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Abstract

In this paper, based on matrix structure analysis, we derive and analyze efficient algorithms
to solve nonlinear matrix equations of the form X +∑1�i�d AiX

−1Di = C. This class of
equations is encountered in the solution of Tree-Like stochastic processes which are a gener-
alization of Quasi-Birth-and-Death (QBD) processes.
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Keywords: Matrix equation; Tree-like stochastic process; Fixed point iteration; Newton iteration; Cyclic
reduction

1. Introduction

Let m, d be positive integers and let C,Ai,Di ∈ Rm×m, i = 1, . . . , d , be given
matrices. We consider the problem of computing a nonsingular matrix X which
solves the matrix equation

X +
∑

1�i�d
AiX

−1Di = C, (1)

where we assume that

(1) C = B − I , and B is sub-stochastic;
(2) Ai and Di have nonnegative entries;
(3) the matrices I + C + Di + A1 + · · · + Ad, i = 1, . . . , d , are stochastic.
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A nonnegative matrix S is stochastic if S1 = 1 for 1 = (1, . . . , 1)T, S is sub-sto-
chastic if S1 /= 1 and S1 � 1, where the inequality holds componentwise.

This problem arises in the analysis of certain discrete-time bivariate Markov pro-
cesses called Tree-Like processes [10]. Typical applications of Tree-Like processes
have been investigated by Yeung and Sengupta [18] (single server queues with LIFO
service discipline), He and Alfa [6,7] (an arriving customer interrupts the service in
progress), and by Takine et al. [14] (an arriving customer is placed at the head of the
queue but does not preempt the server). Van Houdt and Blondia [15] use Tree-Like
processes to evaluate a medium access control protocol with an underlying stack
structure. A brief general introduction is given in [10, Chapter 14].

The generator matrix of a Tree-Like process has the following form:

Q =


C0 �1 �2 . . . �d

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W

 , (2)

where �1, . . . , �d are matrices with m rows and infinitely many columns, given by

�i = [Ai 0 0 · · ·] for 1 � i � d,

the matrices V1, . . . , Vd have m columns and infinitely many rows and are given by

Vi =


Di

0
0
...

 for 1 � i � d,

the infinite matrix W is recursively defined by

W =


C �1 �2 . . . �d

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W

 , (3)

and C0 = B0 − I , where B0 is an m × m sub-stochastic matrix.
The nature of this matrix can be better understood if we introduce the set of multi-

indices

S =
∞⋃
�=0

S�,

S0 = {1, 2, . . . , m},
S� = {(j1, . . . , j�; i) : 1 � j1, . . . , j� � d, 1 � i � m

}
, � = 1, 2, . . .
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In fact, W is a linear operator defined on the linear space �1(S) made up by all the
multi-index sequences x = (xk)k∈S, xk ∈ R, having bounded 1-norm, i.e., ‖x‖ =∑

k∈S |xk| < ∞. Here, the ordering of the components of x, which provides the
particular structure (3) to the matrix W , is lexicographic. That is, (j1, . . . , j�; i) <
(j ′

1, . . . , j
′
�′ ; i′) if either � < �′ or there exists h, 1 � h � �, such that jh < j ′

h, jq =
j ′
q for q = 1, . . . , h − 1, or jq = j ′

q for q = 1, . . . , � and i < i′. In this way the
multi-index sequence x = (xk)k∈S can be naturally partitioned as

x = (x(0), x(1), . . . , x(d)), (4)

where x(0) is indexed by the indices of S of length � = 0, i.e., x(0) = (xi)i∈S0 ; the
sequence x(q) for q = 1, . . . , d is indexed by the indices k = (j1, . . . , j�; i) ∈ S of
length � � 1 with the first component j1 = q.

As we will see in the following section, since there is a finite number of nonzero
entries in each row and column of W , this infinite matrix represents a linear operator
W : �1(S) → �1(S) with bounded 1-norm, that is ‖W‖ = sup‖x‖=1 ‖Wx‖ < ∞.
The same holds for WT.

The computation of the stationary distribution of the Markov process, i.e. the in-
finite nonnegative vector � = (πi)i∈S such that �TQ = 0,

∑
i∈S πi = 1, is reduced

to computing the UL factorization of (2) and this computation can be ultimately
reduced to solving (1).

In this paper, we derive efficient algorithms to solve (1). We first analyze the
natural fixed point iteration, already introduced in [10,17] and we perform a pre-
cise analysis of the speed of convergence based on the Perron–Frobenius theory
of nonnegative matrices. Then we introduce two new improved methods. The first
one consists in generating a sequence of approximations, which are computed by
solving at each step d quadratic matrix equations; these equations can be solved
by means of efficient algorithms, like the cyclic reduction [1,2,8,10] which have a
quadratic convergence. The second method is the application of Newton’s scheme, it
leads to a sequence of approximations which quadratically converges to the solution;
each step of Newton’s method requires the computation of the solution of a linear
Sylvester-like equation of the form Y +∑1�i�d HiYKi = L, for which we apply a
suitable fixed point iteration. We prove the convergence of the methods, moreover
we analyze and compare their convergence speeds making use once again of the
Perron–Frobenius theory.

The natural fixed point iteration has a low computational cost per step, but the
convergence may be very slow. The algorithm based on the solution of quadratic
matrix equations generally converges faster, and is convenient for problems where
the convergence of fixed point iteration is too slow. Newton’s method is quadratically
convergent, but its effectiveness relies on the efficient solution at each step of the
Sylvester-like matrix equation.

Our paper is organized as follows. We define our notations and recall the defini-
tion of a Tree-Like process and some basic results in the following section; in partic-
ular, we recall that the solution of the nonlinear matrix equation (1) is of fundamental
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importance in determining the stationary distribution of the Tree-Like process. We
describe in Section 3 the simple algorithm to solve that equation, based on function-
al iteration, and an improved algorithm in Section 4, based on the the solution of
quadratic matrix equations. We apply Newton’s iteration in Section 5 and we report
in Section 6 on numerical experimentation to compare the three methods. We draw
conclusions in Section 7.

2. The fundamental equation

Let {(Yn, φn) : n � 0} be a discrete-time bivariate Markov processes in which the
values of the random variables Yn are represented by the nodes of a d-ary tree, and
the random variables φn take integer values in [1 · · ·m]. A d-ary tree is a tree for
which each node has d children.

Each node is represented by a string of integers taking values in [1 · · · d]. If J =
(j1, j2, . . . , j�) is one such string, its length � is denoted by |J | and its children by
J + k = (j1, j2, . . . , j�, k), with 1 � k � d . The root is represented by ∅, the empty
string of length 0. Thus, the random variables (Yn, φn) take their values in the state
space S, where

S = {(j1, . . . , j�; i) : � � 0, 1 � j1, . . . , j� � d, 1 � i � m
}
.

