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a b s t r a c t

In non-invasive thermal diagnostics, accurate correlations between the thermal image
at skin surface and interior human physiology are desired. In this work, an estimation
methodology to determine unknown geometrical parameters of an embedded tumor is
proposed. We define a functional that represents the mismatch between a measured
experimental temperature profile, which may be obtained by infrared thermography on
the skin surface, and the solution of an appropriate boundary problem. This functional
is related to the geometrical parameters through the solution of the boundary problem,
in such a way that finding the minimum of this functional form also means finding the
unknown geometrical parameters of the embedded tumor. Sensitivity analysis techniques
coupled with the adjoint method were considered to compute the shape derivative of the
functional. Then, a nonmonotone spectral projected gradient method was implemented to
solve the optimization problem of finding the optimal geometric parameters.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that body temperature is an indicator of health. In general, the body surface temperature is controlled
by the blood circulation underneath the skin, local metabolism, and the heat exchange between the skin and its
environment [1–3]. Changes in any of these parameters can induce variations in temperature and heat flux at the skin
surface reflecting the physiological state of the human body. The particular tumor architecture and angiogenesis processes
can lead to an abnormal situation. Inflammation, metabolic rate, interstitial hypertension, abnormal vessel morphology
and lack of response to homeostatic signals are some of the particular features that make tumors to behave differently than
normal tissue in terms of heat production and dissipation. Skin temperature above a breast tumor or amalignantmelanoma,
a tumor of melanocytes which are found predominantly in skin, has been found to be several degrees higher than that of
the surrounding area [4–7].

Therefore, the abnormal temperature on the skin surface can be used in order to predict the location and size of an
embedded tumor as well as to study the tumor evolution after a treatment procedure.

Medical infrared thermography is a non-invasive and non-contact functional imaging method that measures the
radiation emitted from the skin surface and provides information about subtle temperature changes in it. Medical
applications of infrared thermography are not a recent phenomenon. However, in the past years their success was rather
limited mainly due to the complexity, high cost, and poor sensitivity provided by the generation of infrared cameras that
were available at that time. Nowadays, advances in infrared technology have again promoted its medical application as
a promising non-invasive tool for imaging the functionality of superficial layers of tissues and the influence of vascular,
neurogenic and metabolic processes that affect them. In [7], Santa Cruz et al. have investigated the correlation, by means of
thermography, in patients treated with boron neutron capture therapy (BNCT), between the spatial extension of the acute
skin reaction and the superficial dose distribution, in order to determine tolerance doses and therefore to optimize the BNCT
treatment. They have also concluded that given the ability of thermography to observe the functional aspects of tissues, the
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technique can help to locate abnormally high temperature regions as well as melanoma nodules that are virtually invisible
in CT images.

The objective of this paper is the development of a methodology to estimate the location and size of an embedded
(malignant melanoma) tumor region with the help of abnormal temperature profiles measured on the skin surface. We
have defined a functional that represents the mismatch between a measured experimental temperature profile at the skin
surface and the solution of the Pennes equation [8] with appropriate boundary conditions. This bioheat equation describes
the heat transfer inside living tissues and it is widely used to solve the temperature distribution for thermal therapy [9–12].
According to literature [4–7] healthy and tumor regions have different thermal coefficient values and heat sources. We have
therefore assumed that all the thermal coefficients and heat sources are piecewise constant functions. In this way we can
view the location problem as a problem of finding the shape of a subdomain ω ⊂ Ω , using the knowledge of its (constant)
density and the measurement data in some open subset of the boundary ∂Ω , where Ω is the domain where the Pennes
equation is considered. The optimal shape is the one that minimize the objective functional defined, and in order to find this
minimum we have employed some results from the shape sensitivity analysis theory.

After we have introduced the medical facts about the skin cancer and the relation to the body temperature, the plan for
the rest of this work is as follows: In Section 2 we describe the mathematical model proposed to simulate the heat transfer
in a human body in 2D domains. The following section is devoted to state the inverse problem and define the functional to
be minimized. Then, in Section 4 we present an introduction to the theory of sensitivity analysis and shape form derivative.
In Section 5 we present the computations of the shape form derivative that allows us to compute the minimum of the
functional defined in Section 3. After that, in Section 6 the results obtained from simulationswith andwithout randomnoise
are exposed. Moreover we compare these results with the simulations obtained using another optimization algorithm, [13].
Finally, in Section 7 some comments and conclusions are given and an Appendix is also present.

