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1. Introduction

De Finetti’s foundation of probability theory relies on the coherence of betting odds as follows [3-5]: Let ¢,,. .., ¢, be clas-
sical events and leta : {¢,,..., ¢} — [0, 1] be an assessment of ¢,, ..., @. Then a is said to be coherent if and only if there is no
system of reversible bets on the events leading to a win independently of the truth of ¢, ..., ¢,. Precisely, the assessment a is
coherent if and only if, for every b: {¢,,..., ¢} — R, there exists a Boolean valuation v : {¢,,..., ¢} — {0,1} such that

k
> b(e)@(ey) — v(ey)) = 0. (1)
i=1

The celebrated de Finetti’s theorem states that an assessment a is coherent if and only if a coincides with the restriction to
{$1,..., ¢} of a probability measure P from the free Boolean algebra generated by the ¢,’s to [0, 1]. In this case, we say that P
extends a, or that a extends to the probability measure P. The problem of checking whether or not a rational assessment
a:{¢q,...,d} — Q@nNJ0,1] is coherent is NP-complete [23].

A natural generalization of de Finetti’s coherence criterion is obtained allowing an infinite-valued interpretation of events
o1, ..., ¢y instead of their classical two-valued interpretation. A first attempt in this direction has been made by Paris [24],
who firstly extended de Finetti’s theorem to deal with a generalization of the classical Boolean semantics of the events,
namely the semantics of (n + 1)-valued tukasiewicz logic [2]: an assessment a: {¢;,..., ¢} — [0, 1] is coherent if and only
if a extends to a state® on the finite (n + 1)-valued MV-algebra over {0,1/n,...,1} freely generated by the ¢;’s, if and only if for
every b:{¢;,...,¢} — R, there exists a valuation v: {¢;,...,¢} —{0,1/n,... 1} satisfying (1). As a straightforward
consequence of [13, Theorem 1] and [7, Theorem 4.4.1], deciding the coherence of a above is an NP-complete problem. In light
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of Paris work, in [22] Mundici approaches the infinite-valued semantics for the events, showing that the coherence of an assess-
menta: {¢;,..., ¢} — [0,1] with respect to [0, 1]-valued Lukasiewicz valuations is characterized by the existence of a state on
the free MV-algebra generated by the ¢’s, extending a. In recent work [15], Mundici and Kiihr further extend this result to every
[0, 1]-valued algebraizable logic with continuous connectives.

In [22], Mundici shows that the coherence of rational tukasiewicz assessments is decidable, and, as regards to the com-
putational complexity of the problem, Flaminio and Montagna show that the problem is in PSPACE [10]. In this paper we
settle the computational complexity issue, showing that the problem is NP-complete (Section 2). In light of this, in Section 3
we obtain NP-completeness results for the satisfiability problem of several classes of formulas of probabilistic logics intro-
duced in [9,10], settling a problem raised by [13,10].

2. Lukasiewicz assessments complexity

In this section, we introduce the required background (Section 2.1), and we prove that the coherence of rational tukas-
iewicz assessments is NP-complete (Section 2.2). Throughout, [n] = {1,2,...,n}.

2.1. Background

Let ¢ = (®,®,—, L, T) be a signature of type (2,2,1,0,0). The set T of formulas over ¢ is the smallest set containing a count-
able set X = {X1,X>,...} of variables, L, T, or strings of the form (-), (¢ ® ¥), (¢ ® ¥), with ¢,y € T. We let T, denote the
subset of T containing formulas over variables Xi, ..., X,. Further binary operation symbols are defined as follows over the
signature ¢: @ = is ~Q@ &Y, @ =y is (9= Y)O (W — @), 9oy is ~(Q =), eV is (¢ =) —y, and @AY is
=(=¢ Vv —y). The algebra

[0, ]]MV — ([0’ 1]7 G[OJ]7 @[0.1]7 _‘[OJ]7 J_[O,l]7 T[O‘”),

where x0®y = max(0,x +y — 1),x3%y = min(1,x +y),-%Ux =1 —x, 1% =0, and T =1, is called the standard MV-
algebra. The variety of MV-algebras is generated, as a quasivariety, by [0, 1],,, [1].

Let Tyy = (T,07,®",-", LT, TT) be the MV-algebra over T defined by putting 17 =1, 7T =T, and for every
O, EeT, oY = (oY), paTy = (@ ), - ¢ = (). We say that a formula ¢ € T is satisfiable (respectively, positive sat-
isfiable) in tukasiewicz logic® if there exists a homomorphism (or a valuation) v from Tyy to [0, 1]y such that v(¢) = 1 (respec-
tively, v(¢) > 0). We let Tyy, denote the subalgebra of Tyy generated by T,.