The state space is partitioned into nodes

NJ = {(j1, . . . , j�; i) : 1 � i � m
}
,

where J = (j1, j2, . . . , j�). We also partition S into levels: for fixed �,

S� = {(j1, . . . , j�; i) : 1 � j1, . . . , j� � d, 1 � i � m
}

is the reunion of all the nodes represented by strings of length �. The first, or root
level, comprises the unique node

N∅ = {i : 1 � i � m}.
The possible transitions are as follows:

(1) within a node, from (J, i) to (J, i′) with probability (Bj )ii′ where j is the right-
most integer in J ;

(2) within the root node, from i to i′ with probability (B0)ii′ ;
(3) between a node and one of its children, from (J, i) to (J + k, i′)with probability

(Ak)ii′ for 1 � k � d;
(4) between a node and its parent, from (J + k, i) to (J, i′) with probability (Dk)ii′

for 1 � k � d .

The matrices B0 + A1 + · · · + Ad and Bi + Di + A1 + · · · + Ad , i = 1, . . . , d , are
stochastic.
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With these assumptions, it is clear that the transition graph between nodes is a tree,
which is why we call these Tree-Like processes. In their full generality, Tree-Like
processes allow a fifth type of transitions:

(5a) between a node at level � and any node in the levels 0 to � for all � [18]
or
(5b) between a node and any of its descendants [14]

but we do not consider this type of transitions in the present paper. Instead, we make
the further simplifying assumption that

B1 = B2 = · · · = Bd = B.

That is, we assume that, except at the root node, transition probabilities within a node
do not depend on the specific node.

The structure of the matrix generator of this Markov process depends on the or-
dering of the states. There are two natural ways of ordering the nodes: level by level
or lexicographically. If we enumerate the nodes level by level, then we recognize
that the Markov process has the structure of a non-homogeneous QBD and we may
use the general approach given in [3,4,10].

It is, however, more fruitful to use the lexicographical order: N∅ comes first, then
N1 and all the nodes NJ for which the leftmost integer of J is 1, followed by N2
and all the nodes NJ for which the leftmost integer of J is 2, and so on up to Nd

and all its descendants. With this ordering, the generator Q = P − I (where P is the
transition matrix of the Markov chain) is (2).

Observe that in each row and in each column of W there is a finite number of
nonzero entries. From this property it follows that the 1-norm of W is finite. In order
to prove this, consider a vector x = (xk)k∈S such that ‖x‖ =∑k∈S |xk| = 1, and
partition it as x = (x(0), x(1), . . . , x(d)), as described in (4). From the definition of
1-norm of x it follows that 1 = ‖x‖ =∑d

i=0 ‖x(i)‖. Now let y = Wx and partition y
as y = (y(0), y(1), . . . , y(d)), similarly to (4). It holds

y(0) = Cx(0) +
d∑
i=1

Aix(i,0),

y(i) = Wx(i) + Vix(0), i = 1, . . . , d,

(5)

where x(i,0) is the first block in the partitioning (4) of x(i). Taking the norms in both
sides of (5) we get

‖y(0)‖ � γ

(
‖x(0)‖ +

d∑
i=1

‖x(i,0)‖
)
,

‖y(i)‖ � γ ‖x(0)‖ + ‖Wx(i)‖, i = 1, . . . , d,

where γ is a positive constant depending on C, Di and Ai , i = 1, . . . , d . Therefore,
we have
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‖Wx‖ = ‖y(0)‖ + · · · + ‖y(d)‖

� (d + 1)γ ‖x(0)‖ + γ

d∑
i=1

‖x(i,0)‖ +
d∑
i=1

‖Wx(i)‖

which recursively yields

‖Wx‖ � (d + 2)γ
(
‖x(0)‖ +∑d

i=1 ‖x(i,0)‖ +∑d
i,j=1 ‖x(i,j,0)‖ + · · ·

)
= γ (d + 2),

where x(i,j,0) is the first block component of the j th block component of x(i) in the
recursive block decomposition (4). The latter inequality implies that W is a linear
operator on �1(S) with bounded 1-norm.

The theorem below has been proved by different means in [10,17,18]. In particu-
lar, the proof in [10] proceeds along purely probabilistic arguments. We provide here
some remarks based on the recursive structure of W in (3).

Theorem 1. Assume that the Tree-Like process with generator (2) is positive re-
current. Denote by �T

J the sub-vector of stationary probabilities associated with the
states in node NJ .

One has that

�T
J = �T

∅Rj1 · · ·Rj� (6)

if J = (j1, . . . , j�), where

Ri = Ai(−S)−1 for 1 � i � d,

and S is a minimal solution of the nonlinear matrix equation

X +
d∑
i=1

AiX
−1Di = C. (7)

The vector �T
∅ is the solution of

�T
∅

[
C0 +

m∑
i=1

Ai(−S)−1Di

]
= 0 (8)

normalized by

�T
∅
∑
n�0

 ∑
1�i�d

Ri

n

1 = 1.

The matrix S is equal to T − I, where Tkk′ is the probability of moving from the state
(J, k) to the state (J, k′) at a later time, without visiting the node NJ or its parent
in between, independently of J /= ∅.
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A first remark related to the previous theorem comes from the UL factorization
of W as stated by the following.

Proposition 2. Let S be a nonsingular matrix. Then matrices L,U recursively
defined by

U =



S �1 �2 . . . �d

0 U 0 . . . 0

0 0 U
. . .

...

...
...

. . .
. . . 0

0 0 . . . 0 U


, L =



I 0 0 . . . 0
Y1 L 0 . . . 0

Y2 0 L
. . .

...

...
...

. . .
. . . 0

Yd 0 . . . 0 L


with

Yi =
S

−1Di

O
...

 for i = 1, . . . , d

represent linear operators in �1(S) with bounded 1-norm. Moreover, S is a solution
of (7) if and only if W = UL.

Proof. The boundness of the operators L and U can be proved by following the
same argument used for proving the boundness of W . The remaining part of the
proposition can be proved by direct inspection. �

The matrices L and U have formal inverses recursively defined by

L−1 =



I 0 0 . . . 0

−L−1Y1 L−1 0 . . . 0

−L−1Y2 0 L−1 . . .
...

...
...

. . .
. . . 0

−L−1Yd 0 . . . 0 L−1


and

U−1 =



S−1 −S−1�1U
−1 −S−1�2U

−1 . . . −S−1�dU
−1

0 U−1 0 . . . 0

0 0 U−1 . . .
...

...
...

. . .
. . . 0

0 0 . . . 0 U−1


,
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respectively. From the above relations it follows that L−1 and U−1 have finite en-
tries, however, they may have an unbounded �1-norm even under the assumptions of
stochasticity and positive recurrence of the Tree-like process.

