPΓ O(5, q)P of P if andonly if the flocksF1 andF2 arising fromP1 and
P2 respectively are isomorphic. Thus the concept of a BLT-set provides a greater unified
approach to the study of flocks in odd characteristic, and this result displays the power in
searching for BLT-sets in order to construct examples of flocks.

Furthermore, in 1990, Payne and Rogers [26] showed that to each BLT-set there
corresponds just one GQ, and in 1992, Knarr [18] gave a beautiful geometric construction
of the GQ directly from the associated BLT-set (see [7]). In 1996, Payne [25] showed that
the number of orbits of lines through the base point of the GQ arising from a BLT-setP is
equal to the number of orbits ofPΓ O(5, q)P onP . In particular, the group of the GQ is
determined by the group of the BLT-set.

To add further motivation to the study of BLT-sets, a very recent connection has been
made with yet another geometric structure. Ahyperbolic fibration of PG(3, q) is a
partition of the points into two lines andq − 1 hyperbolic quadrics. Each of the choices of
one regulus for each quadric gives rise to a linespread ofPG(3, q), and so 2q−1 linespreads
arise. In Baker et al. [5, 6], it is shown that each choice of an ordered pair of points on a
BLT-set gives rise to a hyperbolic fibration. The linespreads arising in general differ from
those arising via the Thas–Walker construction from the corresponding flocks.

Discriminants

Let F = GF(q), q odd, and� = {t2 | t ∈ F∗}. Sinceq is odd,� is a subgroup ofF∗
of index 2. Let� be the other coset of� in F∗, so thatF∗/� = {�,�}.

For a quadratic formQ with polar form f , define thediscriminant of Q to be
det(B)� ∈ F∗/�, where B is the matrix of f with respect to some basis. So if
Q(x) = xT Ax, whereA = AT, then disc(Q) = det(2A)�.

From the classification of nondegenerate quadratic forms over finite fields of odd order,
we know that there are two isometry classes of such orthogonal spaces for any given
dimension. We may use the discriminant to distinguish between these isometry classes.
For even algebraic dimension, a nondegenerate quadratic formQ on F2n gives rise to an
O+(2n, q) space if and only if disc(Q) = (−1)n�.

The following results can be found in Bader et al. [4], the treatment ofwhich we follow
closely here, with the final corollary originally being due to Bader et al. [3].
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Lemma. Let x, y, z ∈ V = F5 be linearly independent singular vectors with respect to
the nondegenerate quadratic form Q with polar form f defined on V , and denote by⊥
thepolarity defined by Q. Then〈x, y, z〉⊥ is an external line with respect to the quadric
defined by Q if and only if

−2 f (x, y) f (x, z) f (y, z)�
disc(Q)

= � ∈ F∗/�.

Proof. Sincex, y, z are pairwise linearly independent singular vectors,W = 〈x, y, z〉 is a
nondegenerate subspace ofV . Let W⊥ = 〈u, v〉. ThenS = {x, y, z, u, v} is a basis forV .
Let B be the matrix off with respect toS, and letBW be the matrix off restricted toW.
Then

det(B) = det(BW) det(BW⊥).

So

�
disc(Q |W⊥)

= disc(Q |W)

disc(Q)
.

Now det(BW) = 2 f (x, y) f (x, z) f (y, z) since f is symmetric. So

�
disc(Q |W⊥)

= 2 f (x, y) f (x, z) f (y, z)�
disc(Q)

.

Now consider the subspaceW⊥. This hasalgebraic dimension 2, i.e., it is a line in
PV =PG(4, q). Hence W⊥ is an external line (anO−(2, q) space) if and only if
−disc(Q |W⊥) = �. The resultfollows.

Corollary. Let q be odd. LetP be a set of at least 3 points of Q(4, q) and let f be the
bilinear form corresponding to the quadratic form Q underlying Q(4, q). ThenP is a
partial BLT-set if and only if for all〈x〉, 〈y〉, 〈z〉 ∈ P we have:

−2 f (x, y) f (x, z) f (y, z)�
disc(Q)

= � ∈ F∗/�.

Lemma. Let q be odd. LetP = {〈x〉, 〈y〉, 〈z〉, 〈w〉} be a set of 4 points of Q(4, q) such
that {〈x〉, 〈y〉, 〈z〉}, {〈x〉, 〈y〉, 〈w〉} and {〈x〉, 〈z〉, 〈w〉} are partial BLT-sets. ThenP is a
partial BLT-set.

Proof. It suffices to check that{〈y〉, 〈z〉, 〈w〉} is a partial BLT-set. If the defining quadratic
form is Q, weknow that

−2 f (x, y) f (x, z) f (y, z)�/disc(Q), −2 f (x, y) f (x, w) f (y, w)�/disc(Q),

−2 f (x, z) f (x, w) f (z, w)�/disc(Q)

are all equal to� ∈ F∗/�, hence their product
(−2 f (x, y) f (x, z) f (x, w)�

disc(Q)

)2 −2 f (y, z) f (y, w) f (z, w)�
disc(Q)

also equals� ∈ F∗/�, and the result follows.
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Corollary. Let q be odd. LetP be a set of at least 3 points of Q(4, q). Suppose there exists
〈x〉 ∈ P suchthat {〈x〉, 〈y〉, 〈z〉} is a partial BLT-set for all〈y〉, 〈z〉 ∈ P\{〈x〉}. ThenP is
a partial BLT-set.

These results can be used to form a straightforward check for whether a set of points of
Q(4, q) is a partial BLT-set, and we use this in the next section to search for BLT-sets using
a computer. The significance of these results is that we may test a set of points for being a
partial BLT-set by performing asimple field calculation on all triples in the set containing
a chosen element of the set, instead of having to test collinearity of all points ofQ(4, q)

with each point of the set.

3. Search techniques

As a result of recent upgrades, the computer algebra package MAGMA [8] now has
built in to it the projective general orthogonal groups of five dimensions over fields of order
q ≤ 97 as permutation groups on the points of the associated parabolic quadricQ(4, q).
This has provided the possibility of extending the searches of Penttila and Royle [30] past
q = 25. Furthermore, using the results in the previous section we can form a cheap and
easily implemented check for whether a set of points ofQ(4, q) is a partial BLT-set.

In this section, we will give a brief outline of the techniques used to search for BLT-sets
using MAGMA, illustrated with some fragments of code as examples of the MAGMA
syntax. Note, however, that the code fragments presented are by no means the most
efficient, but merely for instructive purposes.

When we call the projective general orthogonal groupPGO(5, q) of five dimensions
over the Galois field of orderq = ph, MAGMA i ndexes the points of the parabolic quadric
Q(4, q) and computesPGO(5, q) as a permutation group acting on this set of indices. We
label the field, group and indexed setI as follows:

> q:=p^h;
> F:=GaloisField(q);
> G,I:=ProjectiveGeneralOrthogonalGroup(5,F);

We remark thatI is a sequence ofq3+q2+q+1points ofPG(4, q), each represented by
a (homogeneous) 5-tuple fromGF(q), normalised so that the leftmost nonzero coordinate
is a 1.

The quadratic form used by MAGMA is

Q(x) = x1x5 + x2x4 + 1
4x2

3

(up to ascalar multiple) as can be verified by the following code

> Q:=func<x|F!(x[1]*x[5]+x[2]*x[4]+x[3]^2/4)>;
> for i:=1 to #I do
> if Q(I[i]) ne 0 then print i;end if;
> end for;

and observing no output occurring. (This does not seem to be documented in the manual
for MAGMA.)
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The full group of the quadricQ(4, q) is the projective semilinear orthogonal group
PΓ O(5, q) of five dimensions over the Galois field of orderq, which for prime order
fields is equivalent toPGO(5, q). However, in general, we must work withPΓ O(5, q),
and can construct it by forming the subgroup of the symmetric group on the set of indices
generated byPGO(5, q) and a field automorphism, namely, the Frobenius automorphism.

