
Advances in Applied Mathematics 47 (2011) 125–139
Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Finite-dimensional non-associative algebras and
codimension growth ✩

Antonio Giambruno a,∗, Ivan Shestakov b,c, Mikhail Zaicev d

a Dipartimento di Matematica e Applicazioni, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy
b Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, CEP-05315-970, São Paulo, Brazil
c Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
d Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119992, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 November 2009
Accepted 26 April 2010
Available online 20 June 2010

MSC:
primary 17C05, 16P90
secondary 16R10

Keywords:
Polynomial identity
Codimensions
Exponential growth
Jordan algebra

Let A be a (non-necessarily associative) finite-dimensional algebra
over a field of characteristic zero. A quantitative estimate of
the polynomial identities satisfied by A is achieved through
the study of the asymptotics of the sequence of codimensions
of A. It is well known that for such an algebra this sequence is
exponentially bounded.
Here we capture the exponential rate of growth of the sequence
of codimensions for several classes of algebras including simple
algebras with a special non-degenerate form, finite-dimensional
Jordan or alternative algebras and many more. In all cases such
rate of growth is integer and is explicitly related to the dimension
of a subalgebra of A. One of the main tools of independent
interest is the construction in the free non-associative algebra of
multialternating polynomials satisfying special properties.
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1. Introduction

The main purpose of this paper is to study the exponential rate of growth of the sequence of
codimensions of a non-necessarely associative finite-dimensional algebra over a field of characteristic
zero.
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Let F {X} be the free non-associative algebra over a field F on a countable set X and let A be
an F -algebra. A polynomial of F {X} vanishing under every evaluation in A is called a polynomial
identity of A and let Id(A) denote the T -ideal of polynomial identities satisfied by A. If Pn is the
space of multilinear polynomials in the indeterminates x1, . . . , xn , we denote by cn(A) = dim Pn

Pn∩Id(A)
,

n = 1,2, . . . , the sequence of codimensions of A.
In general such sequence has overexponential growth and several methods have been developed

in the years [2,8,15] in order to study its properties. So far the most significant results have been
obtained when cn(A) is exponentially bounded, and in this setting a celebrated theorem of Regev
[17] states that any associative algebra satisfying a non-trivial polynomial identity (PI-algebra) has
sequence of codimensions exponentially bounded.

The class of non-associative algebras sharing such property is quite wide and includes the ob-
ject of our study, that is, finite-dimensional algebras [1]. In case cn(A) is exponentially bounded, one
can construct the bounded sequence n

√
cn(A), n = 1,2, . . . , and ask if exp(A) = limn→∞ n

√
cn(A) ex-

ists.
In [7] it was proved that for any associative PI-algebra A the PI-exponent exp(A) exists and is

an integer. In case of finite-dimensional Lie algebras, in [19] it was shown that the PI-exponent also
exists and is an integer. The same conclusion was achieved in [9,10] for the special simple Jordan
algebras.

These results about the integrality of the PI-exponent are quite surprising since in [5] the authors
constructed, for any real number α > 1, a non-associative algebra whose exponential rate of growth
of the codimensions equals α.

In general in [3] it was proved that if A is a finite-dimensional algebra, dim A = d, then ei-

ther cn(A) is polynomially bounded or cn(A) > 1
n2 2

n
3d2 for n large enough. Moreover, given any real

numbers 1 < α < β < 2 there exists a finite-dimensional algebra B such that α < exp(B) < β . De-
spite these results, the exponential rate of growth of the codimensions cannot be less than 2 for
a wide class of algebras. In fact, if A is either an associative algebra [13] or a Lie algebra [14]
or a finite-dimensional special Jordan algebra [9], then the asymptotic inequality cn(A) < 2n im-
plies cn(A) � f (n) for some polynomial f . The same phenomenon appears in case of two and
three-dimensional non-associative algebras, but does not hold any more for five-dimensional algebras
[4,6].

The purpose of this paper is twofold. First we prove that for a wide class of simple algebras A
which includes noncommutative Jordan algebras, exp(A) exists and equals dim A. On the other hand
we determine finite-dimensional algebras, including Jordan and alternative algebras, for which exp(A)

exists and is a non-negative integer.
Throughout F will be a field of characteristic zero. We shall often use other symbols like y, z, x j

i
for extra new indeterminates in F {X}. We shall use the left-normed notation on monomials i.e.,
x1 · · · xn = ((x1x2) · · ·)xn .

2. Multialternating polynomials

Let A be an algebra over a field F and let End(A) be the algebra of endomorphisms of A. For a ∈ A
we denote by Ra and La the right and left multiplication by a, respectively. Then we define M(A) to
be the subalgebra of End(A) generated by the right and left multiplications by elements of A. M(A)

is the multiplication algebra of A.
We remark that if A is a finite-dimensional central simple algebra over F then M(A) = EndF A [16].

In fact, considered as a module over the multiplication algebra M(A), A is an irreducible faithful
module. Therefore, by the density theorem, M(A) is a dense subring of the ring of endomorphism of
the module A considered as a vector space over its centralizer, which is F . In other words, M(A) is
dense in EndF A. Since A is finite-dimensional over F , M(A) = EndF A.

Given a finite-dimensional simple algebra A, dim A = d, next we prove the existence of a mul-
tilinear polynomial f = f (x1, . . . , xd, y1, . . . , yk) which is not an identity of A and is alternating on
x1, . . . , xd .
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Lemma 1. Let A be a finite-dimensional simple algebra over an algebraically closed field of characteristic
zero, dim A = d. Then there exists a multilinear polynomial f = f (x1, . . . , xd, y1, . . . , ym) such that f is
alternating on x1, . . . , xd and f is not an identity of A.