Let n > 1. For every ¢ € T,, we let $/*!! denote the function from [0, 1]" to [0,1] inductively defined as follows. For every
X=(x1,....%) € [0,1]": LOU(x) = 0, TPU(x) = 1, XV (%) = i, (=) (%) = =LV LU (x), (0 © )V (%) = 0T (%) 001y Y (x),
(@ @) (x) = @oU(x)@01y Y (x). Letting

Fo={¢"""|¢ € T},

the free n-generated MV-algebra is the algebra

FMVn = (Fna ®F7 @Fz ﬁF7 lFa TF)a

where LF = 101 TF = 701 and the operations are the operations of [0, 1],,, defined pointwise; for instance, if f € F,, then
—Ff is the function such that for every X = (x1,...,x) € [0,1]", (=Ff)(x) = -CU(f(x)) = 1 — (f(x)).

The free n-generated MV-algebra has a nice functional representation in terms of n-ary McNaughton functions. An n-ary
McNaughton function is a continuous function f:[0,1]" — [0,1] defined as follows: there exist linear polynomials
Pi.-..,P, With integer coefficients such that for every x € [0,1]", there exists j € [k] such that f(x) = p;(X). From now
on, we call the polynomials py,...,p, the linear pieces of f. A routine induction on ¢ € T, shows that the function
1. [0,1]" — [0,1] is a McNaughton function. Conversely, for every n-ary McNaughton function f, there exists a formula
¢ € T, such that ¢! = f [16]. Indeed, in [20] Mundici describes an explicit nontrivial construction of ¢, which we now
sketch.

Let f be a given n-ary McNaughton function, and let p,, ..., p, be its linear pieces. For every permutation n of [k], let:
P, ={xe[0,1]" CPry(X) < Pripy(X) < - < Prgg (X0, 2)
C = {P; : P, is n-dimensional}. (3)

We observe that Cis a finite set of n-dimensional polyhedra with rational vertices V, that is, every P, € C is the convex hull
of a finite set of rational points in [0, 1]". Along the lines of [2, Proposition 3.3.1], C can be manufactured into a unimodular
partition of [0,1]" that linearizes f, that is, a finite set S of n-dimensional unimodular simplexes over the rational vertices V,

3 See [2] for an axiomatization of Lukasiewicz logic.
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enjoying the following three properties*: (i) the union of all simplexes in S is equal to [0, 1]"; (ii) any two simplexes in S inter-
sect in a common face; (iii) for each simplex T € S, there exists j € [k] such that the restriction of f to T coincides with p;. We also
say that f is linear over S.

Let q be a vertex of a simplex in the unimodular partition S. The Schauder hat at q is the McNaughton function hq line-
arized by S such that hq(q) = 1/den(q) and hq(r) = O for every vertex r distinct from q in S. The normalized Schauder hat
at q is the function kq = den(q) - hq. Note that every McNaughton function that is linear over S is a linear combination of
the family of Schauder hats corresponding to S, where each hat hq has a uniquely determined integer coefficient between
0 and den(q). Thus in particular, as the given function f is linear over S,

f:Zaq'hqv (4)

qeV

for uniquely determined integers 0 < aq < den(q).
The core of the construction (appealing to unimodularity) yields for every vertex q in S a formula y, € T, such that

Za = ha;
the desired formula in T, is then attained by putting
=®a
¢ qéeBV aXa:
where ag)y = Jq © - © Xq (dq times).

The functional representation of the free n-generated MV-algebra, sketched above, plays a central role in the technical
development of the rest of the paper. In particular, the following two facts will be used in the proof of the main lemma.

Proposition 2.1. Let S be a unimodular partition of [0,1]" over vertices qy,...,q,,. Then:

(i) Let hq and hg, be (normalized) Schauder hats at vertices q; and q;, respectively for i # j € [m]. Then,

hq,©%hg = L0V,

(ii) Let kg, , ..., kq, be the normalized Schauder hats at the vertices of S. Then,
B kg = TOU.
i=1

Proof. (i) Simply notice that for each vertex q;, all (normalized) Schauder hats over S, with the exception of hq, vanish.
Hence, for each x € [0,1]", it holds that hg©/®hq (x) = 0 = L®"(x). In order to prove (ii) recall that, for any q;, kq,(q;) =1,
whence the claim follows from the linearity of each normalized hat over every simplex of S. O

As already mentioned in the introduction, the notion of state is key for the investigation of coherent assessments of for-
mulas of several [0,1]-valued logics and Lukasiewicz logic in particular. Normalized and additive maps on MV-algebras have
been introduced by Képka and Chovanec in [14], and then by Mundici under the name of MV-algebraic states (or simply
states) in [21].

Definition 2.2. Let A= (A,®,®,—, L, T) be an MV-algebra. A state of A is a map s : A — [0, 1] satisfying normality, that is,
s(T)=1,

and additivity, that is, for all x,y € A,
s(xoy)=s(x)+s(y)

whenever x ©y =1.

