ORL DOI: 10.1159/000516345 Received: October 13, 2020 Accepted: April 2, 2021 Published online: June 28, 2021

In vitro Inhibition of Biofilm Formation on Silicon Rubber Voice Prosthesis: **A Systematic Review and Meta-Analysis**

Alexios Tsikopoulos^a Efi Petinaki^b Charalampos Festas^c Konstantinos Tsikopoulos^d Gabriele Meroni^e Lorenzo Drago^e Charalampos Skoulakis^a

^aDepartment of Otorhinolaryngology, School of Medicine, University of Thessaly, Larissa, Greece; ^bDepartment of Biopathology and Clinical Microbiology, School of Medicine, University of Thessaly, Larissa, Greece; ^cDepartment of Otorhinolaryngology, 401 Army General Training Hospital, Athens, Greece; ^dDepartment of Orthopedics, 424 Army General Training Hospital, Thessaloniki, Greece; eDepartment of Biomedical Sciences for Health, University of Milan, Milan, Italy

Keywords

Biofilm · Silicone · Voice prosthesis · Inhibition

Abstract

Introduction: Biofilm formation on voice prostheses is the primary reason for their premature implant dysfunction. Multiple strategies have been proposed over the last decades to achieve inhibition of biofilm formation on these devices. The purpose of this study was to assess the results of the available in vitro biofilm inhibition modalities on silicone rubber voice prostheses. Methods: We conducted a systematic search in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases up to February 29, 2020. A total of 33 in vitro laboratory studies investigating the efficacy of different coating methods against Candida, Staphylococcus, Streptococcus, Lactobacilli, and Rothia biofilm growth on silicone rubber medical devices were included. Subgroup analysis linked to the type of prevention modality was carried out, and quality assessment was performed with the use of the modified CONSORT tool. Results: Data from 33 studies were included in qualitative analysis, of which 12 qualified for quantitative analysis. For yeast biofilm

© 2021 S. Karger AG, Basel

formation assessment, there was a statistically significant difference in favor of the intervention group (standardized mean difference [SMD] = -1.20; 95% confidence interval [CI] [-1.73, -0.66]; p < 0.0001). Subgroup analysis showed that combined methods (active and passive surface modification) are the most effective for biofilm inhibition in yeast (SMD = -2.53; 95% CI [-4.02, -1.03]; p = 0.00001). No statistically significant differences between intervention and control groups were shown for bacterial biofilm inhibition (SMD = -0.09; 95% CI [-0.68, 0.46]; p = 0.65), and the results from the subgroup analysis found no notable differences between the surface modification methods. After analyzing data on polymicrobial biofilms, a statistically significant difference in favor of prevention methods in comparison with the control group was detected (SMD = -2.59; 95% CI [-7.48, 2.31]; p = 0.30). **Conclusions:** The meta-analysis on biofilm inhibition demonstrated significant differences in favor of yeast biofilm inhibition compared to bacteria. A stronger inhibition with the application of passive or combined active and passive surface modification techniques was reported.

© 2021 S. Karger AG, Basel

karger@karger.com www.karger.com/orl

Introduction

The insertion of a silicone rubber voice prosthesis into a surgically created tracheoesophageal fistula is the main strategy for voice rehabilitation in laryngectomized patients [1]. Currently, there are 2 different types of voice prostheses: the non-indwelling voice prosthesis, which is removable in order to be cleaned by the patients, and the indwelling voice prosthesis, which usually stays for an extended period in the tracheoesophageal fistula [2]. The material of choice for their production is silicone rubber because of its excellent mechanical and molding properties [2]. However, the hydrophobicity of silicone rubber surfaces [3] in combination with the continuous exposure to saliva, food, drinks, and oropharyngeal microflora [4] contributes to the rapid colonization of the prostheses by bacteria and yeasts [5] and leads to biofilm formation [6], which induces structural damage to the medical device. Leakage of esophageal contents (through and around the prosthesis valve) and increased airflow resistance are signs of biofilm formation, leading to frequent replacement of indwelling voice prostheses, limiting their clinical lifetime to 4-6 months [7]. Even though a replacement of a voice prosthesis potentially leads to problem-solving, narrowing or insufficiency of the tracheoesophageal fistula, local inflammation, and formation of granular tissue are possible complications of biofilm formation and may require additional surgical revision [8].

Among the different microorganisms that can easily colonize vocal implants, fungal species are the most commonly isolated, with a prevalence of 72.9% [9]. The predominant genera of yeasts found to form biofilms are *Candida* strains. In most cases, biofilms on silicone rubber prostheses extracted from patients are polymicrobial communities, in which different populations are present; in those mixed biofilms, *Staphylococcus, Streptococcus, Lactobacilli*, and *Rothia* species (both oral and cutaneous) are frequently isolated [10].

In the last decades, various biofilm methods have been described with the aim to prolong the lifespan of these devices. Antimycotic or antibiotic agents [11] are ineffective prevention of biofilm formation due to the risk of resistance [12]. It is known that in this environment, microorganisms undergo physiological and metabolic alterations that make them more resistant and recalcitrant to antimicrobials and consequently notoriously difficult to eradicate [13]. Thus, alternative approaches improving the antifouling properties of the silicone rubber material and preventing biofilm-associated biomaterial infections are urgently needed.