> V:=VectorSpace(F,5);
> a:=[];
> for i:=1 to #I do x:=I[i];
> Append(~a,Index(I,V![x[1]^p,x[2]^p,x[3]^p,x[4]^p,x[5]^p]));
> end for;
> Gam:=sub<Sym(#I)|G,a>;

We need to be able to check easily and cheaply whether a set of points ofQ(4, q) is a
partial BLT-set. It should be clear that the results of the previous section combine to give
such a check, which lends itself well to being programmed on a computer. This can be
done as follows:

> Q:=func<x|x[1]*x[5]+x[2]*x[4]+x[3]^2/4>;
> f:=func<x,y|Q(x+y)-Q(x)-Q(y)>;

> d:=((q-1) div 2);
> blt:=function(X);
> if #X ge 3 then x:=Random(X);
> for y in X diff {x} do flag:=true;
> for z in X diff {x,y} do
> flag:=(-4*f(I[x],I[y])*f(I[x],I[z])*f(I[y],I[z]))^d eq F!(-1);
> if not flag then break;end if;
> end for;
> if not flag then break;end if;
> end for;
> return flag;
> else return true;
> end if;
> end function;

Our basic pattern of searching is for each primep dividing |PΓ O(5, q)| to compute a
Sylow p-subgroup ofPΓ O(5, q)

> P:=Sylow(Gam,p);

loop over the elements ofP of orderp

> list:={};
> for g in P do
> if Order(g) eq p then
> H:=sub<P|g>; FP:=Fix(H);
> if not done(H,list) then
> O:=Orbits(H);
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> cand:={i:i in {1..#O}|blt(O[i])};
> c:={i:i in cand|#O[i] eq p};
> edges:={{i,j}:i in c,j in c|i lt j and blt(O[i] join O[j])};
> Gamma:=Graph<c|edges>;
> d:=((q+1-#FP) div p)+1;e:=(q+1) div p;
> for k:=d to e do
> Cl:=AllCliques(Gamma,k);
> for j:=1 to #Cl do Y:={};
> for k in {x:x in c|VertexSet(Gamma)!x in Cl[j]} do
> Y:=Y join O[k];
> end for;
> for X in Subsets(FP,(q+1)-k*p) do
> if blt(Y join X) then
> PrintFile(‘‘bltsets’’,Y join X);list:=list join {H};
> end if;
> end for;
> end for;
> end for;
> end if;
> end if;
> end for;

and provided that the subgroupH it generates has not already been dealt with up to
conjugacy, calculate and write allH -invariant BLT-setsto a file. Here the function for
testing whether a subgroup has already been dealt with can be implemented as follows

> done:=function(H,list);
> flag:=false;
> for X in list do flag:=IsConjugate(Gam,H,X);
> if flag then break;end if;
> end for;
> return flag;
> end function;

In the interest of efficiency, not all of these computations need be performed. For
instance, conjugacy testing need only be performed if (cheap) invariants indicate the
subgroups may be conjugate, and normalisers may be used to not have to calculate all
H -invariant BLT-sets, reducing, in the process, the size of the cliques that need to be
computed.

Finally, we must have some way of determining whether a BLT-set that is discovered
is in fact new. For most of the searching donethe order of the stabiliser of the BLT-set in
PΓ O(5, q) was used.

> GB:=Stabiliser(Gam,B);

This proved to be a reasonably effective test in most cases, though it should be noted
that it was not always sufficient, and stricter testing was sometimes needed, for example,
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comparing the order and number of fixed points of elements of the stabilisers. Indeed,
this is how the new example forq = 37 with group order 72 was found to be different
from K2/J P, and how the two examples with group order 4 were distinguished. This
highlights the fact that our searches have been far from exhaustive, and that possibly some
new examples were overlooked during searching because they had the same group orders as
known examples. Other more complex invariants were also used, including an adaptation
of the conic invariant of Williams [34]. However, these simple invariants are enough to
distinguish the examples presented here forq ≤ 59.

4. The examples

We refer thereader to the prequel paper of Penttila and Royle [30] for a list of all but
the two most recent of known families of BLT-sets, a description of which can be found in
the papers of Penttila [28] andLaw and Penttila [20].

The results of the searches are summarised in the following table, along with the known
examples not yet belonging to an infinite family. The group order listed is that of the
stabiliser of the BLT-set inPΓ O(5, q), and the orbit structure is listed as a multiset, so,
e.g.,{2, 4, 83} indicates that there is oneorbit of length 2, one of length 4 and 3 of length 8.

We abbreviate the attributions as follows:

DCH—De Clerck–Herssens (1992) [10]

DCP—De Clerck–Penttila (1997) [11]

PR—Penttila–Royle (1998) [30]

PW—Penttila–Williams (2000) [31]

BLP—Bader–Lunardon–Pinneri (1999) [2].

For q = 27 we find 1 new example, which has been generalised to an infinite family
in characteristic 3 (see [20]). For q = 29 we find 5 new examples, forq = 31 5 new
examples, forq = 37 3 new examples, forq = 41 3 new examples, forq = 43 1 new
example, for q = 47 2 new examples, forq = 49 2 new examples, forq = 53 2 new
examples, forq = 59 3 new examples, and forq = 125 1 new example.

In the subsequent tables we present the new BLT-sets discovered for 27≤ q ≤ 59 as
sets ofq + 1 points of the nonsingular quadricQ(4, q) defined by the quadratic equation

Q(x) = x1x5 + x2x4 + x2
3.

Each example has been presented containing the points〈(0, 0, 0, 0, 1)〉 and〈(1, 0, 0, 0, 0)〉.
We identify each BLT-set by the order of its stabiliser inPΓ O(5, q). The orbits of the
stabiliser on the BLT-set are distinguished by vertical bars, reading across the table from
left to right. The exampleXcyc

4 for q = 31 has a cyclic stabiliser, whilstXnoncyc
4 has

stabiliser isomorphic to the noncyclic group of order 4. The exampleX2
4 for q = 37 has

2 fixed points on the BLT-set, whilstX0
4 has 2 fixed points not on the BLT-set. The new

example forq = 125 is then presented using interpolated polynomials.
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q Attribution Group order Orbit structure

17 DCH 144 {12, 6}
PR 24 {12, 6}

19 PR 20 {20}
PR 16 {82, 22}

23 DCH 72 {18, 6}
PR 1 152 {24}
PR 24 {24}
PR 16 {82, 42}
PR 6 {63, 32}

25 PR 16 {16, 8, 2}
PR 8 {83, 2}

27 New 6 {12, 2, 64}
29 New 720 {30}

New 48 {24, 6}
New 8 {83, 4, 2}
New 6 {64, 32}
New 3 {310}

31 New 96 {24, 6, 2}
New 10 {102, 52, 2}
New 8 {83, 42}
New 4 {48}
New 4 {47, 22}

37 New 72 {36, 2}
New 4 {49, 2}
New 4 {49, 12}

41 New 60 {30, 12}
New 24 {24, 12, 6}
New 8 {85, 2}

43 New 4 {411}
47 DCP 2 304 {48}

New 24 {242}
New 3 {316}

49 New 40 {40, 10}
New 20 {202, 52}

53 New 24 {242, 6}
New 12 {124, 6}

59 New 120 {60}
New 24 {242, 12}
New 5 {512}

125 New 72 {72, 242, 6}
243 PW/BLP 26 730 {243, 1}
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X6 (0, 0, 0, 0, 1) | (1, 0, 0, 0, 0) (1, w,w19, 2, w20) |
q = 27 (1, w14, w6, 1, w20) | (1, w20, w18, w17, w6) (1, w25, w24, w25, w4)

w3 = w − 1 (1, w3, w6, w24, w24) (1, w16, w5, w23, w24) (1, w15, w7, w8, w4)

(1, w5, w21, w20, w6) | (1, w24, w5, w14, w18) (1, w7, w2, w16, w14)

(1, 2, w12, w11, w24) (1, w23, w6, w7, w6) (1, w17, w3, w21, w4)

(1, w11, w16, w22, w2) | (1, w8, w24, w15, w18) (1, w21, 0, w12, w20)

(1, w18, w14, w4, w20) (1, 1, w22, w19, w14) (1, w2, w7, w10, w20)

(1, w6, w9, w5, w2) | (1, w4, w8, w6, w8) (1, w19, w23, w2, w16)

(1, w10, w5, w9, 1) (1, w9, w22, w,w12) (1, w12, w14, w18, w10)

(1, w22, w5, w3, w22)

X720 (1, 26, 16, 3, 14) (1, 0, 0, 0, 0) (1, 20, 11, 4, 2)

q = 29 (1, 6, 27, 27, 8) (1, 16, 20, 2, 3) (1, 19, 15, 9, 10)

(1, 10, 19, 28, 26) (0, 0, 0, 0, 1) (1, 9, 28, 24, 15)

(1, 13, 9, 7, 2) (1, 14, 11, 15, 17) (1, 27, 24, 23, 21)