Once the matrix S is known, the stationary probability vector can be computed
by using the UL factorization of W . In order to show this, we rewrite as follows the
matrix Q given in (2):

Q =
[
C0 �0
V0 W0

]
,

and we decompose �T as �T = (�T
∅, �

T
�), where �T

� is the stationary probability vec-
tor for all the nodes below the root. The equation �TQ = 0 immediately leads to

�T
∅
[
C0 + �0(−W0)

−1V0
] = 0, (9)

�T
� = �T

∅�0(−W0)
−1. (10)

Next we decompose �T
� as �T

� = (�T
1�, . . . , �

T
d�), where �T

i� is the stationary prob-
ability sub-vector of all the nodes NJ for which the string J begins with the integer
i; we find from (10) that

�T
i� = �T

∅�i (−W)−1 = �T
∅�iL

−1(−U)−1,

that is, �T
i� = �T

∅�i (−U)−1 and we readily find that[
�T
i �T

i1� . . . �T
id�

] = �T
∅Ri

[
I �1(−U)−1 . . . �d(−U)−1

]
,

where �T
ij� is the stationary probability vector for all the nodes NJ for which the

string J begins with the integers i and j .
This shows that �T

i = �T
∅Ri for all i, and it suffices to iterate these calculations to

prove (6) for all strings J . It is a simple matter to verify that (8) and (9) are identical
equations.

We should emphasize that, although we deal with discrete-time Markov chains,
nevertheless our results are directly adapted to continuous-time Markov processes;
in that case, the matrices B + Di + A1 + · · · + Ad are conservative, stable matrices,
and we set C = B in (1).

3. Fixed point iterations

We define the matrices Gi = (−S)−1Di which have the following interpretation:
(Gi)kk′ is the probability that, starting at time 0 from the state (i; k) in Ni , the Tree-
Like process eventually moves to the root node and that (k′) is the first state visited
there. If the process is positive recurrent, then Gi is stochastic for all i.
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With this definition, we may rewrite (7) as a system of coupled equations:

S = C +
∑

1�i�d
AiGi, (11)

Gi = (−S)−1Di for 1 � i � d , (12)

from which we may obtain S by fixed point iterations, as stated in the following
theorem (see [10, Section 14.3] and [17, Section 8] for the proof).

Theorem 3. The sequences {Sn : n � 0} and {Gi,n : n � 0}, 1 � i � d, defined by

Sn = C +
∑

1�i�d
AiGi,n, (13)

Gi,n+1 = (−Sn)
−1Di for 1 � i � d, n � 0, (14)

with G1,0 = · · · = Gd,0 = 0, monotonically converge to S and Gi, respectively.

It is useful to note that Gi,n is the matrix of first passage probabilities from Ni

to N∅ in a truncated process where transitions are not allowed beyond the level Sn.
Furthermore, it is shown in [17] that S is minimal in the following sense (recall that
S = T − I where T is a sub-stochastic matrix).

Lemma 4. The matrix T = S + I is the minimal nonnegative solution of the equa-
tion

X = B +
∑

1�i�d
Ai(I − X)−1Di.

Armed with these, we may define another converging sequence.

Theorem 5. The sequences {S̄n : n � 0} and {Ḡi,n : n � 0}, 1 � i � d, defined by
(13), (14) with Ḡ1,0 = · · · = Ḡd,0 = I converge to S and Gi respectively. More-
over, Ḡi,n is stochastic for all i and n.

Proof. The proof proceeds along the same lines as the proof of [10, Theorem 8.3.1]
and we briefly outline it here.

First, we consider a Tree-Like process on the finite set of levels N∅ ∪ S1 ∪ · · ·
∪ Sn. We keep the same transition probabilities as in the original process except at
the last level Sn: if NJ is a leaf, that is, if J is of length |J | = n, it is not possible
to move from (J ; k) to any of the states (J + i; k′), with 1 � i � d; instead, the
transition probability to (J, k′) is now equal to (B + A1 + · · · + Ad)kk′ .

By repeating verbatim the argument on [10, p. 180] we show that the new Tree-
Like process is irreducible, for every n � 1. Moreover, one readily verifies that Ḡi,n

is the matrix of first passage probabilities from Ni to N∅ in this new process, from
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which we conclude that S̄n is nonsingular and that Ḡi,n is a stochastic matrix for all
n and i.

Since the set of stochastic matrices of order m is compact, the sequence
{(Ḡ1,n, . . . , Ḡd,n) : n � 0} has at least one accumulation point. We denote by
(G∗

1, . . . ,G
∗
d) one such point and we choose a subset of indices {n1, n2, . . .} such

that limt→∞ Ḡi,nt = G∗
i . By Theorem 3 we have that limt→∞ Gi,nt = Gi . Note that

both G∗
i and Gi are stochastic matrices.

Furthermore, Ḡi,0 � Gi,0 and we easily show by induction that Ḡi,n � Gi,n for
all n, so that G∗

i � Gi . Since G∗
i 1 = Gi1 = 1, necessarily G∗

i = Gi and the se-
quence {(Ḡ1,n, . . . , Ḡd,n) : n � 0} has only one accumulation point, which proves
the theorem. �

Both the sequences {Sn}n and {S̄n}n are linearly convergent, and each step of
the fixed point iteration requires one m × m matrix inversion and 2d matrix prod-
ucts. The sequence {S̄n}n converges faster than {Sn}n and we estimate the asymptotic
rate of convergence in Theorem 7. Before doing so, however, we need to introduce
the following notations: vec(A) is the mn-dimensional vector obtained by arranging
column-wise the entries of the m × n matrix A; C = A ⊗ B is the matrix having
block entries Ci,j = ai,jB, where A = (ai,j )i,j . We make use of the fact that Y =
AXB if and only if vec(Y ) = (BT ⊗ A)vec(X), where A, B, X, Y are matrices of
compatible size.

The following result relates the error at two subsequent steps.

Theorem 6. Let {Sn : n � 0} be the sequence defined by (13), (14), with arbitrary
initial approximations Gi,0, i = 1, . . . , d, and define en = vec(En), where En =
S − Sn. The following relation holds:

en+1 =
 ∑

1�i�d

(
(−Sn)

−1Di

)T ⊗ Ri

 en, n � 0. (15)

Proof. By subtracting (13) from (11) and by observing that

Gi − Gi,n = S−1EnS
−1
n Di, i = 1, . . . , d, n � 0,

we obtain that

En+1 =
∑

1�i�d
RiEn(−Sn)

−1Di, n � 0,

from which (15) immediately follows. �

In the following, ρ(A) denotes the spectral radius of the matrix A and λ(A) de-
notes the set of its eigenvalues. From Theorem 6 we derive the following estimate of
the mean asymptotic rate of convergence.
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Theorem 7. The eigenvalues of the matrix R =∑1�i�d Ri are such that

λ(R) ⊂ λ

 ∑
1�i�d

GT
i ⊗ Ri

 .