The initial step of biofilm formation involves adhesion of microorganisms to a surface [14] and depends not only on the nutrient environment, pH, and temperature but also on the physicochemical properties of the surface [15]. The modification of these properties of silicone voice prostheses could help in reducing biofilm formation and therefore improve the lifetime of these devices. The use of antimicrobial agents as coating substances has been indicated as the primary focus of researchers. The surface modification methods include among others metal coating techniques [16], coating with biosurfactants [17–21] or natural products such as essential oils [22], plasma surface treatment [23], metal nanoparticles coatings [24, 25], chitosan coatings [26], grafting hydrophilic monomers by laser [27], covalently coupled quaternary ammonium silane coatings [28], covalently coupled dimethylaminoethyl methacrylate and polyethylenimine coatings [29], parylene coatings [30] or polyacrylamide coatings [31]. However, surface modification has failed to significantly extend the lifespan of voice prostheses as of yet, predominantly because the active surface gets covered by a layer of proteins and dead cells, thus inhibiting its antifouling prosperities [32]. An alternative strategy could be the impregnation of silicon rubber with antimicrobials, allowing controlled release over time [29, 33]. In this systematic review and meta-analysis, we sought to explore the potential of the available in vitro methods inhibiting the biofilm formation on silicone rubber surfaces and discuss their future perspectives on elongating the survivorship of the implants.

Methods

For this systematic review and meta-analysis, we used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [34]. We utilized the following search terms: "biofilm," "silicone," and "inhibition."

Eligibility Criteria

We exclusively enrolled studies focused on biofilm inhibition methods on silicone rubber surfaces in vitro. Experimental studies conducted in vivo, on surfaces different from silicone rubber, or against preformed biofilms were excluded. Furthermore, we sought to include only studies involving both bacteria and yeasts from the oropharyngeal tract [9, 10].

Outcome Assessment

The outcome measured in the quantitative synthesis was the number of biofilm cells by colony-forming unit counting. Furthermore, outcomes including inhibition of the initial deposition rate, inhibition of microbial adhesion, cytotoxicity, minimum inhibitory concentration, and minimum fungicidal concentration were incorporated in the qualitative synthesis.

Literature Search

Two independent reviewers (A.T. and C.F.) performed a literature search for potentially relevant published and unpublished studies using electronic databases, clinical trial registries, conference abstract books, and reference lists of relevant studies. The databases of PubMed, Embase, and Cochrane Central Register of Controlled Trials were comprehensively searched with no language restrictions from January 1, 1997, up to February 29, 2020. In addition, the registries of ClinicalTrials.gov, Australian New Zealand Clinical Trials Registry (ANZCTR), and International Standard Randomized Controlled Trial Number (ISRCTN) were searched for completed unpublished studies up to the same date. The search strategy for PubMed included the use of the following terms: "silicone," "biofilm," and "inhibition." This strategy was adapted to each included electronic database, and no specific database filters were applied.

Study Selection

Two reviewers (A.T. and C.F.) identified potentially relevant records in a blinded fashion. Then, article deduplication took place, and the remainder of the articles was examined using title and abstract screening. Subsequently, the full text of the remaining articles was assessed for eligibility. Any discrepancies between the 2 investigators were discussed, and a consensus was reached.

Data Extraction

Two reviewers (A.T. and C.F.) independently abstracted data. We extracted information including the author, the year, and the country of publication, the microbial species investigated, the prevention method in the intervention groups, and the test material. Data extraction also included information about the applied in vitro model, time of biofilm incubation, infection-related outcome assessment, and infection-related outcomes.

We only presented the extracted data associated with the purpose of this systematic review. Thus, we considered data from the studies only referring to in vitro experiments investigating the biofilm inhibition methods on silicone surfaces with microbes related to oropharyngeal flora. In case, the biofilm inhibition was tested under both in vitro and in vivo conditions in the same study, data from in vitro experiments only were enrolled. Additionally, we sought to assess only the outcomes regarding the inhibition of biofilm formation and not the treatment of biofilms. Furthermore, if the same paper focused on additional materials other than silicone, we examined only the outcomes regarding silicone surfaces. Similarly, from studies that incorporated microbes both related or not to the oropharyngeal flora, we evaluated only the microbes of our interest.

Quality Assessment

The quality of the enrolled studies was independently assessed by 2 investigators (A.T. and C.F.) using the modified Consolidated Standards of Reporting Trials (CONSORT) risk of bias instrument [35], which represents an adapted version of the CONSORT risk of bias tool specially created for the bias assessment for in vitro studies. By and large, in the absence of similar tools for in vitro studies, this instrument was adapted to the current in vitro study. For the quality appraisal, the following sections were considered: Background and Objectives, Methods and Interventions, Outcomes, Sample size, Randomization, Allocation Concealment, Implementation, Blinding, Statistical Methods, Outcomes and Esti-