Proposition 2.3 [11]. For any meN, and any Schauder hat hq € Fwmy,, if s:Fuy, —[0,1] is a state, then

s(den(q) - hq) = den(q) - s(hg).

Proof. Immediate from Proposition 2.1, and Definition 2.2. O

As already mentioned in the introduction, in this paper we study the complexity of the problem of deciding whether or
not a Lukasiewicz assessment is coherent. This purpose allows for restricting to rational, decidable assessments.

4 An n-dimensional simplex is the convex hull of n + 1 affinely independent vertices. The empty set () is a (—1)-dimensional simplex. A k-dimensional face of
the n-simplex T over vertices qq,...,q,,; is the k-simplex spanned by k+ 1 vertices of T. Let T be an n-dimensional simplex over rational vertices. Let
q=(a1/d,...,a,/d) be a vertex of T, for uniquely determined relatively prime integers a1,...,a,,d withd > 1. Call (ay,..., a,, d) the homogeneous coordinates of
q, and call den(q) = d the denominator of q. Then, T is unimodular if the absolute value of the determinant of the integer square matrix having the homogeneous
coordinates of the ith vertex as its ith row, for all i € [n + 1], is equal to 1. A k-dimensional simplex (k < n) is unimodular if it is a face of some unimodular n-

dimensional simplex.
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Definition 2.4. Let ¢4, ..., ¢, be formulas in Ty,. A (Lukasiewicz) assessment is a map

a:{¢y,.., d} —[0,1]. (5)
An assessment a is rational if a(¢;) € Q for every i € [k], and is coherent if for every b : {¢,,..., ¢} — R, there exists a homo-
morphism v from Tyy,, to [0, 1],,, such that

Z[k]b(d)i)(a((/)i) -v(¢;) = 0. (6)

ic

The main technical lemma of the present work, Lemma 2.7, is a sharpening of the following result of Kiihr and Mundici.
Theorem 2.5 (Kithr-Mundici). Let a be an assessment on ¢+, ..., ¢; € Tm. Then, the following are equivalent:

(i) a is coherent.
(ii) There exists a state s over Fyy,, such that, for all i € [k],

s = a(y).
(iii) There exist I < k+ 1 homomorphisms vy, ..., v; from Tyy,, to [0, 1]y, such that (a(¢;)), is a convex combination of

(V1(D)icps - - - » (Vi(#0))iegg-

Proof. (i) < (ii) is [22, Theorem 2.1]. (i) <= (iii) is [15, Theorem 3.2]. O

It is worth noticing that the above theorem is stated in a more general way in [15]. Indeed, the authors characterize coher-
ent assessments of formulas of any [0, 1]-valued logic whose connectives are continuous functions with respect to the usual
topology of the real unit interval [0,1], including the logic Rt [11], Rational Pavelka logic [12], and the logic PMV"* [17,18].

We now prepare some terminology and notation in view of the main lemma.

We assume a reasonably compact binary encoding of ¢ € T, such that the number size(¢) of bits in the encoding of ¢ is
bounded above by a polynomial e; : N — N of the number c(¢) of symbols ®, — occurring in ¢, that is,

size(p) < eq(c(¢y)).

We similarly assume that the length in bits of the encoding of a finite set of formulas {¢,...,¢,} CT, in symbols
size({¢y,. .., ¢y}) satisfies

size({¢y, ..., d}) < ea(size(¢y) + - - - + size(¢y)),

for some polynomial e, : N — N. Also, letting a : {¢;,..., ¢} — [0,1] be a rational assessment such that a(¢;) = n;/d; with n;
and d; relatively prime integers for all i in [k], we assume a binary encoding of a such that the number of bits in the encoding
of a, in symbols, size(a), satisfies

size(a) < es(size({¢,..., dy}) + k-logy max{dy,... . di}),
for some polynomial e3 : N — N.

Proposition 2.6. Let ¢1,..., ¢, € Ty for some k > 1. Then, there exist a unary polynomial q : N — N, and a unimodular partition
S of [0,1]™ linearizing ¢, ..., ¢y, such that each rational vertex X of S satisfies

log,den(x) < q(size({¢,. .., ¢}))-

Proof. The statement is an application of [2, Proposition 9.3.3].

Foralli e [k], let f; = qbl[o‘” be the m-ary McNaughton function corresponding to formula ¢; € Ty Let py, ..., p; be the list of
all linear pieces of the functions fi, ..., fi, together with xq,...,xp,,0,1, and define P, as in (2) and C as in (3) based on these
pieces. Let V be the vertices of C, and let S be a unimodular partition manufactured from C without adding new vertices, as
explained in Section 2.1. We show that S satisfies the statement.

First, since C includes all the linear pieces of all the functions fi,...,f;, and S is a subdivision of C, it follows that S
linearizes each of the functions fi, ..., f;.

