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Abstract

The computer algebra system MAGMA is used to search for BLT-sets of the nonsingular parabolic
quadricQ(4, q). In total, 28 newBLT-sets for 27< g < 125 are presented, these giving rise to 158
new flocks of the quadratic cone MG(3, q).
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their connections with a myriad of ethgeometric structures, BLT-sets have
become important objects of study in finite pcjive spaces. The present paper is intended
as a sequel to the paper of Penttila and Royle entitled “BLT-sets over small figl@srm
that paer, the authors extended the computer searches of De Clerck and Het€péms |
flocks of he quadratic cone iR G(3, q) to g < 25, by placing them in the more general
context of finding BLT-sets rather than individual flocks. Earlier computer-free results had
appeared in Thas3p] and De Cleck et al. B]. The purpose of the present paper is to
continue the more general therof sarching for BLT-sets, and we present here results of
computer searches yielding 28 new BLT-sets. The techniques for searching are different
to those of he prequel paper, and have been implemented using the computer algebra
system MAGMA B]. The techniques used by Penttila and Royle involved computing the
automorphism groups of the generalised quadrangles (&04)q) for g < 25, even
though these are well known to BeI'O(5, q). The implementéion of PGO(5, q) in
MAGMA for g < 97 removes the need for this computation, which in terms of computer
time, was by far the most expsive part of the work in30]. Theoretical developments
have also provided an inexpensive and easilylemented check for determining if a set of
points of the quadriQ(4, q) is a partial BLT-set. Details of the new searches will be given
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later in the paper. For background and motivation to the study of BLT-sets, we refer to the
aforementioned paper of Penttila and Royle, as well as the papers of Law and P2gttila [
and Johnson and PayrH|.

The construction of infinite families of BLT-sets is a difficult task, and can require
detailed analysis of existing data. Indeed, since the prequel paper, only two infinite families
have been described, and these were generalised from two examples in the first case and
justone example in the second (s&8|[ [20]). The wealth of existing data suggests the
possibility of more infinite families, and yet any new family discovered may only contain
one or two of these existing examples. This observation displays the value of continuing
these sorts of experimental searches, esflgdhe value of continuing past the field of
order 25, where Penttila and Royle left off.

It should be noted, however, that this paper makes no attempt at classification of BLT-
sets for any particular values gf Theprequel paper classified BLT-sets fpr< 17; the
current paper simply presents new examples for some valugs<o125. A forthcoming
paper by the present authors classifies BLT-sets by computgr£o29 [21].

The theme of our searches is the use of nontrivial symmetry hypotheses. Since isomorph
rejection is expensive, we make no claim of completeness even under a particular symmetry
hypothesis. To paraphrase a good friend and colleague of ours, the searches are not
complete, only thorough.

The use of symmetry hypotheses involves the choice of a subdidoapP I"O(5, q)
and the determination of all BLT-sets that dtleinvariant. Since we are only interested
in BLT-sds up to equivalence, we are only interested in conjugacy classes of subgroups.
Such a search determines, up to equivalence, all BLT-sets with stabiliser containing
a wmnjugate ofH. The weakest nontrivial symmetry hypothesis is to use a minimal
subgroup of PI"O(5, q). The minimal subgroups of a finite group—the atoms of the
lattice of subgroups—are the subgroups of prime order. So our basic philosophy is to
loop through the primep dividing |P1"O(5, g)| in descading order of magnitude, take
one representativel of each conjugacy class of subgroupskf O(5, q) of order p,
and determine all BLT-sets that ak-invariant. This “prime-at-a-time” technique has
previously been used for hyperova®?], [29].

Several caveats are necesdagye. The first has been mentioned earlier: that we do not
deternine the BLT-sets up to equivalence, but only up to certain invariants, such as the
order of the stabiliser, that we find appealing and that are inexpensive to compute. The
second is in the spirit of the first: sincemjugacy is expensive to compute, we also do not
determine the conjugacy classes, but again work with computationally cheaper invariants.
The third is that small primes, particularly 2 and 3, are often beyond our means, so a
sdection of subgroups properly containing such subgroups is chosen as an alternative. It
is worth remarking that, by Sylow’s theorem, the conjugacy classes of subgroups of prime
orderp are all represented within a single Syl@asubgroup.

The determination of all BLT-sets admitting a subgrddpis achieved b enlaging
BLT-sets to the hereditary class of partial BLT-sets and then stitching togethabits.
Namely a graph with verticeld -orbits that are paial BLT-sets and edges pairs of vertices
with union a partial BLT-set isgerhaps only conceptually) formed. Every BLT-set is a
clique of this graph with union of the vertices containing 1 points ofQ(4, q), dthough
not every such clique needs to be a BLT-set.
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The availability of a computationally inexpensive check for being a partial BLT-set is a
key to our success.

In the following sections, we give a brief survey of the theory of BLT-sets and related
structures: flocks of the quadratic cone, GQanslation planes, and hyperbolic fibrations.
We include an exposition of the theory undergiour cheap method of testing that a set
of points is a partial BLT-set. We then go on to describe our techniques for searching,
based upon the computer algebra system MAGMA, and present our results explicitly using
coordinates. Finally, we briefly analyse some of the examples obtained.

2. Theory and background

As mentioned earlier, BLT-sets are connecigth many varied geometric structures.
They originally arose through the study fibcks of the quadratic cone iP G(3, q),
partitions of the points of the cone minus the vertex igtdisjoint conics, and hence are
connected with the many structures arising from such flocks.

A linespread of PG(3, q) is a partition of the points into lines, namely, a setjdf 1
lines, no two intersecting. Given a linespread®d®(3, q), one can construct a translation
plane of ordeq? via the Andg/Bruck-Bose construction. Aovoid of the Klein quadric
Q*(5,q) is a set ofg? + 1 points, no two collinear. In 1976, both Walke&d3 and Thas
independently described tlmnstruction of an ovoid ofQ* (5, q) from a flock of the
guadratic cone. By the Klein correspondence, an ovoidd{5, q) is equivalent to a
linespread ofP G(3, q), and so for each flock of the quadratic cone, we can construct a
translation paneof orderg?. In 1987, Hiramine et al.]2] gave an arazing construction
of a linespread o G(3, q2) from a linespread oP G(3, q), for g odd. The following
year, Johnson13] extended the construction tq even. Thus for each linespread of
P G(3, ), one can construct an infinite family of Bspreads, and henaa infinite family
of transldion planes of orderg?’, n = 1, 2, .. .. Furthermoreinequivalent linespreads of
P G(3, g2) can arise from the same equivalence class of linespredRl&@, q). Herce to
each flock of the quadratic cone correspondsyriafinite families of translation planes,
and indeed, application of this construction to a plane (linespread) arising from a flock
need not give a plane (linespread) arising from a flock.

A (finite) GQ of order(s,t) is an incidence structuref points and lines with a
symmetric incidence relation, such that each point (line) is incident with+ 1 lines
(s + 1 points), two distinct points (lines) are incident with at most one line (point), and for
anonincident point-line pai¢P, |) there is aunique pointQ and a unique linen suchthat
PImI QIl.The stadardreferenceif[]. Inthe early 1980's, a great deal of work was
done by both Kantorl[6] and Pgne [23] on constructing particular types of GQs, namely,
elation generalised quadrangles (EGQ). A GQSis an EGQ if thee is a pointP of S
and a subgrouf of the automorphism group A8tof Swhich fixes every line orP and
acts regularly on the set of points not collinear withThis work described a group coset
geometry construction of EGQs of ord@p?, q) via the notion of aj-clan, a family of q,

2 x 2 matrces ovelG F(q) such that the quadratic form desxed by the difference of any
two distinct matrices is anisotropic. In 1987, Th&?] connected flocks of the quadratic
cone with EGQs of ordefg?, ) usingg-clans, showing that to every flock there arises a
corresponding EGQ, and conversely.
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These connections motivated the concentrated study of flocks of the quadratic cone,
and in 1990, Bader et al3] de<cribed a process of constructimgflocks from a given
flock whenq is odd. This process was callelrivation, andgave riseto the concept of
a BLT-set of the nonsingular quadriQ(4, q), narely, a set ofg + 1 points of Q(4, q),

g odd, such that no point (4, q) is collinear with more than 2 points of the set. The
name is due to Kantod[7]. Given a flock of a quadratic cone &G(3, q) embedded as a
hyperplane oP G(4, q), one constructs a BLT-set @(4, q) with a dstinguished poinP

(it is the vertex of the cone). For each choi@eof the remainingy points of the BLT-set,
one constructs a flock of the quadratic cape N Q(4, q) with vertexQ. Theseq flocks
are said to belerivedfrom the original flock.

Two flocksF; and.F; of the quadratic con& of PG(3, q) are said to be isomorphic if
and only if there exists an element®f’L (4, g) which fixesK and mapsFi to 7. Backer,
Lunardon and Thas showed that two poiRtsand P, of a BLT-setP are in the same orbit
of the stabiliseP I"O(5, q)p of P if and only if the flocksF; andF> arising fromP; and
P, respectively are isomorphic. Thus the concept of a BLT-set provides a greater unified
approach to the study of flocks in odd characteristic, and this result displays the power in
searching for BLT-sets in ordeo tonstruct examples of flocks.