	=	
	-	
	Ξ	
	C	
٠	=	
	-	
	$\overline{\alpha}$	
	2	
	1	
	τ,	
	Ξ	
	C	
ς	Ē	
	_	
	Ξ	
	ᄃ	
-		
ř	-	
7	-	
	С	
٠	-	
	\sim	
-	-	
	<u>_</u>	
	7	
	9	
4	+	
_	_	
	<u> </u>	
	-	
_		
٠,	-	
	٩.	
	ž	
	۲	
	-	
	_	
	α	
	2	
	$\overline{\alpha}$	
	U.	
_		
	_	
	_	
	⊆	
	Ξ	
٦,	-	
	à	
	>	
	ξ	
	Ξ	
	<u>_</u>	
•	+	
	\overline{a}	
	2	
	r a	
_	or 2	
:	rana	
	VIDra	
	VIDra	
	S VIDra	
	S: VIDra	
	esc vibra	
:	IPS: VIDTA	
:	dies: whra	
:	Idles: Whra	
:	TIDDES: VIDES	
-	studies: whra	
:	STUDIES: VIDER	
-	Studies: Whra	
-	d studies: whra	
-	ed studies: whra	
-	Ted Studies: Whra	
-	Ided studies: Whra	
-	uided studies: vibra	
	luded studies: vibra	
	Cluded studies: whra	
	nclinded studies: vibra	
	ncluded studies: vibra	
	included studies: whra	
	Included studies: whra	
	e included studies: vibra	
	he included studies: vibra	
	the included studies: whra	
	The included studies: whra	
	of the included studies: whra	
	of the included studies: whra	
	of the included studies. Vibra	
	s of the included studies. Vibra	
	cs of the included studies. Vibra	
	ICS OF THE INCUIDED STUDIES: VIDIE	
	tics of the included studies: vibra	
	stics of the included studies: whra	
	Tistics of the included studies: whra	
	ristics of the included studies: vibra	
	eristics of the included studies: whis	
	teristics of the included studies: which	
	cteristics of the included studies. Why	
	icteristics of the included studies: vibra	
	acteristics of the included studies. Vibra	
	racteristics of the included studies: vibra	
	aracteristics of the included studies: vibra	
	Daracteristics of the included studies: vibra	
	haracteristics of the included studies: vibra	
	haracteristics of the included studies: vibra	
	Characteristics of the included studies: vibra	
	. haracteristics of the included studies: vibra	
	. Characteristics of the included studies: Vibra	
	1. Characteristics of the included studies: vibra	
	• 1. (haracteristics of the included studies: Whra	
	e 1. (haracteristics of the included studies: whra	
	e 1. (.haracteristics of the included studies: Whra	
	ble 1. Characteristics of the included studies: whra	
	ble 1. (Theresteristics of the included studies: Whre	
	able 1 . (.haracteristics of the included studies: vibra	
	able 1. (Tharacteristics of the included studies: whra	
	able 1. (haracteristics of the included studies: vibra	

hibition

oorting	Ily significant CFU for all TEP verall reduction of CFU between 1 non-vibrating .) greater CFU r 8-mm length TEPs m length TEPs	
Outcome ref	(1) Statistical reduction of lengths; (2) c 5.56-fold of (vibrating and TEPs; and (3 reduction foi than for 6-m	
Infection-related outcome assessment	Quantification of antibacterial and antifungal activities by counting the CFU	
Applied in vitro model	Modified Robbins device, aerobic incubation with 5% CO ₂ for 36 h	
Test material	Provox 2 low- resistance, indwelling silicone voice prostheses of 22.5 French	
Species	Candida albicans, Candida tropicalis, Streptococcus salivarius, Rothia dentocariosa, Staphylococcus aureus, and Staphylococcus epiderniidis	ıg units.
Prevention method	Direct vibratory stimulus with 260 Hz frequency before and after meals for 5 d to the tracheoesophageal prostheses	prosthesis; CFU, colony-formin
Country	USA	esophageal
Author [Ref]	Wannemuehler et al. [62]	TEP, tracheo