(1, 23, 22, 16, 18) (1, 7, 17, 6, 17) (1, 15, 10, 25, 18)

(1, 5, 20, 26, 21) (1, 24, 26, 11, 17) (1, 22, 0, 17, 3)

(1, 3, 8, 5, 8) (1, 8, 25, 21, 19) (1, 2, 24, 8, 17)

(1, 1, 0, 12, 17) (1, 25, 27, 22, 26) (1, 18, 8, 18, 18)

(1, 21, 0, 20, 15) (1, 12, 24, 14, 10) (1, 17, 23, 19, 18)

(1, 11, 0, 13, 2) (1, 28, 17, 1, 2) (1, 4, 4, 10, 2)

X48 (1, 26, 24, 25, 21) (1, 15, 3, 24, 8) (1, 5, 14, 3, 21)

q = 29 (1, 18, 23, 20, 10) (1, 3, 28, 13, 18) (1, 14, 26, 5, 8) |
(0, 0, 0, 0, 1) (1, 0, 0, 0, 0) (1, 2, 23, 17, 17)

(1, 12, 17, 18, 17) (1, 20, 19, 7, 21) (1, 21, 12, 27, 14)

(1, 7, 28, 1, 21) (1, 24, 8, 28, 18) (1, 19, 19, 15, 21)

(1, 11, 25, 21, 14) (1, 25, 11, 2, 3) (1, 13, 7, 8, 21)

(1, 17, 18, 26, 17) (1, 28, 19, 23, 10) (1, 6, 18, 6, 17)

(1, 23, 11, 11, 3) (1, 4, 12, 4, 14) (1, 8, 21, 12, 14)

(1, 9, 11, 10, 21) (1, 27, 9, 22, 21) (1, 10, 18, 9, 21)

(1, 22, 2, 16, 21) (1, 16, 19, 19, 2) (1, 1, 19, 14, 2)

X8 (1, 18, 7, 11, 14) (1, 15, 20, 28, 21) | (1, 13, 20, 8, 18)

q = 29 (1, 24, 23, 24, 26) (1, 22, 26, 1, 27) (1, 7, 6, 13, 18) |
(1, 0, 0, 0, 0) (1, 16, 11, 26, 14) (1, 27, 18, 12, 19)

(1, 14, 23, 20, 3) (1, 6, 5, 22, 17) (1, 11, 10, 6, 8)

(1, 26, 3, 2, 26) (1, 28, 22, 23, 3) | (1, 25, 24, 25, 17)

(1, 1, 22, 27, 11) (1, 2, 28, 5, 18) (1, 21, 13, 4, 8)

(1, 5, 24, 14, 21) (1, 10, 24, 16, 18) (0, 0, 0, 0, 1)

(1, 8, 25, 3, 18) | (1, 23, 15, 15, 10) (1, 4, 10, 21, 19)

(1, 3, 3, 10, 19) (1, 12, 16, 7, 8) (1, 9, 20, 18, 18)

(1, 17, 2, 17, 26) (1, 20, 27, 9, 19) (1, 19, 17, 19, 17)
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X6 (1, 0, 0, 0, 0) (1, 9, 21, 11, 11) (1, 8, 16, 17, 14) |
q = 29 (1, 2, 20, 28, 8) (1, 1, 24, 1, 3) (1, 10, 7, 26, 10) |

(1, 3, 1, 25, 11) (1, 20, 1, 21, 14) (1, 15, 17, 3, 14)

(1, 14, 0, 23, 26) (1, 21, 3, 19, 27) (0, 0, 0, 0, 1) |
(1, 11, 28, 5, 2) (1, 24, 1, 24, 3) (1, 17, 4, 15, 19)

(1, 27, 11, 4, 3) (1, 4, 6, 10, 11) (1, 25, 26, 22, 21) |
(1, 19, 18, 8, 17) (1, 26, 21, 7, 15) (1, 16, 7, 9, 10)

(1, 5, 3, 16, 27) (1, 22, 17, 14, 12) (1, 23, 27, 12, 10) |
(1, 6, 16, 13, 14) (1, 12, 15, 27, 2) (1, 18, 5, 6, 12)

(1, 7, 26, 18, 10) (1, 13, 3, 20, 21) (1, 28, 4, 2, 15)

X3 (1, 0, 0, 0, 0) (1, 23, 28, 3, 17) (1, 22, 20, 12, 3) |
q = 29 (1, 16, 25, 7, 17) (1, 20, 27, 9, 19) (0, 0, 0, 0, 1) |

(1, 2, 16, 18, 27) (1, 19, 4, 14, 8) (1, 8, 0, 25, 3) |
(1, 25, 9, 16, 12) (1, 14, 20, 11, 26) (1, 9, 28, 26, 26) |
(1, 6, 9, 15, 3) (1, 12, 6, 13, 11) (1, 27, 5, 4, 12) |
(1, 21, 22, 1, 17) (1, 17, 16, 24, 3) (1, 1, 25, 2, 11) |
(1, 13, 26, 8, 3) (1, 18, 13, 27, 12) (1, 11, 1, 20, 11) |
(1, 26, 6, 19, 21) (1, 7, 9, 17, 3) (1, 4, 16, 5, 14) |
(1, 15, 5, 28, 19) (1, 5, 5, 21, 15) (1, 28, 7, 10, 19) |
(1, 24, 11, 22, 18) (1, 3, 9, 6, 17) (1, 10, 9, 23, 8)

X96 (1, 0, 0, 0, 0) (0, 0, 0, 0, 1) | (1, 30, 30, 3, 2)

q = 31 (1, 1, 1, 28, 2) (1, 6, 6, 13, 10) (1, 5, 5, 16, 19)

(1, 25, 25, 18, 10) (1, 26, 26, 15, 19) | (1, 12, 3, 1, 10)

(1, 21, 13, 25, 19) (1, 22, 10, 27, 19) (1, 4, 24, 14, 19)

(1, 3, 15, 22, 19) (1, 16, 24, 19, 19) (1, 28, 11, 10, 2)

(1, 23, 2, 24, 2) (1, 2, 13, 30, 19) (1, 11, 28, 20, 19)

(1, 19, 15, 6, 2) (1, 8, 16, 21, 10) (1, 29, 15, 5, 2)

(1, 27, 18, 4, 2) (1, 15, 13, 17, 10) (1, 18, 27, 2, 10)

(1, 7, 11, 9, 2) (1, 24, 16, 7, 10) (1, 14, 28, 29, 19)

(1, 17, 19, 11, 10) (1, 9, 18, 12, 2) (1, 10, 3, 26, 10)

(1, 20, 27, 8, 10) (1, 13, 3, 23, 2)

X10 (1, 0, 0, 0, 0) (0, 0, 0, 0, 1) | (1, 30, 3, 18, 9)
q = 31 (1, 14, 14, 20, 20) (1, 28, 17, 17, 10) (1, 12, 10, 16, 18)

(1, 9, 18, 22, 5) | (1, 15, 8, 14, 5) (1, 2, 1, 6, 18)
(1, 11, 5, 11, 9) (1, 24, 18, 30, 10) (1, 10, 30, 1, 20) |
(1, 4, 18, 7, 20) (1, 13, 4, 10, 9) (1, 23, 16, 21, 5)
(1, 8, 18, 19, 20) (1, 18, 24, 29, 18) (1, 3, 2, 3, 18)
(1, 25, 2, 28, 9) (1, 19, 2, 27, 10) (1, 26, 6, 2, 5)
(1, 16, 1, 9, 10) | (1, 5, 20, 25, 2) (1, 7, 28, 4, 25)
(1, 21, 9, 24, 4) (1, 6, 13, 13, 1) (1, 20, 14, 5, 14)
(1, 17, 25, 15, 19) (1, 1, 10, 8, 16) (1, 29, 10, 23, 8)
(1, 22, 14, 26, 7) (1, 27, 12, 12, 28)
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X8 (1, 0, 0, 0, 0) (1, 29, 27, 17, 18) (1, 5, 22, 20, 5)
q = 31 (1, 26, 8, 6, 28) | (1, 8, 20, 2, 18) (1, 27, 15, 10, 1)

