
Human Cutaneous Melanomas Lacking MITF and
Melanocyte Differentiation Antigens Express a
Functional Axl Receptor Kinase
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Axl, a member of the TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases, displays an increasingly
important role in carcinogenesis. Analysis of 58 cutaneous melanoma lines indicated that Axl was expressed in
38% of them, with significant overrepresentation in NRAS- compared with BRAF-mutated tumors. Axl
activation could be induced by autocrine production of its ligand, Gas6, in a significant fraction of Axl-positive
tumors. Pearson’s correlation analysis on expression data from five data sets of melanoma lines identified
several transcripts correlating positively or negatively with Axl. By functionally grouping genes, those
inversely correlated were involved in melanocyte development and pigmentation, whereas those positively
correlated were involved in motility, invasion, and microenvironment interactions. Accordingly, Axl-positive
melanomas did not express microphthalmia transcription factor (MITF) and melanocyte differentiation
antigens (MDAs) such as MART-1 and gp100 and possessed a greater in vitro invasive potential compared with
Axl-negative ones. Motility, invasivity, and ability to heal a wound or to migrate across an endothelial
barrier were inhibited in vitro by Axl knockdown. Pharmacological inhibition of Axl using the selective
inhibitor R428 had comparable effects in reducing migration and invasion. These results suggest that targeted
inhibition of Axl signaling in the subset of melanomas lacking MITF and MDAs may represent a novel
therapeutic strategy.
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INTRODUCTION
Melanoma is a skin malignancy with a complex and
heterogeneous etiology. Activating mutations in BRAF and
NRAS are involved in its development with an occurrence of

41 and 18%, respectively (Lee et al., 2011). High-throughput
genomic screens have recently discovered numerous altera-
tions occurring at lower frequency (Curtin et al., 2006;
Palavalli et al., 2009; Prickett et al., 2009; Pleasance et al.,
2010). In addition, melanoma heterogeneity can result from
differential expression, in melanoma subsets, of molecules,
such as receptor tyrosine kinases (RTKs) affecting relevant
intracellular signaling pathways. One of these receptors, Axl,
belonging to the TAM (Tyro3, Axl, Mer) family of RTKs,
regulates several aspects of tumor biology. Since the initial
discovery as a transforming gene (O’Bryan et al., 1991), Axl
activation and/or overexpression has been reported in
human tumor cells of different histotypes, and evidence for
a role in mediating tumor cell invasion and metastasis is
continuously increasing (Linger et al., 2010). In melanoma,
Axl was initially identified in a subset of cell lines through a
complementary DNA cloning strategy of transcripts with
a protein kinase catalytic domain (Quong et al., 1994).
Although subsequently found in two expression signatures of
invasiveness (Bittner et al., 2000; Hoek et al., 2006),
the single study that addressed its functional role in
increasing survival and resistance to apoptosis (van Ginkel
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et al., 2004) concerned a uveal tumor. Therefore, for
cutaneous melanoma, no information is so far available on
the expression, at the protein level, of Axl and its ligand, the
vitamin K-dependent gamma-carboxylated protein Gas6
(Varnum et al., 1995), nor on their biological role. In
contrast, Tyro3, also belonging to the TAM family, has been
identified as a positive regulator of microphthalmia trans-
cription factor (MITF), the ‘‘master regulator of the melano-
cyte lineage’’ in this tumor histotype (Zhu et al., 2009). As
MITF expression is associated with higher proliferation
but low invasive potential (Bittner et al., 2000; Carreira
et al., 2006; Hoek et al., 2006; Segura et al., 2009), we
hypothesized that Axl and Tyro3 could contribute to distinct
biological behavior. Here, we show that Axl expression is a
biomarker for the subset of MITF-negative, melanocyte
differentiation antigen (MDA)-negative human melanomas.
In agreement, Axl and Tyro3 were found to be mutually
exclusive. At the functional level, Axl promoted tumor cell
migration and invasion. In this subset of tumors, silencing of
endogenous Axl expression or treatment with the Axl-specific
inhibitor R428 (Rigel, San Francisco, CA; Holland et al.,
2010) reduced their invasive and migratory ability.