In vitro Inhibition of Biofilm Formation on Silicon Rubber Voice Prosthesis

Author [Ref]	Country	Prevention method	Species	Test material	Applied in vitro model	Infection-related outcome assessment	Outcome reporting
Janek et al. [18]	Poland	 Assessment of biosurfactant pseudofactin II anti-adhesive potential (50 µL of pseudofactin II; 0.035-0.5 mg/mL) and (2) pre- and post-adhesion pre- and post-adhesion by pseudofactin II (100 µL of 0.035-0.5 mg/mL) 	Escherichia coli, Enterococcus faecalis, Enterococcus hirae, Staphylococcus epidernicis, Proteus mirabilis, Voibrio ordalii, Vibrio harwyi, and Candida albicans	Silicone rubber out of urethral catheter, implants, and internal prostheses	96-well microliter plates, incubation at 37°C for 24 h	CLSM for the visualization of bacterial and <i>Candida</i> biofilms in the absence or presence of pseudolacini II (final concentration 0.25 mg/mL) in the culture medium	(1) Inhibition of bacterial adhesion by 36–90% and of C albicans adhesion by 92–99% with pretreatment of a polysytrene with 0.5 mg/ mL pseudofactin II; (2) total growth inhibition of S. <i>pridermis</i> a parial (12–37%) inhibition of other pridermis a parial (12–37%) inhibition of other apticants are a served to the highest concentration tested (0.5 mg/mL)
Buijssen et al. [45]	The Netherlands	Modification of surface roughness on silicone rubber voice prostheses	Candida tropicalis GB 9/9, Candida albicans GBI 13/4A, Skephylococcus areneus GBI 21, Skephylococcus epidemidis GB 9/6, Shreptococcus salivarius GB 249, and Rohina dentocariosa GBI 52/2B	Groningen ultralow resistance voice prostheses	Modified Robbins device, incubation at 37°C for 72 h	CFU counting for the quantification of antibacterial and antifungal activities	40% reduction in the prevalence of bacteria and yeast in in vitro formed biofilms by decrease in surface roughness from 46 to 8 nm
Gottenbos et al. [48]	The Netherlands	Assay of the antimicrobial activity of covalently compled quaternary ammonium silane coatings on silicone rubber in the absence or presence of adsorbed human plasma proteins	Staphylococcus aureus ATCC 12600, Staphylococcus epidermidis HBH2 102, Escherichia coli O2K2, and Pseudomonas aeruginosa AK1	Silicon rubber discs (8 mm diameter and 0.5 mm thick) out of implant grade silicone rubber (Medin, Groningen, The Netherlands) sheets	Parallel plate flow chamber, incubation at 37.1°C in ambient air for 24 h	 Application of live/dead fluorescent stain and CLSM for the determination of the viability of the adherent bacteria 	Up to 90% reduction of adherent staphylococci
De Prijck et al [29]	. Belgium	Covalent bonding and quaternization of DMAEMA and PEI moieties to the surface of PDMS	Candida albicans SC5314	PDMS disks (diameter of 6.8 mm) cut out of medical- grade silicone rubber kit (Q7-4735; Dow Corning Corp., Midland, MI, USA)	Modified Robbins device, incubation at 37°C for 24 h	CFU counting for the quantification of antifungal activity	(1) Up to 92% reduction in C. albicans sessile cell counts with the quaternization of poly- DMAEMACH-modified PDMS; (2) no significant differences in cell count by the use of longer (C16 and C18) albyl side chains compared to unmodified PDMS; (3) no increase in antibiofilm effect by combination of quaternizing agents compared to the use of single agents; (4) slight inhibition of C albicans biofilm formation by immobilization of PEIq by covalent binding
Depan et al. [47]	USA	Incorporation of nanophase titania in silicone as an integral part of the silicone network structure through cross-link mechanism with aiming to reduction of bacterial adhesion to a minimum	Staphylococcus aureus strain (25923)	Addition of functionalized titania (2 wt% titania) and othe curing agent to silicone base for the preparation of silicone- titania hybrid network structure elastomer	24-well microliter plates, incubation at 37°C for 24 h	(1) Quantification of antibacterial activity by counting the CFU; (2) actimization of MOC ; (3) determination of MOC ; (4) crystal violet assay for the evaluation of biofilm growth inhibition; and (5) analysis of zone inhibition for the determination of the time dependence of antinicrobial activity of nanocrystalline titania	(1) Reduction in the viability of S. aureus and its adherence on the surface of hybrid silicone by 93% with incorpation manophase titania: (2) complete disintegration of biofilm after 6 h of incubation: and (3) increase in the observed zone of S. aureus inhibition with the increase in titania content from 2 to 5 wt% in silicone; (4) MIC = 3.32 µg/mL; and (5) MBC = 9.76 µg/mL.
Contreras- Garcia et al. [46]	Spain	Grafting of DMAEMA to silicone rubber for enhancement of ris antifouling features and preservation of its mechanical and biocompatibility properties	C. albicans SC5314 and S. aureus Mu50	silicone rubber disks (1 mm thickness, 6.8 mm diametery, Deltalab (Barcelona, Spain)	24-well microtiter plates (1) for <i>C</i> albicars biofilm formation, incubation at 37.8°C for 48 h and (2) for S, <i>aureus</i> biofilm formation, incubation at 37.8°C for 24 h	(1) Bably373 clone A31 cell line for cytocompatibility testing. (2) UV spectrophonetry at 338 nm for 48 h for the determination of the concentration of nalidixic acid in the medium; and (3) CFU counting for the evaluation of the growth inhibition from the surface of the films grathed with DMAEMA, before and after quaternization	 Significant reduction in <i>Candida albicans</i> biofilm formation but inadequate reduction in <i>S</i> aureus biofilm formation by gratiting DMAEMA; reduction by more than 99% of <i>C. albicans</i> and <i>S. aureus</i> biofilm formation by quaterization of surfaces; and (3) cytocompatibility of grafted materials (fibroblast cell survival 70%)
Taylor et al. [52]	UK	Investigation of the effect of crosslinker levels on mechanical properties and colonization of silicone surfaces by C. albicans	Candida albicans	Maxillofacial silicone elastomer consisted of resin and crosslinker component supplied by Prestige (3 mm thick, 20×10 mm)	Orbital incubator shaker, incubation at 37°C for 6 weeks	CLSM for the determination of the colonization and ingrowth of C <i>albicans</i>	Increased number of hyphae and blastopores observed into the elastomer by increase in the unbound polymer content

Table 2. Characteristics of the included studies: passive surface modification methods (part 1)