Second, recall that by the definition of McNaughton function, each piece p; has the form

pi(xh cee 7xm) =Ci1X1 + -+ CimXm + drm
with ¢i1,...,Cim,dn € Z. Thus, by inspection of (2), each x € V is the rational solution of a system of m linear equations in m

unknowns, each equation having either form p;,(x1,...,Xm) = Di(X1, .-, Xm), Pp(X1, ..., Xm) = 0,pp(X1,...,Xm) = 1 for h,i € [I], or
X =0,x; =1 for i € [m]. Suppose that p; is a linear piece of f;. A routine induction on ¢; shows that

[Citl,- -, |Cim| < size(d;).
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Hence, the largest coefficient (in absolute value) of any linear piece amongst p;,...,p; is bounded above by
max{size(¢;)|j € [k]} < size({¢y,..., d}),
so that the nth equation in the linear system having x as solution has the form

ap1X1 + -+ pmXm = bnv

with
[Gnal, .- |@um| < 2 -size({dq,. .., d})- (7)
As
A .. G\ /by
Xx=| & | =ATD,
m1 ... Omm bn

it follows that den(x) < |det(A)| by elementary linear algebra [25]. In light of (7), an application of Hadamard’s inequality
now Yyields the desired bound,

|det(A)| < [ (@ +---+a,)"?

ie[m]

< ] laial + - + |aiml
ie[m]

< Hm~2~size({¢1,..‘,¢k})

ic[m]

< p2mlogam-size({¢1.....41})
< 2d(size({pr ... </)k}))7
by putting
q(n) =n*
and noticing that m < size({¢, ..., ¢«}), because the size of a set of formulas over m distinct variables is greater than or

equaltom. O
Lemma 2.7. Let ¢,...,¢; € T, and let a: {4, ..., ¢} — [0,1] N Q be a Lukasiewicz assessment. The following are equivalent:

(i) a is coherent.
(ii) There exist a unary polynomial p: N — N, and | < k + 1 homomorphisms vy, ..., v; from Tyy, to [0, 1],,, satisfying the
following. For all i € [I], v; ranges over {0,1/d;,...,(d; — 1)/d;, 1}, where
log,d; < p(size(a)),
and (a(¢;));cy is a convex combination of (Vi(¢;))ici: - - - » (Vi(¢))

iclk]*

Proof. (i = ii) Let s be a state over Fyy,, satisfying Theorem 2.5, and let S be a unimodular partition satisfying Proposition
2.6.Letqy,...,q, be the rational vertices of S, and let d, = den(q,), ..., d, = den(q,). Let " = kq, be the normalized Schau-
der hat at vertex q;,i € [n]. Let xq,...,X, € R be defined by putting, for all i € [n],

o s
=s((z; @ --@1,)"") by Proposition 2.1(1) and additivity of s
(T by Proposition 2.1(2)

Let 91*" = y1®/d; = hy, be the Schauder hat at vertex q;,i € [n]. For all i € [k], " is a McNaughton function linearized by S,
and for j € [n], 7" is the Schauder hat at vertex g; of S. Thus by (4) there is a unique choice of integers 0 < a;; < den(q;) < 1
such that ¢/>" satisfies the following equation:

0,1 0,1
(]51[ = Z aij - 19][ ].
Jeln]
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For all i € [n], let w; be the homomorphism from Tyy,, to [0, 1]y, defined by putting, for every ¢ € Tp,
wi(g) = ¢*(qy).

Note that w; ranges over {0,1/d;,...,(di —1)/d;, 1}, and by Proposition 2.6,
log,d; = log,den(q;) < q(size({¢1, ..., ¢r})) < p(size(a)),

letting
p(n) =q(n) =n?,

as size({¢q, ..., ¢ }) < size(a).

Now compute, for every j € [k],

Zxx Wi d’] le ¢[01] (qy)
ie[n

ie[n] <
= s(di-of ]) ay/d
ie[n]
=y s(aj,,» : 19}“”) by Proposition 2.3
ie[n]
= Z S(ﬂj‘i/di y[O ”)
ie[n]
=s( e aji/d; - »,[0'”> by Proposition 2.1(1) and additivity of s
USig
=s(¢")
AsX; + -+ 4 X, = 1, the point (a(¢;));.y is @ convex combination of points (W1 (¢;))icys - - - » (Wn(¢;));cy- By Carathéodory’s the-
orem [6, Theorem 2.3], there exists a choice of < k + 1 homomorphisms v1,...,v; amongst wi, ..., W, such that (a(¢;)) ;. is

a convex combination of
(V1(D))iewy - - - » (Vi(Di))icpio

and we are done.
(ii = i) A routine verification shows that the map s from Fyy,, to [0,1] defined by putting

=Y xi-vi(o)
i€[n]

for every ¢ € Ty, is a state; hence, a is coherent by Theorem 2.5. We refer the reader to [22] for details.’> O

2.2. Complexity
Let (a) denote the binary encoding of a rational Lukasiewicz assessment a. The problem of deciding coherence of rational
Lukasiewicz assessments is defined as follows:
LUK-COH = {(a)|a is a coherent rational Lukasiewicz assessment}.
In the next two paragraphs we prove that LUK-COH is in NP (Lemma 2.9), and is NP-hard (Lemma 2.10), thus
Theorem 2.8. LUK-COH is NP-complete.