2. Mathematical model

A number of bioheat transfer equations for living tissues have been proposed since the landmark paper by Pennes
appeared in 1948, [8]. The main theoretical contribution is the suggestion that the rate of heat transfer between the blood
and tissue is proportional to the product of the volumetric perfusion rate and to the difference between the arterial blood
temperature, and the local tissue temperature. The relationship was expressed as follows:

hb = Gbρbcb(1 − κ)(Tb − u)

where hb is the rate of heat transfer per unit volume of tissue, Gb is the perfusion rate per unit volume of tissue, ρb is the
density of blood, cb is the specific heat of blood, κ is a factor that accounts for incomplete thermal equilibrium between
blood and tissue, Tb is the temperature of arterial blood, and u is the local tissue temperature. Although at first κ can take
values in the interval 0 < κ < 1, Pennes, in [8], as in most of the works related, set κ = 0. Also, he considered arterial
temperature constant and equal to the body core temperature.

The proposed equation also includes a term that represents the heat transfer by conduction through the tissue and a term
that represents the volumetric metabolic heat generation. These two terms coupled with the term that represents the heat
transfer due to the circulation of blood give rise to the following steady-state Pennes equation:

− div(σ (x)∇u(x))+ k(x)(u(x)− Tb) = q(x), x ∈ Ω ⊂ Rn, n = 2, 3 (1)

where σ is the thermal conductivity, k = Gbρbcb is the perfusion coefficient, q is the metabolic heat source and Tb is the
constant blood temperature. For convenience from now on we will denote Q = q + kTb.

Using the fact that the thermal conductivity, the perfusion and themetabolic activity in amelanoma tumor is significantly
higher than in normal tissue, we have considered that all these coefficients are piecewise continuous. For example, we can
define the thermal conductivity by:

σ(x) =


σ1, if x ∈ Ω − ω,
σ0, if x ∈ ω,

(2)

where ω represents the tumor region and Ω − ω the healthy tissue (see Fig. 1). Then, if we define u1 = u|Ω−ω and
u0 = u|ω we arrive to the following transmission problem:

(P)



−σ11u1 + k1u1 = Q1, inΩ − ω,
−σ01u0 + k0u0 = Q0, in ω,
u1 = u0, on ∂ω,

−σ1
∂u1

∂η
= −σ0

∂u0

∂η
, on ∂ω,

−σ1
∂u1

∂η
= α(u1 − Ta), on Γu,

−σ1
∂u1

∂η
= 0, on Γl,

u1 = Tb, on Γb,

(3)
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Fig. 1. Two dimensional domain.Ω − ω healthy tissue and ω tumor region.

where α is a heat transfer coefficient, Ta is the ambient temperature,Ω − ω is the domain of healthy tissue, ω is the tumor
domain andη is the outward pointing unit normal.Wehave considered the so called transmission conditions on ∂ω, whereas
on ∂Ω different boundary conditions were imposed. On the bottom boundary, a constant core temperature was assumed.
On the other hand, on the lateral boundaries we have adopted an adiabatic condition because we have assumed that at
positions far from the center of the domain the temperature field is almost not affected by any source located near the center
or any external heating or cooling. Finally, on the upper boundary a convective condition was assumed, which represents
the interchange of temperature between the body and the environment.

It is possible to consider the evaporation on the skin surface, in that case we have to consider a time evolution heat
equation, since the humidity coefficient depends on time.

2.1. Weak formulation of the problem

The problem described above can be formulated in a weak sense as we show below.
If we assume that u is a solution to problem (P), multiplying the partial differential equation by a function v ∈ H1(Ω),

integrating overΩ and using the Green formula, we obtain:∫
Ω−ω

(σ1∇u.∇v + k1uv) dx +

∫
ω

(σ0∇u.∇v + k0uv) dx −

∫
∂Ω

σ1(∇u.η) dΓ =

∫
Ω−ω

Q1v dx +

∫
ω

Q0v dx. (4)

To simplify the notation, it is useful to define new coefficients k(x) and Q (x) as we have done in (2), in this way Eq. (4) can
be transformed into:∫

Ω

(σ∇u.∇v + kuv) dx −

∫
∂Ω

σ(∇u.η) dΓ =

∫
Ω

Qv dx. (5)

Since ∂Ω = Γb ∪ Γu ∪ Γl, and using the boundary conditions, the boundary integral can be written as:∫
∂Ω

σ(∇u.η)v dΓ = −α

∫
Γu

(u − Ta)v dΓ +

∫
Γb

σ(∇u.η)v dΓ . (6)

The last term in the right hand side, arises because a nonhomogeneous boundary condition was imposed on Γb. Following
the ideas in [14], we can pose our problem as we were dealing with a homogeneous Dirichlet condition. First, we define the
following Hilbert space:

V(Ω) = {v ∈ H1(Ω) : v = 0 on Γb}, (7)

where the equality on Γb is understood in the sense of the Trace [14] and we consider the following bilinear and linear form
defined by:

a(u, v) =

∫
Ω

σ(x)∇u.∇v dx +

∫
Ω

k(x)uv dx + α

∫
Γu

uv dΓ , (8)

l̃(v) =

∫
Ω

Q (x)v dx + αTa

∫
Γu

v dΓ . (9)

Next, we suppose that ub ∈ H1(Ω) is such that ub = Tb on Γb. Then, we obtain the weak formulation:Find u ∈ H1(Ω) such that
u = ub + w, w ∈ V(Ω)

a(w, v) = l̃(v)− a(ub, v), ∀ v ∈ V(Ω).