Moreover, if R has a positive left eigenvector, corresponding to its spectral radius,
then

ρ(R) = ρ

 ∑
1�i�d

GT
i ⊗ Ri


and the sequences {Sn : n � 0}, {S̄n : n � 0} defined in (13), (14), obtained with
G1,0 = · · · = Gd,0 = 0 and Ḡ1,0 = · · · = Ḡd,0 = I, respectively, are such that

lim
n→∞ ‖en‖1/n = ρ(R), (16)

lim
n→∞ ‖ēn‖1/n � max

|σ | : σ ∈ λ

 ∑
1�i�d

GT
i ⊗ Ri

 \ λ(R)
 (17)

for any vector norm ‖ · ‖, where en = vec(S − Sn), ēn = vec(S − S̄n).

Proof. We proceed in a manner similar to [11] and define the orthogonal m2 × m2

matrix � = [�1|�2], with �1 = (1/
√
m)1 ⊗ I ∈ Rm2×m, and �2 ∈ Rm2×(m2−m).

Since 1TGT
i = 1T, we have that

�T
1

 ∑
1�i�d

GT
i ⊗ Ri

�2 = 0

and

�T
1

 ∑
1�i�d

GT
i ⊗ Ri

�1 = R,

that is,

�T

 ∑
1�i�d

GT
i ⊗ Ri

� =
[
R 0
H K

]
, (18)

where H = �T
2

(∑
1�i�d G

T
i ⊗ Ri

)
�1 and K = �T

2

(∑
1�i�d G

T
i ⊗ Ri

)
�2. Thus,

it is clear that λ(R) ⊂ λ
(∑

1�i�d G
T
i ⊗ Ri

)
.

Let vT > 0 be a left eigenvector of R corresponding to ρ(R). Since Gi, i =
1, . . . , d , are stochastic, it follows that
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(1T ⊗ vT)

 ∑
1�i�d

GT
i ⊗ Ri

 = ρ(R)(1T ⊗ vT), (19)

that is, 1T ⊗ vT is a left eigenvector corresponding to the eigenvalue ρ(R). Since∑
1�i�d G

T
i ⊗ Ri is a nonnegative matrix and 1T ⊗ vT is a positive vector, it follows

that ρ
(∑

1�i�d G
T
i ⊗ Ri

) = ρ(R) (see [16]).
The relation (16) is proved as follows. Since v has positive components, we may

define the vector norm ‖ · ‖ such that ‖x‖ = (1T ⊗ vT)|x|, where x ∈ Rm2
and |x| =

(|xi |)i . Since the vectors en are nonnegative and since the sequences {(−Sn)
−1Di}n

converge monotonically to Gi , we obtain from (15) that

‖ en ‖ = (1T ⊗ vT)en � (1T ⊗ vT)

 ∑
1�i�d

GT
i ⊗ Ri

 en−1

= ρ(R)(1T ⊗ vT)en−1 = ρ(R)‖en−1‖.
Hence limn→∞ ‖ en ‖1/n � ρ(R). Let us now show the opposite inequality. From
(15) one has

‖ en ‖ = (1T ⊗ vT)en

= (1T ⊗ vT)

 ∑
1�i�d

GT
i ⊗ Ri

−
 ∑

1�i�d

(Gi − (−Sn−1)
−1Di)

T ⊗ Ri

 en−1

= ρ(R)‖en−1‖ − (1T ⊗ vT)

 ∑
1�i�d

(Gi − (−Sn−1)
−1Di)

T ⊗ Ri

 en−1.

Since the sequences {(−Sn)
−1Di}n converge monotonically to Gi , for any ε > 0

there exists an integer n0 such that

Gi − (−Sn)
−1Di � ε(1 1T)/m

for any i = 1, . . . , d and for any n � n0. Thus, we obtain that for any n � n0,

‖ en ‖ � ρ(R)‖en−1‖ − (ε/m)(1T ⊗ vT)

 ∑
1�i�d

(1 1T) ⊗ Ri

 en−1

= (1 − ε)ρ(R)‖en−1‖,

so that limn→∞ ‖ en ‖1/n � ρ(R)(1 − ε). Since ε is arbitrary, we deduce that
limn→∞ ‖ en ‖1/n = ρ(R), and such equality holds for any vector norm for the
equivalence of the norms.

We finally prove (17). Since the matrices Ḡi,n are stochastic for any i and n, it
can be easily shown by induction on n that �T

1 en = 0 for all n, and thus
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�Ten =
[

0
hn

]
,

where hn = �T
2 en. Since

�Ten=�T

 ∑
1�i�d

(
(−Sn−1)

−1Di

)T ⊗ Ri

�(�Ten−1)

=
[

R 0
Hn−1 Kn−1

]
(�Ten−1),

where

Hn = �T
2

 ∑
1�i�d

(
(−Sn)

−1Di

)T ⊗ Ri

�1

and

Kn = �T
2

 ∑
1�i�d

(
(−Sn)

−1Di

)T ⊗ Ri

�2,

one has hn = Kn−1hn−1, from which we deduce (17) by applying the same tech-
niques as in [11]. �

From the above theorem it follows that the convergence of the sequence obtained
with Gi,0 = I is generally faster than the one obtained with Gi,0 = 0, when the
Perron–Frobenius eigenvector vT of R is strictly positive.

Remark 8. The property that the Perron–Frobenius eigenvector vT of R is strictly
positive is related to irreducibility characteristics of the stochastic process un-
der study and does not seem to be a very restrictive assumption. For instance,
for d = 1, if A1 + B + D1 is irreducible then vT > 0 [12, Lemma 1.3.2]. For a
general Tree-Like process, such simple sufficient conditions are not as readily
available.

4. Reduction to quadratic equations

By writing (12) as Di + SGi = 0 and replacing S by the right-hand side of (11),
we obtain the system

Di +
C +

∑
1�j�d
j /=i

AjGj

Gi + AiG
2
i = 0 (20)
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for i = 1, . . . , d . If we define Fi as

Fi = C +
∑

1�j�d
j /=i

AjGj , (21)

then (20) becomes

Di + FiGi + AiG
2
i = 0, 1 � i � d. (22)

For each i, we recognize this as the equation which defines the matrix of first passage
probabilities to lower levels in a QBD characterized by the transition matrices Ai, Fi
and Di . Those quadratic equations may be solved by the cyclic reduction method
[1,2,8,10] which converges quadratically. Thus, we may determine the matrices
Gi, 1 � i � d , and the matrix S by the following iterative procedure: we define
sequences of matrices {Gi,n : 1 � i � d, n � 0} such that, for n � 1 and for each
i, Gi,n is the minimal nonnegative solution of the matrix quadratic equation

Di + Fi,nGi,n + AiG
2
i,n = 0, (23)

where

Fi,n = C +
∑

1�j�i−1

AjGj,n +
∑

i+1�j�d
AjGj,n−1. (24)

Theorem 9. The sequences {G′
i,n : n � 0} obtained from (23), (24), starting with

G′
1,0 = G′

2,0 = · · · = G′
d,0 = 0, monotonically converge to Gi for 1 � i � d. The

sequences {G̃i,n : n � 0} obtained from (23), (24), starting with G̃1,0 = G̃2,0 =
· · · = G̃d,0 = I, converge to Gi for 1 � i � d. Moreover, G̃i,n is stochastic for
all i and n.