ORL DOI: 10.1159/000516345

Author [Ref]	Country	Prevention method	Species	Test material	Applied in vitro model	Infection-related outcome assessment	Outcome reporting
Zhou et. al. [30]	China	Examination of the anti- adhesive activity of L199- parylene coatings against <i>C</i> . <i>albicans</i>	C. albicans ATCC 90028	Discs of silicone elastomer A-2186 (10 mm in diameter, 2 mm thick for cell adhesion asary: 15 mm in diameter, 1 mm thick for XTT reduction asary)	24-well microtiter plates, incubation at 37.8°C for 1.5 h	(1) Contact angle measurement for the assessment of the hydrophilic or hydropholic characteristics of the aurface; (2) assay of XTT reduction for the quantification of the viable cells in biofilin; (3) EXM for observation of morphology of CL <i>Iblicans</i> adhesion for 48 h; (4) CLSM in combination with fluorescent oryse FUV-1 and fluorescent oryse FUV-1 and concanvalut A for illustration of C albicans adhesion for 4 h	(1) Statistical difference between mean contact angles of silicone elastomer A-2186 before and after parylene coating ($p < 0.03$): (30) silicone elastomer A-2186 before and after parylene coating (n edian (10^{4} , 00^{1}) (22 , 81 , 10^{2} , 226) and 0.48 , 0.45 , 0.58), p < 0.05); and (30 significant darcrasse in XTT absorbance readings of A-2186 $p = 0.035$; (40^{1} , 20^{1} , 00^{1}) significant darcrasse in XTT absorbance readings of A-2186 $p = 0.035$; (40^{1} , 20^{1} , 00^{1}) significant difference in cell adhesion to the same specimens between 2 and 4 ($p > 0.05$); and (5) reduction in <i>C. albicars</i> adhesion parylene conting on the surface of silicone elastomer A-2186 contirmed by both cell count and XTT reduction assay
Everaert et al. [23]	The Netherlands	Assessment of the effects of repeated argon plasma treatment of medical grade, hydrophobic silicone rubber on in vitro adhesion and growth of bacteria and <i>G albicans</i>	Streptococcus salivarius GB 24/9, Staphylococcus epidermidis GB 9/6, C albicans GB 1/2 and Candida tropiadis GB 9/9	Silastic/medical-grade silicone rubber plates 0.5 mm thick, 50x76 mm (for flow chamber studies) or dises 1x6.3 mm (for studies in the modified Robbins device) (Q7-4750; Dow Corning)	(1) Parallel plate flow chamber; and (2) modified Robbins device, incubation for 24 h at 37°C in ambient air	(1) Contact angle measurement for the assessment of the hydrophilic or hydropholic characteristics of the aurface; (2) assessment of initial deposition rate, j0; (3) acludation of the number of microorganisms adhering after 4 h; and (4) visualization of biofilms by SEM	(1) Reduced initial microbial adhesion over a 4-h time span to plasma-treated, hydrophibis allicone rubber, nompared to original, hydrophibis allicone rubber, both in the absence and presence of a salivary conditioning film on the biomaterial and (2) fewer <i>Candida</i> cells adhered on plasma-treated, hydrophibits allicone rubber as compared to on original, hydrophobic silicone rubber (growth studies over a time period of 14 d at 37°C in a modified Robbins device)
CLSM, c 2-(dimethylar	confocal laser sca mino)ethyl meth	nning microscopy; SEM, scanning e acrylate; XTT, 2,3-bis(2-methoxy-4	electron microscopy; CFU, colony-formir 4-nitro-5-sulfophenyl)-5-[(phenyl aminc	ng units; PDMS, polydimethylsi o)carbonyl]-2H-tetrazolium hy	iloxane; PEI, polyethylenimine; droxide; TMS, trimethylsilyl; M	MIC, minimum inhibitory concentration; M TT, 3-(4,5-dimethyliazol-2-yl)-5-(3-carbox	BC, minimum bactericidal concentration; DMAEMA, methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium.

In vitro Inhibition of Biofilm Formation on Silicon Rubber Voice Prosthesis

Table 2 (continued)

ORL DOI: 10.1159/000516345

mations, Limitations, and Funding and Protocol. The quality of reporting in vitro studies was assessed by checking whether the 14 checklist criteria were met in the papers selected. For each section, a judgment relating to the reporting was assigned by taking into consideration a prespecified binary question, that is, yes (reported)/no (not reported).

Statistical Analysis

Pair-wise meta-analysis of standardized mean differences (SMDs) was performed using the Review Manager (RevMan) Software (version 5.3) [36]. A random effects model was preferred in all cases, given the expected heterogeneity across trials. For continuous outcomes, random effects quantitative synthesis utilizing the effect size of SMD was conducted and 95% confidence intervals (CIs) were calculated.

Statistical heterogeneity issues were handled using the Cochran's Q statistic and quantified using the *I*-squared measure. A *p* value of <0.05 indicated statistical significance. We considered the following classification of statistical heterogeneity [37]:

- $I^2 = 0-40\%$: not important heterogeneity
- $I^2 = 30-60\%$: moderate heterogeneity
- $I^2 = 50-90\%$: substantial heterogeneity
- $I^2 = 75-100\%$: considerable heterogeneity

Cochrane guidelines were followed for the assessment of publication bias in the present meta-analysis [38].

Synthesis of the Results

The outcome measure in the quantitative synthesis was the number of biofilm cells by colony-forming unit counting, converted to \log_{10} before the inclusion in the meta-analysis. Further outcomes, including inhibition of initial deposition rate, inhibition of microbial adhesion, and cytotoxicity were incorporated in the qualitative synthesis.

Clinical Interpretation of the Results

For the classification of effect sizes in this meta-analysis, the clinical interpretation of meta-analysis results was undertaken according to Cohen's classification. Thus, an SMD value of 0.2 demonstrated a small effect, a value of 0.5 represented a moderate effect, and a value of 0.8 showed a large effect [39].

Subgroup Analysis

We conducted a predetermined subgroup analysis, in which we classified the studies according to their strategy of action into 3 groups [40], adapting it on in vitro experimental studies on voice prostheses.

Passive Surface Modification

Passive surface modification methods include chemical and/or physical modifications of the surface layer of an existing biomaterial, resulting in a substantial change of its susceptibility to bacterial colonization [40]. For the assessment of passive surface modification methods, data from 18 studies were synthesized (Tables 2, 3). Various techniques were employed, including application of biosurfactants [18–20, 41–44]; modification of surface roughness [45]; application of anti-adhesive polymers such as 2-(dimethylamino)ethyl methacrylate (DMAEMA) [29, 46]; creation of nanopatterned surface through incorporation of nanophase titania in silicone [47]; application of coatings, such as quaternary ammonium silane coating [48, 49], L199-parylene coatings [30], or a nov-

Fig. 1. Flow diagram of the study selection procedure.

el nanoscale plasma coating [50]; and finally, creation of hydrophilic surfaces through repeated argon plasma treatment [23, 51] or addition of crosslinker in silicone elastomers [52].