(1, 21, 0, 4, 9) (1, 9, 22, 15, 1) | (1, 22, 7, 30, 4)
(1, 28, 14, 5, 5) (1, 4, 24, 7, 16) (1, 10, 3, 19, 18)
(0, 0, 0, 0, 1) (1, 17, 23, 14, 8) (1, 30, 26, 8, 14)
(1, 11, 12, 11, 14) | (1, 18, 6, 27, 5) (1, 24, 14, 13, 19)
(1, 6, 24, 29, 25) (1, 2, 23, 25, 10) (1, 13, 3, 23, 2)
(1, 20, 28, 1, 2) (1, 12, 1, 12, 10) (1, 1, 26, 21, 16) |
(1, 3, 17, 26, 5) (1, 25, 5, 16, 9) (1, 23, 6, 9, 5)
(1, 14, 7, 18, 9) (1, 19, 12, 3, 16) (1, 16, 21, 28, 10)
(1, 15, 14, 22, 1) (1, 7, 4, 24, 2)

Xcyc
4 (1, 16, 1, 13, 8) (1, 29, 12, 19, 18) (1, 0, 0, 0, 0)

q = 31 (1, 14, 4, 7, 10) | (1, 28, 15, 11, 25) (1, 27, 27, 1, 19)
(1, 19, 11, 18, 2) (1, 20, 4, 27, 2) | (1, 5, 1, 5, 5)
(1, 12, 10, 4, 7) (1, 25, 12, 6, 16) (1, 1, 26, 2, 4) |
(1, 6, 16, 3, 5) (1, 24, 5, 9, 7) (1, 8, 4, 20, 10)
(1, 4, 14, 24, 18) | (0, 0, 0, 0, 1) (1, 9, 15, 29, 10)
(1, 3, 25, 23, 19) (1, 7, 11, 8, 9) | (1, 18, 23, 14, 25)
(1, 17, 18, 15, 10) (1, 22, 18, 21, 20) (1, 11, 25, 16, 5) |
(1, 30, 10, 26, 19) (1, 26, 1, 30, 25) (1, 21, 26, 25, 8)
(1, 2, 13, 17, 14) | (1, 13, 4, 12, 14) (1, 15, 1, 22, 10)
(1, 23, 0, 10, 18) (1, 10, 20, 28, 2)

Xnoncyc
4 (1, 14, 29, 2, 2) (1, 28, 26, 18, 9) | (1, 7, 21, 19, 28)

q = 31 (1, 5, 13, 3, 28) | (1, 15, 27, 12, 2) (1, 30, 24, 29, 9)
(1, 23, 5, 30, 9) (1, 0, 0, 0, 0) | (0, 0, 0, 0, 1)
(1, 18, 26, 6, 2) (1, 4, 1, 28, 4) (1, 21, 12, 10, 2) |
(1, 9, 22, 7, 2) (1, 10, 28, 11, 4) (1, 27, 23, 1, 19)
(1, 20, 15, 9, 4) | (1, 22, 25, 15, 2) (1, 26, 1, 16, 10)
(1, 25, 21, 25, 1) (1, 11, 13, 5, 19) | (1, 2, 0, 21, 20)
(1, 1, 15, 27, 2) (1, 3, 14, 26, 28) (1, 16, 3, 22, 10) |
(1, 8, 8, 13, 4) (1, 29, 1, 24, 9) (1, 6, 15, 17, 20)
(1, 13, 8, 4, 25) | (1, 24, 0, 8, 25) (1, 12, 25, 23, 25)
(1, 19, 8, 14, 28) (1, 17, 5, 20, 18)

X72 (0, 0, 0, 0, 1) (1, 0, 0, 0, 0) | (1, 20, 1, 33, 5)
q = 37 (1, 6, 23, 19, 23) (1, 32, 11, 35, 17) (1, 33, 12, 14, 23)

(1, 25, 8, 12, 6) (1, 16, 6, 1, 22) (1, 23, 8, 5, 6)
(1, 8, 6, 13, 8) (1, 22, 19, 20, 13) (1, 21, 23, 16, 23)
(1, 28, 6, 9, 8) (1, 2, 26, 7, 13) (1, 5, 9, 36, 35)
(1, 12, 23, 10, 17) (1, 14, 16, 25, 23) (1, 9, 8, 26, 35)
(1, 1, 11, 8, 19) (1, 19, 12, 11, 17) (1, 18, 27, 22, 22)
(1, 24, 36, 17, 35) (1, 26, 27, 23, 5) (1, 27, 25, 24, 22)
(1, 36, 21, 32, 35) (1, 7, 16, 31, 8) (1, 35, 5, 15, 5)
(1, 10, 36, 6, 13) (1, 30, 4, 3, 5) (1, 4, 3, 30, 19)
(1, 17, 13, 2, 19) (1, 11, 28, 18, 17) (1, 13, 16, 27, 22)
(1, 29, 12, 28, 6) (1, 15, 10, 34, 19) (1, 3, 30, 4, 13)
(1, 31, 9, 21, 8) (1, 34, 9, 29, 6)
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X0
4 (1, 9, 16, 8, 5) (1, 13, 20, 26, 2) | (1, 0, 0, 0, 0)

q = 37 (1, 4, 12, 14, 22) (1, 19, 23, 5, 5) (1, 24, 17, 19, 32) |
(0, 0, 0, 0, 1) (1, 18, 18, 10, 14) (1, 2, 4, 36, 23)

(1, 7, 5, 24, 29) | (1, 36, 20, 22, 29) (1, 14, 10, 13, 14)

(1, 28, 22, 7, 23) (1, 32, 28, 20, 19) | (1, 30, 27, 23, 24)

(1, 3, 30, 28, 15) (1, 1, 20, 31, 13) (1, 11, 36, 33, 6) |
(1, 29, 22, 30, 15) (1, 20, 10, 4, 5) (1, 8, 14, 32, 29)

(1, 25, 15, 9, 31) | (1, 26, 13, 18, 29) (1, 23, 19, 6, 19)

(1, 35, 11, 15, 20) (1, 22, 11, 25, 32) | (1, 10, 16, 2, 20)

(1, 17, 18, 27, 31) (1, 15, 29, 16, 29) (1, 31, 18, 1, 15) |
(1, 12, 34, 35, 15) (1, 33, 23, 17, 20) (1, 27, 23, 21, 14)

(1, 34, 22, 3, 6) | (1, 21, 11, 11, 18) (1, 5, 33, 12, 35)

(1, 6, 22, 34, 15) (1, 16, 31, 29, 18)

X2
4 (1, 3, 7, 25, 24) | (1, 35, 30, 32, 15) | (1, 0, 0, 0, 0)

q = 37 (1, 4, 10, 30, 2) (1, 14, 8, 17, 31) (1, 30, 18, 2, 23) |
(0, 0, 0, 0, 1) (1, 19, 0, 10, 32) (1, 8, 18, 12, 24)

(1, 34, 2, 20, 19) | (1, 28, 34, 15, 15) (1, 2, 21, 23, 31)

(1, 13, 29, 36, 23) (1, 23, 13, 8, 17) | (1, 25, 12, 35, 17)

(1, 1, 14, 4, 22) (1, 17, 2, 19, 6) (1, 12, 17, 1, 32) |
(1, 27, 23, 3, 19) (1, 20, 2, 21, 20) (1, 33, 30, 22, 2)

(1, 11, 16, 31, 32) | (1, 29, 6, 13, 31) (1, 16, 17, 7, 6)

(1, 6, 25, 14, 31) (1, 32, 27, 29, 8) | (1, 15, 8, 9, 23)

(1, 5, 17, 24, 35) (1, 18, 13, 33, 14) (1, 7, 36, 26, 2) |
(1, 21, 34, 28, 32) (1, 10, 22, 16, 22) (1, 26, 34, 27, 29)

(1, 31, 13, 34, 35) | (1, 9, 13, 18, 2) (1, 22, 28, 5, 31)

(1, 24, 3, 11, 23) (1, 36, 27, 6, 17)

X60 (1, 27, 36, 26, 11) (1, 0, 0, 0, 0) (0, 0, 0, 0, 1)

q = 41 (1, 22, 11, 6, 34) (1, 11, 40, 30, 38) (1, 24, 20, 33, 38)

(1, 38, 11, 3, 11) (1, 28, 1, 1, 12) (1, 35, 25, 31, 12)

(1, 12, 27, 36, 28) (1, 15, 31, 27, 28) (1, 34, 3, 12, 34) |
(1, 32, 24, 37, 3) (1, 26, 1, 7, 22) (1, 30, 23, 2, 26)