Proof. Let t � 1 be the largest number of alternating indeterminates in a multilinear polynomial
which is not an identity of A and suppose that t < d. Let h = h(x1, . . . , xt , y1, . . . , ym) be such a
polynomial. Hence h is not an identity of A and is alternating on x1, . . . , xt . Since h is multilinear,
there exists a basis e1, . . . , ed of A and indices 1 � i1, . . . , im � d such that

b = h(e1, . . . , et , ei1 , . . . , eim ) �= 0 (1)

in A.
Now consider M(A), the multiplication algebra of A. Since A is simple, as we remarked above,

M(A) = End(A) 	 Md(F ).
It is well known that for Md(F ) there exists a central polynomial

C(x1, . . . , xd2 , y1, . . . , yd2)

alternating on x1, . . . , xd2 and on y1, . . . , yd2 which is not an identity of Md(F ) (see [8, Theo-
rem 5.7.4]). In particular for any two bases {x̄1, . . . , x̄d2 } and { ȳ1, . . . , ȳd2} of Md(F ) we have

C(x̄1, . . . , x̄d2 , ȳ1, . . . , ȳd2) = λE (2)

where E is the unit matrix of Md(F ) and λ ∈ F is a non-zero scalar. Moreover if b is the element of A
defined in (1), we may assume that x̄1 = Rb or x̄1 = Lb . All other elements in {x̄2, . . . , x̄d2 , ȳ1, . . . , ȳd2}
will be products (of one or more factors) of left and right multiplications by e1, . . . , ed .

Let us say that x̄1 = Lb . Now, from (2) it follows that

C(x̄1, . . . , x̄d2 , ȳ1, . . . , ȳd2)(et+1) = λet+1. (3)

On the other hand

C
(
x̄′

1, x̄2, . . . , x̄d2 , ȳ1, . . . , ȳd2

)
(e j) = μe j (4)

for any 1 � j � t and for any x̄′
1 = Lb′ , b′ ∈ A and for some μ = μ(b′, j) ∈ F .

Since all x̄i, ȳ j are products of left and right multiplications by e1, . . . , ed , the left-hand side of (3)
can be viewed as an evaluation ϕ in A of some non-associative polynomial

w = w
(
h(x1, . . . , xt , y1, . . . , ym), z1, . . . zn, x0

)

such that ϕ(h) = b and ϕ(x0) = et+1. Now we alternate the polynomial w on x1, . . . , xt and x0 and
we get

w̃ =
∑

σ∈St+1

(−1)σ wσ ,

where St+1 is the symmetric group on {0,1, . . . , t} and

wσ = w
(
h(xσ (1), . . . , xσ (t)), y1, . . . , ym, z1, . . . , zn, xσ (0)

)
.
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Consider the same evaluation ϕ . Clearly, if σ(0) = 0 then ϕ((−1)σ wσ ) = ϕ(w) = D where D is the
left-hand side of (3) since h is alternating on x1, . . . , xt . If σ(0) = j > 0, then ϕ(wσ ) = D ′ , the left-
hand side of (4), and ϕ((−1)σ wσ ) = μe j with j < t + 1. Hence, for suitable μ1, . . . ,μt ∈ F , we have
ϕ(w̃) = t!λet+1 + ∑t

i=1 μiei , and ϕ(w̃) �= 0 since λ �= 0. It follows that w̃ is a multilinear polynomial
alternating on t + 1 indeterminates and is not an identity of A. This contradiction completes the proof
of our lemma. �

The following technical lemma will be of use.

Lemma 2. Let f = f (x1, . . . , xm, y1, . . . , yk) be a polynomial multilinear and alternating on x1, . . . , xm. Then,
for any Ψ ∈ M(F {X}), the polynomial

g =
m∑

i=1

f
(
x1, . . . , xi−1,Ψ (xi), xi+1, . . . , xm, y1, . . . , yk

)

is also alternating on x1, . . . , xm.

Proof. Clearly it is enough to check that g vanishes when we identify any two variables xα = xβ with
1 � α < β � m. Suppose for instance that α = 1 and β = 2. The polynomial

m∑
i=3

f
(
x1, . . . ,Ψ (xi), . . . , xm, y1, . . . , yk

)

is alternating on x1 and x2, hence

g(x1, x1, x3, . . .) = f
(
Ψ (x1), x1, . . .

) + f
(
x1,Ψ (x1), . . .

)

= f
(
Ψ (x1), x1, . . .

) − f
(
Ψ (x1), x1, . . .

) = 0,

since f (x, x, x3, . . . , xm) = 0. �
In order to simplify the notation, we shall often write f = f (x1, . . . , xm, y1, . . . , yn) = f (x1, . . . ,

xm, Y ) where Y = {y1, . . . , yn}.
Throughout we let α(x, y) ∈ M(F {X}) be a fixed linear combination of elements of the type

Tu T ′
v , Tuv , where T , T ′ ∈ {R, L} and {u, v} = {x, y}. Moreover, in case A is a finite-dimensional al-

gebra, we denote by 〈x, y〉 = tr(α(x, y)) the bilinear form determined by α, where tr is the usual
trace. The following lemma generalizes [10, Lemma 3].

Lemma 3. Let A be a simple algebra, dim A = d. Let Y = Y0 ∪ Y1 ∪· · ·∪ Yr ⊆ X be a disjoint union with r � 0.
Let f = f (x1, . . . , xd, Y ) be a polynomial multilinear and alternating on each Yi , 1 � i � r, and on x1, . . . , xd.
Then, for any k � 1 and for any v1, z1, . . . , vk, zk ∈ X, there exists a multilinear polynomial

g = g(x1, . . . , xd, v1, z1, . . . , vk, zk, Y )

such that, for any evaluation ϕ : X → A, ϕ(xi) = x̄i , 1 � i � d, ϕ(v j) = v̄ j , ϕ(z j) = z̄ j , 1 � j � k, ϕ(y) = ȳ,
for y ∈ Y , we have

ϕ(g) = g(x̄1, . . . , . . . , x̄d, v̄1, z̄1, . . . , v̄k, z̄k, Ȳ )

= 〈v̄1, z̄1〉 · · · 〈v̄k, z̄k〉 f (x̄1, . . . , x̄d, Ȳ ).