Active Surface Modification

Active surface modification methods include pharmacologically activated coatings changing the implant from a passive, pharmacologically inert medical device to a drug agent [40]. For the assessment of active surface modification methods, data from 11 studies were synthesized (Table 4). Various techniques were employed, including application of linked antibiotics on silicone surfaces, such as of filastatin [53] and caspofungin [54]; application of nonantibiotic antimicrobial compounds such as of *Cymbopogon citratus* essential oil [22] and *Lactobacilli supernatant* [55]; application of chitosan derivatives [56, 57]; and finally, application of silver [24, 58] and selenium [25] nanoparticles or metal coatings [16, 59].

Combined Active and Passive Surface Modification

For the assessment of combined active and passive surface modification, data from 3 studies were synthesized (Table 5). The results of incorporation of 5 antimycotics in polydimethylsiloxane (PDMS) [60], immobilization of liposomal amphotericin B on PDMS [33], and the synergistic effect of a lipopeptide from *Bacillus subtilis* AC7 combined with the quorum-sensing molecule farne-sol [61] were assessed against the formation of *Candida albicans* biofilms.

Results

The literature search yielded 181 potentially relevant studies. Duplicates were removed, and the remaining studies were screened according to the information provided in their title and abstract. We gained full access to 76 articles, and we assessed them for eligibility. We excluded in vivo studies, studies investigating treatment of preexisting biofilms, studies focusing on biofilm development on materials other than silicone, and studies investigating biofilms from microbes not related to oropharyngeal flora. After the exclusion of 43 records, we enrolled 33 published studies in the qualitative synthesis. Finally, we statistically pooled the results from 12 in vitro laboratory studies (Fig. 1).

Study Characteristics

In this systematic review, we considered 33 comparative studies for the qualitative analysis, of which 12 were eligible for inclusion in the quantitative analysis. The enrolled studies were published between 1997 and 2019. Three trials were conducted in the Italy [19, 20, 61], 1 in Poland [18], 2 in Austria [2, 55], 4 in Portugal [21, 33, 43, Table 3. Characteristics of the included studies: passive surface modification methods (part 2)