Proof. We define a sequence of trees {Ti,n : n � 0, 1 � i � d} as follows (see
Fig. 1 for a graphical description). The trees Ti,0 comprise a single node. For n � 1,
the root of Ti,n has d children; each child with index j � i − 1 is the root of a tree

Fig. 1. A pictorial representation of the tree T2,n for d = 3.
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which is isomorphic to Tj,n; each child with index j � i + 1 is the root of a tree
which is isomorphic to Tj,n−1; the child with index i is the root of a tree isomorphic
to Ti,n itself. The transition probabilities are the same as in the original Tree-Like
process, except at the leaf nodes where two cases are considered.

In the first case, for every node NJ which has no child, the transition probability
from (J, k) to (J, k′) is Bkk′ . One proves by induction that for all n � 1 and all
i, G′

i,n is the matrix of first passage probabilities from Ni to N∅ in Ti,n. The
detailed proof is similar to that of Theorem 3.

In the second case, for every node NJ which has no child, the transition proba-
bility from (J, k) to (J, k′) is (B + A1 + · · · + Ad)kk′ . One proves by induction that
G̃i,n is the matrix of first passage probabilities from Ni to N∅ in Ti,n. Then we
repeat the argument of Theorem 5. �

Let us now analyze the convergence speed of the sequences {G̃i,n}n and {G′
i,n}n.

Define the matrices Ei,n = G − Gi,n, i = 1, . . . , d , representing the errors at step n,
and the corresponding vectors ei,n = vec(Ei,n). The errors at two subsequent steps
are related as stated in the following theorem.

Theorem 10. Let {Gi,n}n, i = 1, . . . , d, be the sequences generated by means of
(23), (24), with arbitrary initial approximations Gi,0, i = 1, . . . , d. Then, at each
step n we have that

ei,n −
∑

1�j�i

(
GT
i,n ⊗ (−S)−1Aj

)
ej,n

=
∑

i+1�j�d

(
GT
i,n ⊗ (−S)−1Aj

)
ej,n−1 for i = 1, . . . , d. (25)

Proof. From (22), (23) we obtain that

FiGi − Fi,nGi,n + Ai

(
G2
i − G2

i,n

) = 0

for all i and n. By replacing in the latter equation Fi and Fi,n respectively by the
expressions from (21) and (24), and G2

i − G2
i,n by GiEi,n + Ei,nGi,n, we obtain

that

CEi,n +
∑

1�j�i−1

Aj(GjGi − Gj,nGi,n) +
∑

i+1�j�d
Aj (GjGi − Gj,n−1Gi,n)

+AiGiEi,n + AiEi,nGi,n = 0,

from which, using

GjGi − Gj,nGi,n = GjEi,n + Ej,nGi,n

and

GjGi − Gj,n−1Gi,n = GjEi,n + Ej,n−1Gi,n,
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we arrive atC +
∑

1�j�d
AjGj

Ei,n +
∑

1�j�i
AjEj,nGi,n +

∑
i+1�j�d

AjEj,n−1Gi,n = 0.

We obtain (25) after multiplying this equation on the left by S−1. �

Eq. (25) may also be written as

fn = (I − Hn)
−1Kn fn−1, (26)

where fn is the md-dimensional vector made up by the vectors ei,n (i = 1, . . . , d),
Hn is the d × d block lower triangular matrix with block entries

(Hn)i,j =
{
GT
i,n ⊗ R̃j , i = 1, . . . , d, j = 1, . . . , i,

0 otherwise,
(27)

Kn is the d × d block strictly upper triangular matrix with block entries

(Kn)i,j =
{
GT
i,n ⊗ R̃j , i = 1, . . . , d, j = i + 1, . . . , d,

0 otherwise,
(28)

and R̃i = (−S)−1Ai = S−1RiS, 1 � i � d .
Since Hn + Kn = D1,nZD2,n where

D1,n = Diag
(
GT

1,n ⊗ I,GT
2,n ⊗ I, . . . ,GT

d,n ⊗ I
)
,

D2,n = Diag
(
I ⊗ R̃1, I ⊗ R̃2, . . . , I ⊗ R̃d

)
,

and

Z =


I

I
...

I

[I I . . . I
]
,

we conclude that Hn + Kn has m(d − 1) eigenvalues equal to 0, and the remaining
m2 eigenvalues are the eigenvalues of

∑
1�i�d G

T
i,n ⊗ R̃i . Since Ri = SR̃iS

−1, these

are the eigenvalues of
∑

1�i�d G
T
i,n ⊗ Ri .

Let H and K respectively be the d × d block lower and strictly upper triangular
matrices with block entries

(H)i,j =
{
GT
i ⊗ R̃j , i = 1, . . . , d, j = 1, . . . , i,

0 otherwise,
(29)

(K)i,j =
{
GT
i ⊗ R̃j , i = 1, . . . , d, j = i + 1, . . . , d,

0 otherwise.
(30)
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The matrices H and K are the limits of {Hn}n and {Kn}n, respectively, when Gi,0,

i = 1, . . . , d, are the null matrices, or the identity matrices. As for Hn + Kn, H +
K has m(d − 1) eigenvalues equal to 0, and the remaining m eigenvalues are the
eigenvalues of

∑
1�i�d G

T
i ⊗ Ri . Using the same argument as in Theorem 7, we

deduce that λ(R) ⊂ λ(H + K) and, if the Perron–Frobenius eigenvector of R is
strictly positive, then ρ(H + K) = ρ(R) < 1. Since H + K is nonnegative, M =
I − H − K is a nonsingular M-matrix and N = (I − H)−1K is the iteration matrix
obtained by means of a regular splitting applied to M . From the Perron–Frobenius
theory (see [16]) it follows that ρ(N) � ρ(H + K), and thus ρ(N) � ρ(R). This
inequality allows us to prove that the iteration defined by (23), (24) with G′

i,0 = 0
is generally faster than the iteration (13), (14) starting with Gi,0 = 0, i = 1, . . . , d .
This result is reported in the following theorem which shows also that the sequences
{G̃i,n}n, i = 1, . . . , d , converge faster than the sequences {G′

i,n}n, i = 1, . . . , d .