Upper bound. It is known that the feasibility problem of linear systems is decidable in polynomial time in the size of the
binary encoding of the linear system [25]. Therefore, Lemma 2.7 directly furnishes a nondeterministic polynomial time algo-
rithm for the coherence problem, as follows.

Lemma 2.9. LUK-COH is in NP.

Proof. Leta: {¢;,..., ¢} — [0,1] N @ be a Lukasiewicz assessment, where ¢, ..., ¢, are over variables X1, ..., Xn. Following
Lemma 2.7, the algorithm guesses a natural number ! < k + 1 and, for all i € [[], the algorithm guesses the denominator d;, the
restriction of homomorphism v; to variables X, ..., X,,, and eventually checks the feasibility of the following linear system:

5 We do no appeal to this direction later.
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X1+ X +x=1
vi(d)x1 + - +vi1(P)Xi1 +vi(dr)xi = a(¢q)

vi(dx + -+ v ()X +vi(d)x = a(dy)

By Lemma 2.7, for all i € [I], the denominator d; has a polynomial-space encoding. Hence, the restriction of v; to Xi,...,Xp, as
well as the coefficients v;(¢;), ..., vi(¢y), are in {0,1/d;,...,(d; — 1)/d;, 1}. So, the size of the system is polynomial in size(a),
and the algorithm terminates in time polynomial in size(a). Noticing that the linear system is feasible if and only if a is a
convex combination of vq,...,v if and only if a is coherent, we are done. O

Lower bound. Let (¢) denote the binary encoding of the formula ¢ € T. In [19], it is proved that the problem
LUK-SAT = {(¢)|¢ is satisfiable in tukasiewicz logic}
is NP-complete.
Lemma 2.10. LUK-COH is NP-hard.
Proof. We describe a logarithmic-space reduction from the NP-hard problem LUK-SAT to LUK-COH.
Let ¢ € Tr. Let a be the assessment sending formulas X; & —X1,...,Xm ® -Xp, and ¢ to 1, that is,
aXi@-Xy)=-=aXn®Xn) =a(¢) =1.

The construction of the assessment a is feasible in space logarithmic in size(¢). We show that a is coherent if and only if ¢
is satisfiable in Lukasiewicz logic.

(=) Suppose that a is coherent. Let b; = —1 for all i € [m + 1], and let v be a homomorphism from Twy to [0, 1],y such that
(6) holds that is,

a(¢) —v(¢) < Y (v(Xi ® -Xi) —a(Xi @ —Xy)).

ie[m]
As v(X; ® —X;) = 1 = a(X; ® —X;) for every i € [m], the right hand side vanishes so that
T=a(¢)<v(¢) <1

(<) Let v be a homomorphism from Twy to [0, 1],,, such that v(¢) = 1. Let s be a map from Fyy,, to [0,1] defined by putting,
for every ¢! € Fy,,

s(*1) = v(¢).

We claim that s is a state over the free m-generated MV-algebra: For normality, s(TI®") = v(T) = 1. For additivity, if
(@ @) = 107, then

0=v(L) =s(L*) =s((¢ ©¥)*") = v(p © ¢) = max(0,v(¢) +v(¥) - 1),
hence v(¢) + v(y) < 1. Thus,

s((@ &)™) = v(g & y) = min(1,v(@) +v(¥)) = v(@) +v(¥) = s(@®") +sp").
As

s(¢”") =v(¢) =1=a(¢),
and for every i € [m],

s(Xia X)) =v(X; & -X) = 1= a(X; & X)),

a is coherent by Theorem 2.5. O

3. Probabilistic SFP-formulas complexity

In [9] the authors introduce the logic SFP(L, ) as the natural algebraizable extension of the probabilistic logic FP(L,1)
introduced in [8] and studied by Hajek in [13].

The language of SFP(L, L) is obtained by extending that of Lukasiewicz logic by the unary modality Pr, and defining for-
mulas in the usual way. The axioms of SFP(L, L) are those of Lukasiewicz logic [12], together with the following schemata for
the modality Pr:

(P1) Pr(L) <L
(P2) Pr(Pr(¢) @ Pr(y)) < Pr(¢) @ Pr(y)



S. Bova, T. Flaminio / International Journal of Approximate Reasoning 51 (2010) 294-304 301

(P3) Pr(¢ — ) — (Pr(@) — Pr(y))
(P4) Pr(p @ ) — [Pr(p) @ Pr(y & (@ © )]

Rules are modus ponens: from ¢ and ¢ — , derive y, and necessitation: from ¢, derive Pr(¢).