Furthermore, in 1990, Payne and RogeB$|[showed that to each BLT-set there
corresponds just one GQ, and in 1992, Kna#j [gave a leautiful geometric construction
of the GQ directly from the associated BLT-set (sé@.[In 1996, Payne5] showel that
the number of orbits of lines through the base point of the GQ arising from a BLP &t
equal to the number of orbits &7"O(5, ) onP. In paticular, the group of the GQ is
deternined by the group of the BLT-set.

To add further motivation to the study ofLB-sds, a very recent connection has been
made with yet another geometric structure.hgperbolic fibration of PG(3,q) is a
partition of the points into two lines ang — 1 hyperbolic quadrics. Each of the choices of
one regulus for each quadric gives rise to a linespred®@(3, q), and so 4-1 linespreads
arise. In Baker et al.g, 6], it is shown that each choice of an ordered pair of points on a
BLT-sd gives rise to a hyperbolic fibration. The linespreads arising in general differ from
those arising via the Thas—Walker construction from the corresponding flocks.

Disaiminants

Let F = GF(q), q odd, andJ = {t? | t € F*}. Sinceq is odd,] is a subgroup ofF*
of index 2. LetX be the ¢her coset of ] in F*, so thatF*/00 = {{J, X}.

For a quadratic formQ with polar form f, define thediscriminant of Q to be
detB)d e F*/0O, where B is the matrix of f with respect to some basis. So if
Q(x) = xTAx, whereA = AT, then dis¢Q) = det2A)C.

From the classification of nondegenerate qasidiforms over finite fields of odd order,
we know that there are two isometry stas o such orthogonal spaces for any given
dimension. We may use the discriminant to distinguish between these isometry classes.
For even dgebraic dimension, a nongenerate quadratic fori® on F2" gives rise to an
O™ (2n, q) space if and only if dis¢cQ) = (—1)"[.

The following results can be found in Bader et dl, fhe treatment ofvhich we follow
closely here, with the final corollary originally being due to Bader et3l. [
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Lemma. Letx,y,z € V = F® be linearly independent singular vectors with respect to
the nondegenerate quadratic form Q with polar form f defined on V, and denote by
the polarity defined by Q. Thetx, y, z)* is an external line with respect to the quadric

defined by Q if and only if

=2f(x,y)f(x,2f(y,20
disa Q)

Proof. Sincex, y, z are pairwise linearly independent singular vectivs= (X, y, z) is a
nondegenerate subspacevafLet W = (u, v). ThenS = {x, y, z, u, v} is a basis foV .
Let B be the matrix off with respect tcS, and letBw be the matrix off restricted tow.
Then

det(B) = det(Bw) det(Byy1).
So

=K e F*/0O

0 _ disaQlw)
disaQ |y1)  disqQ)
Now detBw) = 2f (x, y) f (X, 2) f(y, ) sincef is symmetric. So
O _2f(x, ) f(x,2)f(y,20
disa(Q |we) disaQ)
Now consider the subspacé&/*. This hasalgebraic dimension 2, i.e., it is a line in

PV =PG(4,q). Herce Wt is an external line (arD~ (2, q) space) if and only if
—disaQ |w1) = K. The resulfollows.

Corollary. Let g be odd. LetP be a set of at least 3 points of(@ q) and let f be the
bilinear form corresponding to the quadratic form Q underlying4Qq). ThenP is a
partial BLT-set if and only if for alkx), (y), (z) € P we have:
=2f(x,y)f(x,2)f(y, 20
diso(Q)
Lemma. Let q be odd. LetP = {(x), (y), (2), (w)} be a set of 4 points of @, q) such

that {(x), (y), (2)}, {(X), {y), (w)} and {(x), (z), (w)} are partial BLT-sets. Thef® is a
partial BLT-set.

=K e F*/0.

Proof. It suffices to check thdty), (z), (w)} is a partial BLT-set. If the defining quadratic
form is Q, we know that

=2f(x, y) f(x, 2 f(y, 20/disqQ), =2f(x, y) f(x, w) f(y, w)U/disaQ),
—2f(x,2) f(x, w) f(z, w)d/dis(Q)
are all equal t&X € F*/J, hence their product

<—2f(x, y) f(x, 2) f(x, w)D)Z —2f(y, 2 f(y, w) f(z, w)O
dis(Q) disa Q)
also equal& € F*/0, and the esult follows.




6 M. Law, T. Penttila / European Journal of Combinatorics 25 (2004) 1-22

Corollary. Let g be odd. Lef? be a set of at least 3 points of(@ q). Suppose there exists
(x) € P suchthat{(x), (y), (2)} is a partial BLT-set for ally), (z) € P\{{(X)}. ThenP is
a partial BLT-set.

These results can be used to form a straightéod check for whether a set of points of
Q(4, g) is a partial BLT-set, and we use this in the next section to search for BLT-sets using
a conputer. The significance of these results is that we may test a set of points for being a
partial BLT-set by performing aimple field calculation on all triples in the set containing
a cdhosen element of the set, instead of having to test collinearity of all poin@f q)
with each point of the set.

3. Search techniques

As a result of recent upgrades, the computer algebra package MAGMAoW has
built in to it the projective general orthogonal groups of five dimensions over fields of order
g < 97 as permutation groups on the points of the associated parabolic qQadrig).

This has provided the possibility of extending the searches of Penttila and ROyeakt
g = 25. Furthermore, using the results in the previous section we can form a cheap and
easily implemented check for whether a set of point®4, q) is a partial BLT-set.

In this section, we will give a brief outline of the techniques used to search for BLT-sets
usng MAGMA, illustrated with some fragments of code as examples of the MAGMA
syntax. Note, however, that the code fragments presented are by no means the most
efficient, but merely for instructive purposes.

When we call the projective general orthogonal grd@ O(5, q) of five dimensions
over the Gis field of ordery = p", MAGMA i ndexes the points of the parabolic quadric
Q4, g) and compute® G O(5, q) as a permutation group acting on this set of indices. We
label he field, group and indexed sefs follows:

> q:=p~h;
> F:=GaloisField(q);
> G,I:=ProjectiveGeneralOrthogonalGroup(5,F);

We remak thatI is a sguence of;*+q%+qg+1 points ofP G(4, q), each represented by
a (homogeneous) 5-tuple fro@F(q), normalised so that the leftmost nonzero coordinate
isal.

The quadratic form used by MAGMA is

Q(X) = X1X5 + XoXa4 + %Xg
(up to ascalar multiple) as can be verified by the following code

> Q:=func<x|F! (x[1]1*x[5]+x[2]*x[4]+x[3]"2/4)>;
> for i:=1 to #I do

> if Q(I[i]) ne O then print i;end if;

> end for;

and observing no output occurring. (This does not seem to be documented in the manual
for MAGMA.)
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The full group of the quadri€)(4, q) is the projective semilinear orthogonal group
PI'O(5, q) of five dimensions over the Galois field of ordgrwhich for prime order
fields is equivalent td®> G O(5, ). However, in g¢neral, we must work with? 'O (5, q),
and can construct it by forming the subgroup of the symmetric group on the set of indices
generated by G O(5, ) and a field automorphism, namely, the Frobenius automorphism.

V:=VectorSpace(F,5);

a:=[1;

for i:=1 to #I do x:=I[i];
Append(~a,Index(I,V![x[1]"p,x[2]"p,x[3] p,x[4] p,x[5]1 pl));
end for;

Gam:=sub<Sym(#I) |G,a>;

V V V V V V

We reed to be able to check easily andeaply whether a set of points (4, q) is a
partial BLT-set. It should be clear that the results of the previous section combine to give
such a clkck, which lends itself well to being pgrammed on a computer. This can be
done as follows:

> Q:=func<x|x[1]*x[5]+x[2]*x[4]+x[3]"2/4>;
> f:=func<x,y|Q(x+y)-Q(x)-Q(y)>;

return flag;
else return true;
end if;
end function;

> d:=((q-1) div 2);

> blt:=function(X);

> if #X ge 3 then x:=Random(X);

> for y in X diff {x} do flag:=true;
> for z in X diff {x,y} do

> flag:=(-4*f (I[x],I[y])*£(I[x],I[z])*f(I[y]l,I[z]))"d eq F!(-1);
> if not flag then break;end if;

> end for;

> if not flag then break;end if;

> end for;

>

>

>

>

Our basic pattern of searching is for each pripdividing |[PI"O(5, )| to conpute a
Sylow p-subgroup ofPI"O(5, q)

> P:=Sylow(Gam,p);
loop over the elements &f of orderp

> list:={};

> for g in P do

> if Order(g) eq p then

>  H:=sub<P|g>; FP:=Fix(H);
> if not done(H,list) then
> 0:=0rbits(H);
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> cand:={i:i in {1..#0}Iblt(0[i])};

> c:={i:i in cand|#0[i] eq pl};