	joifilm formation by 10.01%, p< 0.0001). > < 0.001) by coating tatio (termed TMS/ are PDMS are PDMS great reduction in MSO ₂ plasma file-areasured at thit crease in the 1.4 coating	h Ar-SR-CF3 and ted silicone rubber salivary conditioning of the silicone intact angles of d Ar-SR-C8F17 d Ar-SR-C8F17 preater reduction in suffaces with s (Ar-SR-C8F17)	esion on silicone <i>ermophilus</i> B or by cone rubber prior to adsorbed ; GB 9/9 adhesion	stheses in the nd bacteria (up to e rubber controls, as d staining of the	nation by 75% using discs (2) inhibition discs (2) inhibition 1-70% when using 4) 90–95% reduction mation and as between 0.025 and is using SLA 0.05% arreate ATCC 6538	cell adherence to tant for bacterial and d 15×10° cm ⁻² urbber for all the of adhering <i>bicans</i> GBJ 13/4A	the biofilm to 4 and ngal organisms to 15 3 and S. and S. and decrease in $x \le x \perp^{-1}$ with the frim L. lattis 53 and d with the values
Outcome reporting	(1) Significant reduction in <i>S. aureus</i> t coating PDMS with TMS alone (69)-4: (2) maximal inhibition (92.7±0.95%, F PDMS with TMS and oxygen at a 1:4:1, (3) exhibition of a hydrophob O ₂ 1:4), (3) exhibition of a hydrophob comact angles over 105°(106°±5°) by the substrates without plasma coating (4) PDMS surface hydrophobicity with TD coating, generating a contact angle of day 1 after plasma coating, and (5) slot of day 1 after plasma coating, and (5) slot of day 1 after plasma coulting; and (5) slot of day 1 after plasma coating, and (5) slot of day 1 after plasma coating, and (5) slot of day 1 after plasma coating, and (5) slot of day 1 after plasma coulting; and (5) slot of day 1 a	 Fewer microorganisms after 4 h on Ar-SR-C8F17 surfaces than on untrea both in the absence and presence of a film; (2) increase in the hydrophobicit rubber surfaces to advancing water co. 125±5° and 140±5° for Ar-SR-CF3 an surfaces, respectively, by increasing th fluoro-alkyltrichlorosilanes; and (3) g microbial adhesion by silicone rubber chemisorbed, long fluorocarbon chain 	 Decrease in C. albicars GB 1/2 adh rubber surfaces covered by 1–2% S. th preabsorption of biosurfactants to siliv yeasts adhesion; (2) lower effect of pre biosurfactant layer against C. troptcalis 	Significant reduction by all coated pre numbers of viable yeast (up to 16%) a 36%) compared with those for silicont confirmed using CLSM after live/deat biofilms	 Reduction in S. aureus biofilm forr SLA 0.8% w/v on pre-coated silicone of of C. alicators attachment between 45: 6 (3) inhibition of cell attachment by 68 SLA 0.8% w/v after 24 h incubation; (5) in S. aureus and C. alicars biofilm for adherence to surfaces at concentration of 1% w/v in co-incubation experiment w/s and (3) 75% inhibition on the cell SLB (0.8% w/v) after incubation of S. cells for 24 h 	(1) 89–97% and 67–70% reduction of silicone rubber treated with biosurfact fungal class, respectively; (2) $\times 70^{\circ}$ an adhering microorganisms to alliconet microorganisms (1×10° cm ⁻³) for C <i>a</i>	 Decrease in amount of bacteria in 13% and decrease in the amount of fu and 26% of the control from L. <i>lactis</i> 5 <i>thermophilus</i>. respectively; (2) signific- airflow resistance, 16 and 22 cm H₂O: application of biosurfactants obstaned <i>S thermophilus</i>, respectively, compare observed for the control
Infection-related outcome assessment	 Contact angle measurement for the assessment of the hydrophilic or hydrophobic characteristics of the surface; (2) counting of CFU for measurement of the biofilm formation; (3) SEM for visualization of biofilms of S. aureus; (4) ELISA for measurement of protein adsorption on silicone coupons and (5) CCL-1 fibroblasts (10,000 cells/well) for cytotoxicity assessment 	(1) Initial deposition rate j0: (2) microbial adhesion numbers in a stationary end point 4 h; and (3) contact angle measurement for the assessment of the hydrophilic or hydrophobic characteristics of the surface	 Initial deposition rate of j0 and (2) determination of the number of adhering microorganisms after 4 h 	(1) Quantification of CFU for the assessment of biofilm formation; (2) CLSM for the imaging of biofilm formation; and (3) determination of in vitro cytotoxicity using L929 mouse fibroblast cell culture	(1) SEM for the evaluation of the effect of SLA, SLI8 and SLV on cells of C. albicans IHEM 2894, S. anreus ATCC 6538, and P. aerugionsa ATCC 10145; (2) crystal violet (0.2%) assay for evaluation of the anti-adhesion and anti-biofilm activity of SL-coated discs after 1.5 and 24 h	(1) Contact angle measurements for the characterization of silicone rubber with and without an alsoched biosurfactual layer; (2) CLSM images of polymicrobial biofilm with or without the adsorbed biosurfactant layer; (3) determination of rithial deposition rate (9, and (4) determination of the number of adhering microorganisms after 4 h	 CLSM images of polymicrobial biofilm and CFU counting for the quantification of antibacterial and antifungal activity
Applied in vitro model	24-well microtiter plates, incubation for 8 h at 37°C	Parallel plate flow chamber, incubation for 24 h at 37°C in ambient air	Parallel plate flow chamber, incubation for 16 h in ambient air at 37.8°C	Modified Robbins device, incubation for 3 days at 37°C	24-well culture tissue plates, incubation for 24 h at 37°C	Parallel plate flow chamber, incubation at 37°C in ambient air for 24 h	Modified Robbins device, incubation at 37°C in ambient air for 24 h
Test material	Silicone rubber (PDMS) coupons of 5 mm×10 mm×1 mm or 5 mm×5 mm×1 mm (Bentec Medical Inc., Wakefield, MA)	Silastic implant silicone plates 0.5 mm thick 50x 56 mm² (MED + E12.4750, NuSil Silicone Technology, Antwerp, Belgium)	Silastic medical-grade silicone rubber 0.4-mm- thick plates (50x76 mm) (Q7-4750, NuSil, Anglet, France)	"Ultralow resistance" silicone rubber Groningen button tracheoesophageal shunt prostheses	Medical-grade silicone elastomeric discs (10 mm in diameter and 1.5 mm in thickness)	Silicone rubber plates	"Low-resistance" Groningen button voice prostheses
Species	<i>. aureus</i> RN6390 and NRS234	Strephococcus saliwrius GB 2419, Staphylococcus epidermis GB 906, Candida albicans GB 1/2, Candida tropicalis GB 9/9	Two C. <i>albicans</i> and 2 C. <i>tropicalis</i> strains	C. tropicalis GB 999, C. abricans GBJ 13/4A, S. antreus GBJ 21/1, Staphyboacuse pidermidis GB 9/6, S. salivarius GB 24/9, and Rothia dentocariosa GBJ 52/2B	s aureus ATCC 6538, Pseudomonus aeruginosa ATCC 10145, and C. abricans IHEM 2894	8. epidemidis GB 9(6, 8. salivarius GB 2419, 8. aureus GB 211, k. demoariasa GB 52128, C. abitants GB 1314A, and C. tropicalis GB 9/9	8. epidemidis GB 9(6, 8. salivarius GB 24(9, 8. aureus GB 211, 8. dentoarriosa GB1 52/28, C. albians GB1 13/4A, and C. tropicalis GB 9/9
Prevention method	Assay of a novel nanoscale plasma coating technology (TMS), using oxygen to coat the surfaces of silicone rubber for the inhibition of the formation of <i>Staphylococcus aureus</i> biofilms	Assessment of adhesion of yeasts and bacteria after oxidization of silicone turbers surfaces with argon plasma treatment and creation of organic layers by chemisorption of fluoro- alkyltrichlorosilanes	Assessment of adhesion of 2 C. albicars and 2 C tropicalis strains of biosurfactant <i>Sreptococcus</i> <i>thermophilus</i> B on silicone <i>tubber</i> with and without a salivary conditioning film	Evaluation of the effects of the application of 2 quaternary ammonium silances coafings, either through chemical bonding or through spaying on the formation of biofilms on silicone rubber trachcoesophageal shunt prostheses	Production of sophorolipids and evaluation of their antimicrobial properties in medical-grade silicone diss. Three different products were obtained: SLA (accide corgeners), SL18 (accide corgeners), SL18 (accide corgeners), and SLV (mixture of acidic and lactonic congeners)	Assessment of microbial adhesion of 4 bacterial and 2 yeast strains to slicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium <i>Sreptococus thermophilus</i> A	Biosurfactants obtained from the probiotic bacteria Lactococcus lattis 53 and S. thermophilus A against the formation of biofilms on voice prosthesis
Country	USA	The Netherlands	The Netherlands	The Netherlands	Italy	Portugal	Portugal/ The Netherlands
Author [Ref]	Xu et al. [50]	Evenaert et al. [64]	Busscher et al. [41]	Oosterhof et al. [49]	Ceresa et al. [19]	Rodrigues et al. [42]	Rodrigues et al. [43]