(1, 4, 2, 34, 24) (1, 29, 29, 10, 17) (1, 8, 32, 25, 6)

(1, 16, 16, 22, 7) (1, 20, 1, 28, 13) (1, 36, 19, 29, 30)

(1, 18, 12, 20, 29) (1, 37, 10, 18, 13) (1, 14, 7, 35, 35)

(1, 33, 40, 14, 29) (1, 9, 21, 40, 19) (1, 40, 28, 32, 27)

(1, 23, 26, 16, 22) (1, 10, 20, 13, 3) (1, 17, 16, 39, 24)

(1, 13, 26, 38, 19) (1, 3, 13, 21, 14) (1, 5, 4, 8, 26)

(1, 21, 39, 5, 14) (1, 2, 39, 15, 7) (1, 1, 24, 9, 30)

(1, 19, 9, 23, 15) (1, 31, 14, 17, 15) (1, 25, 12, 24, 35)

(1, 7, 32, 11, 6) (1, 6, 8, 19, 27) (1, 39, 27, 4, 17)
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X24 (1, 25, 4, 20, 17) (1, 16, 12, 25, 30) (1, 22, 5, 30, 12)
q = 41 (1, 15, 0, 8, 3) (1, 14, 3, 39, 19) (1, 26, 23, 2, 34) |

(1, 3, 14, 40, 12) (1, 10, 2, 5, 28) (1, 5, 26, 23, 29)
(1, 37, 9, 34, 14) (1, 39, 40, 6, 11) (1, 13, 30, 33, 24)
(1, 11, 22, 18, 15) (1, 38, 34, 7, 13) (1, 28, 24, 29, 6)
(1, 23, 35, 17, 24) (1, 32, 29, 19, 27) (1, 33, 36, 4, 7) |
(1, 21, 38, 36, 14) (1, 0, 0, 0, 0) (1, 7, 12, 13, 11)
(1, 20, 26, 28, 35) (1, 27, 36, 3, 17) (1, 24, 14, 16, 35)
(1, 40, 24, 9, 7) (1, 30, 17, 31, 11) (1, 36, 6, 37, 26)
(1, 4, 28, 21, 34) (1, 35, 23, 15, 12) (1, 1, 7, 14, 19)
(1, 18, 2, 35, 22) (1, 17, 30, 26, 11) (1, 31, 21, 27, 34)
(1, 34, 39, 22, 27) (1, 2, 13, 12, 12) (1, 9, 19, 24, 38)
(1, 12, 8, 1, 6) (1, 6, 25, 11, 6) (0, 0, 0, 0, 1)
(1, 29, 37, 38, 30) (1, 19, 40, 32, 6) (1, 8, 7, 10, 35)

X8 (1, 28, 16, 28, 26) (1, 5, 1, 25, 38) | (1, 8, 12, 30, 26)
q = 41 (1, 0, 0, 0, 0) (1, 2, 27, 10, 30) (1, 10, 32, 18, 26)

(1, 36, 10, 32, 19) (1, 22, 8, 21, 7) (1, 9, 2, 9, 38)
(1, 35, 10, 26, 15) | (1, 6, 12, 33, 27) (0, 0, 0, 0, 1)
(1, 37, 29, 6, 3) (1, 24, 10, 34, 27) (1, 13, 24, 40, 11)
(1, 34, 15, 39, 7) (1, 17, 22, 17, 6) (1, 18, 13, 5, 28) |
(1, 40, 31, 31, 13) (1, 12, 14, 3, 14) (1, 38, 40, 22, 24)
(1, 29, 6, 13, 38) (1, 31, 11, 27, 26) (1, 23, 12, 35, 35)
(1, 26, 15, 36, 28) (1, 30, 17, 29, 30) | (1, 39, 11, 14, 30)
(1, 33, 35, 12, 19) (1, 11, 24, 2, 17) (1, 21, 33, 24, 6)
(1, 27, 12, 20, 13) (1, 19, 16, 11, 27) (1, 25, 9, 16, 11)
(1, 1, 3, 15, 17) | (1, 16, 39, 4, 14) (1, 7, 36, 19, 6)
(1, 3, 11, 7, 22) (1, 4, 19, 8, 17) (1, 15, 14, 1, 35)
(1, 32, 21, 38, 24) (1, 20, 15, 37, 19) (1, 14, 10, 23, 29)

X4 (1, 13, 23, 21, 15) (1, 0, 0, 0, 0) (1, 27, 39, 11, 31)
q = 43 (1, 1, 7, 40, 40) | (1, 39, 7, 4, 10) (1, 2, 6, 29, 35)

(0, 0, 0, 0, 1) (1, 16, 8, 25, 9) | (1, 32, 16, 41, 23)
(1, 10, 6, 1, 40) (1, 18, 37, 14, 13) (1, 12, 27, 18, 1) |
(1, 3, 6, 19, 36) (1, 20, 13, 36, 14) (1, 26, 31, 12, 17)
(1, 11, 19, 37, 6) | (1, 40, 0, 26, 35) (1, 42, 36, 27, 21)
(1, 25, 18, 2, 13) (1, 7, 39, 23, 38) | (1, 34, 28, 22, 16)
(1, 19, 9, 7, 1) (1, 33, 2, 24, 21) (1, 14, 19, 10, 15) |
(1, 6, 21, 39, 13) (1, 31, 3, 8, 1) (1, 17, 35, 13, 16)
(1, 41, 6, 38, 40) | (1, 21, 27, 30, 17) (1, 29, 14, 31, 23)
(1, 5, 9, 42, 10) (1, 24, 6, 9, 6) | (1, 37, 35, 17, 38)
(1, 36, 34, 15, 24) (1, 35, 10, 33, 35) (1, 38, 14, 34, 17) |
(1, 4, 23, 16, 9) (1, 8, 33, 20, 41) (1, 15, 24, 3, 24)
(1, 30, 29, 5, 41) | (1, 28, 40, 28, 24) (1, 22, 2, 6, 36)
(1, 23, 25, 32, 15) (1, 9, 31, 35, 14)
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X2304 = DCP (1,12, 6, 19, 18) (1, 0, 0, 0, 0) (1, 23, 22, 36, 4)
q = 47 (1, 25, 40, 13, 2) (1, 13, 29, 5, 34) (1, 44, 44, 30, 34)

(1, 15, 43, 11, 7) (1, 8, 41, 3, 34) (1, 37, 7, 16, 17)
(1, 16, 32, 22, 34) (1, 41, 25, 34, 2) (1, 27, 17, 17, 4)
(1, 6, 11, 1, 14) (1, 5, 35, 2, 34) (1, 1, 23, 33, 2)
(1, 31, 24, 31, 14) (1, 10, 12, 27, 9) (1, 38, 29, 45, 34)
(1, 33, 12, 35, 17) (1, 20, 33, 15, 21) (1, 46, 38, 8, 21)
(1, 42, 26, 6, 12) (1, 21, 4, 12, 14) (1, 36, 1, 9, 4)
(1, 32, 6, 28, 8) (1, 40, 43, 37, 8) (1, 26, 11, 10, 42)
(1, 11, 5, 38, 27) (1, 34, 18, 42, 34) (1, 7, 18, 4, 24)
(0, 0, 0, 0, 1) (1, 29, 5, 21, 24) (1, 39, 25, 40, 24)
(1, 3, 17, 25, 12) (1, 17, 23, 29, 12) (1, 2, 24, 14, 7)
(1, 28, 23, 24, 21) (1, 45, 33, 41, 27) (1, 24, 28, 43, 17)
(1, 18, 3, 46, 9) (1, 19, 4, 18, 18) (1, 22, 0, 7, 34)
(1, 30, 38, 26, 32) (1, 43, 6, 23, 9) (1, 35, 36, 39, 18)
(1, 9, 38, 32, 7) (1, 14, 38, 44, 8) (1, 4, 38, 20, 27)

X24 (1, 42, 19, 42, 37) (1, 0, 0, 0, 0) (1, 11, 4, 24, 2)
q = 47 (1, 8, 30, 36, 34) (1, 19, 42, 1, 3) (1, 22, 36, 19, 25)