> edges:={{i,j}:1i in ¢,j in cli 1t j and b1t(0[i] join O[j1)};
> Gamma:=Graph<c|edges>;

> d:=((q+1-#FP) div p)+1;e:=(q+1) div p;

> for k:=d to e do

> Cl:=A11Cliques (Gamma,Xk) ;

> for j:=1 to #C1l do Y:={};

> for k in {x:x in c|VertexSet(Gamma)'!x in C1[jl} do
> Y:=Y join O[k];

> end for;

> for X in Subsets(FP, (q+1)-k*p) do

> if b1t(Y join X) then

> PrintFile(‘‘bltsets’’,Y join X);list:=list join {H};
> end if;

> end for;

> end for;

> end for;

> end if;

> end if;

> end for;

and provided that the subgrouy it generates has not already been dealt with up to
conjugacy, calculate and write all -invariant B_T-setsto a file. Here the function for
testing whether a subgroup has already been dealt with can be implemented as follows

> done:=function(H,list);

> flag:=false;

> for X in list do flag:=IsConjugate(Gam,H,X);
> if flag then break;end if;

> end for;

> return flag;

> end function;

In the interest of efficiency, not all of these computations need be performed. For
instance, conjugacy testing need only befgened if (cheap) invariants indicate the
subgroups may be conjugate, and normalisers may be used to not have to calculate all
H-invariant BLT-sets, redueg, in the process, the size of the cliques that need to be
computed.

Finally, we rmust have some way of determining whether a BLT-set that is discovered
is in fact new. For most of the searching dahe order of the stabiliser of the BLT-set in
PI'O(5, q) was used.

> GB:=Stabiliser(Gam,B);

This proved to be a reasonably effective test in most cases, though it should be noted
that it was not always sufficient, and stricteging was sometimes needed, for example,
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comparing the order and number of fixed points of elements of the stabilisers. Indeed,
this is how the ne example forg = 37 with group order 72 was found to be different

from K2/J P, and how the two examples with group order 4 were distinguished. This
highlights the fact that our searches have been far from exhaustive, and that possibly some
new examples were overlooked during searching because they had the same group orders as
known examples. Other more complex invat@were also used, including an adaptation

of the conic invariant of Williams34]. However, these simple invariants are enough to
distinguish the examples presented heregfer 59.

4. Theexamples

We refer thereader to the prequel paper of Penttila and Ro8@ for a list of all but
the two most recent of known families of BLS&s, a description of which can be found in
the papers of Penttil2B] and Law and PenttilaZ(].

The results of the searches are summarised in the following table, along with the known
examples not yet belonging to an infinite family. The group order listed is that of the
stabiliser of the BLT-set irPI"O(5, q), and the orbit structure is listed as a multiset, so,
e.g.,{2, 4, 8%} indicates that there is ormebit of length 2, one of length 4 and 3 of length 8.

We abbrevide the attributions as follows:
DCH—De Clerck—Herssens (1992)(]
DCP—De Clerck—Penttila (199711]
PR—Penttila—Royle (199830
PW—Penttila—Williams (2000)31]
BLP—Bader—Lunardon—-Pinneri (1999][

Forg = 27 we find 1 new example, which hasdn generalised to an infinite family
in characteristic 3 (se€()]). For g = 29 we find 5 new examples, faf = 31 5 new
exampes, forqg = 37 3 new examples, fay = 41 3 new examples, fay = 43 1 new
exampe, forq = 47 2 new examples, fay = 49 2 new examples, fay = 53 2 new
exampes, forg = 59 3 new examples, and fgr= 125 1 new example.

In the subsequent tables we present the new BLT-sets discovered fortR% 59 as
sets ofg + 1 points of the nonsingular quadri@(4, q) defined by the quadratic equation

Q(X) = X1X5 + XoX4 + X2.

Each example has been presented containing the géiats 0, 0, 1)) and((1, 0, 0, 0, 0)).
We identify each BLT-set by the order of its stabiliser RV O(5, ). The orbits of the
stabiliser on the BLT-set are distinguished byrtieal bars, reading across the table from
left to right. The exampleXy’® for ¢ = 31 has acyclic stabiliser, whilstX}*"¥° has
stabiliser isomorphic to the noncyclic group of order 4. The exam@éor g = 37 has
2 fixed ponts on the BLTset, whilstxg has 2 fixed points not on the BLT-set. The new

exampe forq = 125 is then presented using interpolated polynomials.



10 M. Law, T. Penttila / European Journal of Combinatorics 25 (2004) 1-22
q Attribution Group order Orbit structure
17 DCH 144 {12, 6}
PR 24 {12 6}
19 PR 20 (20}
PR 16 (82,22
23 DCH 72 (18,6}
PR 1152 (24
PR 24 24
PR 16 (82, 4%}
PR 6 (63,32}
25 PR 16 {16, 8,2}
PR 8 (8.2}
27 New 6 (12,2, 6%
29 New 720 (30}
New 48 {24, 6}
New 8 (83.4,2)
New 6 {64, 3%}
New 3 (319
31 New 96 (24,6, 2)
New 10 {102, 52,2}
New 8 (83,42}
New 4 148)
New 4 47,22
37 New 72 (36,2}
New 4 4°,2
New 4 (49,12
41 New 60 (30,12
New 24 (24,12, 6}
New 8 (8°,2
43 New 4 {411}
47 DCP 2304 (48}
New 24 (24%)
New 3 (316
49 New 40 {40, 10}
New 20 {20?, 5%}
53 New 24 (242, 6)
New 12 (124, 6}
59 New 120 (60}
New 24 (242,12}
New 5 (512
125 New 72 (72, 242, 6)
243 PW/BLP 26730 (243 1)
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X6 (0,0,0,0,1) | (1,0,0,0,0) 1, w, w9, 2, w20)
q= 27 (1’ w14’ wa l, wZO) | (l, w20y w18’ wl7’ wG) (l, w25, w24’ w25’ w4)
w3 —w—1 @, w3, w6, w24, w24) (1, le’ w5, w23, w24) (1, wl5, w7, w8, w4)
(1’ w5’ w21, w20y wG) | (l, w24, w5, w14’ wl8) (l, w7, w2, le’ w14)
(1,2, w12, 1l 24 (1, w23, Wb, w’, wb) (1, wl?, w3, w2l )
(1’ wll’ wl(Sy w22, w2) | (l, w8, w24, w15’ wl8) (l, w21, 0, wlZ’ w20)
(1, w8 14y )20) (1,1, w22, 19, 14 (1, w2, w, w0, 129
(1, wb, w2, wb, w?) | @ w? w8, wb, wb) (1, w9, w23, 2, 116
(1’ wlO’ w5, w9y 1) (l, wg, w22, w, w12) (l, w12y w14’ wl8’ wlO)
@, w22, w5, w3, w22)
X720 (1, 26, 16, 3, 14) (1,0,0,0,0) (1,20,11, 4,2)
q=29 (1,6, 27,27, 8) (1, 16, 20, 2, 3) (1, 19, 15, 9, 10)
(1, 10, 19, 28, 26) (0,0,0,0,1) (1,9, 28, 24, 15)
(1,13,9,7,2) (1,14, 11, 15, 17) (1, 27, 24, 23, 21)
(1, 23, 22, 16, 18) (1,7,17,6,17) (1, 15, 10, 25, 18)
(1,5, 20, 26, 21) (1, 24, 26, 11, 17) (1,22,0,17,3)
(1,3,8,5,8) (1, 8, 25, 21, 19) (1,2, 24,8,17)
(1,1,0,12,17) (1, 25, 27, 22, 26) (1,18, 8, 18, 18)
(1,21, 0, 20, 15) (1,12, 24, 14, 10) (1,17, 23, 19, 18)
(1,11, 0,13, 2) (1,28,17,1,2) (1, 4,4,10,2)
Xag (1, 26, 24, 25, 21) (1,15, 3, 24, 8) (1,5, 14, 3, 21)
q=29 (1, 18, 23, 20, 10) (1,3, 28,13, 18) (1,14, 26, 5, 8)
(0,0,0,0,1) (1,0,0,0,0) (1,2, 23,17,17)
(1,12, 17, 18, 17) (1, 20, 19, 7, 21) (1,21, 12, 27, 14)
(1,7,28,1,21) (1,24, 8, 28, 18) (1,19, 19, 15, 21)
(1,11, 25, 21, 14) (1, 25,11, 2, 3) (1,13,7,8,21)
(1, 17, 18, 26, 17) (1, 28, 19, 23, 10) (1,6,18,6,17)
(1, 23,11, 11, 3) (1, 4,12, 4, 14) (1,8,21,12, 14)
(1,9,11, 10, 21) (1,27,9, 22, 21) (1,10, 18, 9, 21)
(1,22, 2, 16, 21) (1, 16, 19, 19, 2) (1,1,19, 14, 2)
Xg (1,18, 7, 11, 14) (1,15, 20, 28,21) | (1, 13, 20, 8, 18)
q=29 (1, 24, 23, 24, 26) (1,22, 26,1, 27) (1,7,6,13,18) |
(1,0,0,0,0) (1, 16, 11, 26, 14) (1, 27,18, 12, 19)
(1, 14, 23, 20, 3) (1,6,5,22,17) (1, 11, 10, 6, 8)
(1, 26, 3, 2, 26) (1, 28, 22, 23, 3) [ (1, 25, 24, 25, 17)
(1,1, 22,27, 11) (1,2, 28,5, 18) (1,21, 13, 4, 8)
(1,5, 24, 14, 21) (1, 10, 24, 16, 18) (0,0,0,0,1)
(1,8, 25, 3, 18) (1, 23, 15, 15, 10) (1, 4, 10, 21, 19)
(1,3, 3,10, 19) (1,12, 16, 7, 8) (1,9, 20, 18, 18)