Theorem 11. One has

lim
n→∞ ‖ f ′

n‖1/n = ρ((I − H)−1K)

for any vector norm ‖ · ‖, and

λ((I − H̃ )−1K̃) ⊂ λ((I − H)−1K),

where f ′
n is the md-dimensional vector made up by the vectors e′

i,n = vec(Gi −
G′
i,n), i = 1, . . . , d,

H̃ =


R̃1 0
R̃1 R̃2
...

...
. . .

R̃1 R̃2 . . . R̃d

 and K̃ =


0 R̃2 R̃3 . . . R̃d

0 R̃3 . . . R̃d

. . .
. . .

...

0 R̃d

0 0

 .

Moreover, if the Perron–Frobenius eigenvector of (I − H̃ )−1K̃ is strictly positive,
then one has that

ρ((I − H̃ )−1K̃) = ρ((I − H)−1K)

and

lim
n→∞ ‖ f̃n ‖1/n � max

{|σ | : σ ∈ λ((I − H)−1K) \ λ((I − H̃ )−1K̃)
}

for any vector norm ‖ · ‖, where f̃n is the md-dimensional vector made up by the
vectors ẽi,n = vec(Gi − G̃i,n), i = 1, . . . , d.

Proof. Concerning the convergence of {f ′
n}n, from the monotonicity of the

sequences {G′
i,n}n, from (27), (28) and (26) we deduce that

f ′
n � (I − H)−1Kf ′

n−1 � ((I − H)−1K)nf ′
0
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whence limn→∞ ‖f ′
n‖1/n � ρ((I − H)−1K). For the opposite inequality observe

that

f ′
n = (I − H)−1Kf ′

n−1 − ((I − H)−1K − (I − Hn)
−1Kn)f ′

n−1. (31)

Let E be any nonnegative matrix such that (I − H)−1K − εE � 0 for any ε > 0 in
a suitable neighborhood U of 0. Then for any positive ε ∈ U there exists n0 such
that for any n � n0 we have (I − H)−1K − (I − Hn)

−1Kn � εE. From the latter
inequality and from (31) we deduce that f ′

n � ((I − H)−1K − εE)f ′
n−1 � ((I −

H)−1K − εE)nf ′
0, hence limn→∞ ‖f ′

n‖1/n � ρ((I − H)−1K − εE). For the arbi-
trariness of ε we obtain limn→∞ ‖f ′

n‖1/n = ρ((I − H)−1K). Concerning the re-
maining part of the theorem, let us define the (dm2) × (dm2) orthogonal matrix
�̃ = [�̃1|�̃2], where �̃1 = Id ⊗ �1, �̃2 = Id ⊗ �2, Id is the d × d identity ma-
trix, and � = [�1|�2] is the (m2) × (m2) orthogonal matrix defined in the proof of

Theorem 7. Since G̃i is stochastic for any i, from (29), (30) it follows that �̃
T
1H =

H̃ �̃
T
1 , and that �̃

T
1K = K̃�̃

T
1 . Thus, we have that

�̃
T
(I − H)−1K�̃ =

[
(I − H̃ )−1K̃ 0

T1 T2

]
,

where T1 = �̃
T
2 (I − H)−1K�̃1 and T2 = �̃

T
2 (I − H)−1K�̃2, and we conclude

that λ((I − H̃ )−1K̃) ⊂ λ((I − H)−1K). If u is a positive Perron–Frobenius right
eigenvector of (I − H̃ )−1K̃ , that is, (I − H̃ )−1K̃u = ρu then (I − H)−1Kv = ρv,
where v = �̃1u. Since v is positive and (I − H)−1K is nonnegative, ρ is the
spectral radius of (I − H)−1K [16]. Moreover, since G̃i,n is stochastic for any

i and n, we have that �̃
T
1 f̃n = 0 for any n. Thus, as in the proof of Theorem 7,

limn→∞ ‖ f̃n ‖1/n � ρ(T2). �

Unfortunately, the result above does not allow us to conclude that, when one starts
with Gi,0 = I, i = 1, . . . , d , the iteration defined by (23), (24) is generally faster
than the iteration (13), (14). Nevertheless, we conjecture that the procedure described
in this section does require fewer iterations than the ones in Section 3. Our argument
is illustrated in Fig. 2 where we show how the tree fills up in the case where d = 2
during the first two iterations of (23) and (24). We represent at the top the first 8 levels
of a binary tree; underneath are the same levels for the trees T1,1, T2,1, T1,2 and
T2,2. By contrast, only the first 2 levels are filled after the first two iterations of (13),
(14).

Concerning the computational cost, the most expensive part at each iteration is
the solution of the d quadratic equations (23), the computation of the coefficients
Fi,n, 1 � i � d , in (23) requires only d matrix products. The quadratic matrix equa-
tions can be solved by means of the cyclic reduction algorithm, which is quadrati-
cally convergent, and which costs one matrix inversion and six matrix products per
step.
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Fig. 2. Pictorial representation of the filling up of the nodes of the Tree-Like process, when d = 2. The
first 8 levels are depicted, for the whole tree and for the trees T1,1, T2,1, T1,2 and T2,2.

5. Newton’s iteration

Define the matrices

G =
G1

...

Gd

 , D =
D1

...

Dd

 , A = [A1 · · ·Ad ] ,

and the four matrix operators

I : Rmd×m → Rmd×m : IX = X,

M : Rmd×m → Rm×m : MX = C + AX,

L : Rm×m → Rmd×m : LV = [Id ⊗ (−V )−1]D,

F : Rmd×m → Rmd×m : FX = (I − LM)X.

The first is the identity operator. The operator M is defined for matrices X in 〈0,G〉,
that is, for matrices such that 0 � X � G, and the operator L is defined for matrices
V in 〈C, S〉.

It is not difficult to verify that if C � V � S, then 0 � −C−1 � −V −1 � −S−1,
so that LV is in 〈0,G〉; similarly, it is clear that if X is in 〈0,G〉, then MX is
in 〈C, S〉. We eventually conclude that G is the minimal nonnegative solution of
FG = 0.

Newton’s method yields the sequence of matrices

Ĝn+1 = Ĝn − F′(Ĝn)
−1FĜn, (32)

with Ĝ0 = 0. As we show below, the chain rule applies, so that

F′(X) = I − L′(MX)M′(X)
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with

M′(X)H = AH,

L′(V )K = [I ⊗ V −1KV −1]D.

To see that the chain rule applies, one needs to repeat nearly verbatim the argument
in [9]. We only repeat the salient steps here.