RESULTS
Axl is expressed in a subset of primary and metastatic
melanoma cell lines

Axl mRNA levels were determined by real-time PCR in 30 of
the 58 melanoma cell lines used in this study (Supplementary
Table S1 online for tumor origin and mutational status).
As shown in Figure 1a, 13/30 (43%) had detectable Axl
transcripts. A representative western blot, shown in Supple-
mentary Figure S1 online, indicates complete concordance
between mRNA and protein expression. Cumulative western
blot results for all tumors indicated that Axl was detectable in
22/58 melanoma cell lines (38%), including 3/10 (30%)
primary tumors and 19/48 (40%) metastases of different
origins (11/35 lymphnodal, 6/11 cutaneous and 2/2 visceral;
Supplementary Table S1 online, in red). The two cell lines
of normal melanocytes tested lacked Axl expression at the
mRNA (Figure 1a) and protein levels (data not shown). In our
tumor panel, BRAFV600E and NRAS Q61R mutations occurred
in 63.5% and 19% of tumors, respectively (Figure 1b,
left-most histogram and Supplementary Table S1 online).
Axl expression was significantly more frequent among
NRAS-mutated melanomas (P¼0.0155). Indeed, 70% of
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Figure 1. Expression of TAM RTKs in human melanoma lines and frequency distribution of Axl among tumors with different mutational status. (a) Axl mRNA

levels were measured by real-time PCR in melanoma and human melanocyte lines (NHEM). Data are expressed as 2�DCt , where DCt indicates CT (Axl)�CT

(b-actin). (b) Left-most column: frequency distribution of genetic alterations in the 58 human melanoma cell lines; right columns: frequency distribution of

Axl in these melanomas, in the NRASQ61R or BRAFV600E subsets, and in melanomas negative for these mutations. Axl, Tyro3, and Mer expression measured

by (c) real-time PCR with data presented as 2�DCt , where DCt indicates CT (target gene)�CT (b-actin); (d) immunoblot analysis where b-actin expression

was used as a loading control. Molecular sizes of Axl, Mer, Tyro3, and b-actin were, respectively, 140, 170, 120, and 42 kDa. Axlneg, Axl negative;

Axlpos, Axl positive; NHEM, normal human epidermal neonatal melanocyte; RTK, receptor tyrosine kinase; TAM, Tyro3, Axl, Mer; wt, wild type.
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the NRAS Q61R mutant tumors were Axl positive (Axlpos),
compared with only 29% of BRAF mutant and 33% of tumors
wild type for these mutations (Figure 1b, right histograms).
Real-time PCR on eight Axlpos tumors indicated that
transcripts corresponding to Mer and Tyro3, the other two
members of the TAM family of RTK (Figure 1c), were
barely expressed. Western blot analysis on representative
melanoma cell lines confirmed mutual exclusion of Axl and
Tyro3 (P¼0.047; Figure 1d). Instead, Mer and Tyro3 were
frequently coexpressed on the same tumors.

Melanoma cells express Gas6, which causes
Axl phosphorylation

Stimulation of serum-starved melanoma (Me)#28 with
exogenously added human rGas6 (1 mg ml�1) led to a
time-dependent increase in Akt phosphorylation (Figure 2a),
indicating that the receptor was functional. All subsequent
experiments were conducted using 500 ng ml�1 of rGas6, the
minimal amount required for optimal stimulation to occur
(Figure 2a), and a stimulation period of 30 minutes.
Phosphorylation of extracellular signal-regulated kinase
1/2 was instead not affected by rGas6 (data not shown).
rGas6-induced Akt phosphorylation was greatly reduced by
preincubation with Axl/Fc-soluble recombinant protein
(Figure 2a), confirming the specificity of the interaction.
Immunoprecipitation of tyrosine-phosphorylated proteins,
followed by immunostaining for Axl, evidenced a basal Axl
phosphorylation in cell lysates of unstimulated serum-starved
Me#28 cells that increased following stimulation with rGas6
(Figure 2b). Basal Axl phosphorylation suggested that Axlpos