(1,17, 2, 17, 26) (1,20, 27,9, 19) (1,19, 17, 19, 17)
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Xe (1,0,0,0,0) (1,9, 21,11, 11) (1,8, 16,17, 14) |
q=29 (1,2, 20, 28, 8) (1,1,24,1,3) (1, 10, 7, 26, 10) |
(1,3, 1,25,11) (1,20,1, 21, 14) (1,15, 17, 3, 14)
(1,14, 0, 23, 26) (1,21,3,19,27) (0,0,0,0,1) |
(1,11, 28,5, 2) (1, 24,1, 24,3) (1,17, 4, 15, 19)
(1,27,11, 4, 3) (1, 4,6,10,11) (1, 25, 26, 22, 21) |
(1, 19, 18, 8, 17) (1,26, 21,7, 15) (1,16, 7,9, 10)
(1,5, 3,16, 27) 1, 22,17, 14, 12) (1,23, 27, 12, 10) |
(1,6, 16,13, 14) (1,12, 15,27, 2) (1,18,5,6,12)
(1,7, 26, 18, 10) (1,13, 3, 20, 21) (1,28, 4, 2, 15)
X3 (1,0,0,0,0) (1,23, 28,3,17) (1,22, 20,12, 3)
q=29 (1, 16, 25, 7, 17) (1, 20,27, 9, 19) 0,0,0,0,1) |
(1,2, 16, 18, 27) (1, 19, 4, 14, 8) (1,8,0,25,3)
(1,25, 9, 16, 12) (1, 14, 20, 11, 26) (1,9, 28, 26, 26) |
(1,6,9,15,3) (1,12, 6,13, 11) (1,27,5,4,12) |
(1,21,22,1,17) (1,17, 16, 24, 3) (1,1,25,2,11) |
(1, 13, 26, 8, 3) (1, 18, 13, 27, 12) (1,11, 1, 20, 11) |
(1, 26, 6, 19, 21) (1,7,9,17,3) (1, 4, 16, 5, 14) |
(1, 15, 5, 28, 19) (,5,5,21,15) (1, 28,7, 10, 19) |
(1, 24,11, 22, 18) (1,3,9,6,17) (1, 10, 9, 23, 8)
Xo6 (1,0,0,0,0) (0,0,0,0,1) (1, 30, 30, 3,2)
q=31 (1,1,1,28,2) (1,6, 6,13, 10) (1, 5,5, 16, 19)
(1, 25, 25, 18, 10) (1, 26, 26, 15, 19) (,12,3,1,10)
(1, 21,13, 25, 19) (1, 22,10, 27, 19) (1, 4, 24, 14, 19)
(1, 3,15, 22, 19) (1, 16, 24, 19, 19) (1, 28, 11, 10, 2)
(1,23,2,24,2) (1, 2, 13, 30, 19) (1, 11, 28, 20, 19)
(1,19, 15, 6, 2) 1, 8, 16, 21, 10) 1, 29, 15, 5, 2)
(1, 27,18, 4,2) (1,15, 13, 17, 10) (1, 18, 27, 2, 10)
(1,7,11,9,2) (1, 24, 16, 7, 10) (1, 14, 28, 29, 19)
(1,17, 19, 11, 10) (1,9,18,12,2) (1, 10, 3, 26, 10)
(1, 20, 27, 8, 10) (1,13,3,23,2)
X10 (1,0,0,0,0) (0,0,0,0,1) (1,30, 3,18, 9)
q=231 (1, 14, 14, 20, 20) (1, 28,17,17, 10) (1,12, 10, 16, 18)
(1,9, 18,22, 5) (1, 15, 8,14, 5) (1,2,1,6,18)
(1,11,5,11,9) (1, 24, 18, 30, 10) (1, 10, 30, 1, 20)
(1, 4,18, 7, 20) (1, 13, 4, 10, 9) (1, 23, 16, 21, 5)
1, 8, 18, 19, 20) (1, 18, 24, 29, 18) 1,3,2,3,18)
(1, 25, 2, 28, 9) (1, 19, 2, 27, 10) (1,26, 6,2,5)
(1,16, 1,9, 10) (1,5, 20, 25, 2) (1,7, 28, 4,25)
(1, 21,9, 24, 4) (1,6, 13,13, 1) (1, 20, 14, 5, 14)
(1,17, 25, 15, 19) (1,1, 10, 8, 16) (1, 29, 10, 23, 8)

(1,22, 14, 26, 7)

(1,27, 12, 12, 28)
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Xg (1,0,0,0,0) (1,29, 27, 17, 18) (1,5, 22, 20, 5)
q=31 (1, 26, 8, 6, 28) (1,8,20,2,18) (1,27, 15,10, 1)
(1,21,0,4,9) (1,9,22,15,1) (1,22,7,30,4)
(1,28, 14, 5, 5) (1,4,24,7,16) (1,10, 3, 19, 18)
(0,0,0,0,1) (1,17, 23, 14, 8) (1, 30, 26, 8, 14)
(1,11, 12, 11, 14) (1,18, 6,27, 5) (1, 24, 14, 13, 19)
(1, 6, 24, 29, 25) (1, 2, 23, 25, 10) (1,13, 3,23,2)
(1,20, 28, 1, 2) (1,12, 1, 12, 10) (1,1, 26, 21, 16)
(1,3,17, 26, 5) (1, 25, 5,16, 9) (1,23,6,9,5)
(1,14,7,18,9) (1,19, 12, 3, 16) (1, 16, 21, 28, 10)
(1,15, 14, 22, 1) (1,7,4,24,2)
xg' (1,16, 1,13, 8) (1,29, 12, 19, 18) (1,0,0,0,0)
q=231 (1,14, 4,7, 10) (1,28, 15, 11, 25) (1,27, 27,1, 19)
(1,19, 11, 18, 2) (1,20, 4,27, 2) (1,5,15,5)
(1,12,10,4,7) (1, 25,12, 6, 16) (1,1,26,2,4)
(1,6, 16,3, 5) (1,24,5,9,7) (1,8, 4,20,10)
(1, 4, 14, 24, 18) (0,0,0,0, 1) (1,9, 15, 29, 10)
(1,3, 25, 23, 19) (1,7,11,8,9) (1,18, 23, 14, 25)
(1,17, 18, 15, 10) (1, 22, 18, 21, 20) (1,11,25,16,5) |
(1, 30, 10, 26, 19) (1, 26, 1, 30, 25) (1,21, 26, 25, 8)
(1,2,13,17, 14) (1,13, 4,12, 14) (1,15, 1, 22, 10)
(1, 23,0, 10, 18) (1,10, 20, 28, 2)
X, "Ye (1,14,29,2,2) (1, 28, 26, 18, 9) (1,7, 21,19, 28)
q=31 (1,5, 13, 3, 28) (1,15, 27,12, 2) (1, 30, 24, 29, 9)
(1,23, 5, 30, 9) (1,0,0,0,0) (0,0,00,1)
(1,18, 26, 6, 2) (1,4,1,28,4) (1,21,12,10,2) |
(1,9,22,7,2) (1,10, 28, 11, 4) (1,27, 23,1, 19)
(1, 20, 15, 9, 4) (1,22, 25, 15, 2) (1, 26, 1, 16, 10)
(1, 25, 21, 25, 1) (1,11, 13,5, 19) (1,2,0,21,20)
(1,1,15,27,2) (1,3, 14, 26, 28) (1,16,3,22,10) |
(1,8,8,13,4) (1,29, 1,24,9) (1,6, 15, 17, 20)
(1,13, 8,4, 25) (1,24, 0,8, 25) (1,12, 25, 23, 25)
(1,19, 8, 14, 28) (1,17, 5, 20, 18)
X72 (0,0,0,0,1) (1,0,0,0,0) (1,20, 1, 33,5)
q =237 (1, 6, 23,19, 23) (1,32, 11, 35, 17) (1, 33,12, 14, 23)
(1, 25, 8,12, 6) (1,16, 6,1,22) (1,23,8,5,6)
(1,8,6,13,8) (1,22, 19, 20, 13) (1,21, 23, 16, 23)
(1,28,6,9,8) (1,2,26,7,13) (1,5, 9, 36, 35)
(1,12, 23, 10,17) (1,14, 16, 25, 23) (1,9,8,26,35)
(1,1,11, 8, 19) (1,19, 12,11, 17) (1,18, 27, 22, 22)