(10)
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In this work, we will consider ub ≡ Tb inΩ , so we can finally write the weak formulation problem as:
Find u ∈ V(Ω) such that
a(u, v) = l(v), ∀ v ∈ V(Ω),

(11)

where l(v) = l̃(v) − a(Tb, v). This weak formulation of the problem will be useful to compute the shape derivative of an
objective functional that we will define in the next section.

3. Inverse problem

According to [4,5,7], the presence of a highly vascularized tumor can lead to the increase of local blood perfusion and the
capacity of metabolic heat source and therefore this causes an increase of temperature at the skin surface. Then, the idea is
to use the abnormal temperature at skin surface in order to predict the location, and size of the embedded tumor. Therefore,
we have to solve the following inverse problem:

• Given constants Tb, Ta, α and a measured temperature profile um on the upper boundary Γu, find a subdomain ω∗
⊂ Ω

such that the solution uω∗ of the boundary problem (P) with ω = ω∗ verifies uω∗ = um on Γu.

The unknown ω∗ is reached when the objective function:

ψ(ω) =
1
2

∫
Γu

(u(ω)− um)
2dΓ (12)

vanishes, that means ψ has a minimum at ω∗.
In the next sectionwe present the shape sensitivity analysis in order to compute theminimumof the objective functional

defined above.

4. Introduction to shape sensitivity analysis

We will briefly review the most important aspect of shape sensitivity analysis.
The main objective of sensitivity analysis is to determine quality and amount of change in the behavior of a system

when, in some way, a set of control variables is modified. Among many types of control possibilities, one of them is to take
the geometry of the domain Ω where the system is defined as the control variable [15,16]. This case is known as shape
sensitivity analysis and the typical problem is to find the shape which is optimal in such a way that it minimizes a certain
objective functional while satisfying given constraints. In many cases, the functional being solved depends on the solution
of a given boundary problem defined on the variable domain.

Optimization problems with constraints given by variational equations or their corresponding boundary problems arise
naturally in many areas of science. For example in [17] it is considered an inverse acoustic scattering problem. The goal is to
find the shape of an object immersed in an acoustic medium. The optimal shape is the one that minimizes a functional that
measures the difference between the scattering signal corresponding to a trial solution and the measured scattering data
available at certain locations. The scattering signal satisfies the Helmholtz equation with Sommerfeld condition imposed at
infinity. In aerodynamics design problems, the objective is to find the optimal shape of a lifting surface. The cost functional
in this problem depends on the flow variables at the surface of the airfoil and the flow variables are the solution of a flow
problem that can be governed by the Euler or Navier–Stokes equations. In mechanics engineering the crack growth of an
elastic body is viewed as a shape change and the energy release rate can be computed. The cost functional in this case is the
total potential energy and the variational problem is the equilibrium equation [18,19].

What is common among all the problemsmentioned above is that they can be posed as optimization problemswherewe
search for a set of parameters, called the design or decision variables, that give the optimal value of an objective function that
measures the efficiency of the system. The system is governed by a boundary-value problem called the primal problem or
state equation. The variables of the primal problem are called the state variables and the objective function usually depends
on them. Therefore the state equation can be seen as a constraint on the valid set of state variables that appear in the
definition of the objective function. If the problem is differentiable, gradient-based algorithms can be used, and besides the
value of the objective function and constraints, these methods require the calculation of their derivatives with respect to
the design variables. In the next sections we show how to calculate the derivative of an objective function, when the design
variable is the shape of the domain where the problem is defined.

4.1. Shape sensitivity analysis

Suppose that the system under study is governed by the following variational problem:
Find uΩ ∈ W(Ω) such that
aΩ(uΩ , v) = lΩ(v), ∀ v ∈ W(Ω),

(13)
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where W(Ω) is an appropriate Hilbert space, aΩ(·, ·) is a symmetric, coercive and continuous bilinear form and lΩ(·) is a
continuous linear form [20]. With the subindex Ω we would like to emphasize the dependence of a(·, ·), l(·) and u on the
domainΩ .