(1, 28, 19, 7, 7) (1, 16, 38, 12, 9) (1, 34, 23, 11, 37)
(1, 33, 25, 17, 36) (1, 31, 23, 25, 12) (1, 25, 3, 16, 14)
(1, 23, 25, 30, 1) (1, 13, 30, 3, 1) (1, 35, 16, 40, 36)
(1, 5, 4, 2, 21) (1, 46, 35, 9, 6) (1, 38, 3, 28, 8)
(1, 43, 22, 5, 6) (1, 29, 28, 35, 34) (1, 9, 4, 33, 16)
(1, 2, 24, 13, 9) (1, 17, 14, 38, 4) (1, 12, 23, 22, 6) |
(1, 44, 21, 15, 27) (1, 39, 33, 18, 42) (1, 18, 41, 44, 18)
(1, 20, 38, 45, 6) (1, 7, 24, 34, 32) (1, 36, 23, 10, 4)
(1, 24, 30, 27, 3) (0, 0, 0, 0, 1) (1, 45, 32, 32, 27)
(1, 30, 43, 20, 42) (1, 4, 18, 26, 42) (1, 21, 32, 39, 37)
(1, 37, 12, 43, 4) (1, 26, 46, 23, 12) (1, 14, 7, 31, 34)
(1, 27, 11, 4, 6) (1, 15, 17, 8, 14) (1, 32, 17, 46, 25)
(1, 41, 43, 41, 42) (1, 6, 34, 21, 34) (1, 1, 46, 29, 17)
(1, 10, 11, 6, 7) (1, 40, 25, 14, 37) (1, 3, 34, 37, 2)

X3 (1, 0, 0, 0, 0) (1, 36, 44, 32, 14) (1, 12, 12, 28, 37) |
q = 47 (1, 30, 43, 2, 18) (1, 32, 37, 10, 3) (0, 0, 0, 0, 1) |

(1, 24, 16, 40, 6) (1, 43, 43, 18, 9) (1, 18, 32, 44, 17) |
(1, 3, 38, 42, 28) (1, 9, 35, 22, 34) (1, 4, 23, 20, 2) |
(1, 17, 13, 37, 1) (1, 44, 3, 35, 2) (1, 5, 45, 25, 12) |
(1, 40, 37, 1, 1) (1, 7, 43, 43, 12) (1, 21, 35, 4, 7) |
(1, 39, 28, 16, 2) (1, 1, 22, 6, 27) (1, 26, 28, 8, 42) |
(1, 42, 43, 21, 42) (1, 16, 4, 38, 34) (1, 46, 43, 17, 1) |
(1, 45, 21, 26, 34) (1, 33, 7, 36, 32) (1, 13, 21, 13, 1) |
(1, 14, 43, 29, 1) (1, 35, 33, 19, 32) (1, 37, 29, 5, 8) |
(1, 25, 13, 23, 8) (1, 11, 39, 11, 3) (1, 19, 26, 46, 1) |
(1, 31, 3, 33, 2) (1, 10, 8, 39, 16) (1, 38, 25, 15, 27) |
(1, 27, 44, 27, 14) (1, 15, 10, 34, 1) (1, 22, 32, 30, 8) |
(1, 2, 14, 41, 4) (1, 34, 17, 9, 16) (1, 29, 12, 24, 6) |
(1, 6, 31, 3, 8) (1, 8, 14, 14, 21) (1, 41, 28, 45, 3) |
(1, 20, 9, 31, 4) (1, 28, 36, 7, 12) (1, 23, 40, 12, 4)
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X40 (1, 0, 0, 0, 0) (1, w44, w27, 5, w33) (1, w6, w27, w3, w27)

q = 49 (1, w21, w11, w7, w45) (1, w35, w34, 1, w33) (1, w26, w33, w17, w)

w2 = w − 3 (1, 5, 1, w10, w35) (1, w17, 4, w,w3) (1, 4, 0, w33, w41)

(1, w25, 2, w25, w29) | (1, w27, w26, w45, w23) (1, w20, w43, 2, w23)

(1, w14, w25, w43, w13) (1, 3, w37, w22, w19) (1, w41, w7, 6, w35)

(1, w30, w34, w11, w23) (1, w9, 3, w14, w27) (1, w15, w41, w5, w25)

(1, w7, w21, w39, w35) (0, 0, 0, 0, 1) (1, w23, 6, w21, w37)

(1, w, 6, w20, w3) (1, w12, w41, w26, w27) (1, w18, w22, 4, w19)

(1, w19, w27, w44, w) (1, w13, 6, w37, w35) (1, w10, w19, w9, w39)

(1, w36, 5, w46, w19) (1, w43, w14, w15, w7) (1, w11, w17, w27, w27)

(1, w33, w5, w34, w5) (1, w2, w11, w38, w19) (1, w29, w2, w18, w13)

(1, w37, w29, w35, w15) (1, 2, w38, w41, w29) (1, w47, w7, w13, w47)

(1, w31, w10, w31, w37) (1, w28, w17, w4, w19) (1, w3, w29, w36, w11)

(1, w34, w25, w2, w41) (1, w22, w44, w47, w41) (1, w4, w7, w12, w)

(1, w39, w15, w19, w29) (1, w45, w39, w6, w33) (1, w46, w20, w28, w31)

(1, w38, 0, w29, w43) (1, 6, 4, w42, w3) (1, w5, w35, w23, w45)

(1, w42, w19, w30, w29) (1, 1, w25, 3, w25)

X20 (1, 0, 0, 0, 0) (1, w21, w2, w27, w41) (1, w41, 1, w20, w15)

q = 49 (1, w,w12, w37, w29) (1, w4, 2, w43, w45) | (1, w14, w5, w2, w33)

w2 = w − 3 (1, w28, w46, w19, w17) (1, w39, w25, 5, w3) (1, w38, w34, 1, w17)

(1, 1, w39, w13, w7) | (1, w7, w22, w46, w39) (1, w20, w35, w30, w21)

(1, w9, w18, w9, w15) (1, 4, w31, 6, w31) (1, w10, w,w6, w7)

(1, w11, w7, w21, w11) (1, w29, w45, w28, w7) (1, w17, w13, w38, w27)

(1, w37, 3, w45, w13) (1, 5, w17, w,w45) (1, w6, w13, w35, w39)

(1, w18, w6, w12, w9) (1, w2, 6, w23, w31) (0, 0, 0, 0, 1)

(1, w22, w37, w47, w35) (1, w44, w33, w31, w13) (1, w3, w41, 3, w17)

(1, 3, w29, w5, w31) (1, w23, w22, w34, w11) (1, w19, w34, w10, w15) |
(1, w5, w35, 4, w35) (1, w43, w33, w29, w41) (1, w46, w33, w26, w41)

(1, w42, w20, w42, w29) (1, w26, w25, w22, w35) (1, w13, w35, w7, w7)

(1, w47, w3, w36, w7) (1, w45, w4, w15, w) (1, w31, w45, w41, w21)

(1, w25, w38, w18, w41) (1, w30, w31, w4, w33) (1, w27, w30, w14, w13)

(1, w33, 3, w33, w3) (1, 2, w25, w17, w27) (1, w15, w17, w44, w17)

(1, w36, w33, w39, w13) (1, 6, w19, w25, w45) (1, w35, w17, w3, w27)

(1, w12, w45, w11, w43) (1, w34, w15, 2, w)

X24 (1, 4, 23, 6, 30) (1, 20, 37, 26, 19) (1, 47, 33, 37, 34)
q = 53 (1, 2, 40, 47, 2) (1, 29, 10, 21, 33) (1, 11, 32, 14, 41) |

(1, 0, 0, 0, 0) (1, 24, 7, 35, 12) (1, 26, 34, 16, 18)
(1, 17, 51, 20, 27) (1, 8, 11, 9, 19) (1, 45, 6, 15, 31)
(1, 41, 6, 12, 2) (1, 25, 45, 52, 14) (1, 14, 2, 19, 48)
(1, 40, 25, 23, 45) (1, 12, 10, 2, 35) (1, 22, 14, 44, 2)
(1, 51, 32, 28, 39) (1, 23, 41, 43, 33) (1, 10, 22, 27, 41)
(1, 43, 23, 42, 50) (1, 16, 21, 40, 32) (1, 48, 24, 4, 27)
(1, 38, 18, 31, 35) (1, 28, 41, 33, 45) (1, 30, 44, 49, 39)
(1, 19, 31, 48, 35) (1, 52, 17, 36, 12) (1, 6, 1, 30, 31) |
(1, 18, 9, 32, 32) (1, 37, 32, 3, 31) (1, 36, 20, 39, 51)
(1, 13, 43, 24, 12) (1, 1, 1, 1, 51) (1, 42, 25, 34, 14)
(1, 31, 42, 22, 45) (1, 3, 32, 13, 50) (1, 44, 46, 51, 39)
(1, 27, 14, 38, 50) (1, 49, 3, 7, 19) (1, 15, 19, 17, 20)
(1, 50, 43, 45, 35) (1, 46, 14, 25, 32) (1, 39, 20, 50, 35)
(1, 33, 19, 11, 18) (1, 35, 31, 46, 26) (1, 9, 49, 41, 39)
(0, 0, 0, 0, 1) (1, 34, 1, 10, 30) (1, 5, 12, 18, 31)
(1, 21, 30, 8, 45) (1, 32, 31, 29, 19) (1, 7, 35, 5, 12)
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X12 (1, 49, 15, 31, 5) (0, 0, 0, 0, 1) (1, 12, 24, 48, 14)
q = 53 (1, 21, 37, 15, 12) (1, 20, 39, 37, 18) (1, 52, 42, 46, 31) |