melanomas could endogenously produce the Axl ligand
Gas6. In agreement, as determined by specific ELISA,
48 hour-conditioned medium (CM) from 57% Axlpos

melanoma lines contained detectable Gas6 (41 ng ml�1;
Figure 2c). In addition, several of these tumors secreted Gas6
at levels comparable to or even higher than WI-38, the
reference line for Gas6 production (Varnum et al., 1995;
Figure 2c). These results suggested that, in a consistent
fraction of tumors, ligand activation of Axl could occur not
only by a paracrine but also by an autocrine mechanism.
To prove that Gas6 produced by melanoma cells was able to
phosphorylate Axl receptor, serum-starved Me#28 cells were
stimulated for 30 minutes with CM from WI-38 and Me#25 or
from Me#24 (no Gas6 production) as negative control. As
vitamin K-dependent g-gutamyl carboxylation of Gas6 is
necessary for its biological activity, CM was produced in
serum-free medium supplemented with 10 mg ml�1 of vitamin
K. In order to obtain a higher amount of Gas6, 5 days of
in vitro culture in these conditions was carried out. As shown
in Figure 2d, addition of CM from Me#25 and WI-38,
equivalent to 100 ng of endogenous Gas6, but not from
Me#24, resulted in Axl phosphorylation as detected by ELISA.
This effect was specific as it was abrogated by the addition of
Axl/Fc. These results indicate that melanoma cells can
produce biologically active carboxylated Gas6. As shown
in Figure 3a, Axlpos melanomas producing Gas6 at high
(Me#20 and 25) or intermediate (Me#27, and 28) levels
display the presence of cell-bound Gas6, indicative of
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Figure 2. Axl activation and autocrine production of Gas6. (a) Immunoblot

of Akt and pAkt (both 57 kDa) on lysates from Me#28 stimulated for

specified times and doses with rGas6 with or without 1 hour pretreatment

with Axl/Fc (2.5 mg ml�1). (b) Phosphorylated Axl expression in Me#28,
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cultures of melanomas (empty bars) or from WI-38 (filled bar). Means±SD

from two to four detections are shown. (d) ELISA quantification of Axl
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Axl/Gas6 interaction (Gjerdrum et al., 2010). Tumors that do
not secrete Gas6 (Me#14, Axl negative, Axlneg), even if Axlpos

(as Me#24), are negative for surface expression of Gas6.

Axl knockdown by transient transfection of a Stealth
small interfering RNA (siRNA) (Invitrogen, Paisley, UK) to
Axl (siAxl#3) reduced Axl protein levels by more than 99%
48 hr after transfection (Figure 3b). As a consequence, cell-
bound Gas6 could no longer be detectable (Figure 3b) and,
conversely, increased Gas6 secretion occurred in condi-
tioned media (Figure 3c). A non-silencing siRNA (siNeg#3)
had no effect on Axl and on cell-surface-bound Gas6
expression (Figure 3b).