Assume that for this system we have a generic functional form Ψ , that depends on Ω in an explicit way and also in an
implicit way through the solution of the variational problem (13). So we have

ψ(Ω) := Ψ (Ω, uΩ). (14)

The goal is to find a domainΩ∗ in a family A of admissible domains such that:

ψ(Ω∗) ≤ ψ(Ω), ∀ Ω ∈ A. (15)

Observe that this problem leads to the following problems: (i) the existence of an optimal domain, (ii) the characterization
of the optimal domains and (iii) the construction of an algorithm to calculate one of the optimal domains. These two last
problems are extremely associated with the computation of a derivative of the application:

Ω → ψ(Ω) ∈ R. (16)

One difficulty in defining this derivative is that A has not a vectorial space structure. One way to overcome this problem is
to use the method proposed originally in [21] and widely discussed by [22]. The main idea is, given a field V : Rn

→ Rn,
define a map from the reference domainΩ in the following way

xt = pt(x) = x + tV (x), t ∈ R+ (17)

where R+
= {t ≥ 0}. So this approach simulates a change in shape by a known motion from an initial configuration to a

deformed configuration defined by:

Ωt = {xt ∈ Rn
: ∃ x ∈ Ω, xt = pt(x)},

∂Ωt = {xt ∈ Rn
: ∃ x ∈ ∂Ω, xt = pt(x)}.

In this new perturbed configurationΩt we have to consider a new variational equation
Find uΩt ∈ W(Ωt) such that
aΩt (uΩt , v) = lΩt (v), ∀v ∈ W(Ωt),

(18)

where uΩt is the solution in this new perturbed configurationΩt and the new value of the functional form is

ψ(Ωt) = Ψ (Ωt , uΩt ). (19)

Therefore the sensitivity of ψ caused by a perturbation in the system in the direction of V is

ψ̇(Ω; V ) = lim
t→0

ψ(Ωt)− ψ(Ω)

t

= lim
t→0

Ψ (Ωt , uΩt )− Ψ (Ω, u)
t

, uΩt ∈ W(Ωt), u ∈ W(Ω). (20)

It isworth noting that in the above expression the elements u and uΩt belong to different spaces. A usefulway to calculate the
expression (20) is using Eq. (17) in order to transform all the expressions defined in the configurationΩt into the reference
configuration Ω . For example, let ut(x) := uΩt (pt(x)) = uΩt (xt), where ut ∈ W(Ω) and denote the cost function by
Ψt(Ω, ut) := Ψ (Ωt , uΩt ) = ψ ◦ pt(Ω). Doing the same change of variables the state equation can be rewritten as:

Find ut ∈ W(Ω) such that
at(ut , v) = lt(v), ∀ v ∈ W(Ω),

(21)

where at : W(Ω)× W(Ω) → R and lt : W(Ω) → R. Finally the sensitivity of ψ caused by a perturbation in the system in
the direction of V is

ψ̇(Ω; V ) = lim
t→0

Ψt(Ω, ut)− Ψ (Ω, u)
t

, ut , u ∈ W(Ω) (22)

if this limit exits.
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4.2. A methodology to compute the shape derivative

In this section we show how to calculate the shape derivative (22) using the adjoint method.
Aswe showed in the previous section, themethod proposed by [21] can be understood in the sense that, given a direction

of perturbation V , the variableΩ is controlled uniquely by the parameter t ∈ R+. So the shape derivative of the functional
Ψ in the direction V is simply defined by:

ψ̇(Ω; V ) =
d
dt
Ψt(ut)|t=0 . (23)

Note that we have dropped Ω in the right term of Eq. (23) because now all the expressions are defined in the reference
domainΩ .

Let u ∈ W(Ω) be fixed; we define the partial derivative of Ψ with respect to the parameter t as

Ψ ′(u; V ) = lim
t→0

Ψt(u)− Ψ (u)
t

=
d
dt
Ψt(u)|t=0 , (24)

and the partial derivative of Ψ respect to u

∂

∂u
Ψ (u; u̇) = lim

t→0

Ψ (ut)− Ψ (u)
t

=
d
dt
Ψ (ut)|t=0 (25)

where u̇ is the material derivative that describes the variation of the response u due to the perturbation V and its given by
the limit:

lim
t→0

‖
ut − u

t
− u̇‖W(Ω) = 0. (26)

If the derivatives Ψ ′, ∂Ψ
∂u and u̇ exits and are Fréchet differentiable and applying the chain rule, we can rewrite the total

derivative (22) as

ψ̇(Ω; V ) = Ψ ′(u; V )+
∂Ψ

∂u
(u; u̇). (27)

To obtain ψ̇ we need to calculate u̇. This can be done by differentiating the state equation with respect to t , at t = 0:

d
dt

at(ut , v; V )|t=0 =
d
dt

lt(v; V )|t=0 . (28)