Moreover g is alternating on each set Yi , 1 � i � r, and on x1, . . . , xd.
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Proof. The proof is by induction of k. Suppose first that k = 1 and define

g = g(x1, . . . , . . . , xd, v, z, Y ) =
d∑

i=1

f
(
x1, . . . ,α(v, z)(xi), . . . , xd, Y

)
.

Then g is alternating on each set Yi , 1 � i � r and, by Lemma 2, is also alternating on x1, . . . , xd .
Consider an evaluation ϕ : X → A such that ϕ(xi) = x̄i , 1 � i � d, ϕ(v) = v̄ , ϕ(z) = z̄, ϕ(y) = ȳ, for
y ∈ Y . Suppose first that the elements x̄1, . . . , x̄d are linearly dependent over F . Then, since g is
alternating on x1, . . . , xd , it follows that ϕ(g) = 0 and we are done.

Therefore we may assume that x̄1, . . . , x̄d are linearly independent over F and, so, since dim A = d,
they form a basis of A. Hence, for all i = 1, . . . ,d, we write

α(v̄, z̄)(x̄i) = αii x̄i +
∑
j �=i

αi j x̄ j,

for some scalars αi j ∈ F . Since f is alternating on x1, . . . , xd ,

f
(
x̄1, . . . ,α(v̄, z̄)(x̄i), . . . , x̄d, Ȳ

) = αii f (x̄1, . . . , x̄i, . . . , x̄d, Ȳ ).

Therefore

g(x̄1, . . . , x̄d, v̄, z̄, Ȳ ) = (α11 + · · · + αdd) f (x̄1, . . . , x̄d, Ȳ ),

and, since α11 + · · · + αdd = tr(α(v̄, z̄)) = 〈v̄, z̄〉, the lemma is proved in case k = 1.
Now let k > 1 and let g = g(x1, . . . , . . . , x, v1, z1, . . . , vk−1, zk−1, Y ) be a multilinear polynomial

satisfying the conclusion of the lemma. Then we write g = g(x1, . . . , . . . , xd, Y ′) where Y ′ = Y ′
0 ∪ Y1 ∪

· · · ∪ Yr and Y ′
0 = Y0 ∪ {v1, z1, . . . , vk−1, zk−1}. If we now apply to g the same arguments as in the

case k = 1, we obtain a polynomial satisfying the conclusion of the lemma. �
Theorem 1. Let A be a finite-dimensional simple algebra, dim A = d. Suppose that the form 〈x, y〉 =
tr(α(x, y)) is non-degenerate on A. Then, for any k � 0 there exists a multilinear polynomial

gk = gk
(
x(1)

1 , . . . , x(1)

d , . . . , x(2k+1)
1 , . . . , x(2k+1)

d , y1, . . . , yN
)

satisfying the following conditions:

1) gk is alternating on each set {x(i)
1 , . . . , x(i)

d }, 1 � i � 2k + 1;
2) gk is not an identity of A;
3) the integer N does not depend on k.

Proof. Let f = f (x1, . . . , xd, y1, . . . , ym) be the multilinear polynomial constructed in Lemma 1. Hence
f is alternating on x1, . . . , xd and does not vanish on A.

Suppose first that k = 1 and write Y = {y1, . . . , ym}. By Lemma 3 there exists a multilinear poly-
nomial

g = g
(
x1, . . . , xd, v(1)

1 , z(1)
1 , . . . , v(1)

d , z(1)

d , Y
)

such that under any evaluation ¯ we have
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g
(
x̄1, . . . , x̄d, v̄(1)

1 , z̄(1)
1 , . . . , v̄(1)

d , z̄(1)

d , Ȳ
)

= 〈
v̄(1)

1 , z̄(1)
1

〉 · · · 〈v̄(1)

d , z̄(1)

d

〉
f (x̄1, . . . , x̄d, Ȳ ).

Now, for any σ ,τ ∈ Sd , define the polynomial

gσ ,τ = gσ ,τ

(
x1, . . . , xd, v(1)

1 , z(1)
1 , . . . , v(1)

d , z(1)

d , Y
)

= g
(
x1, . . . , xd, v(1)

σ (1), z(1)
τ (1), . . . , v(1)

σ (d)
, z(1)

τ (d)
, Y

)
.

Then set

g1
(
x1, . . . , xd, v(1)

1 , z(1)
1 , . . . , v(1)

d , z(1)

d , Y
) = 1

d!
∑

σ ,τ∈Sd

(sgnσ)(sgn τ )gσ ,τ .

The polynomial g1 is alternating on each of the sets {x1, . . . xd}, {v(1)
1 , . . . , v(1)

d } and {z(1)
1 , . . . , z(1)

d }.
Next we show that for any evaluation ϕ ,

ϕ(g1) = det 	̄1ϕ( f ),

where

	̄1 =
⎛
⎜⎝

〈v̄(1)
1 , z̄(1)

1 〉 · · · 〈v̄(1)
1 , z̄(1)

d 〉
...

...

〈v̄(1)

d , z̄(1)
1 〉 · · · 〈v̄(1)

d , z̄(1)

d 〉

⎞
⎟⎠ .

Now, by Lemma 3, for any evaluation ϕ : X → A we have

ϕ(g1) = γ ϕ( f ),

where

γ = 1

d!
∑

σ ,τ∈Sd

(sgnσ)(sgn τ )
〈
v̄(1)
σ (1), z̄(1)

τ (1)

〉 · · · 〈v̄(1)

σ (d)
, z̄(1)

τ (d)

〉
.

We fix σ ∈ Sm and compute the sum

γσ =
∑
τ∈Sd

(sgnτ )
〈
v̄(1)
σ (1), z̄(1)

τ (1)

〉 · · · 〈v̄(1)

σ (d)
, z̄(1)

τ (d)

〉
.