Computational analysis in published melanoma data sets

Pearson’s correlation analysis of five data sets, containing
expression profiles of 166 melanoma lines (Pavey et al.,
2004; Hoek et al., 2006; Wagner et al., 2007; Supplementary
Table S2 online), yielded 256 genes the expression of which
correlated negatively (Supplementary Table S3 online) or
positively (Supplementary Table S4 online) with Axl in
all data sets, with a P-valueo0.05 and a Pearson correlation
coefficient (r) exceeding 0.4. Functional analysis of nega-
tively (112) or positively (144) correlated genes (see
Supplementary Tables S5 and S6 online) was carried out
by Ingenuity Pathway Analysis (IPA; http://www.ingenuity.
com). The top three functions, associated with the highest
score network of negatively correlated genes, were ‘‘Amino
acid metabolism’’, ‘‘Hair and skin development and func-
tion’’, and ‘‘Small molecule biochemistry’’ (Supplementary
Table S7 online). As shown in Figure 4a, central to this
network is MITF, the master regulator of melanocyte
development, differentiation, and survival (Mitra and Fisher,
2009). In accordance, 65% (72/110, see Supplementary
Table S5 online, column 5) of negatively correlated genes
overlap with MITF-regulated genes (Hoek et al., 2008b),
like those encoding well-known MDAs such as MART-1
(MLANA), gp100 (SILV), tyrosinase (TYR), tyrosinase-related
protein 1 (TYRP1), and dopachrome tautomerase (DCT)
(Mitra and Fisher, 2009). In addition, ‘‘Pigmentation’’ and
‘‘Melanocyte development and pigmentation signaling’’
were, respectively, the top biological functions and canonical
pathways (Supplementary Table S7 online). Forty percent
(44/112) of Axl-negatively correlated genes are included in
gene signatures of melanoma cell lines with low metastatic
potential (Supplementary Table S5 online, columns 6–8;
Hoek et al., 2006; Jeffs et al., 2009). Within the set of
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positively correlated genes, the top IPA network was
associated with ‘‘Cellular movement, Cell-to-cell signaling,
and interaction and Tissue development’’ and the top
IPA functions were ‘‘Migration’’ and ‘‘Invasion’’ of eukaryotic
cells (Supplementary Table S7 online). One-fourth of Axl-
positively correlated genes are included in gene signatures
of melanomas with high metastatic potential (Hoek et al.,
2006; Jeffs et al., 2009; Supplementary Table S6 online,
column 5–7).

AXL as a determinant of invasion and motility for
MITF-negative melanomas

Computational analysis predicted a prominent expression of
Axl RTK among poorly differentiated melanomas character-
ized by a lack of expression of MITF and MDAs (Figure 4a),
but displaying, in accordance with the known role of Axl in
regulating invasive ability (Linger et al., 2010), high expres-
sion of motility-related genes and ability to engage extensive
cross-talk with the stromal and extracellular microenviron-
ment (Figure 4b). Flow cytometry, performed on 10 Axlpos

and 9 Axlneg melanoma cell lines, confirmed the highly
significant association of MART-1 and gp100 expression with
Axlneg tumors (Figure 5a). The cancer testis antigen MAGE-1,
an antigen not belonging to the MDA class and not MITF
regulated (Zendman et al., 2003), was instead expressed
equally on both subsets (Figure 5a). In addition to MART-1,
western blot analysis confirmed that MITF could only be
detected in Axlneg tumors (Figure 5b, for representative
results). Immunohistochemical evaluation of Axl protein
levels in tissue sections from melanoma lesions (Figure 5c
for overall results) indicated that 86% of the lesions
were either AxlnegMITFpos (57%) or AxlposMITFneg (29%).

Two lesions displayed a mixed AxlposMITFpos profile,
although we cannot rule out expression of the two markers
in different cells. Representative staining of two Axlpos