In the same way as we have done with the functional form, we can define the following derivatives of the bilinear and
linear form as:

a′(u, v; V ) := lim
t→0

at(u, v)− a(u, v)
t

=
d
dt

at(u)|t=0 , (29)

∂a
∂u
(u, v; u̇) := lim

t→0

a(ut , v)− a(u, v)
t

= a(u̇, v), (30)

l′(v; V ) := lim
t→0

lt(v)− l(v)
t

=
d
dt

lt(v)|t=0 (31)

and then, assuming that these derivatives are linear and continuous in the direction of the perturbation V we have that

d
dt

at(ut , v; V )|t=0 =
d
dt

lt(v; V )|t=0 , (32)

a′(u, v; V )+ a(u̇, v) = l′(v; V ). (33)
To avoid the calculation of u̇, we define the following adjoint equation:

Find λ ∈ W(Ω) such that

a(λ, λ̄) = −
∂Ψ

∂u
(u; λ̄), ∀λ̄ ∈ W(Ω).

(34)

The solution λ of this equation is called adjoint state. Since this equation is valid for all λ̄ ∈ W(Ω), in particular is valid if
we set λ̄ = u̇, and using the symmetry of the bilinear form and (33), we obtain

−
∂Ψ

∂u
(u; u̇) = a(u̇, λ) = l′(λ; V )− a′(u, λ; V ). (35)

Finally, replacing this last expression in (27) we can express the total derivative of the objective functional as:

ψ̇(Ω; V ) = Ψ ′(u; V )+ a′(u, λ; V )− l′(λ; V ), (36)
where λ is the solution of the adjoint problem (34). Therefore to calculate the shape derivative of the functional, using the
adjoint method, we do not need to calculate u̇, we just need to solve the state equation (13) and adjoint equation (34).
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5. Computation of the shape derivative

In this section we use the results presented in the previous section and some known identities listed in the Appendix to
compute the shape derivative for our particular problem.

We are interested in finding a subdomainω∗
⊂ Ω , that represents the tumor region inside the body, andwe assume that

dist(∂Ω, ω∗) > ϵ > 0. Therefore we consider that ∂Ω is constant during all the process, that means ∂Ωt = ∂Ω,∀t ∈ R+,
and only movements inside the domain are allowed. Then the difference betweenΩ andΩt is just the location and shape
of the respective subdomains ω and ωt . One can imagine that the domain is made of a plastic material that is fixed at the
boundary but it can be deformed in the interior. For this purpose we consider V such that supp(V ) ⊂ Ω . We will give the
exact definition of V in the next section.

In our problem the functional form to minimize is:

ψ(ω) = Ψ (uω) =
1
2

∫
Γu

(uω − um)
2dΓ , (37)

and represents the mismatch between ameasured experimental temperature profile um at the skin surface and the solution
uω of the state problem considering the domainΩ . We have denoted uω instead of uΩ sinceΩ is fixed, therefore u depends
on ω. Also, note that in this case ψ does not explicitly depend on the domain Ω , because the boundary is constant. Then,
the upper boundary Γu is kept fixed during all the process. Therefore Eq. (36) gives

ψ̇(ω; V ) = a′(u, λ; V )− l′(λ; V ), (38)

so we only need to compute a′(·, ·) and l′(λ; V ).
In order to transform the variational equation to the reference domain Ω , we make use of the mapping xt = pt(x) =

x+ tV (x), the Jacobian Dpt(x) = Id+ tDV (x) =: Ft(x) and some results listed in the Appendix, to obtain that in our case the
bilineal and lineal form are given by:

at(u, v; V ) =

∫
Ω

[σt(∇uF−1
t ).(∇vF−1

t )+ ktuv] det Ftdx + α

∫
Γu

uv det Ft‖F−T
t ‖dΓ , (39)

lt(v; V ) =

∫
Ω

(Qt − Tbkt)v det Ftdx + α(Ta − Tb)
∫
Γu

v det Ft‖F−T
t ‖dΓ . (40)

Therefore from the definition of (29) and (31) the derivatives of these expression are:

a′(u, v; V ) =

∫
Ω

d
dt

{[σt(∇uF−1
t ).(∇vF−1

t )+ ktuv] det Ft}|t=0dx + α

∫
Γu

uv
d
dt
(det Ft‖F−T

t ‖)|t=0dΓ , (41)

l′(v; V ) =

∫
Ω

d
dt
((Qt − Tbkt)v det Ft)|t=0dx + α(Ta − Tb)

∫
Γu

v
d
dt
(det Ft‖F−T

t ‖)|t=0dΓ . (42)