We let SFP denote the set of formulas of SFP(L, L). In the sequel we assume, without loss of generality, that formulas in
SFP do not contain occurrences of subformulas of the form Pr(Pr(¢)). Indeed, Pr(Pr(¢)) is logically equivalent to Pr(¢) by ax-
iom (P2), and in any formula in SFP we can substitute subformulas by a logically equivalent formulas [10]. Therefore, in log-
arithmic space, it is possible to replace in a formula of SFP any occurrence of the subformula Pr(Pr(¢)) with the formula
Pr(¢), until no nested applications of Pr occur.

The equivalent algebraic semantics of SFP(L, L) is the variety of SMV-algebras [9]. These are pairs (A, o), where A is an MV-
algebra, and ¢ is a unary operation on A satisfying the following equations:

(61) 6(0)=0

(02) o(—x) = —0o(x).

(03) a(e(x) @ a(y)) =o(x) @ a(y)
(04) oxoy)=o(x)@ oy x0y))

In any SMV-algebra (A, ¢), the image of A under o, in symbols, g(A), is the domain of an MV-subalgebra of A. An SMV-
algebra (A, o) is said to be o-simple provided that A is semisimple, and ¢(A) is simple.® Hence, up to isomorphism, any ¢-sim-
ple SMV-algebra (A, ) is made of an MV-algebra A of real-valued continuous functions, such that ¢(A) is an MV-subalgebra of
0. 1)y [10].

A valuation of SFP(L, L) into an SMV-algebra A is a map v sending the variables X to the domain A. Any valuation v extends
uniquely to a map from formulas in SFP by the following inductive stipulations: v commutes with Lukasiewicz connectives,
and for every y € SFP,v(Pr(y)) = a(v(y)).

Formulas in SFP can be interpreted by a different class of structures, as follows [12,10].

Definition 3.1 (Probabilistic Kripke models). A probabilistic Kripke model (Kripke model henceforth) is a triple K = (W, e, )
where:

(K1) W is a finite or countable set of nodes, called worlds.

(K2) eis a map from pairs in W x X to [0, 1]. For any fixed world w € W e(w, -) extends uniquely to a valuation of formulas
in T in [0,1], in the usual way.

(K3) p:W — [0,1] is a function such that >° ., pu(w) = 1.

Let ¢ € SFP, let K = (W, e, i) be a Kripke model, and let w € W. Then the truth value of ¢ in K at the world w, in symbols
l|¢llx w» is inductively defined as follows:

(i) if ¢ is a variable X;, then | Xi||x,, = e(w,Xi);
(ii) if ¢ = Pr(y), [Pr(¥)llcw = 2w ew W) - [[¥[licws

(iii) || - llx, commutes with tukasiewicz connectives.

Remark 1. If ¢ is such that all of its Lukasiewicz subformulas occur under the scope of the modality Pr, then its truth value
does not depend on the chosen world w, so that, in this case, we simply write ||¢||.

Definition 3.2. Let ¢ be in SFP. Then:

(i) ¢ is SMV-satisfiable, or ¢ € SMV-SAT, if there is an SMV-algebra (A, ¢) and a valuation v into A such that v(¢) = 1. ¢ is
standard satisfiable, or ¢ € STD-SAT, if there is a o-simple SMV-algebra (A, ) and a valuation v into A such that
v(¢) = 1. ¢ is Kripke-satisfiable, or ¢ € KR-SAT, if there is a Kripke model K such that, for each world w, ||¢||;,, = 1.

(ii) ¢ is locally positive Kripke satisfiable, or ¢ € L-KR-POS-SAT, if there is a Kripke model K and a world w of K, such that
H¢||KW > 0.

(iii) ¢ is locally standard satisfiable, or ¢ € L-STD-SAT, if there is a g-simple SMV-algebra (A, ), a valuation v into A, and a
homomorphism h : A — [0, 1],,, such that h(v(A)) = 1. ¢ is locally Kripke satisfiable, or ¢ € L-KR-SAT, if there is a Kripke
model K and a world w of K such that |||, = 1.

(iv) ¢ is a standard-tautology, or ¢ € STD-TAUT, if for every o-simple SMV-algebra (A, o) and every valuation v into
(A,0),v(¢) = 1.4 is a Kripke-tautology, or ¢ € KR-TAUT, if ||¢||x,, = 1 for every Kripke model K and every world w of K.

6 We refer the reader to [2] for a complete discussion about simple and semi-simple MV-algebras. For what it concerns the understanding of the rest of this
section, it is sufficient to recall that, up to isomorphisms, any simple MV-algebra is an MV-subalgebra of [0, 1],y [2, Theorem 3.5.1], while a semi-simple MV-
algebra is an algebra of [0, 1]-valued continuos functions on a compact Hausdorff space X [2, Corollary 3.6.8].
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Theorem 3.3. From [10]:

(i) ¢ € KR-TAUT if and only if —¢ ¢ L-KR-POS-SAT.
(ii) KR-TAUT = STD-TAUT.