MITFneg melanomas (Figure 5d, patients no. 1 and 2) and of
two AxlnegMITFpos tumors (Figure 5D, patients no. 3 and 4) is
shown. In agreement with the tissue distribution of Axl
(Holland et al., 2005; Ye et al., 2010), staining of endothelial
cells could be observed, even when neoplastic cells were
Axlneg (Figure 5d, patient no. 4). Supplementary Figure S2
online shows staining of the same vascular structures by
anti-CD31 and anti-Axl. Axl expression positively and
significantly correlated with the ability of different cell lines
to migrate and invade matrigel in vitro (Figure 6a). Axl
silencing by siAxl#3 and/or by a different Stealth siRNA
(siAxl#2) suppressed Axl protein expression and Akt
phosphorylation by rGas6 (500 ng ml�1) in Me#28 cells
(Figure 6b). Real-time PCR performed on RNA from siAxl#3
Axl-silenced cells on day 11 of Axl knockdown did not
reveal, in comparison with siNeg#3 control cells, changes in
transcript levels of MITF and MART-1, whereas Axl was
downregulated 22-fold (Supplementary Figure S3a online).
No MITF or MART-1 protein re-expression was also observed
by western blot analysis up to 14 days of Axl knockdown
(Supplementary Figure S3b online). Invasive or migratory
behavior of Me#28 in vitro in response to 10% fetal calf
serum was instead reduced (Figure 6c) by 50% and 40%,
respectively, by Axl knockdown. As shown in Supplementary
Figure S4a online, diminished invasive behavior could not be
explained by decreased cell proliferation. Axl-silenced
Me#28 cells were also impaired when compared with
control cells at closing a wound (Figure 6d and e) and
at migrating through a confluent human umbilical vein
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endothelial cell monolayer (Figure 6f). Treatment with R428,
a newly described selective small-molecule inhibitor of Axl
tyrosine kinase activity (Holland et al., 2010), used at 2 mM, a
drug concentration that did not affect cell proliferation
(Supplementary Figure S4b online), was effective in reducing
wound closure (Figure 6g), migration (Figure 6h), and
invasion (Figure 6i) of Me#28 at levels comparable to those
achieved by siRNA-mediated Axl knockdown.

DISCUSSION
The results of the present study indicate that Axl is a
molecular biomarker for human melanomas lacking MITF
(Mitra and Fisher, 2009), as well as of MITF-regulated MDAs.
In this subset of tumors, we found that Axl has a role in the
regulation of motility and invasion. A high proportion (57%)
of Axlpos melanoma cell lines also secreted the Axl ligand
Gas6 in a biologically active form. In addition, Axl and Gas6
were significantly correlated (P-valueo0.05 and a Pearson
correlation coefficient exceeding 0.4) in four out of five
analyzed melanoma data sets, confirming the relevance of
the autocrine loop, active also in other tumor histotypes
(Linger et al., 2010), for Axl signaling. In our panel of
melanoma lines, Axl protein was more frequently associated
with NRASQ61R compared with BRAFV600E mutant melano-
mas or with tumors wild type for these mutations (Figure 1b,
right histograms), a finding that needs to be validated in a
larger cohort of tumors. Lack of expression of Tyro3, the other
TAM family member recently shown to function as a positive
regulator of MITF in melanoma (Zhu et al., 2009), by Axlpos

tumors (Figure 1c and d) is consistent with the two major
expression signatures of human melanoma cell lines that
define the invasive versus proliferative phenotype (Hoek
et al., 2006). In this framework, Axl appears to define
the class of undifferentiated melanomas with higher
motility/invasive ability, whereas Tyro3, shown to regulate
the proliferation rate of melanomas harboring such a receptor
(Zhu et al., 2009), can define more differentiated tumors
characterized by increased proliferation. MART-1 and MITF
were not induced by up to 14 days of Axl knockdown in
our model system (Supplementary Figure S3 online). Further
investigations will be needed to elucidate the molecular
events that govern the inverse relationship between MITF
and Axl expression levels. Immunohistochemical staining
confirmed the reciprocal expression of these two markers, but
also evidenced lesions positive for both. The latter finding is
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representative primary melanomas (#1–4). Me#4 is highly vascularized, and

anti-Axl antibody stains endothelial cells as shown at higher magnification in

the inset (arrow) and in Supplementary Figure S2 online. Bar¼ 50 mm. Axlneg,

Axl negative; Axlpos, Axl positive; MFI, median fluorescence intensity;