(1,24, 36, 17, 35)
(1, 36, 21, 32, 35)
(1, 10, 36, 6, 13)
(1,17, 13, 2, 19)
(1,29, 12, 28, 6)
(1,31,9, 21, 8)

(1,26, 27,23, 5)
(1,7,16,31,8)
(1,30, 4,3, 5)
(1,11, 28, 18, 17)
(1, 15, 10, 34, 19)
(1,34, 9,29, 6)

(1,27, 25, 24, 22)
(1,35, 5, 15, 5)
(1,4, 3,30, 19)
(1, 13, 16, 27, 22)
(1,3, 30,4, 13)
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Xg 1,9, 16, 8,5) (1,13, 20, 26, 2) (1,0,00,0)
q=237 (1, 4,12, 14, 22) (1,19, 23,5, 5) (1, 24,17, 19, 32)
(0,0,0,0,1) (1, 18, 18, 10, 14) (1, 2, 4, 36, 23)
(1,7, 5, 24, 29) (1, 36, 20, 22, 29) (1, 14, 10, 13, 14)
(1, 28, 22,7, 23) (1, 32, 28, 20, 19) (1, 30, 27, 23, 24)
(1,3, 30, 28, 15) (1,1, 20,31, 13) (1, 11, 36, 33, 6)
(1, 29, 22, 30, 15) (1, 20, 10, 4, 5) (1, 8,14, 32, 29)
(1, 25, 15, 9, 31) (1, 26, 13, 18, 29) (1, 23, 19, 6, 19)
(1, 35, 11, 15, 20) (1, 22, 11, 25, 32) (1, 10, 16, 2, 20)
(1,17, 18, 27, 31) (1, 15, 29, 16, 29) (1,31, 18,1, 15)
(1,12, 34, 35, 15) (1, 33, 23, 17, 20) (1, 27, 23, 21, 14)
(1, 34, 22, 3,6) (1,21, 11,11, 18) (1,5, 33,12, 35)
(1, 6, 22, 34, 15) (1, 16, 31, 29, 18)
X3 (1,3,7,25,24) (1, 35, 30, 32, 15) (1,0,90,0)
q=237 (1, 4, 10, 30, 2) (1,14, 8,17, 31) (1, 30, 18, 2, 23)
0,0,0,0,1) (1,19, 0, 10, 32) (1,8, 18,12, 24)
(1,34, 2, 20, 19) (1, 28, 34, 15, 15) (1, 2,21, 23, 31)
(1, 13, 29, 36, 23) (1,23, 13,8, 17) (1, 25, 12, 35, 17)
(1,1, 14, 4, 22) (1,17, 2,19, 6) (1,12, 17,1, 32)
(1, 27, 23, 3, 19) (1, 20, 2, 21, 20) (1,33, 30,22, 2)
(1,11, 16, 31, 32) (1,29, 6,13, 31) (1, 16,17,7, 6)
(1, 6, 25, 14, 31) (1,32, 27,29, 8) (1,15, 8, 9, 23)
(1,5, 17, 24, 35) (1,18, 13, 33, 14) (1,7, 36, 26, 2)
(1, 21, 34, 28, 32) (1, 10, 22, 16, 22) (1, 26, 34, 27, 29)
(1, 31, 13, 34, 35) (1,9, 13,18, 2) (1,22, 28, 5, 31)
(1, 24, 3,11, 23) (1, 36, 27,6, 17)
X60 1, 27, 36, 26, 11) (1,0,0,0,0) (0,0,0,0,1)
q=41 (1,22, 11, 6, 34) (1,11, 40, 30, 38) (1, 24, 20, 33, 38)
(1, 38,11, 3, 11) (1,28,1,1,12) (1, 35, 25, 31, 12)
(1, 12, 27, 36, 28) (1, 15, 31, 27, 28) (1,34, 3,12, 34)
(1,32,24,37,3) (1,26,1,7,22) (1, 30, 23, 2, 26)

(1, 4,2, 34, 24)

(1, 16, 16, 22, 7)
(1, 18, 12, 20, 29)
(1,33, 40, 14, 29)
(1, 23, 26, 16, 22)
(1,13, 26, 38, 19)
(1,21, 39, 5, 14)
(1,19, 9, 23, 15)
(1,7,32, 11, 6)

(1,29, 29,10, 17)
(1,20, 1, 28, 13)
(1,37, 10, 18, 13)
(1, 9,21, 40, 19)
(1, 10, 20, 13, 3)
(1,3, 13,21, 14)
(1,2,39,15,7)
(1,31, 14, 17, 15)
(1,6,8, 19, 27)

(1,8,32,25,6)
(1, 36, 19, 29, 30)
(1,14, 7, 35, 35)
(1,40, 28, 32, 27)
(1,17, 16, 39, 24)
(1,5, 4, 8, 26)
(1,1, 24, 9, 30)
(1,25, 12, 24, 35)
(1,39, 27, 4,17)
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Xoa
q=41

(1,25, 4, 20, 17)
(1,15,0,8,3)
(1,3, 14, 40, 12)
(1,37,9, 34, 14)
(1,11, 22, 18, 15)
(1,23, 35,17, 24)
(1,21, 38, 36, 14)
(1, 20, 26, 28, 35)
(1,40,24,9,7)
(1, 4, 28, 21, 34)
(1, 18, 2, 35, 22)
(1,34, 39, 22, 27)
(1,12, 8,1, 6)

(1, 29, 37, 38, 30)

(1, 16, 12, 25, 30)
(1,14, 3, 39, 19)
(1,10, 2, 5, 28)
(1,39, 40, 6, 11)
(1,38, 34,7, 13)
(1,32, 29, 19, 27)
(1,0,0,0,0)
(1,27, 36,3,17)
(1,30, 17, 31, 11)
(1,35, 23, 15, 12)
(1,17, 30, 26, 11)
1,2,13,12,12)
(1,6,25,11, 6)
(1,19, 40, 32, 6)

(1,22,5,30,12)
(1,26, 23, 2, 34)
(1,5, 26, 23, 29)
(1,13, 30, 33, 24)
(1,28, 24, 29, 6)
(1,33,36,4,7)
(1,7, 12,13, 11)
(1,24, 14, 16, 35)
(1,36, 6, 37, 26)
(1, 1,7, 14, 19)
(1,31, 21, 27, 34)
(1,9, 19, 24, 38)
(0,0,0,0,1)
(1,8, 7,10, 35)

Xg
q=41

(1, 28, 16, 28, 26)
(1,0,0,0,0)
(1,36, 10, 32, 19)
(1, 35, 10, 26, 15)
(1,37, 29, 6,3)
(1,34, 15, 39, 7)
(1, 40, 31, 31, 13)
(1,29, 6, 13, 38)
(1,26, 15, 36, 28)
(1,33, 35, 12, 19)
(1,27, 12, 20, 13)
(1,1, 3,15, 17)
1,3,11,7, 22)
(1,32, 21, 38, 24)

(1,5,1, 25, 38)
(1,2, 27,10, 30)
(1,22,8,21,7)
(1,6,12,33,27)
(1,24, 10, 34, 27)
(1,17, 22, 17, 6)
(1,12, 14, 3, 14)
(1,31, 11, 27, 26)
(1,30, 17, 29, 30)
(1,11, 24, 2, 17)
(1,19, 16, 11, 27)
(1,16, 39, 4, 14)
(1, 4,19,8,17)
(1, 20, 15, 37, 19)

(1, 8,12, 30, 26)
(1,10, 32, 18, 26)
(1,9,2,9,38)

(0,0,0,0,1)
(1,13, 24, 40, 11)
(1,18, 13, 5, 28)
(1,38, 40, 22, 24)
(1, 23, 12, 35, 35)

(1,39, 11, 14, 30)
(1,21, 33, 24, 6)
(1,25, 9,16, 11)

(1,7, 36, 19, 6)

(1, 15, 14, 1, 35)
(1, 14, 10, 23, 29)

X4
q=43

(1,13, 23, 21, 15)
(1,1, 7, 40, 40)
(0,0,0,0,1)
(1,10, 6, 1, 40)
(1,3, 6,19, 36)
(1,11, 19, 37, 6)
(1,25, 18, 2, 13)
(1,19,9,7,1)
(1,6,21,39,13)
(1,41, 6, 38, 40)
(1,5, 9,42, 10)
(1,36, 34, 15, 24)
(1, 4,23,16,9)
(1,30, 29, 5, 41)
(1, 23, 25, 32, 15)

(1,0,0,0,0)
(1,39, 7, 4, 10)
(1,16, 8, 25, 9)
(1,18, 37, 14, 13)
(1,20, 13, 36, 14)
(1, 40, 0, 26, 35)
(1,7, 39, 23, 38)
(1,33, 2,24, 21)
(1,31,3,8,1)
(1,21, 27, 30, 17)
(1,24,6,9,6)

(1, 35, 10, 33, 35)
(1,8, 33,20, 41)
(1, 28, 40, 28, 24)