(ii) KR-SAT = STD-SAT = SMV-SAT.
(iv) L-KR-SAT = L-STD-SAT.

Lemma 3.4. Let ¢ € SFP, and let Pr(y,),...,Pr(y,) be the subformulas of ¢ of the from Pr(-). Then:

(i) For every Kripke model K = (W, e, 1t) and every w € W, there exists a Kripke model K’ = (W', ¢’, it'), with |W'| =1+ 2,
and a world w' € W', such that |¢|,, = l|¢llx .. Moreover y/'(v) > 0 for at most r + 1 worlds in W"'.
(i) ¢ € KR-SAT if and only if there exists a Kripke model K' = (W', e’, ') with at most r+ 2 worlds, such that, for all
w e W, ||¢|lxw = 1. Moreover p'(v) > 0 for at most r + 1 worlds in W'
(iii) ¢ € KR-SAT iff Pr(¢) € L-KR-SAT iff Pr(¢) € KR-SAT.

Proof. By [10, Corollary 3.10 and Theorem 3.6]. O

3.1. Complexity

In this section we characterize the computational complexity of the sets KR-SAT, KR-TAUT, and L-KR-SAT, obtaining as a
corollary the desired complexity bounds for SMV-SAT,STD-TAUT, and L-STD-SAT.

A MIP-problem is a tuple (A, b, c,d, k) where (A, b, c,d) is a linear programming problem, and k < n represents the additional
request that xy, ...,x, must be in {0, 1}. MIP-problems are in NP [25]. A polynomial reduction to MIP-problems shows that
LUK-SAT, as well as the problem

LUK-POS-SAT = {(¢}|¢ is positive satisfiable in Lukasiewicz logic}
are in NP [12]. Formally,

Lemma 3.5. From [12]:

(i) Forevery ¢ € T, there exists a MIP-problem ¥.«/.7 (¢), polynomial-time computable in size(¢), such that ¢ € LUK-SAT
if and only if ¥.«#.7 (¢) has solution.

(ii) For every ¢ € T, there exists a MIP-problem .7 -20%(¢$), polynomial-time computable in size(¢), such that
¢ € LUK-POS-SAT if and only if ¥.«/7-20%(¢) has solution.

In particular, a solution to ¥.«/.7 (¢) gives a valuation of Lukasiewicz formulas v into [0,1] such that v(¢) = 1, and a solu-
tion to ./ 7 —20%(¢$) gives a valuation of Lukasiewicz formulas v into [0,1] such that v(¢) > 0.

Lemma 3.6. The sets KR-SAT, L-KR-SAT, and L-KR-POS-SAT are in NP.

Proof. Let ¢(Xy,...,X:,Pr(y,),...,Pr(y,)) be a formula in SFP. Let {Z;,...,Z} be a set of fresh variables, and let ¢* € T be
obtained by substituting Pr(y;) with Z;, for every j € [k]. By Lemma 3.5, let ./ (¢") be the MIP-problem having a solution
if and only if ¢* is satisfiable, and let z;, ...,z be the variables of ¥.«7#7 (¢*) corresponding to the fresh variables Z;, ..., Z.
We now guess, in polynomial time, a partial solution to the MIP-problem %.«#.7 (¢*). The guessed partial solution, in partic-
ular, covers all variables constrained to have an integer solution, thus turning the original MIP into a linear programing
problem.

First, the algorithm guesses the solution to the variables in ¥.</.7 (¢*), distinct from z,, ..., z,, constrained to be solved
over {0, 1}. Second, the algorithm deals with the z's. These variables cope with probabilistic formulas, hence we must ensure
them to be evaluated by a coherent Lukasiewicz assessment a: {i1,...,y;} — [0,1]. By Lemma 2.7, the coherence of a is
witnessed by the existence of an [ < k + 1, non-negative real numbers bq,..., b, natural numbers ay,...,q; < 2sizer i)
and homomorphisms vy, ...,v; : Tyy,, — [0, 1]y (where m is the number of distinct variables occurring in ¥, ..., ), such
that, for each j e [I], and each y € Tyy,,, we have that v;(y) € {0,1/q;,...,(q; — 1)/q;, 1},

! !
bj=1, and ) b;-v;(y;) = z(for all i € [k]). (8)

=1 =
Accordingly, the algorithm guesses the natural numbers ay, . .., q;, and the restriction of homomorphisms vy, ..., v, to the
m variables occurring in y, ..., . Each v; is a vector in {0, 1/qj,..., (a; — 1)/a;, 1}". Finally, in polynomial time, it computes

the values vi (), ..., vi(¥y), and extends .77 (¢*) by the k + 1 equations (in the real unknowns by, ..., b;) from (8) to obtain
a linear problem, #-% ./ 7 (¢).
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P-S .o/ T (¢) is solvable in polynomial time [25], and moreover, as we now show, ¢ € L-KR-SAT if and only if #-%.«/.7 (¢)
has a positive solution.