Write simply v̄(1)
σ (i) = ai , z̄(1)

i = bi , i = 1, . . . ,d. Then

γσ =
∑
τ∈Sd

(sgnτ )〈a1,bτ (1)〉 · · · 〈ad,bτ (d)〉 = det

⎛
⎝

〈a1,b1〉 · · · 〈a1,bd〉
...

...

〈ad,b1〉 · · · 〈ad,bd〉

⎞
⎠

= (sgnσ)det

⎛
⎜⎝

〈aσ−1(1),b1〉 · · · 〈aσ−1(1),bd〉
...

...

〈a ,b 〉 · · · 〈a ,b 〉

⎞
⎟⎠ = (sgnσ)det 	̄1.
σ−1(d) 1 σ−1(d) d
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Hence

γ = 1

d!
∑
σ∈Sd

(sgnσ)γσ = det 	̄1

and ϕ(g1) = det 	̄1ϕ( f ). Thus, since 〈−,−〉 is a non-degenerate form, g1 does not vanish in A. This
completes the proof in case k = 1.

If k > 1, by the inductive hypothesis there exists a multilinear polynomial

gk−1
(
x1, . . . , xd, v(1)

1 , z(1)
1 , . . . , v(1)

d , z(1)

d , . . . , v(k−1)
1 , z(k−1)

1 , . . . , v(k−1)

d , z(k−1)

d , Y
)

satisfying the conclusion of the theorem. Then we write

gk−1 = gk−1
(
x1, . . . , . . . , xd, Y ′)

where Y ′ = Y ∪ {v(1)
1 , z(1)

1 , . . . , v(1)

d , z(1)

d , . . . , v(k−1)
1 , z(k−1)

1 , . . . , v(k−1)

d , z(k−1)

d } and we apply to gk−1
Lemma 3 and the previous arguments. In this way we can construct the polynomial gk and, for any
evaluation ϕ , we have

ϕ(gk) = det 	̄kϕ(gk−1) = det 	̄1 · · ·det 	̄kϕ( f ).

This completes the proof of the theorem. �
3. Simple algebras and growth of the identities

In this section we restrict our attention to the multilinear identities of a finite-dimensional simple
algebra A. Let Id(A) = { f ∈ F {X} | f ≡ 0 in A} be the T -ideal of polynomial identities of A and, for
any n � 1, define Pn ⊆ F {X} to be the space of multilinear polynomials in the variables x1, . . . , xn .
Then cn(A) = dim Pn

Pn∩Id(A)
is the nth codimension of A and our aim is to study the sequence cn(A),

n = 1,2, . . . . Since A is finite-dimensional such sequence is exponentially bounded (see [1]), and here
we want to capture its exponential rate of growth by proving that exp(A) = limn→∞ n

√
cn(A) exists

and equals dim A = d, for some classes of simple algebras.
It is well known that the symmetric group Sn acts on Pn: if σ ∈ Sn and f (x1, . . . , xn) ∈ Pn , then

σ f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)) (see [8, Chapter 2]). Then it is easily seen that Pn
Pn∩Id(A)

becomes
an Sn-module and we consider its decomposition into irreducible submodules. We refer the reader to
[12] for a description of the representation theory of Sn .

Here we recall how to construct an irreducible Sn-module. Let λ � n be a partition of n. Given a
Young tableau Tλ of shape λ � n, let RTλ and CTλ denote the subgroups of Sn stabilizing the rows
and the columns of Tλ , respectively. Then set R̄ Tλ = ∑

σ∈RTλ
σ and C̄Tλ = ∑

τ∈CTλ
(sgnτ )τ . It follows

that the element eTλ = R̄ Tλ C̄Tλ is an essential idempotent of the group algebra F Sn , generating an
irreducible Sn-module corresponding to λ.

In the next theorem we prove the existence of the exponent exp(A) for some finite-dimensional
algebras.

Theorem 2. Let A be a finite-dimensional simple algebra over an algebraically closed field F of characteristic
zero and suppose that for some α, the form 〈x, y〉 = tr(α(x, y)) is non-degenerate on A. Then, for all n � 1,
there exist constants C > 0, t such that

Cntdn � cn(A) � dn+1.

Hence the exponent exp(A) = limn→∞ n
√

cn(A) exists and exp(A) = dim A = d.
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Proof. By Theorem 1, for all k � 1 there exists a multilinear polynomial

gk = gk
(
x(1)

1 , . . . , x(1)

d , . . . , x(2k+1)
1 , . . . , x(2k+1)

d , y1, . . . , yN
)

such that gk is alternating on each set of indeterminates {x(i)
1 , . . . , x(i)

d }, 1 � i � 2k + 1, and gk is not a
polynomial identity of A. Rename the variables and write

gk = h(x1, . . . , xd(2k+1), Y ),

where Y = {y1, . . . , yN}.
Fix k and let n = d(2k + 1). Let Pn+N be the space of multilinear polynomials in x1, . . . , xn,

y1, . . . , yN . If we let Sn act on x1, . . . , xn , Pn+N is an Sn-module and let F Snh be the Sn-submodule
generated by h. Since h /∈ Id(A), there exists a partition λ = (λ1, . . . , λm) � n and a Young tableau Tλ

such that F SneTλh � Id(A). Our next goal is to show that λ = ((2k +1)d) is a rectangle of width 2k +1
and height d.

If λ1 � 2k + 2, then eTλh is a polynomial symmetric on at least 2k + 2 variables among x1, . . . , xn .
But for any σ ∈ R̄ Tλ these variables in σ C̄Tλh are divided into 2k + 1 disjoint alternating subsets. It
follows that σ C̄Tλh is alternating and symmetric on at least two variables and, so, eTλh = 0 in the
zero polynomial, a contradiction. Thus λ1 � 2k + 1.