(1, 9,31, 35, 14)

(1,27, 39, 11, 31)
(1,2,86,29,35)
(1,32, 16, 41, 23)
(1,12, 27,18, 1)
(1,26, 31, 12, 17)
(1, 42, 36, 27, 21)
(1,34, 28, 22, 16)
(1, 14, 19, 10, 15)
(1,17, 35, 13, 16)
(1,29, 14, 31, 23)
(1,37, 35,17, 38)
(1,38, 14, 34, 17)
(1,15, 24, 3, 24)
(1,22, 2,6,36)
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X2304=DCP
q=47

(1,12, 6, 19, 18)
(1,25, 40, 13, 2)
(1,15, 43,11, 7)
(1,16, 32, 22, 34)
(1,6,11,1, 14)
(1,31, 24, 31, 14)
(1, 33,12, 35,17)
(1,42, 26,6,12)
(1,32, 6,28, 8)
(1,11, 5, 38, 27)
(0,0,0,0,1)

(1, 3,17, 25,12)
(1, 28, 23, 24, 21)
(1,18, 3, 46, 9)
(1, 30, 38, 26, 32)
(1,9,38,32,7)

(1,0,0,0,0)
(1,13, 29, 5, 34)
(1, 8,41, 3, 34)
(1,41, 25,34, 2)
(1,5, 35, 2, 34)
(1,10, 12, 27, 9)
(1,20, 33, 15, 21)
(1,21, 4,12, 14)
(1,40, 43, 37, 8)
(1,34, 18, 42, 34)
(1,29, 5,21, 24)
(1,17, 23, 29, 12)
(1,45, 33, 41, 27)
(1,19, 4,18, 18)
(1,43, 6,23, 9)
(1,14, 38, 44, 8)

(1, 23,22, 36, 4)
(1, 44, 44, 30, 34)
(1,37,7,16,17)
(1, 27,17, 17, 4)
(1,1,23,33,2)
(1, 38, 29, 45, 34)
(1, 46, 38, 8, 21)
(1,36, 1,9, 4)
(1,26, 11, 10, 42)
(1,7,18, 4, 24)
(1, 39, 25, 40, 24)
(1,2,24,14,7)
(1, 24, 28, 43, 17)
(1,22,0,7,34)
(1, 35, 36, 39, 18)
(1, 4, 38, 20, 27)

q=47

(1, 42, 19, 42, 37)
(1, 8, 30, 36, 34)
(1,28,19,7,7)
(1, 33, 25, 17, 36)
(1,23, 25,30, 1)
(1,5,4,2,21)
(1,43,22, 5, 6)
(1,2,24,13,9)
(1, 44, 21, 15, 27)
(1, 20, 38, 45, 6)
(1,24, 30, 27, 3)
(1, 30, 43, 20, 42)
(1,37, 12, 43, 4)
(1,27,11, 4, 6)
(1,41, 43, 41, 42)
(1,10,11,6,7)

(1,0,0,0,0)
(1,19, 42,1, 3)
(1,16, 38, 12, 9)
(1,31, 23, 25, 12)
(1,13, 30,3, 1)
(1,46, 35, 9, 6)
(1,29, 28, 35, 34)
(1,17, 14, 38, 4)
(1,39, 33, 18, 42)
(1,7, 24,34, 32)
(0,0,0,0,1)

(1, 4,18, 26, 42)
(1, 26, 46, 23, 12)
(1,15, 17, 8, 14)
(1, 6,34, 21, 34)
(1, 40, 25, 14, 37)

(1,11, 4, 24, 2)
(1,22, 36, 19, 25)
(1,34, 23, 11, 37)
(1,25, 3,16, 14)
(1, 35, 16, 40, 36)
(1,38, 3,28, 8)
(1,9, 4, 33, 16)
(1,12, 23, 22, 6)
(1,18, 41, 44, 18)
(1,36, 23, 10, 4)
(1, 45, 32, 32, 27)
(1,21, 32, 39, 37)
(1,14, 7,31, 34)
(1,32, 17, 46, 25)
(1,1, 46, 29, 17)
(1,3,34,37,2)

q=47

(1,0,0,0,0)
(1,30, 43, 2, 18)
(1, 24, 16, 40, 6)
(1,3, 38, 42, 28)
(1,17, 13, 37, 1)
(1,40,37,1,1)
(1,39, 28, 16, 2)
(1,42, 43, 21, 42)
(1, 45, 21, 26, 34)
(1,14, 43, 29, 1)
(1, 25,13, 23, 8)
(1,31,3,33,2)
(1,27, 44, 27, 14)
(1,2,14, 41, 4)
(1,6,31,3,8)
(1,20,9, 31, 4)

(1,36, 44, 32, 14)
(1,32, 37,10, 3)
(1,43, 43,18, 9)
(1,9, 35,22, 34)
(1,44, 3,35, 2)
(1,7, 43,43, 12)
1, 1,226, 27)
(1, 16, 4, 38, 34)
(1,33,7,36,32)
(1,35, 33, 19, 32)
(1,11, 39, 11, 3)
(1, 10, 8, 39, 16)
(1, 15, 10, 34, 1)
(1,34, 17,9, 16)
(1, 8,14, 14, 21)
(1,28, 36,7, 12)

(1,12, 12, 28, 37)
(0,0,0,0,1)
(1,18, 32, 44, 17)
(1,4,23,20,2)
(1,5, 45, 25, 12)
(1,21,35,4,7)
(1, 26, 28, 8, 42)
(1,46, 43,17, 1)
(1,13, 21, 13, 1)
(1,37, 29,5, 8)
(1,19, 26, 46, 1)
(1,38, 25, 15, 27)
(1,22, 32,30, 8)
(1,29, 12, 24, 6)
(1,41, 28, 45, 3)
(1,23, 40, 12, 4)
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Xa0 (1,0,0,0,0) (@, w4, w27 5,13 @, wb, w2, wd, w?
q =49 (L w2l w1l )7 %5 (1, w35, w3 1, w33 (L w26, w33 17 )
w2 =w-—3 1,5,1, wlo, w35) 1, wl? 4w, w3) 1,4,0, w33, w4l)
(L, w25, 2, w25, 129 (1, w27, w28, 45, 1,23) (1, w20, 43 2 1,23
(1wl 25 143 113 (1,3, w37, w22, 19 @ w w7, 6, w)
(L w30, 34 1L 1,23 (1, w9, 3, wl4 w27 (L w5, wAl 5, 125
@ w’, w2, w39, »3d) (0,0,0,0,1) @, w2, 6, w2, w3
(L w, 6, w20, w3 (1, wl2, w41 126,27 (1 wi8 w22 4 19
(1wl w27 w44 ) (1, w13, 6, w37, w3 (L wl0 119, 19, 439
(1, w36, 5, 146, 1,19 (1, w3, w4 15,7 (@, wil, wl7 w27, 27
(1 w33, w5, w34, wd) (1, w2, wll, 138, 19 (L w2, w2, 118, 13
(L w37, w29, w35, 15 (1,2, w38, WAl 129 (L w47, w7, w13, w7
(L, w3, 10 3L 4,37 (1, w28, w7, w4 wl9) (L, w3, w29, 136, 411
(L w34, w25, w2, Wi (1, w22, w47 4 @ w* w’, w2 w)
(L w39, w15, 119 1,29 (1, w*, w39, 16, 133 (1 w4, 120 1,28 31
(@, w38’ o} w29y w43) (1,6,4, w42’ w3) (@, w5’ w35’ w23, w45)
(1, w2, 19, )30 )29 1,1, w25, 3, w5
X20 (1,0,0,0,0) @, w2 w2 w27 Wil @, w1, w20, w15
q=49 1, w, wlZ’ w37y w29) 1 w4 2, w43 w45) [ 1 w14 w';—>y w2’ w33)
w2 —w—3 (1’ w28’ w46y w19y w17) (1 w39 w25’ 5, w3) (1 w38 w34’ 1 wl7)
(L1, w39, wid ) (1, w?, w22, 146, 4,39 (1, w20, 135, 130 4,21
1, w9, wl8 w9, w15) 1,4, wsl, 6, w31) 1, wlo, w, wG, w7)
(@ wil w7, w2l 1l (1, w2, w45, 128, 7 (1, wl7, wl3 38, 27
(L w37, 3, w5, 13y (1,5, w7, w, w?s) (1, wb, w13, 135, 139
@, w8 wb w12 49 1, w2, 6, w3 wdh (0,0,0,0,1)
(L w22, w37 w47 1,35 (1, w, w33 3L 13 (1, w3, wil, 3, wl?
(L3, w29, w5, w3l (1, w23, w22 34yl (1, w19, w34 110 15
(L w5, w35, 4, w3) (1, w3, w33, 129, 441 (1, w6, 133 126,41
(L, w2, 20, 42 1,29 (1, w26, w25 122 4,35 (@, w3 w3, w7 W)
(L w47, w3, w36, w7 (1, w?, wh, wis w) (1, w3l w45, 4l 2L
(1’ w25’ w38, w18, w4l) (1, w30y w3l’ w4’ w33 (1, w27y w30’ wl4’ wlB)
(L, w333 w33, wd) (1,2, w25, W17, 27 (1, wis, w17, 44 17
(1’ w36’ w33, w39y w13) (1, 6y wlg, w25 w45) (1, w35y w17 w3’ w27)
(L wl2, 45 1L 1,43 (1, w3 w15 2, w)
Xo4 (1,4, 23, 6,30) (1, 20, 37, 26, 19) (1,47, 33,37, 34)
q=53 (1, 2,40, 47, 2) (1, 29, 10, 21, 33) (1,11, 32, 14, 41)
(1,0,0,0,0) (1,24,7,35,12) (1,26, 34, 16, 18)
(1,17, 51, 20, 27) (1,8,11,9,19) (1, 45, 6, 15, 31)
(1,41,6,12,2) (1, 25, 45, 52, 14) (1,14, 2, 19, 48)