Claim 1. ¢ € L-KR-SAT if and only if -9 </ 7 (¢) has a positive solution.

(=) Assume that ¢ € L-KR-SAT, whence, there exists a Kripke model K = (W,e, u), and a node w € W, such that
lllxw =1. From Lemma 3.4(i) this is equivalent to the existence of a Kripke model K' = (W' e'w) such that
\W'| =k+2,(v) >0 for | < k+1nodes vin W’ (call them v4,..., 7)), and ||¢||y ., = 1 for a given w € W'

For all j € [I], call o; = (¢(v;). Then (o, ..., o) solves (8). Moreover, for w € W' satisfying |||, ,, = 1, the array

(e, X1),...e(W, Xo), IPr(¥o)llc w - - IPEWi) i e )

is a solution for .77 (¢"). Then #-%.</7 (¢) has a positive solution.

(«). Conversely assume that #-%./7(¢$) has a positive solution. This means that both there is a map
vo:{X1,...,Xt,Z1,...,Zx} — [0,1] such that vo(¢*) = 1, and there are | < k + 1 real numbers b, ..., b, € [0, 1], and homomor-
phisms vq,...,v; such that (8) holds.

Therefore let K = (W, e, i) be so defined:

e W ={vg,v1,...,v}, and for each propositional variable X;, and for all i = 0,....,1, e(v;, Xj) = vi(Xj).
e w:W —[0,1]is u(v;) = b; for all i € [l], and u(vo) = 0. Then it is clear that Z}:o,u(vj) =1.

Then K is a Kripke model. Moreover ||¢||;,, = 1, and finally ¢ € L-KR-SAT, and Claim 1 is settled and L-KR-SAT is in NP.

In order to show that KR-SAT € NP, just apply the above construction to the formula Pr(¢). Using the same argument one
can easily show that there exists a MIP-problem 2-9.«/7 (Pr(¢)) that has a positive solution if and only if Pr(¢) € L-KR-SAT
if and only if (from Lemma 3.4(iii)) ¢ € KR-SAT. Since Pr(¢) is obviously computed from ¢ in polynomial time, it shows
KR-SAT € NP.

Finally, to show L-KR-POS-SAT € NP, just run through the proof of L-KR-SAT e NP, replacing &.«/7 (¢*) by
S AT -P0S(¢"), and appealing to Lemma 3.5(ii). [

Lemma 3.7. The sets KR-SAT, L-KR-SAT, and L-KR-POS-SAT are NP-hard.

Proof. Let ¢(Xy,...,X;) be a formula, and consider ¢(Pr(Z;),...,Pr(Z;)) where the {Z;,...,Z} is a set of t many fresh vari-
ables. Clearly, if the latter formula belongs to L-KR-SAT (L-KR-POS-SAT, respectively), then the former belongs to
LUK-SAT (LUK-POS-SAT, respectively). Conversely, let v be a valuation such that v(¢(X1,....X;)) =1 (v(¢(X1,..., X)) >0,
respectively). Let us assume that v(X;) < --- < v(X,). Then define K = (W, e, i) as follows’:

(i) W={ws,...,we1},and for all i € [t+ 1] and j € [t],e(w;,Z;) = 1 if j < i, and O otherwise.
(ii) p: W — [0, 1] defined as follows:

v(X1) ifj=1,
mwy) = q v(Xj) —v(Xjq) ifT<j<t,
1—v(X,) ifj=t+1.

Then Z}j,u(wj) =1, and, for every w; € W, and every i € [t],

t+1
IPEZ) iy = D Wy Zi) - prlwy) = Y p(w;) = v(Xy).
= i<

Then | ¢(Pr(Zy),.. S Pr(Z) g, = v(dXy, ..., Xp)). In particular  this shows that ¢(Pr(Zy),...,Pr(Z;)) € L-KR-SAT
(¢(Pr(Zy),...,Pr(Z;)) € L-KR-POS-SAT, respectively).

In order to prove that KR-SAT is NP-hard, a direct inspection of the above construction, and Remark 1, show that a
formula of the form ¢(Pr(Zy),...,Pr(Z;)) is in L-KR-SAT if and only if it belongs to KR-SAT, and this settles our claim. O

Theorem 3.8. The sets KR-SAT = STD-SAT = SMV-SAT, L-KR-SAT = L-STD-SAT, and L-KR-POS-SAT are NP-complete. The
sets KR-TAUT and STD-TAUT are coNP-complete.

Proof. By Lemmas 3.6, 3.7, and Theorem 3.3. O

7 The following construction is due to Hajek, see [13, Theorem 1].
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