Lemma 12. The operators M and M′ are Lipschitz-continuous on 〈0,G〉 and M′(X)
is the Fréchet derivative of M. The norm of M′ is uniformly bounded on 〈0,G〉.

Proof. The proof directly follows that of [9, Lemma 4.1]; it is much simpler here
because [M′(X) − M′(Y )]H ≡ 0. �

Lemma 13. The operator L′ is Lipschitz-continuous and uniformly bounded in
〈C, S〉.

Proof. We use the l∞-norm for matrices.
If V and W are in 〈C, S〉 and if ‖K‖ = 1, then

‖[L′(V ) − L′(W)]K‖
= ‖[I ⊗ V −1KV −1 − I ⊗ W−1KW−1]D‖
� ‖D‖‖V −1KV −1 − W−1KW−1‖
� ‖D‖(‖(V −1 − W−1)KV −1‖ + ‖W−1K(V −1 − W−1)‖)
� 2‖D‖‖S−1‖‖V −1 − W−1‖

since 0 � −V −1,−W−1 � −S−1. By Ortega and Rheinboldt [13, Proposition 3.2.3],
this implies that

‖[L′(V ) − L′(W)]K‖ � 2‖D‖‖S−1‖‖V − W‖ sup
0�t�1

‖V −1
t ‖2,

where Vt = V + t (W − V ) is in 〈C, S〉. Thus,

‖[L′(V ) − L′(W)]K‖ � 2‖D‖‖S−1‖3‖V − W‖.
The remainder of the proof is identical to that of [9, Lemma 4.2]. �

Since both M′ and L′ are Fréchet-derivatives, the chain-rule applies, F′(X) =
I − L′(MX)M′(X) is the Fréchet-derivative of F at X by Ortega and Rheinboldt
[13, Proposition 3.1.7] and Newton’s sequence (32) may be written as

Ĝn+1 = Ĝn − Zn (33)

with

Zn = [I − L′(MĜn)M
′(Ĝn)

]−1
(I − LM) Ĝn.
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If we define

Ŝn = MĜn = C + AĜn,

we may write that Zn is the solution of[
I − L′(Ŝn)M′(Ĝn)

]
Zn = Ĝn − LMĜn

and this may be written after a few algebraic manipulations as

Zn − [I ⊗ Ŝ−1
n AZnŜ

−1
n

]
D = Ĝn + [I ⊗ Ŝ−1

n

]
D. (34)

If we premultiply this equation by A and if we define

Yn = AZn, (35)

we find that Yn is a solution of the equation

Yn +
∑

1�i�d
AiŜ

−1
n Yn(−Ŝn)

−1Di = Ln, (36)

where

Ln = Ŝn − C +
∑

1�i�d
AiŜ

−1
n Di.

Now, with AZn = AĜn − AĜn+1 = Ŝn − Ŝn+1, we have

Ŝn+1 = Ŝn − Yn.

Finally, we have by (33)–(35) that

Ĝn+1 = −[I ⊗ Ŝ−1
n YnŜ

−1
n

]
D − [I ⊗ Ŝ−1

n

]
D,

so that

Ĝi,n+1 = Ŝ−1
n

(
Yn(−Ŝn)

−1Di − Di

)
.

In summary, Newton’s method generates d + 1 sequences {Ŝn : n � 0}, {Ĝi,n : n �
0}, i = 1, . . . , d , recursively defined by

Ŝn+1 = Ŝn − Yn,

Ĝi,n+1 = Ŝ−1
n

(
Yn(−Ŝn)

−1Di − Di

)
, i = 1, . . . , d, n � 0,

Ŝ0 = C,

where Yn solves (36). The above sequences quadratically converge to S and Gi, i =
1, . . . , d , respectively.

The applicability of this method relies on the efficient solution of the linear matrix
equation (36). Indeed, the computation of Ln and of the matrix coefficients in (36)
requires 3d matrix products, while the computation of Ŝn+1 and Ĝi,n+1, 1 � i � d ,
requires 2d more matrix products.
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Eq. (36) constitutes a linear system of m2 equations inm2 unknowns. The custom-
ary solution algorithms like Gaussian elimination would cost O(m6) ops. There are
efficient direct methods in the literature for solving matrix equations of the form
H1YK1 + H2YK2 = L, which are known as Sylvester equations; these methods
consist in performing a Hessenberg–Schur orthogonal transformation of the matrix
coefficients H1, H2,K1,K2, and in solving a quasi-triangular linear system for the
overall cost O(m3) (see [5]). Unfortunately, the more general case

∑
1�i�r HiYKi =

L, where r > 2, cannot be solved with these methods.
To solve (36), we have applied two kinds of fixed point iterations. The first

fixed point iteration consists in generating the sequence {Yn,h : h � 0} defined by

Yn,h+1 = Ln +
∑

1�i�d

(
AiŜ

−1
n

)
Yn,h

(
Ŝ−1
n Di

)
, h � 0, (37)

with Yn,0 = Ln. The second one generates the sequence {Yn,h : h � 0} defined by

Yn,h+1 − (ArŜ
−1
n

)
Yn,h+1

(
Ŝ−1
n Dr

)
= Ln +

∑
i�i�d
i /=r

(
AiŜ

−1
n

)
Yn,h

(
Ŝ−1
n Di

)
, h � 0, (38)

with Yn,0 = Ln, and where r is such that 1 � r � d .
Concerning the choice of r we observe that (36) can be viewed as a linear system

with matrix I − Bn, Bn =∑ Ŝ−1
n Di ⊗ AiS

−1
n . If Bn � 0 and ρ(Bn) < 1 then I −

Bn is a nonsingular M-matrix, therefore, for the properties of M-matrices [16], the
more convenient choice for r is the one for which ‖ArŜ

−1
n ‖ · ‖Ŝ−1Dr‖ is maximum

for a given norm ‖ · ‖.
From the numerical experiments it seems that the functional iteration (38) is gen-

erally faster than (37), but each step requires the solution of a Sylvester matrix equa-
tion. In order to solve it, we can apply the algorithm of [5], where the Hessenberg–
Schur orthogonal transformation of the matrix coefficients is done once and for all.
In principle, the convergence of the sequences (37) and (38) is not guaranteed; in
fact, we have found an example where (38) diverges.

6. Numerical experimentation

We have implemented in Fortran 90 the fixed point iteration (FPI), the algorithm
based on the reduction to quadratic equations (QE) and Newton’s method (NM). In
the QE method we have solved the quadratic matrix equations by using the cyclic
reduction algorithm. Concerning NM, we have solved (36) by applying the fixed
point iteration (38), with r = 1. The programs have been run on a Pentium III at 500
MHz.
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We have tested the algorithms on the following problem.
We consider a system similar to the M/M/1 queue in a random environment (see

[10, Example 9.2.2]). The service rate is constant and the arrival rate depends on the
state of a Markovian environmental process. Each arrival has a label which indicates
which direction is taken in the tree.