(1, 40, 25, 23, 45)
(1,51, 32, 28, 39)
(1, 43, 23, 42, 50)
(1, 38, 18, 31, 35)
(1, 19, 31, 48, 35)
(1,18, 9,32, 32)
(1, 13, 43, 24, 12)
(1,31, 42, 22, 45)
(1, 27, 14, 38, 50)
(1, 50, 43, 45, 35)
(1,33, 19, 11, 18)
(0,0,0,0,1)
(1,21, 30, 8, 45)

(1,12, 10, 2, 35)
(1,23, 41, 43, 33)
(1,16, 21, 40, 32)
(1,28, 41, 33, 45)
(1,52,17, 36, 12)
(1,37,32,3,31)
(1,1,1,1,51)
(1,3, 32,13, 50)
(1,49, 3,7, 19)
(1,46, 14, 25, 32)
(1, 35, 31, 46, 26)
(1,34, 1,10, 30)
(1,32, 31,29, 19)

(1,22, 14, 44, 2)
(1,10, 22, 27, 41)
(1,48, 24, 4, 27)
(1,30, 44, 49, 39)
(1,6,1,30,31)
(1, 36, 20, 39, 51)
(1,42, 25, 34, 14)
(1,44, 46, 51, 39)
(1,15, 19, 17, 20)
(1, 39, 20, 50, 35)
(1,9, 49, 41, 39)
1,5,12,18,31)
(1,7, 35,5, 12)
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(1,0,0,0,0)
(1, 38, 47, 33, 35)
(1, 46, 21, 32, 48)

(1,28, 15, 35, 14)
(1,9, 30, 51, 19)
(1,51, 12, 43, 48)
(1, 48, 15, 29, 26)
(1,47, 22, 13, 18)
(1, 35, 46, 4, 23)
(1, 14, 30, 2, 26)
(1,39, 41,9, 35)
(1,29, 37,5, 23)
(1,11, 38, 12, 14)
(1,23, 32, 45, 8)
(1,37, 35, 40, 51)
(1,13, 34, 21, 2)

(0,0,0,0,1)
(1,20, 39, 37, 18)
(1,41, 26, 30, 2)
(1, 45, 23, 39, 48)
(1,43, 14, 7, 33)
(1,8, 14,1, 8)
(1,7,3,8,41)
(1,27, 42, 34, 21)
(1,30, 51, 24, 18)
(1,32, 29, 36, 21)
(1, 24, 42, 25, 21)
(1,15, 35, 3, 2)
(1,34, 5, 28, 30)
(1,25, 17, 18, 3)
(1,17, 15, 16, 33)
(1,40, 51, 42, 12)
(1,31, 3,11, 21)
(1,6, 40, 50, 8)

(1,12, 24, 48, 14)
(1,52, 42, 46, 31)
(1,2, 26, 20, 26)
(1, 16, 33, 49, 35)
(1,3, 0,47, 18)
(1, 44, 37, 26, 31)
(1, 5,27, 38, 35)
(1,26, 41, 27, 2)
(1,18, 31, 23, 3)
(1,42, 39, 52, 5)
(1,36, 37,17, 33)
(1,22, 11, 6,12)
(1, 10, 33, 10, 30)
(1,1, 4,19, 18)
(1,19, 11, 44, 50)
(1,33, 43, 22, 22)
(1,50, 45, 14, 31)
(1, 4, 44, 41, 20)

(1,0,0,0,0)
(1,5, 41, 43, 51)
(1,34, 19, 51, 29)
(1,18, 54, 50, 19)
(1,54, 19, 47, 51)
(1, 49, 20, 35, 9)
(1,17, 50, 29, 16)
(1,11, 55, 49, 35)
(1,23,37,6,27)
(1,51, 5, 33, 3)
(1,14, 19, 18, 36)
(1,58, 53, 55, 19)
(1,27, 1, 20, 49)
(1,19, 38, 25, 28)
(1,50, 5,19, 28)
(1,6, 31, 8,53)
(1,29, 12, 17, 12)
(1,24, 18, 37, 27)
(1,52, 40, 42, 51)
(1,3,58,13, 19)

(1,20, 23, 24, 53)
(1, 55, 28, 36, 9)
(1, 46, 58, 22, 49)
(1,28, 46, 9, 51)
(1,26, 2, 56, 15)
(1,44, 7, 34, 48)
(1, 56, 50, 54, 22)
(1,35, 18, 23, 51)
(1,2, 4, 4, 35)
(1,48, 49, 16, 17)
(1,57, 10, 38, 35)
(1,16, 32, 27, 19)
(1,10, 4, 31, 28)
(1,7,12, 11, 15)
(1,43, 16, 14, 27)
(1,40, 34,52, 9)
(1,9, 24,39, 17)
(1,37, 7,41, 27)
(1,22,58,21,9)
(1,15, 58, 10, 26)

(1,31, 45, 58, 12)
(1,32, 47, 32, 12)
(1,41, 13, 3,3)
(1, 33, 10, 26, 45)
(1, 4,53, 2, 15)
(1, 47, 41, 30, 36)
(0,0,0,0,1)
(1,21, 1, 44, 19)
(1,30, 7, 48, 45)
(1, 36, 32, 15, 29)
(1,13,0,53, 19)
(1, 25, 36, 1, 36)
(1, 42, 38, 45, 29)
(1,8, 35, 12, 36)
(1,1, 30, 46, 57)
(1, 38, 38, 57, 48)
(1,39, 13, 40, 41)
(1, 53, 21, 28, 22)
(1,12, 23, 7, 36)
(1, 45, 54, 5, 45)

18
X12
q=>53
X120
q=>59
X24
q=259

(1, 36, 40, 12, 53)
(1,58, 45, 9, 19)
(1,13, 7,42, 17)
(1,12, 3, 51, 20)
(1, 25, 38, 50, 41)
(1,19, 1, 31, 45)
(1,24, 28, 2, 51)
(1,11, 1, 5, 48)
(1,33, 54, 11, 29)
(1,28, 35,18, 1)
(1, 45, 17, 26, 41)
(1, 39, 31, 43, 15)
(1, 17, 39, 45, 20)
(1,32, 1,23, 16)
(1, 16,58, 1, 28)
(1,23, 21, 19, 28)
(1,31, 38, 27, 41)
(1,37, 58, 24, 41)
(1,57, 23,15, 1)
(1,29, 22,8, 1)

(1, 54, 38, 46, 46)
(1,41, 13, 21, 26)
(1,55, 7, 58, 28)
(1,8, 48, 38, 5)
(1, 30, 21, 32, 36)
(0,0,0,0,1)
(1,51, 16, 14, 48)
(1, 40, 35, 36, 9)
(1,53, 43, 49, 53)
(1,27, 50, 57, 19)
(1, 35, 35, 48, 5)
(1,10, 5,7, 27)
(1, 4, 42, 47, 20)
(1,38, 13, 22, 51)
(1, 20, 11, 16, 48)
(1, 9,17, 33, 29)
(1, 15, 48, 29, 51)
(1, 47, 24, 10, 35)
(1,6, 30, 55, 35)
(1,52, 57, 6, 41)

(1,5, 25, 4, 45)
(1,18, 6, 34, 28)
(1,21, 44, 35, 20)
(1,3, 22, 30, 25)
(1, 34, 46, 56, 45)
(1,1, 25,53, 12)
(1,44, 4,52, 9)
(1,0,0,0,0)
(1,43, 52, 20, 57)
(1,26, 12, 41, 19)
(1,14, 23, 28, 51)
(1,49, 34, 3, 36)
(1,2, 36,40, 9)
(1,7, 16, 44, 41)
(1,56, 45, 39, 9)
(1,42, 16, 17, 48)
(1, 46, 18, 13, 29)
(1,48, 37, 25, 36)
(1,22, 1,54, 36)
(1,50, 18, 37, 16)
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X5
q=>59