Suppose now that m � d +1. Since the first column of Tλ is of height at least d +1, the polynomial
C̄Tλh is alternating on at least d +1 variables among x1, . . . , xn . Since dim A = d we get that for any σ ,
σ C̄Tλh ≡ 0 on A and, so, also eTλh = R̄ Tλ C̄Tλh ≡ 0 on A, a contradiction.

We have proved that F SneTλh � Id(A), for some Young tableau Tλ of shape λ = ((2k + 1)d).
Let now n � d + N be an arbitrary integer, and write n = d(2k + 1) + N + r, for some k � 0 and

0 � r < 2d. Let gk = h(x1, . . . , xd(2k+1), Y ) be the above polynomial. If r = 0, set h′ = h. If r > 0, let a
be a non-zero value of h and consider all multilinear monomials m(a,a1, . . . ,ar), where a1, . . . ,ar ∈ A.
Since there exists at least one of them, say m, which is not zero on A, we define

h′ = m(h, xd(2k+1)+1, . . . , xd(2k+1)+r).

Then h′ ∈ Pn and, if Tλ is the Young tableau of shape λ = ((2k + 1)d) given above such that eTλh /∈
Id(A), we also have that eTλh′ /∈ Id(A).

Decompose F Sn = ⊕
μ�n Iμ into the sum of minimal two-sided ideals Iμ and let dμ = √

dim Iμ be
the dimension of an irreducible Sn-module corresponding to μ. By the branching theorem of Sd(2k+1)

(see [12, Theorem 2.4.3]) we have that

F SneTλh′ ⊆
⊕
μ⊇λ
μ�n

Iμh′,

and, since eTλh′ /∈ Id(A), there exists a partition μ � n, μ ⊇ λ, and a tableau Tμ such that F SneTμh′ �
Id(A). This says that cn(A) � dim F SneTμ . For any λ � n let us write dim F SneTλ = dλ . Then cn(A) � dμ .
But again by the branching rule, dμ � d((2k+1)d) . Since n − d(2k + 1) � N + 2d and asymptotically
d((2k+1)d) 	 C0msdm , where m = d(2k + 1), for some constants C0, s (see [8, Lemma 6.2.5]), we obtain
that

cn(A) � Cntdn,

for some constants C > 0, t . We have found a lower bound for cn(A).
For the upper bound, recall that by [10, Proposition 2] for any finite-dimensional algebra A,

dim A = d, the nth codimension cn(A) is bounded by dn+1. Hence we obtain Cntdn � cn(A) � dn+1. It
follows that exp(A) = limn→∞ n

√
cn(A) = d and we are done. �
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Next we apply the above theorem to Jordan algebras.

Corollary 1. If A is a finite-dimensional simple unitary noncommutative Jordan algebra over an algebraically
closed field of characteristic zero, then exp(A) exists and equals dim A.

Proof. If A is a finite-dimensional semisimple unitary noncommutative Jordan algebra, then by
[18, pp. 141–142], α(x, y) = tr(Rxy+yx + Lxy+yx) is a non-degenerate bilinear form, and the conclu-
sion follows from Theorem 2. �

We remark that in particular the above theorem is true for commutative Jordan algebras, for quasi-
associative algebras, for flexible quadratic algebras which include octonions (see [18]).

4. An upper bound for the PI-exponent

Throughout this section we shall assume that A is a finite-dimensional algebra over a field F of
characteristic zero with a Wedderburn–Malcev type decomposition. That is, there exist simple unitary
subalgebras C1, . . . , Cm of A such that

A = C1 ⊕ · · · ⊕ Cm + R, (5)

where R = Rad A is the radical of A. We shall also assume that R is a strongly nilpotent ideal i.e.,
there exists an integer T � 1 such that any product of elements of A containing at least T elements
of R must be zero.

We fix a basis B = B0 ∪ B1 of A such that B0 is a basis of R and B1 is the union of bases of
C1, . . . , Cm , respectively. In what follows any product of elements of B will be called a monomial
of A. Next we define the height of a monomial as follows.

Let M = M(a1, . . . ,ak,b1, . . . ,bn) be a non-zero monomial of A where a1, . . . ,ak ∈ B1 and
b1, . . . ,bn ∈ B0. Then the height of M is

ht(M) = dim(Ci1 + · · · + Cik )

where a1 ∈ Ci1 , . . . ,ak ∈ Cik . Since A is a finite-dimensional algebra we can define the integer

d = d(A) = max
{

ht(M)
∣∣ 0 �= M ∈ A

}
. (6)

We shall prove that under suitable hypotheses, the PI-exponent of A equals the integer d defined
in (6). We start with the following

Lemma 4. Let d be the integer defined in (6). Then there exists an integer T such that any multilinear polyno-
mial

f = f
(
x1

1, . . . , x1
d+1, . . . , xT

1 , . . . , xT
d+1, y1, y2, . . .

)

alternating on each set {xi
1, . . . , xi

d+1}, 1 � i � T , is an identity of A.

Proof. Let T be the smallest integer such that any product of elements of A containing at least T
elements of R is equal to zero.

Denote by Alti the operator of alternation on the set {xi
1, . . . , xi

d+1}, i = 1, . . . , T . We claim that

Alt1 · · ·AltT (m) ≡ 0 (7)

for any multilinear monomial m = m(x1
1, . . . , x1

d+1, . . . , xT
1 , . . . , xT

d+1, y1, y2, . . .).
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In fact, since m is multilinear, it is enough to check that

Alt1 · · · AltT
(
m

(
b1, . . . ,bT (d+1),b′

1,b′
2, . . .

)) = 0, (8)

for any bi,b′
i ∈ B . First suppose that b1, . . . ,bd+1 ∈ B1 and let b1 ∈ Ci1 , . . . ,bd+1 ∈ Cid+1 . If dim(Ci1 +

· · · + Cid+1 ) > d then m(b1, . . . ,bT (d+1),b′
1,b′

2, . . .) = 0 by the definition of d. In case dim(Ci1 + · · · +
Cid+1 ) � d, then b1, . . . ,bd+1 are linearly dependent over F and since the polynomial in (7) is alter-
nating in the corresponding variables, we get that (8) still holds.