The parameters are as follows: the number of children is d = 2, the size of the
blocks is m, D1 = αI, D2 = D1, A1 = Diag(a, b, . . . , b), A2 = bI, C = T −
D1 − A1 − A2, a = ρfm, b = ρ(1 − f )m/(2m − 1), and T = (ti,j )i,j=1,m, ti,i =
−1 for i = 1, . . . , m, ti,i+1 = 1 for i = 1, . . . , m − 1, tm,1 = 1, ti,j = 0 elsewhere.

This system is stable if ρ (the stationary arrival rate) is less than α (the service
rate). The parameter f , which ranges from 0 to 1, measures the fraction of arrivals
which occur in phase 1; when f is small, the system behaves nearly like an ordinary
M/M/1 queue, when f is large, the arrivals are very bursty: in phase 1 the system is
strongly driven to higher levels in the direction of the children labeled “1”, in all the
other phases the system is strongly driven toward the root of the tree. The burstiness
is higher for large values of m.

We give in Table 1, for different values of the size m of the matrices, the number
of iterations and the residual error ‖S̃ − C + A1S̃

−1D1 + A2S̃
−1D2‖1, where S̃ is

the approximation provided by each of the algorithms. For the QE method we report
in parenthesis the largest number of iterations needed by cyclic reduction to solve the
matrix quadratic equations. For NM we report in parenthesis the largest number of
iterations needed by the fixed point iteration (38). We observe that all the algorithms
provide very accurate approximations. The QE and NM algorithms seem insensitive,
in terms of number of iterations, to the growth of the size m; the number of iterations
of FPI grows with m.

We report in Table 2 the number of iterations and the residual error, for different
values of the parameter f . It is interesting to observe the different behavior of the
number of iterations for the three methods. The number of iterations of FPI grows

Table 1
α = 2, ρ = 1.8, f = 0.8

m FPI QE NM

Steps Residual Steps Residual Steps Residual

10 125 5.7e − 15 10 (11) 4.7e − 16 10 (33) 3.5e − 16
20 280 7.6e − 15 10 (12) 1.0e − 15 10 (29) 9.2e − 16
30 459 6.9e − 15 9 (12) 1.5e − 15 10 (28) 9.1e − 16
40 649 8.7e − 15 9 (13) 1.5e − 15 10 (28) 7.9e − 16
50 860 9.1e − 15 9 (13) 2.0e − 15 10 (28) 9.0e − 16
60 1065 8.9e − 15 9 (13) 2.7e − 15 10 (28) 8.9e − 16
70 1279 9.0e − 15 9 (14) 2.3e − 15 10 (28) 6.8e − 16
80 1494 9.8e − 15 9 (14) 1.8e − 15 10 (27) 7.9e − 16
90 1693 8.7e − 15 9 (14) 2.3e − 15 10 (27) 7.9e − 16
100 1927 1.0e − 14 9 (14) 2.5e − 15 11 (27) 8.9e − 16
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Table 2
α = 2, ρ = 1.8, m = 100

f FPI QE NM

Steps Residual Steps Residual Steps Residual

0.1 269 7.8e − 15 25 (10) 3.6e − 15 10 (101) 9.3e − 16
0.2 445 8.0e − 15 21 (11) 2.8e − 15 10 (82) 5.4e − 16
0.3 643 9.5e − 15 17 (12) 2.6e − 15 10 (69) 4.2e − 16
0.4 873 9.1e − 15 15 (12) 2.2e − 15 10 (60) 3.7e − 16
0.5 1133 9.7e − 15 13 (13) 3.4e − 15 10 (53) 5.8e − 16
0.6 1379 9.0e − 15 11 (13) 3.5e − 15 10 (46) 6.7e − 16
0.7 1664 9.7e − 15 10 (14) 2.3e − 15 10 (38) 1.0e − 15
0.8 1927 1.0e − 14 9 (14) 2.5e − 15 10 (27) 8.9e − 16
0.9 2153 1.0e − 14 8 (15) 1.8e − 15 10 (21) 8.9e − 16
0.99 2411 9.5e − 15 6 (15) 1.5e − 15 11 (9) 1.0e − 15

Table 3
α = 2, ρ = 1.8, CPU time (s)

f = 0.8 m = 100

m FPI QE NM f FPI QE NM

10 0.05 0.04 0.1 0.1 16 42 296
20 0.2 0.2 0.9 0.2 27 36 263
30 0.8 0.5 3 0.3 38 31 238
40 2 1 7 0.4 52 28 212
50 6 2 13 0.5 68 24 189
60 14 4 22 0.6 82 20 164
70 27 6 34 0.7 100 20 150
80 45 9 50 0.8 117 18 105
90 75 13 72 0.9 128 16 95
100 117 18 105 0.99 145 11 46

with f . The number of iterations of QE decreases, as f grows, and the number of
inner iterations needed to solve the quadratic matrix equations is almost constant.
The number of iterations of NM is almost constant, as f grows, while the number of
inner iterations of (38) decreases.

We give in Table 3 the CPU time for different values of the size m and of the pa-
rameter f . In the QE and NM algorithms the CPU time strongly depends on the num-
ber of inner iterations to solve the quadratic equations (23) and the linear equation
(36), respectively.

In Fig. 3, we represent the CPU time in function of the parameter f . It is in-
teresting to observe the opposite monotonicity of FPI, with respect to QE and NM
(which have the same behavior). The algorithm FPI is convenient when the number
of iterations is not too large; otherwise QE is more convenient. QE and NM have the
same behavior in terms of monotonicity.
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Fig. 3. α = 2, ρ = 1.8, m = 100, CPU time.

7. Conclusions

We have compared three different algorithms for solving the nonlinear matrix
equation (7). The first algorithm (FPI) is described in Section 3; it is the natural
fixed point iteration and it is already used in [10,17]. The second algorithm (QE) is
proposed in Section 4, it requires at each step the solution of d quadratic matrix equa-
tions. Finally, the last algorithm (NM), proposed in Section 5, consists in applying
Newton’s scheme.

The procedure FPI is linearly convergent and has a low computational cost per
step; unfortunately, for difficult problems, the convergence is so slow that the algo-
rithm is not applicable. The QE method generates a sequence that still converges
linearly to the solution, but the convergence is generally faster than FPI; moreover
the quadratic matrix equations can be solved by using efficient algorithms, like cyclic
reduction.

The NM algorithm has a quadratic convergence; the drawback is that it requires at
each step the solution of the generalized Sylvester equation (36); in order to solve that
equation we have applied two different fixed point iterations, which could converge
slowly, or might even diverge. The study of effective algorithms for the solution of
that equation is under investigation.
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