But from the fact that supp(V ) ⊂ Ω , we have that d
dt (Ft) = DV = 0 and div(V ) = 0 on ∂Ω , then∫

Γu

w
d
dt
(det Ft‖F−T

t ‖)|t=0dΓ = 0, ∀ w(x) ∈ V(Ω),

and we obtain from the above equations:

a′(u, v; V ) =

∫
Ω

d
dt

{[σt(∇uF−1
t ).(∇vF−1

t )+ ktuv] det Ft}|t=0dx, (43)

l′(v; V ) =

∫
Ω

d
dt
((Qt − Tbkt)v det Ft)|t=0dx. (44)

Now assuming that the map pt : Ω → Ωt is one to one smooth map such that p−1
t (ωt) = ω0 = ω then, for example,

σt(x) = (σΩt ◦ pt)(x) =


σ0 if x ∈ ω;

σ1 if x ∈ Ω − ω
∀ t ∈ R ≥ 0,

where ω0 is the original subdomain included inΩ . Therefore, the conductivity σt is constant with respect to the variable t
and

d
dt
σt = 0.
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The same result is valid for the functions kt and Qt . Then expressions (43) and (44) can be rewritten as

a′(u, v; V ) =

∫
Ω

σ
d
dt

[(∇uF−1
t ).(∇vF−1

t ) det Ft ]|t=0dx +

∫
Ω

kuv
d
dt
(det Ft)|t=0dx, (45)

l′(v; V ) =

∫
Ω

(Q − Tbk)v
d
dt
(det Ft)|t=0dx. (46)

Finally, from the identities in the Appendix, we get that:

a′(u, v; V ) =

∫
Ω

σ [−(∇uDV ).∇v − ∇u.(∇vDV )+ ∇u.∇v div(V )]dx +

∫
Ω

kuv div(V )dx, (47)

l′(v; V ) =

∫
Ω

(Q − Tbk)v div(V )dx. (48)

Therefore, from (38), (47) and (48), the shape derivative of the functional is given by:

ψ̇(ω; V ) =

∫
Ω

σ [−(∇uDV ).∇λ− ∇u.(∇λDV )+ ∇u.∇λ div(V )]dx

+

∫
Ω

kuλ div(V )dx −

∫
Ω

(Q − Tbk)λ div(V )dx (49)

where u is the solution of the boundary problem (P) in the reference domain and λ is the solution of the adjoint equation
(34) corresponding to this problem.

6. Numerical approximation, simulations and results

6.1. Numerical approximation

In this section we discuss the numerical approximation to calculate the shape derivative using the adjoint method. We
address each of the ingredients in the derivative calculation: the numerical calculation of the primal state u and the adjoint
state λ, the parametrization of the subdomain ω and the definition of the vector field V .

We have considered a second order finite difference scheme, following the ideas described in [13], in order to solve the
boundary problem (P) for the primal state u and the corresponding adjoint problem (34) for the adjoint state λ,

Since we are interested to localize melanoma nodules we have assumed that the tumor is a circumference in a two-
dimensional domain. Therefore, to predict the location and size it was enough to determine the center and the radius of the
circumference. In this way the design variables in our problem were the horizontal and vertical coordinates of the center,
xc and yc respectively, and the radius R. From the mathematical point of view this assumption implies a reduction in the
dimension of the set A of admissible domains where we optimize the objective functional ψ . With this assumption the set
is defined by:

A = {ω = B(xc, yc; R) : xmin ≤ xc ≤ xmax, ymin ≤ yc ≤ ymax and 0 ≤ R ≤ Rmax}

where B(xc, yc; R) denotes the ball centered at the point (xc, yc) and radius equal to R.
For each design variable we have defined a particular vector field V in Ω . Although, what is common for all the fields

is that they were defined by parts, adopting a certain value inside the subdomain ω and by extension outside ω. We have
considered an annular extension and the field vanishes outside this region, see Fig. 2. In this way, we have that supp(V ) ⊂ Ω

as we supposed in the previous section. For the design variable xc we have considered

V (x, y) =


Vint(x, y) if (x, y) ∈ ω;

Vext(x, y) if (x, y) ∈ Ω − ω,
(50)

where Vint(x, y) = (1, 0) for all the points inside the circumference and Vext is a smooth extension. In this work we have
chosen the vector field extension following the ideas presented in [23]:

Vext(x, y) =


Vint(x, y)


w

p
1

dist((x,y),R)β


w

p
1

dist((x,y),R)β +
w

p
2

dist((x,y),Rext)β

if (x, y) ∈ Ann (xc, yc; R, Rext) ,

0 elsewhere,

(51)

where

• xc, yc , and R denote the coordinates of the center and radius of the actual configuration ω,
• Rext is a real number to be chosen such that 0 < R < Rext,
• Ann (xc, yc; R, Rext) = {(x, y) : R < dist((xc, yc), (x, y)) < Rext},
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Fig. 2. The smooth vector field Vint defined inω (black region) is extended to a smooth vector field V defined in all the domainΩ , such that supp(V ) ⊂ Ω .