Note that the discussion of the previous paragraph applies to the sets

{bi(d+1)+1, . . . ,b(i+1)(d+1)}, 1 � i � T − 1. (9)

Hence we may assume that every set in (9) contains at least one b j ∈ B0. But in this case (8) holds
since each monomial on the left-hand side of (8) contains at least T elements of R and by hypothesis
such a product is zero.

Since any polynomial f alternating on T disjoint sets of size d + 1 is a linear combination of
polynomials of the type Alt1 · · ·AltT (m) the proof is complete. �
Lemma 5. Let A be a finite-dimensional algebra with a Wedderburn–Malcev decomposition and strongly
nilpotent radical. If d = d(A) is the integer defined in (6), then there exist constants C,k such that

cn(A) � Cnkdn,

for all n � 1.

Proof. As we mentioned at the beginning of Section 3, Pn/(Pn ∩ Id(A)) is a left Sn-module and we
let χn(A) be its character, called the nth cocharacter of A. Clearly degχn(A) = cn(A). By complete
reducibility we decompose χn(A) into irreducible Sn-characters

χn(A) =
∑
λ�n

mλχλ, (10)

where χλ is the irreducible Sn-character associated to the partition λ and mλ � 0 is the corresponding
multiplicity. Clearly it is enough to prove the lemma for n � T (d + 1).

Recall that, given a partition λ = (λ1, . . . , λk) � n and a Young tableau Tλ , then eTλ = R̄ Tλ C̄Tλ is
a minimal essential idempotent of F Sn . Moreover, for any multilinear polynomial f (x1, . . . , xn), the
polynomial C̄Tλ f (x1, . . . , xn) is alternating on at least k indeterminates. It follows that mλ = 0 in (10)
as soon as k > D = dim A. This says that the cocharacter χn(A) lies in a strip of height D .

Consider the rectangular partition μ = (T , T , . . . , T ) = (T d+1) � T (d + 1) where T is the integer
determined in Lemma 4. Then by the above property and Lemma 4, mλ = 0 in (10) for any λ � μ, i.e.,
λi � μi , for all i.

Hence if λ = (λ1, . . . , λk) � n is such that mλ �= 0 we must have λd+1 � T . Let us define n′ = λ1 +
· · · + λd and λ◦ = (λ1, . . . , λd) � n′ . Then, recalling that k � D , we must have n − n′ � (T − 1)(D − d).
But then, by [8, Lemma 6.2.4], we have that

dλ = degχλ � n(T −1)(D−d)dλ◦ ,

and since by [8, Lemma 6.2.5],

dλ◦ � C ′(n′)r
dn′

,
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for some constants C ′, r, we get the following conclusion: if mλ �= 0 in (10) we must have

dλ � C ′′nr′
dn

for some constants C ′′ , r′ .
On the other hand by [3, Theorem 1],

∑
λ�n

mλ � D(n + 1)D2+D .

Therefore, by computing degrees in (10), from the above two upper bounds we get the desired con-
clusion of the lemma. �
5. A lower bound for the PI-exponent

As in the previous section, here we shall assume that A is a finite-dimensional algebra with a
Wedderburn–Malcev decomposition and strongly nilpotent radical. We shall also assume that in the
decomposition A = C1 ⊕ · · · ⊕ Cm + R , all simple algebras are unitary and have a non-degenerate
bilinear form 〈x, y〉 = tr(α(x, y)), as in Theorem 1 and F is algebraically closed. Recall that B0 is a
basis of R and B1 is the union of bases of C1, . . . , Cm , respectively.

The following remark is obvious.

Lemma 6. Let d = d(A) be as in (6). Then there exist t � 0 and a monomial M = M(x1, . . . , xk+t+l) such that

M(a1, . . . ,ak+l,b1, . . . ,bt) �= 0

for some a1, . . . ,ak+l ∈ B1 , b1, . . . ,bt ∈ B0 , l � 0, where a1, . . . ,ak belong to distinct simple components
Ci1 , . . . , Cik , respectively, and dim(Ci1 ⊕ · · · ⊕ Cik ) = d.

If a1, . . . ,an ∈ A are elements of an algebra A, we denote by p(a1, . . . ,an) the set of all products
ai1 · · ·ain where i1, . . . , in is a permutation of 1, . . . ,n, with all possible arrangements of brackets.

Lemma 7. Let A be a finite-dimensional simple algebra with 1, dim A = t, and let a ∈ A be non-zero. Then

A = span
{

p(a,a1, . . . ,at−1)
∣∣ a1, . . . ,at−1 ∈ A

}
. (11)

Proof. For j � 1 let

A j = span
{

p(a,a1, . . . ,ai)
∣∣ a1, . . . ,ai ∈ A, 1 � i � j

}
.

Then

span{a} = A0 ⊆ A1 ⊆ · · · . (12)

Since A is finite-dimensional, the chain (12) stabilizes, say A j = A j+1. Then A j is an ideal containing
a and, by the simplicity of A, A j = A. If j is minimal such that A = A j then

dim A0 < dim A1 < · · · < dim A j

and j � t − 1. In particular, At−1 = A j = A. Finally, since A is an algebra with 1, At−1 coincides with
the right-hand side of (11). �
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In the next lemma we shall construct multialternating polynomials of arbitrarily large degree for
finite-dimensional algebras satisfying our hypotheses. We shall do so by “gluing” the polynomials
constructed in Theorem 1.

Recall that A/R = C1 ⊕ · · · ⊕ Cm is a sum of simple algebras where R is the radical of A and
B = B0 ∪ B1 is a basis of A such that B1 ⊆ C1 ⊕ · · · ⊕ Cm , B0 ⊆ R .