(1, 0, 0, 0, 0) (1, 41, 26, 30, 2) (1, 2, 26, 20, 26)
(1, 38, 47, 33, 35) (1, 45, 23, 39, 48) (1, 16, 33, 49, 35)
(1, 46, 21, 32, 48) (1, 43, 14, 7, 33) (1, 3, 0, 47, 18)
(1, 28, 15, 35, 14) (1, 8, 14, 1, 8) (1, 44, 37, 26, 31) |
(1, 9, 30, 51, 19) (1, 7, 3, 8, 41) (1, 5, 27, 38, 35)
(1, 51, 12, 43, 48) (1, 27, 42, 34, 21) (1, 26, 41, 27, 2)
(1, 48, 15, 29, 26) (1, 30, 51, 24, 18) (1, 18, 31, 23, 3)
(1, 47, 22, 13, 18) (1, 32, 29, 36, 21) (1, 42, 39, 52, 5) |
(1, 35, 46, 4, 23) (1, 24, 42, 25, 21) (1, 36, 37, 17, 33)
(1, 14, 30, 2, 26) (1, 15, 35, 3, 2) (1, 22, 11, 6, 12)
(1, 39, 41, 9, 35) (1, 34, 5, 28, 30) (1, 10, 33, 10, 30)
(1, 29, 37, 5, 23) (1, 25, 17, 18, 3) (1, 1, 4, 19, 18) |
(1, 11, 38, 12, 14) (1, 17, 15, 16, 33) (1, 19, 11, 44, 50)
(1, 23, 32, 45, 8) (1, 40, 51, 42, 12) (1, 33, 43, 22, 22)
(1, 37, 35, 40, 51) (1, 31, 3, 11, 21) (1, 50, 45, 14, 31)
(1, 13, 34, 21, 2) (1, 6, 40, 50, 8) (1, 4, 44, 41, 20)

X120 (1, 0, 0, 0, 0) (1, 20, 23, 24, 53) (1, 31, 45, 58, 12)
q = 59 (1, 5, 41, 43, 51) (1, 55, 28, 36, 9) (1, 32, 47, 32, 12)

(1, 34, 19, 51, 29) (1, 46, 58, 22, 49) (1, 41, 13, 3, 3)
(1, 18, 54, 50, 19) (1, 28, 46, 9, 51) (1, 33, 10, 26, 45)
(1, 54, 19, 47, 51) (1, 26, 2, 56, 15) (1, 4, 53, 2, 15)
(1, 49, 20, 35, 9) (1, 44, 7, 34, 48) (1, 47, 41, 30, 36)
(1, 17, 50, 29, 16) (1, 56, 50, 54, 22) (0, 0, 0, 0, 1)
(1, 11, 55, 49, 35) (1, 35, 18, 23, 51) (1, 21, 1, 44, 19)
(1, 23, 37, 6, 27) (1, 2, 4, 4, 35) (1, 30, 7, 48, 45)
(1, 51, 5, 33, 3) (1, 48, 49, 16, 17) (1, 36, 32, 15, 29)
(1, 14, 19, 18, 36) (1, 57, 10, 38, 35) (1, 13, 0, 53, 19)
(1, 58, 53, 55, 19) (1, 16, 32, 27, 19) (1, 25, 36, 1, 36)
(1, 27, 1, 20, 49) (1, 10, 4, 31, 28) (1, 42, 38, 45, 29)
(1, 19, 38, 25, 28) (1, 7, 12, 11, 15) (1, 8, 35, 12, 36)
(1, 50, 5, 19, 28) (1, 43, 16, 14, 27) (1, 1, 30, 46, 57)
(1, 6, 31, 8, 53) (1, 40, 34, 52, 9) (1, 38, 38, 57, 48)
(1, 29, 12, 17, 12) (1, 9, 24, 39, 17) (1, 39, 13, 40, 41)
(1, 24, 18, 37, 27) (1, 37, 7, 41, 27) (1, 53, 21, 28, 22)
(1, 52, 40, 42, 51) (1, 22, 58, 21, 9) (1, 12, 23, 7, 36)
(1, 3, 58, 13, 19) (1, 15, 58, 10, 26) (1, 45, 54, 5, 45)

X24 (1, 36, 40, 12, 53) (1, 54, 38, 46, 46) (1, 5, 25, 4, 45)
q = 59 (1, 58, 45, 9, 19) (1, 41, 13, 21, 26) (1, 18, 6, 34, 28)

(1, 13, 7, 42, 17) (1, 55, 7, 58, 28) (1, 21, 44, 35, 20)
(1, 12, 3, 51, 20) (1, 8, 48, 38, 5) (1, 3, 22, 30, 25) |
(1, 25, 38, 50, 41) (1, 30, 21, 32, 36) (1, 34, 46, 56, 45)
(1, 19, 1, 31, 45) (0, 0, 0, 0, 1) (1, 1, 25, 53, 12)
(1, 24, 28, 2, 51) (1, 51, 16, 14, 48) (1, 44, 4, 52, 9)
(1, 11, 1, 5, 48) (1, 40, 35, 36, 9) (1, 0, 0, 0, 0)
(1, 33, 54, 11, 29) (1, 53, 43, 49, 53) (1, 43, 52, 20, 57)
(1, 28, 35, 18, 1) (1, 27, 50, 57, 19) (1, 26, 12, 41, 19)
(1, 45, 17, 26, 41) (1, 35, 35, 48, 5) (1, 14, 23, 28, 51)
(1, 39, 31, 43, 15) (1, 10, 5, 7, 27) (1, 49, 34, 3, 36) |
(1, 17, 39, 45, 20) (1, 4, 42, 47, 20) (1, 2, 36, 40, 9)
(1, 32, 1, 23, 16) (1, 38, 13, 22, 51) (1, 7, 16, 44, 41)
(1, 16, 58, 1, 28) (1, 20, 11, 16, 48) (1, 56, 45, 39, 9)
(1, 23, 21, 19, 28) (1, 9, 17, 33, 29) (1, 42, 16, 17, 48)
(1, 31, 38, 27, 41) (1, 15, 48, 29, 51) (1, 46, 18, 13, 29)
(1, 37, 58, 24, 41) (1, 47, 24, 10, 35) (1, 48, 37, 25, 36)
(1, 57, 23, 15, 1) (1, 6, 30, 55, 35) (1, 22, 1, 54, 36)
(1, 29, 22, 8, 1) (1, 52, 57, 6, 41) (1, 50, 18, 37, 16)
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X5 (1, 0, 0, 0, 0) (1, 24, 54, 52, 25) (1, 55, 0, 21, 25)
q = 59 (1, 23, 52, 12, 29) (1, 3, 36, 35, 15) | (0, 0, 0, 0, 1)