• dist((x, y), R) denotes the distance from point (x, y) to the circumference of radius R,
• dist((x, y), Rext) denotes the distance from point (x, y) to the circumference of radius Rext,
• w1, w2 and β are parameters to be chosen.

The parameters w1, w2 and β , have to be chosen in order to control the smoothness of Vext and which parts of the domain
contribute significantly to the expression of V , see [18].

In the same way for the variable yc we have considered the following field:

V (x, y) =


Vint(x, y) if (x, y) ∈ ω;

Vext(x, y) if (x, y) ∈ Ω − ω,
(52)

where Vint(x, y) = (0, 1) and Vext it is defined by (51). Finally for the last design variable R, the interior vector field adopted
was Vint(x, y) =

 x−xc
R ,

y−yc
R


and Vext was also defined by (51).

After all these considerations our problem can be rewritten in the form of the following optimization problem:

Minimize ψ(xc, yc, R)
subject to (xc, yc, R) ∈ C,

where C is closed convex set in R3 defined by

C = {(x, y, z) ∈ R3
: xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax}.

The constraint imposed by the state equation has been eliminated, using the adjoint method. In order to solve the
optimization problem we have implemented a nonmonotone spectral projected gradient method on convex sets following
the ideas described in [24]. The algorithm combines the projected gradient method [25] with two new features in
optimization. First, it extends the typical globalization strategies associated with these methods to the nonmonotone
line search scheme developed by Grippo et al. [26]. Second, it uses the spectral steplength, introduced by Barzilai and
Borwein [27]. This choice of steplength requires little computational work and greatly speeds up the convergence of
gradients methods.

In summary the steps required to solve the shape optimization problem are the following:

• Given an initial set of design variables p0 = (x0, y0, R0):

1. Set current design p = p0.
2. Generate the mesh and functions σ , k and Q corresponding to the current design p.
3. Solve the boundary problem for the primal state u and adjoint state λ.
4. Calculate de cost function ψ .
5. If the stopping criteria is met, output current design as optimum design and stop, otherwise continue.
6. Calculate the derivatives ψ̇(ω; Vk), for k = 1, 2, 3, and calculate the steplength ϵ.
7. Update p and go to 2.

6.2. Simulations and results

In this part of the paperwe present some simulations to show the performance of the algorithm. In all cases, the following
thermal physiological parameters have been assumed [11,9,12]:

σ1 = 0.5 (W/m °C), k1 = 1998.1 (W/m3 °C), Q1 = 4200 (W/m3),

σ2 = 0.75 (W/m °C), k2 = 7992.4 (W/m3 °C), Q2 = 42 000 (W/m3),

Tb = 37 °C, Ta = 25 °C, α = 10 (W/m2 °C).

The dimensions of the domain Ω adopted in all the examples were 0.09 × 0.03 (m) and a step h = 3 ∗ 10−4 (m). The
closed convex set C considered was the polyhedra [0.02, 0.08] × [0.01, 0.02] × [0, 0.007] (m). We first show in Fig. 3(a)
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Fig. 3. (a) Temperature distribution. (b) Temperature profile on the skin surface.

the solution of the boundary problem (P) in the case when the center of the tumor was assumed at (0.045, 0.020) and the
radius was 0.005 (m). We can observe the temperature distribution over the whole domain; it starts at 37 °C at the bottom
and decreases, due to the convective condition at the skin surface, but it has an important increase in the region where the
tumor is located. Fig. 3(b) shows the temperature profile on the skin surface, where we see a difference in temperature of
almost 1 °C between the region that is above the tumor and regions that are away from it. This agrees with the idea that the
presence of a highly vascularized tumor can lead to the increase of temperature at skin surface.

In Fig. 4 we show the result of the methodology proposed in the case when the center of the tumor was assumed at
(0.06, 0.02) and the radius was 0.006 (m). In Fig. 4(a) the boundary of correct subdomain ω (green) and the boundary of
an initial condition centered at (0.45, 0.01) with radius equal to 0.003 (m) (blue), are plotted. Fig. 4(b) shows the input
data. In this case 10% of random noise was added to the input data. Finally in Fig. 4(c) we show the difference between the
target subdomain and the one that has been found by the algorithm. It is clear that the computed subdomain is close to the
original one. In this and the next examples the stopping criteria adoptedwas a tolerance on the function valueψ < 10−7 or a
maximum number of iterations equal to 500.When the input data was not contaminated with random noise the algorithms
converge in almost 150 iterations in all cases.