Lemma 8. If d = d(A) is defined as in (6) then, for any k � 1, there exists a multilinear polynomial

f = f
(
x1

1, . . . , x1
d, . . . , x2k

1 , . . . , x2k
d , y1, . . . , yN

)

alternating on each set {xi
1, . . . , xi

d}, 1 � i � 2k, and f is not an identity of A. Moreover N does not depend
on k.

Proof. Let M(a1, . . . ,ar+l,b1, . . . ,bt) �= 0 be a monomial with a1 ∈ C1, . . . ,ar ∈ Cr and dim(C1 ⊕ · · · ⊕
Cr) = d, as in Lemma 6. We rename the elements of M and we write

M(a1, . . . ,ar,b1, . . . ,bt)

where b1, . . . ,bt ∈ B0 ∪ B1. Denote p0 = 0, pi = pi−1 + di , i = 1, . . . , r − 1 where di = dim Ci . By
Theorem 1, for any Ci there exists a multialternating polynomial

hi = hi
(
x(1)

pi−1+1, . . . , x(1)

pi−1+di
, . . . , x(2k)

pi−1+1, . . . , x(2k)

pi−1+di
, yi

1, . . . , yi
N

)

which is not an identity of Ci . Let ϕi be an evaluation of hi in Ci such that ϕi(hi) �= 0.
Then, according to Lemma 7, we can write ai as a monomial ai = wi(ϕi(hi), ei

1, . . . , ei
di−1), for

suitable ei
1, . . . , ei

di−1 ∈ Ci . Let

gi = wi
(
hi, zi

1, . . . , zi
di−1

)
(13)

be a polynomial of the free algebra such that

ḡi = wi
(
ϕi(hi), ei

1, . . . , ei
di−1

) = ai .

Then define

f = Alt1 · · ·Alt2k M
(

g1z1
d, . . . , gr zr

d, u1, . . . , ut
)

where z1
d, . . . , zr

d, u1, . . . , ut are further distinct variables and Alt j denotes alternation on the set

{x( j)
1 , . . . , x( j)

d }. We will prove that f is not an identity of A for any k � 1.
For every i, 1 � i � r, consider the valuation above ḡi = wi(ϕi(hi), ei

1, . . . , ei
di−1) = ai , u1 =

b1, . . . , ut = bt , and set z̄i
d = ei

0, where ei
0 is the unit of Ci . Then

W = M
(

ḡ1e1
0, . . . , ḡrer

0,b1, . . . ,bt
) = M(a1, . . . ,ar,b1, . . . ,bt) �= 0.

Now we recall that each hi is alternating on {x( j)
pi−1+1, . . . , x( j)

pi−1+di
}, that any product Ci C j is zero as

soon as i �= j and that each z̄i
d equals ei

0, the unit of Ci . These facts imply that under the above
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evaluation, the polynomial f evaluates into

ϕ( f ) = (d1!)2k · · · (dr !)2k · M(a1, . . . ,ar,b1, . . . ,bt) �= 0.

Thus f is the desired polynomial and the proof is complete. �
We remark that if we replace any of the polynomials gi in (13) with gi yN+1 then we ob-

tain another multilinear non-identical polynomial f depending on 2kd alternating variables and on
y1, . . . , yN+1. A repeated application of this argument gives the following.

Remark 1. Under the hypotheses of Lemma 8, for any N ′ � N there exists a multilinear polynomial f ′
satisfying the same properties as f , depending on d 2k-element alternating sets and on y1, . . . , yN ′ .

We are now able to find a lower bound for cn(A). In fact we have the following.

Lemma 9. Let A be a finite-dimensional algebra over an algebraically closed field F of characteristic zero
and let d = d(A) be defined as in (6). Suppose that A has a Wedderburn–Malcev decomposition A = C1 ⊕
· · · ⊕ Cm + R with strongly nilpotent radical R and each simple algebra Ci has a non-degenerate bilinear form
〈x, y〉 = tr(α(x, y)) as in Theorem 1. If d = d(A) is defined as in (6), there exist constants C > 0, q such that

cn(A) � Cnqdn

for all n � 1.

Proof. Let n � 2d + N be an integer where N is as in Lemma 8 and write n = 2kd + N ′ , for some
k � 1 where N ′ < N + 2d. Fix a polynomial f as in Remark 1 and regard Pn as the space of multi-
linear polynomials in the variables appearing in f . We consider Pn as an S2kd-module by letting S2kd
act on the 2kd variables of the sets {xi

1, . . . , xi
d}, 1 � i � 2k, on which the polynomial f is alternat-

ing.
Since f /∈ Pn ∩ Id(A), there exists a partition λ = (λ1, . . . , λp) � 2kd and a tableau Tλ such that the

polynomial eTλ f does not lie in Pn ∩ Id(A).
We now apply to eTλ f the same argument as in the proof of Theorem 2: if λ1 � 2k + 1 then

eTλ f = 0 since f contains 2k alternating sets of variables and eTλ f is symmetric on a set of order λ1.
On the other hand eTλ f ∈ Id(A) as soon as p > D = dim A. Thus λ1 � 2k and p � D .

Let T be the smallest integer such that any product of elements of A containing at least T elements
of R is equal to zero. If λd+1 � T , then eTλ f is a linear combination of polynomials each alternating
on at least T disjoint sets of variables. By Lemma 4 this implies that eTλ f ∈ Id(A), a contradiction.
Hence λd+1 < T .

It follows that 2k � λ1 � · · · � λd−1 and λd+1 + · · · + λp < DT and from this we get

λd = 2kd − (λ1 + · · · + λd−1) − (λd+1 + · · · + λp)

> 2kd − 2k(d − 1) − DT = 2k − DT .

If we set 2k − DT = k0, then λd > k0 says that λ contains a rectangular subdiagram μ = (kd
0) � n0 =

k0d. In particular,

dλ = degχλ � dμ 	 anb
0dn0

(see [8, Lemma 6.2.5]). Since n − n0 = N ′ + DT d is constant, one can find C > 0 and k such that

cn(A) � dλ � Cnqdn. �
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Next we want to apply the above results to Jordan algebras. In order to do so we need to prove
the following.