MITF, microphthalmia transcription factor. **Po0.01, ***Po0.001.
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in accordance with the phenotype switch model predicting
that gene expression programs of neoplastic cells can be
regulated by the cellular microenvironment (Hoek et al.,
2008a). Thus, according to the type of microenvironment,
tumor cells may switch between the invasive phenotype
(i.e., a condition more likely to require Axl expression) and
the proliferative phenotype (i.e., a condition that does
not necessarily require Axl expression). Support for this
model comes not only from published observations (Hoek
and Goding, 2010) but also from our own preliminary results

(data not shown). We indeed found that subcutaneous tumor
nodules and pulmonary metastases (after intravenous tumor
injection) isolated from severe combined immunodeficient
mice injected with Axlpos melanoma cells were characterized
by strong downregulation of Axl. The same receptor was,
however, re-expressed upon brief in vitro culture of these
nodules or pulmonary metastases. Finally, the results
of this study suggest that Axl-directed therapies may be
developed in MITF-negative melanomas. As a proof of
concept, we used R428, a selective small-molecule inhibitor
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Figure 6. Relevance of Axl expression in motility and invasivity of human melanoma cells. (a) Invasion of Axlpos and Axlneg melanomas toward medium

containing 10% FBS. The number of invading cells is reported as a percentage of seeded cells. White circle¼Me#28. (b) Immunoblot of Axl, Akt, and pAkt in

Axl-knockdown (siAxl#2, #3) or control (mock and siNeg#2, #3) Me#28 cells stimulated for 30 minutes with 500 ng ml�1 rGas6. (c) Invasion, migration, and

(d) wound healing of Axl-knockdown Me#28 cells in comparison with mock-transfected cells. Bar¼ 200mm. (e) Wound closure of three different

Axl-knockdown or control melanomas. (f) Migration of Axl-knockdown or control Me#28 cells through a HUVEC endothelial layer. Results are expressed

as RFU values of migrated cells. (g) Wound healing, (h) migration, and (i) invasion of Me#28 in the presence of R428 (2 mM) or vehicle (0.25% DMSO).

Axlneg, Axl negative; Axlpos, Axl positive; FBS, fetal bovine serum; HUVEC, human umbilical vein endothelial cell; pAkt, Akt phosphorylation; RFU, relative

fluorescence unit. *Po0.05, **Po0.01.
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of Axl tyrosine kinase activity recently shown to improve
survival and reduce metastatic burden in mouse models of
breast cancer (Holland et al., 2010). R428 significantly
interfered with mechanisms of migration and invasion
of Axlpos melanoma cells at levels comparable to Axl
knockdown. The greater efficacy of Axl inhibition (by both
siRNA and R428) in reducing invasion compared with
migration could be related to Axl-dependent expression of
matrix-degrading enzymes as described (Tai et al., 2008).
Our results, together with the recent identification of Axl
among a number of kinases that might drive melanoma
resistance to BRAF kinase inhibitor PLX4032 (Johannessen
et al., 2010; Wagle et al., 2011), further strengthen the
possible relevance of Axl inhibition in a clinical setting.

MATERIALS AND METHODS
Cell lines and reagents

Primary and metastatic melanoma cell lines were established in vitro

from surgical specimens removed from patients admitted to our

Institution and were cultured in RPMI medium (Lonza, Basel,

Switzerland) as described (Anichini et al., 1996). The study was

conducted according to the Declaration of Helsinki Principles and

institutional approval for experiments was not required. Written

informed consent was obtained from patients. Molecular and

biological characterization of these cell lines has been reported

previously (Daniotti et al., 2004). Short-term cultures not exceeding

10–15 passages were used. The human lung fibroblast cell line

WI-38 (ATCC, LGC Standards, Milano, Italy), normal human

epidermal neonatal melanocytes, and human umbilical vein

endothelial cells (both from PromoCell, Heidelberg, Germany) were

cultured according to the manufacturer’s instructions. All lines were

tested for the absence of mycoplasma contamination by Hoechst

33258 (Sigma-Aldrich, St Louis, MO). Primary antibodies used are

listed in Supplementary Table S8 online. The Axl inhibitor R428 was

provided by Rigel. It was dissolved in DMSO (10 mM). DMSO final

concentration in the assay media was 0.25%.