(1, 53, 5, 54, 4) (1, 19, 28, 27, 1) (1, 41, 15, 13, 9)
(1, 11, 13, 18, 46) | (1, 10, 30, 10, 3) (1, 56, 17, 20, 7)
(1, 6, 30, 31, 35) (1, 15, 36, 41, 36) (1, 43, 21, 44, 27) |
(1, 58, 11, 30, 27) (1, 8, 35, 16, 4) (1, 45, 16, 6, 5)
(1, 44, 35, 39, 9) (1, 12, 46, 25, 3) | (1, 35, 53, 37, 26)
(1, 52, 40, 47, 27) (1, 30, 31, 40, 22) (1, 51, 15, 58, 3)
(1, 34, 15, 34, 35) | (1, 13, 15, 38, 48) (1, 21, 4, 49, 17)
(1, 7, 14, 45, 20) (1, 50, 42, 24, 45) (1, 16, 22, 46, 19) |
(1, 40, 19, 11, 25) (1, 22, 11, 42, 17) (1, 29, 15, 2, 12)
(1, 5, 33, 29, 5) (1, 57, 39, 7, 27) | (1, 14, 19, 5, 41)
(1, 49, 39, 15, 45) (1, 38, 41, 23, 41) (1, 54, 24, 26, 26)
(1, 25, 3, 57, 41) | (1, 31, 0, 53, 9) (1, 27, 43, 50, 46)
(1, 17, 19, 48, 3) (1, 26, 42, 55, 51) (1, 28, 41, 19, 29) |
(1, 1, 30, 32, 12) (1, 48, 19, 14, 29) (1, 39, 24, 3, 15)
(1, 46, 55, 43, 12) (1, 18, 50, 28, 5) | (1, 37, 49, 33, 36)
(1, 32, 31, 17, 29) (1, 42, 1, 8, 17) (1, 9, 14, 22, 19)
(1, 47, 45, 56, 4) | (1, 4, 12, 1, 29) (1, 36, 57, 4, 29)
(1, 33, 50, 9, 35) (1, 2, 17, 51, 22) (1, 20, 20, 36, 1)

The new example forq = 125:

X72 = {〈(1, t, f (t),−g(t), tg(t) − f (t)2)〉 : t in GF(q)} ∪ {〈(0, 0, 0, 0, 1)〉}
where f andg are as follows:

f = x59 + 2x57 + 4x55 + 2x53 + x51 + 3x49 + 4x45 + 4x43 + 4x39 + 2x37

+ 4x35 + 3x33 + 4x31 + 4x29 + 3x25 + 4x23 + x19 + 4x17 + 4x15

+ 4x13 + 3x11 + 2x9 + x7 + 4x5 + 4x

g = x117+ 3x115+ x113+ x107+ 3x105+ 3x103+ 3x101+ 3x95 + 2x91 + 4x87

+ 2x85 + 3x83 + 2x77 + 2x75 + 4x73 + 4x71 + x67 + 2x65 + 2x61

+ 4x59 + x57 + x55 + 4x53 + 4x49 + 3x47 + 2x45 + 4x43 + 2x41 + 4x39

+ x33 + 2x31 + 4x29 + 3x25 + 4x23 + x21 + x19 + 4x17 + x15 + 3x13

+ 4x11 + 2x7 + 4x3 + 4x.

Noting that the points of the BLT-set other than(∞) = 〈(0, 0, 0, 0, 1)〉 are indexed by
the elements ofGF(125) (with respect to the second coordinate), we describe the orbits
on X72 as a partition ofGF(125) ∪ {∞}, wherew3 = 2w + 2:

{0, 1, 2, 3, 4, (∞)},
{w6, w19, w21, w26, w29, w30, w33, w34, w41, w43, w44, w46, w68, w81, w83, w88,

w91, w92, w95, w96, w103, w105, w106, w108},
{w7, w9, w17, w23, w35, w37, w39, w45, w51, w53, w57, w61, w69, w71, w79, w85,

w97, w99, w101, w107, w113, w115, w119, w123},
{w,w2, w3, w4, w5, w8, w10, w11, w12, w13, w14, w15, w16, w18, w20, w22, w24,

w25, w27, w28, w32, w36, w38, w40, w42, w47, w48, w49, w50, w52, w54, w55,

w56, w58, w59, w60, w63, w64, w65, w66, w67, w70, w72, w73, w74, w75, w76,
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w77, w78, w80, w82, w84, w86, w87, w89, w90, w94, w98, w100, w102, w104,

w109, w110, w111, w112, w114, w116, w117, w118, w120, w121, w122}.

5. Final remarks

We conclude with some remarks about the data. The results of [24] imply that the
stabiliser inPΓ O(5, q) of the Ganley semifield BLT-set overGF(q) has order 2qh, where
q = 3h andh ≥ 3. While this is true forh > 3, for h = 3, the Ganley BLT-set has a group
of order 648= 8qh. This was first noted by us via our software. See [19] for a complete
list of group orders of the known infinite families (in particular, orders for small values
of q).

The exampleX2304over the field of order 47 was constructed in 1997 by De Clerck and
Penttila [11] by dif ferent methods, but not published. That this example and PR1152 over
the field of order 23 are sporadic is suggested by the results of [1].

That the example of [2] has a group of order 26 730 follows from the calculation of
the group of the corresponding ovoid first described in [31], and the fact that by [14] the
group of the BLT-set has a unique fixed point on the BLT-set. An alternative proof, using
the fundamental theorem ofq-clan geometry appears in [19].

The exampleX72 over the fieldof order 125 was constructed in MAGMA using different
techniques to those described earlier. To determine thegroup of this example, an adaptation
of the conic invariant of Williams [34] was used. From this, we have a unique conicC
meeting X72 in 6 points, these being the points overGF(5), and all others meetingX72
in at most 4 points. Hence the stabiliserH of X72 in PΓ O(5, 125) is contained in the
stabiliserG of X72∩C in PΓ O(5, 125). Since|G| = 4320, we can loop over all elements
of G and see if they stabiliseX72 in order to determineH . We find that|H | = 72 and
H ∼= S4 × C3, with orbit structure{72, 242, 6}. (The 4 orbits are actually distinguished by
how many conics meetingX72 in 4 points a point lies on.) See [19] for further detail.

We finish with a description of the exampleX720 over the fieldof order 29, which
suggests that it is sporadic.

Let V beGF(29)6 andQ be the quadratic form onV given by

Q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6.

Then Q(1, 1, 1, 1, 1, 1) is not 0, soW = {x|x1 + x2 + x3 + x4 + x5 + x6 = 0} is a
nondegenerate subspace. LetP be the set of all images of the point(1, 1, 1, 1, 7, 18) under
permutations of the coordinates. ThenP is a setof 30 points ofW. P is a BLT-set of W
(considered asO(5, 29)) whose group isS6.

Theorem. Let V = GF(29)6 and Q : V → GF(29) be given by Q(x1, x2, x3, x4, x5, x6)

= x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6. Let e= (1, 1, 1, 1, 1, 1) and W = e⊥, so that W is a
nondegenerate subspace of V . Let S6 act on V by permuting the coordinates. LetP be the
orbit of (1, 1, 1, 1, 7, 18) under S6. ThenP is a BLT-set of W, and the full stabiliser ofP
in PGO(5, 29) is S6.

Proof. The polar form ofQ is f (x, y) = 2x1y1+2x2y2+2x3y3+2x4y4+2x5y5+2x6y6.
S6 fixesW and f (e, (1, 1, 1, 1, 7, 18)) = 0 ( mod 29), soP is a subset ofW. A calculation
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shows that the discriminant of the restriction ofQ to W is a nonsquare, so we must show
that f (x, y) f (x, z) f (y, z) is a nonsquare, for all distinctx, y, z ∈ P . It is sufficient to
show thatf (x, y) is a nonsquare, for distinctx, y ∈ P . There are 5cases:

f (x, y) = 2(182 + 7.1 + 1.7 + 12 + 12 + 12) = 15(mod 29);
f (x, y) = 2(18.7+ 7.18+ 12 + 12 + 12 + 12) = 19(mod 29);
f (x, y) = 2(18.7+ 7.1 + 1.18+ 12 + 12 + 12) = 18(mod 29);
f (x, y) = 2(18.1+ 7.7 + 1.18+ 12 + 12 + 12) = 2 (mod 29);
f (x, y) = 2(18.1+ 7.1 + 1.18+ 1.7 + 12 + 12) = 17(mod 29).

These are all nonsquares modulo 29, soP is a BLT-set.P admitsS6, which isa maximal
subgroup ofPGO(5, 29), so thefull stabiliser ofP in PGO(5, 29) is S6.

The previously known BLT-sets inQ(4, 29) were the classical BLT-set, with a group of
order 1461 600, the Fisher-Thas/Walker/Kantor BLT-set, with a group of order 24 360, the
Fisher BLT-set, with a group of order 1800, and the Penttila BLT-set, with a group of order
60. HenceP is a new BLT-set.

SinceS6 acts transitively onP,P gives rise to just one flock of the quadratic cone of
PG(3, 29) and just one translation plane of order 292. It also givesa GQ of order(292, 29)
via the Knarr construction.
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