In Fig. 5, we present another example. In this case the center of the tumor was considered at the point (0.029, 0.02) and
the radius equal to 0.005 (m). Again the initial condition (blue) plotted in Fig. 5(a) was centered at the point (0.45, 0.01) and
radius equals to 0.003 (m). We want to emphasize that we have run the algorithm considering different initial conditions
and in all cases the results obtained were similar. Also, 10% of random noise was added to the input data. In Fig. 5(b) we can
see the computed tumor using the methodology proposed here (red) and also the result obtained using the methodology
proposed in [13] (black). In this last case, instead of calculating the derivative of the functional, a free derivative method
called Pattern Search [28,29] was considered in order to find the optimal parameters. It is clear from the pictures that the
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Fig. 4. (a) Initial subdomain (blue) and target subdomain (green). (b) Input data contaminatedwith 10% of random noise. (c) Difference between the target
(green) and reconstructed subdomain (red) ω. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

shape derivative allows us to obtain the same or even better accuracy than using the Pattern Search algorithm and also less
computing time is needed. This is a consequence of the use of information obtained from the derivative of the objective
functional. In Fig. 5(c) the differences between the results of the two algorithm are shown with more detail.

Finally, Table 1 shows the explicit results of the previous and other examples. In total 4 examples are presented. For each
one of these examples we show the results obtained when the input data was considered without random noise and when
it was contaminated with 10% of random noise. From these examples we can see that the results obtained are very accurate.

7. Conclusions and future work

Shape sensitivity analysis has been strongly related and traditionally applied to shape optimization problems in structural
mechanics. However, we have shown in this paper how this approach can be used in a problem related to Medicine.

The shape derivative was calculated for the location of a tumor region using as input data the temperature profile on
the skin surface that may be obtained by infrared thermography. The results presented demonstrate the feasibility of the
proposed methodology. Even in the case when 10% of random noise was added to the input data the methodology showed



J.P. Agnelli et al. / Computers and Mathematics with Applications 62 (2011) 4068–4081 4079

Fig. 5. (a) Initial subdomain (blue) and target subdomain (green). (b) Difference between the target and the reconstructed subdomain ω using the Shape
derivativemethod (red) and the Pattern Searchmethod (black). (c) Zoom of the final computation in Fig. 5(b). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Estimation of the center and radius of the tumor in 2D. The different columns show the results obtained considering data without random noise and data
with 10% of random noise respectively.

Original data Without noise 10% noise
x y R x y R x y R

0.04 0.022 0.004 0.0400 0.0218 0.0040 0.0401 0.0219 0.0039
0.029 0.02 0.005 0.0290 0.0199 0.0050 0.0290 0.0197 0.0051
0.06 0.02 0.006 0.0599 0.0199 0.0060 0.0598 0.0203 0.0059
0.07 0.016 0.007 0.0699 0.0158 0.0071 0.0701 0.0162 0.0069

a very good performance. According to this results, the methodology presented can be considered as a potential/useful tool
to locate tumor regions, like melanoma nodules.
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As future work we plan to consider more complex geometries in two dimensional or even in three dimensional space for
the domains corresponding to the tumor and healthy tissue, taking into account the particular kind of tumor which we are
dealing.
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Appendix

Here we state some results that are useful in order to compute the shape derivative. The map that transforms the
reference domainΩ into the perturbedΩt , is given by

xt = pt(x) = x + tV (x),

where V (x) is a smooth vector field defined on an open set includingΩ . This vector field describes the velocity of each point
at time t . The derivative of this map with respect to the material point x is:

Dpt(x) = Id + tDV (x) =: Ft(x).

Then, we can derive the following identities:

• F−1
t = Id − tDV + O(t2) ⇒ Ft=0 = F−1

t=0 = Id,

•
d
dt (Ft) = DV ,

•
d
dt (F

−1
t )|t=0 = −DV ,

• det(Ft) = det(I + tDV ) = 1 + t tr(DV )+ O(t2) = 1 + t div(V )+ O(t),
•

d
dt det(Ft)|t=0 = div(V ),

• det(F−1
t ) = det(Id − tDV + O(t2)) = 1 − t div(V )+ O(t2),

•
d
dt (det(F

−1
t ))|t=0 = − div(V ),

• dxt = det(Ft)dx,
• dΓt = ‖F−T

t η‖ det(Ft)dΓ ,

•
d
dt (‖F

−T
t η‖)|t=0 = −η.(DV )Tη,

•
d
dt (‖F

−T
t η‖ det(Ft))|t=0 = −η.(DV )Tη + div(V ) =: divΓ (V ).
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