Flow cytometry

Melanoma cells, permeabilized or not (for cytoplasmic and surface

staining), were stained by sequential incubation with primary and

secondary mAbs as described (Sensi et al., 2005, 2009). Cells were

analyzed for antigen expression by a FACSCalibur cytofluorimeter

(Becton Dickinson, Franklin Lakes, NJ). Percentage of positive cells

and median fluorescence intensity after background subtraction

were recorded.

Real-time PCR

Axl (Hs00242357-m1), Tyro3 (Hs00170723-m1), Mer (Hs001790

24-m1), MITF (Hs00165156-m1), and MART-1 (Hs00194133-m1)

TaqMan Gene expression assays (Applied Biosystems, Foster City,

CA) have been used. b-Actin (433762F) served as endogenous

control. Total RNA (2 mg) extracted from the different melanoma cell

lines was reverse transcribed using a QuantiTect Reverse Transcrip-

tion kit (Qiagen, Venlo, The Netherlands). Preliminary experiments

were conducted for the internal control gene (b-actin) using the Ct

slope method to ensure that the quality of each complementary DNA

and the dynamic range of amplifications were comparable

(Schmittgen and Livak, 2008). Real-time PCR was then carried out

with 30 ng input complementary DNA, 1� TaqMan Gene Expres-

sion Master Mix on a ABI PRISM 7900 HT thermal cycler (Applied

Biosystems). Data were analyzed using ABI PRISM Sequence

Detection Software version 2.2.2 (Applied Biosystems). Relative

expression was determined on quadruplicate reactions using

the formula 2�DCt , reflecting target gene expression normalized to

b-actin levels (Schmittgen and Livak, 2008). Fold-change modifica-

tions of gene expression were obtained using 2�DDCt method

(Schmittgen and Livak, 2008).

Western blot

SDS-PAGE was performed using 20mg protein lysates on NuPage

4–12% Bis-Tris precasted mini-gels (Invitrogen, Paisley, UK) in MOPS

buffer (Invitrogen). Proteins were transferred onto PVDF membranes

(Hybond-P, GE Healthcare, Little Chalfont, UK) using NuPage Transfer

Buffer, without methanol. Development was carried out by the

chemiluminescence method with the ECL Plus Western Blotting

Detection System (GE Healthcare) and autoradiography.

Production of CM and Gas6 quantification

Cells were grown in 100 mm cell culture dishes (Corning, Corning,

NY) in medium supplemented with 10 mg ml�1 vitamin K (Konakion,

Roche, Basel, Switzerland). At subconfluence, the medium was

substituted with the corresponding serum-free medium. CM

was recovered after 48 hours or after 5 days (for functional assays).

Secreted Gas6 was quantified by ELISA as described (Alciato

et al., 2008).

Axl phosphorylation

After an overnight starvation, subconfluent melanoma cells were

treated for 30 minutes with serum-free medium containing

500 ng ml�1 of recombinant Gas6 (R&D Systems, Abingdon, UK)

or with CM. In some experiments, recombinant human Axl/Fc

chimera at 2.5 mg ml�1 (R&D Systems) was added for 1 hour before

the addition of rGas6 or CM. Axl phosphorylation was then

measured by DuoSet IC ELISA (R&D Systems) using 250mg of

protein lysate. Data were expressed as 450 nm optical density.

Immunoprecipitation and immunoblotting were performed as

described (De Santis et al., 2009).

Axl knockdown

Stealth siRNA duplexes, specific for Axl and negative controls

(Supplementary Table S9 online), were used (10 nM final concentra-

tion) according to Lipofectamine RNAiMax guidelines (Invitrogen).