(1,0,0,0,0)
(1,23, 52, 12, 29)
(1,53, 5,54, 4)
(1,11, 13, 18, 46)
(1,6, 30, 31, 35)
(1,58, 11, 30, 27)
(1,44, 35, 39, 9)
(1,52, 40, 47, 27)
(1,34, 15, 34, 35)
(1,7, 14, 45, 20)
(1, 40, 19, 11, 25)
(1,5, 33, 29, 5)
(1,49, 39, 15, 45)
(1,25, 3,57, 41)
(1,17, 19, 48, 3)
(1,1, 30,32, 12)
(1, 46, 55, 43, 12)
(1,32, 31,17, 29)
(1,47, 45, 56, 4)
(1,33, 50, 9, 35)

(1,24, 54, 52, 25)
(1,3, 36, 35, 15)
(1,19, 28, 27, 1)
(1, 10, 30, 10, 3)
(1,15, 36, 41, 36)
(1,8, 35,16, 4)
(1,12, 46, 25, 3)
(1, 30, 31, 40, 22)
(1,13, 15, 38, 48)
(1, 50, 42, 24, 45)
(1,22, 11, 42, 17)
(1,57,39,7,27)
(1,38, 41, 23, 41)
(1,31,0,53,9)
(1, 26, 42, 55, 51)
(1, 48, 19, 14, 29)
(1, 18, 50, 28, 5)
(1,42, 1,8,17)
(1, 4,12, 1, 29)
1,2,17,51,22)

(1,55, 0,21, 25)
(0,0,00, 1)
(1,41, 15, 13, 9)
(1, 56, 17, 20, 7)
(1,43, 21, 44, 27)
(1,45, 16, 6, 5)
(1,35, 53, 37, 26)
(1,51, 15, 58, 3)
(1,21, 4,49, 17)
(1, 16, 22, 46, 19)
(1,29, 15, 2, 12)
(1,14, 19, 5, 41)
(1, 54, 24, 26, 26)
(1,27, 43, 50, 46)
(1,28, 41, 19, 29)
(1, 39, 24, 3, 15)
(1,37, 49, 33, 36)
(1,9, 14, 22, 19)
(1, 36, 57, 4, 29)
(1,20, 20, 36, 1)

The new example foq = 125:

X72 = {((Lt, f(t), —g(t), tg(t) — f(1)?) : tin GF(q)} U {((0,0,0,0, 1))}
wheref andg are as follows:

f= x4 2x57 + 4x°% 4+ 2x23 + X1 + 3x0 + 4x*° 4 4x®3 4 ax39 + 2x37
4 ax35 4 3633 4 ax3h 1 429 4 3% 4 4x?3 1 x19 1 ax17 4 ax15

+ 4x13 4 3x1 + 2x% + x7 + 4x° + 4x
g = x1174 3115 4 (113 107 4 3,105, 3,103 | 3,101 | 3,95 5,01 | 4,87
+ 2x85 4+ 3x83 4 277 4+ 2¢O + 4x "3 4 4x "1 4+ x57 4 2x8° 4 2x5L

44559 4 w57 4 %55 4 4x53 1 a4x49 1 347 4 2x85 4 a4x®3 1 oyl 4 4y 39

4 x33 1 ox3 4 4x9 1 3¢5 1 ax®3 4 21 4 }19 4 ax17 Ly 15 4 3,13

+ 4xM 4 2x7 + 4x3 + 4x.

Noting that he points of the BLT-set other thano) = ((0, 0, 0, 0, 1)) are indexed by

the elements o6 F(125) (with respect to the second coordinate), we describe the orbits

on X72 as a partition ofz F(125) U {oo}, wherew® = 2w + 2:

{0,1,2, 3,4, (c0)},

{w®

, W

19’ w21’ w26’
91’ w92 95’ w
wl7 3’ w

wlOl’

w

bl

2

g, &

97’ w99’ w
3

w

35

8
32

w
w60

29

30

, W

)
107

9

33

, W

w39

113

w

, W

W,

i w34’ w41’ w

96’ w103’ w105’ w1067 wlOS}’
37

51’ w53
119

9

13, w14

42

’

S

115

g

12

b w4o7

w

g

47

€ €

w
66 w67

’
’ ’

’ ’

w123} ,

15

b w b
w48

’ ’ ’ ’

wZO 22 24

’ ’ ’

w547 w55
w75

w507 w527

w74 w76

’

’
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w77’ w78’ w80’ w82’ w847 w867 w877 w897 w907 w947 w987 wlOO, wlOZ’ w104’
w109’ wllO, wlll, w112, w114’ wll6’ wll7’ w118 w120 wlZl’ wlZZ}'

’ ’

5. Final remarks

We conclude with some remarks about the data. The result4fifnply that the
stabiliser inPI"O(5, q) of the Garey semifield BLT-set ove® F(q) has order g§h, where
q = 3" andh > 3. While this is true foth > 3, forh = 3, the Ganley BLT-set has a group
of order 648= 8qgh. This was fist noted by us via our software. SeE for a complete
list of group orders of the known infinite families (in particular, orders for small values
of q).

The exampleXa3p40ver the field of order 47 was constructed in 1997 by De Clerck and
Penttila [L1] by different methods, but not published. That this example and 2Rver
the field of order 23 are sporadic is suggested by the result§.of [

That the example of7] has a goup of order 26 730 follows from the calculation of
the goup of the corresponding ovoid first described3d][ and the fact that by1[4] the
group of the BLT-set has a unique fixed point on the BLT-set. An alternative proof, using
the fundamental theorem gf-clan geometry appears i 9].

The exampleX7; over the fieldbf order 125 was constructed in MAGMA using different
techniques to those described earlier. To deiteerthegroup of this example, an adaptation
of the conic invariant of Williams34] was ugd. From this, we have a unique cortic
meding X72 in 6 points, these being the points ov@i-(5), and all otlers meetingX72
in at most 4 points. Hence the stabiligdrof X72 in PI"O(5, 125) is contained in the
stabiliserG of X72NC in PI'O(5, 125). Since|G| = 4320, we can loop over all elements
of G and see if they stabilis¥7> in order to determineH. We find thatH| = 72 and
H = S x Ca, with orbit structurg{72, 242, 6}. (The 4 orbits are actually distinguished by
how many conics meeting7, in 4 points a point lies on.) Se&§] for further detail.

We finish with a description of the exampl¥729 over the fieldof order 29, which
suggests that it is sporadic.

LetV beGF(29)° andQ be the quadratic form o¥ given by

Q(X) = X + X3 + X3 + XZ + X2 + X&.

ThenQ(1,1,1,1,1,1) isnot 0, sOW = {X|X1 + X2 + X3+ X4 + X5 + Xg = O} is a
nondegenerate subspace. Bebe the set of all images of the poift 1, 1, 1, 7, 18) under
permutations of the coordinates. ThPns a setof 30 points ofW. P is a BLT-set of W
(considered a® (5, 29)) whose group iss.

Theorem. LetV = GF(29%and Q: V — GF(29) be given by @Qx1, X2, X3, X4, X5, Xg)

=x2 4+ x2+x2+x2+x2+x2 Lete=(1,1,1,1,1,)and W= e-, sohat W is a
nondegenerate subspace of V. Lga6t on V by permuting the coordinates. [l2be the
orbitof (1,1, 1, 1,7, 18) under $. ThenP is a BLT-set of W, and the full stabiliser Bf
in PGOG5,29 is .

Proof. The polarform ofQ is f (X, y) = 2X1Yy1+ 2X2Y2 + 2X3Y3 + 2X4Y4 + 2X5Y5 + 2X6 V6.
SfixesWandf(e (1,1,1,1,7,18) = 0(mod 29, soP is a subset ofW. A calculation
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shows thathe discriminant of the restriction @ to W is anonsquare, so we must show
that f (x, y) f(x, 2) f(y, 2) is a nonsquare, for all distinct, y, z € P. It is suficient to
show thatf (x, y) isanonsquare, for distinct, y € P. There ae 5cases:

f(x,y) =218 + 7.1+ 1.7+ 1% + 12+ 1%) = 15(mod 29;
f(x,y) = 2(187+ 7.18+4 1% + 12 + 12 + 12) = 19(mod 29;
f(x,y) =2(187+ 7.1+ 1.18+4 12 4+ 12 + 1?) = 18(mod 29;
f(X,y) =2(181+ 7.7+ 1.18+4 1% + 12 + 1%) = 2 (mod 29;
f(x,y) =2(181+4 7.1+ 1184 1.7+ 1%+ 1%) = 17(mod 29.

These are all nonsquares modulo 29Pss a BLT-setP admitsSs, which isa madmal
subgroup ofP G O(5, 29), so thefull stabiliser of P in PG O(5, 29) is .

The previously known BLT-sets iQ(4, 29) were the classical BLT-set, with a group of
order 1461 600, the Fisher-Thas/Walker/Kantor BLT-set, with a group of order 24 360, the
Fisher BLT-set, with a group of order 1800, and the Penttila BLT-set, with a group of order
60. HenceP is a new BLT-set.

Since S acts transitively orP, P gives rise to just one flock of the quadratic cone of
P G(3, 29) and just one translation plane of ordef2® also givesa GQ of orde(2%?, 29)
via the Knarr construction.
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