Lemma 10. The radical Rad J of a finite-dimensional Jordan algebra J is strongly nilpotent.

Proof. Let M( J ) be the multiplication algebra of J and let R : J → M( J ), a �→ Ra , be the canoni-
cal mapping of J into M( J ). It is well known (see [11]) that for any a ∈ Rad J the image Ra lies
in Rad M( J ). Let n be the degree of nilpotency of Rad M( J ). Then in M( J ) every associative word
containing at least n elements of Rad M( J ), in particular of R(Rad J ), equals 0.

We claim that Rad J is strongly nilpotent of degree N = 2n + 1. In fact, let w be a non-associative
word in J containing at least 2n + 1 elements of Rad J . Considering J as an M( J )-module, we can
write w = W · a, where a ∈ J , W ∈ M( J ) and W contains at least 2n elements from Rad J . But then
the equality in M( J )

Ra1◦(a3◦a2) = −Ra1 Ra2 Ra3 − Ra3 Ra2 Ra1 + Ra1 Ra2◦a3 + Ra2 Ra1◦a3 + Ra3 Ra1◦a2 ,

a1,a2,a3 ∈ J ,

shows that W ∈ (Rad M( J ))n = 0, and this proves the claim. �
We remark that the statement of Lemma 10 is evidently true for alternative algebras. In fact, in an

alternative algebra A, for every ideal I of A and for every natural number n the power In is again an
ideal of A. Therefore, every nilpotent ideal of A is strongly nilpotent.

At the light of the above, from Lemmas 5 and 9 we now immediately get the following.

Theorem 3. Let A be a finite-dimensional alternative or Jordan algebra over a field of characteristic zero. Then
exp(A) exists and is a non-negative integer. Moreover if A is nilpotent, then exp(A) = 0. If A is not nilpotent,
then either exp(A) � 2 or exp(A) = 1, and cn(A) is polynomially bounded.

Proof. As we have already mentioned, an extension of the base field does not change the codimen-
sions of an algebra. Hence we may assume F to be algebraically closed. The conclusion of the theorem
is obvious for a nilpotent algebra. Hence assume A non-nilpotent and let d = d(A) be as in (6). Then
exp(A) = d as follows from Lemmas 5 and 9.

Notice that if d = 1 then the polynomial upper bound also follows from Lemma 5. �
We remark that the absence of intermediate codimension growth (i.e., faster than any polynomial

and slower than any exponential αn,α > 1) was proved in [3] for any finite-dimensional algebra, but
for any real numbers 1 < β < α, there exists a finite-dimensional algebra B with β < exp(B) < α.

References

[1] Yu.A. Bahturin, V. Drensky, Identities of bilinear mappings and graded polynomial identities of matrices, Linear Algebra
Appl. 369 (2003) 95–112.

[2] A. Berele, A. Regev, Asymptotic behaviour of codimensions of P.I. algebras satisfying Capelli identities, Trans. Amer. Math.
Soc. 360 (2008) 5155–5172.

[3] A. Giambruno, S. Mishchenko, M. Zaicev, Algebras with intermediate growth of the codimensions, Adv. in Appl. Math. 37
(2006) 360–377.

[4] A. Giambruno, S. Mishchenko, M. Zaicev, Codimension growth of two-dimensional non-associative algebras, Proc. Amer.
Math. Soc. 135 (2007) 3405–3415.

[5] A. Giambruno, S. Mishchenko, M. Zaicev, Codimensions of algebras and growth functions, Adv. Math. 217 (2008) 1027–
1052.

[6] A. Giambruno, S. Mishchenko, M. Zaicev, Polynomial identities of algebras of small dimension, Comm. Algebra 37 (2009)
1934–1948.

[7] A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: an exact estimate, Adv. Math. 142 (1999) 221–
243.



A. Giambruno et al. / Advances in Applied Mathematics 47 (2011) 125–139 139
[8] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., vol. 122, American Math-
ematical Society, Providence, RI, 2005.

[9] A. Giambruno, M. Zaicev, Multialternating Jordan polynomials and codimension growth of matrix algebras, Linear Algebra
Appl. 422 (2007) 372–379.

[10] A. Giambruno, M. Zaicev, Codimension growth of special simple Jordan algebras, Trans. Amer. Math. Soc. 362 (2010) 3107–
3123.

[11] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ., vol. XXXIX, American Math-
ematical Society, Providence, RI, 1968.

[12] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl., vol. 16, Addison–Wesley,
London, 1981.

[13] A.R. Kemer, The Spechtian nature of T -ideals whose codimensions have power growth, Sibirsk. Mat. Zh. 19 (1978) 54–69
(in Russian); translation in: Siberian Math. J. 19 (1978) 37–48.

[14] S. Mishchenko, Lower bounds on the dimensions of irreducible representations of symmetric groups and of the exponents
of the exponential of varieties of Lie algebras, Mat. Sb. 187 (1996) 83–94 (in Russian); translation in: Sb. Math. 187 (1996)
81–92.

[15] V. Petrogradsky, On types of superexponential growth of identities in Lie PI-algebras, Fundam. Prikl. Mat. 1 (1995) 989–
1007 (in Russian).

[16] S.V. Polikarpov, I.P. Shestakov, Nonassociative affine algebras, Algebra Logic 29 (1990) 709–723.
[17] A. Regev, Existence of identities in A ⊗ B , Israel J. Math. 11 (1972) 131–152.
[18] R.D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966.
[19] M. Zaicev, Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Ross. Akad. Nauk Ser.

Mat. 66 (2002) 23–48 (in Russian); English translation: Izv. Math. 66 (2002) 463–487.


	Finite-dimensional non-associative algebras and codimension growth
	Introduction
	Multialternating polynomials
	Simple algebras and growth of the identities
	An upper bound for the PI-exponent
	A lower bound for the PI-exponent
	References