Migration and invasion assays
Cells maintained for 24 hour in serum-free medium were harvested

and transferred to the upper chamber (1.5� 105cells per well) of

uncoated (migration) or matrigel-coated (invasion) 24-well chambers

(8mm pore size, QCM 24-well Fluorimetric Assay kit, Millipore,

Billerica, MA). RPMI medium containing 10% fetal bovine serum

was added to the lower chamber. R428 (2 mM) or vehicle (DMSO,

0.25%) was added for 2 hours to cells before loading them in the

upper chambers. Both the upper and lower chambers contained the

drug or vehicle. Quantification of migrating/invading cells was

obtained by measuring their fluorescent signals with a 480/520 nm

filter set on an Infinite M1000 microplate reader (Gentronix,

Manchester, UK) 20 or 42 hours later, respectively.
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Scratch wound migration assay
Confluent cultures were wounded using a sterile 200 ml pipette tip.

Where indicated, wounds were made in the presence of R428 (2 mM)

or vehicle (DMSO, 0.25%). Wound closure was assessed 24 hours

later using an Axiovert 100 microscope with a 5� PanFluor

objective, and images were acquired with the AxioVision System

(Carl Zeiss, Thornwood, NY). Data are expressed as a percentage of

wound closure of the original wound width.

Transendothelial migration assay

Melanoma cells were marked with CytoTracker (Invitrogen), plated

in serum-free RPMI onto a human umbilical vein endothelial cell

monolayer in the upper inserts of invasion chambers, and allowed to

transmigrate through the endothelium and the membrane for

24 hour according to the instructions given in the CytoSelect Tumor

Transendothelial Migration Assay Kit (Cell Biolabs, San Diego, CA).

Non-migratory cells were removed, migratory cells were lysed, and

their fluorescence was determined with the Infinite M1000

microplate reader (Gentronix) at 480/520 nm. Results are indicated

as relative fluorescence units.

Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue staining was performed

as described previously (Sensi et al., 2005). Images were acquired

using an Axiovert 100 microscope with the Axiovision System using

� 20 magnification (Carl Zeiss).

Computational analysis

Five melanoma cell line data sets, all arrayed on Affymetrix platforms,

were downloaded from the NCBIs Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/; Pavey et al., 2004; Hoek et al., 2006;

Wagner et al., 2007). All probe sets were collapsed to gene symbols on

the basis of Affymetrix, Santa Clara, CA annotations. Pearson’s

correlation coefficients were calculated between expression measure-

ments of Axl and those of the remaining genes across all samples

of each data set using the cor function from the R Stats package

(http://stat.ethz.ch/R-manual/R-patched/library/stats/html/00In-

dex.html). P-values for correlation coefficients were determined

according to the method described by Graeber and Eisenberg (2001)

using an in-house script in R language (http://www.r-project.org/).

Briefly, expression values for gene Axl were randomly permuted

(10,000 times) and correlation coefficients between permuted Axl

expression and expression data for the remaining genes in the data set

were calculated. In this way, the distribution of correlation coefficients

under the null hypothesis was obtained, allowing computation of the

permutation P-value, testing whether the correlation coefficient equals

zero. Assuming r is the observed correlation coefficient between Axl

and gene B, the two-tailed P-values were obtained as the proportion of

permuted correlation coefficients with values larger than r or smaller

than �r. IPA 8.5 was used to analyze the signaling pathways, cellular

location, function, and network connections of the identified genes.

Further details are given in Supplementary Information online.

Statistical analysis

Analysis of variance, followed by an Student-Newman-Keul multiple

comparison test or a one-sample t-test to a theoretical value, have

been used for significance evaluation. Correlation of Axl expression

with mutations affecting NRAS or BRAF, as well as with Tyro3

expression, was analyzed by Fisher’s exact test. All statistical tests

were conducted using GraphPad Prism 5 (GraphPad Software,

La Jolla, CA). Asterisks indicate *Po0.05, **Po0.01, and

***Po0.001.
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