In vitro Inhibition of Biofilm Formation on Silicon Rubber Voice Prosthesis ORL DOI: 10.1159/000516345

Table 3 (continued)

Author [Ref]	Country	Prevention method	Species	Test material	Applied in vitro model	Infection-related outcome assessment	Outcome reporting
Cochis et al. [20]	Italy	Assessment of the in vitro C. albicans anti-biofilm activity of biosurfactants, obtained from endoptyres selected from <i>Robinia pseudoacatia</i> (AC5 and AC7) and <i>Nerium oleander</i> (OC5) at concentrations 312.5, 156.3, and 78.1 µg/mL	C. albicans CA.2894	2 mm thick and 1 cm diameter of silicon- based elastomeric discs (siliastic 07-4735; Dow Corning)	96-well microliter plates, incubation for 48 h at 37°C	(1) CFU counting for the quantification of the number of biofilm cells, (2) XTT assay for assessment of cell viability; and (3) MTT assay for the evaluation of biosurfactant cytotoxicity	(1) Greater reduction ($p < 0.01$) in biofilm cell number and viability by preconting with biosurfictant than chlorhexchine; (2) high anti-adhesion activity and low exprosacity of the biosurficatants at low concentrations (78.12 and 156.12 ag/m1); (3) agnificant reduction of the presence of viable C. <i>albicans</i> cells by the biosurfictant entrom Netrum dendare(102); 78.1, 190.11 as an essured with XTT assays and 78.1, ag/m1. with the CFU count method; (4) greater reduction in biofilm cell number by of 57 g < 0.01) than 0.38 C. AFX starting at concentration of 31.25 g/g/m1. for XTT values ($p < 0.01$); and (5) effective factorion of biofilm cell number by CFU count method ($p < 0.01$); and at 156.3 g/m1. for CFU count method ($p < 0.01$); and (5) effective factorion of biofilm cell number by $p < 0.01$); and (5) effective factorion of biofilm cell number by $(p < 0.01)$; and (5) effective ($p < 0.01$).
Rodrigues et al. [44]	Portugal	Assessment of the effects and extent of adhesion of 4 bacterial and 2 yeast strains to silicone rubber with and without an adsorbed rhammolipid biosurfactant layer obtained from <i>P. aeruginosa</i> DS10-129	S. saliwrius CB 24/9, C. tropicalis CB 9/9, S. aureus GB 2/1, and S. epidermidis GB 9/6	Silicon rubber plates	 Adhesion assay in 96-well plate and (2) 96-well plate and (2) adhesion experiments in the parallel-plate flow chamber, incubation for 24 h in incubation for 24 h in 	(1) CLSM images of biofilm with or without the adsorbed rhamolipid: (2) determination of the initial deposition rate (9; and (3) determination of the number of adhering microorganisms after 4 h	(1) Reduction in the initial deposition rates and in the bacterial cells adhesion after 4 h for all incroorganisms tested: (2) reduction up to 66% of adhesion rate for S. adhivering GB 24/9 and C. roppitalis GB 9/9, and (3) reduction up to 85% of the number of cells adhering after reduction up to 48% of the number of cells adhering after 2 h on silicone rubber conditioned with blosurfactant for S. spinerus GB 2/1, and C. roppitalis GB 9/9.
CLSM, c	confocal laser scan	ning microscopy; SEM, scanning elec	tron microscopy; CFU, colony	-forming units; PDMS, polyd	dimethylsiloxane; PEI, poly	ethylenimine; MIC, minimum inhibitory concentra icconduction, MTT - 2-44 E Airconductional - 2-40 E (2)	(tion; MBC, minimum bactericidal concentration; DMAEMA,

44], 5 in the USA [47, 50, 53, 58, 62], 1 in Slovenia [57], 2 in the UK [24, 52], 1 in Germany [16], 1 in Spain [46], 1 in France [54], 2 in Belgium [29, 63], 1 in Australia [25], 8 in the Netherlands [23, 41, 44, 45, 48, 49, 59, 64], and 1 in China [30]. The biofilms were incubated in a parallel plate flow chamber (a modified Robbins device) or in microtiter plates. The microbial strains investigated were associated with the oropharyngeal flora, including *Candida*, *Staphylococcus*, *Streptococcus*, *Lactobacilli*, and *Rothia* species. The infection-related outcomes were the colonyforming unit counting, the inhibition of initial deposition rate, the microbial adhesion, the airflow resistance, and the cytotoxicity (Tables 1–5).

Quality Assessment

The results of the quality assessment of individual studies are shown in Tables 6 and 7. For all the enrolled studies, there were no available registration protocols. Additionally, sample size calculation methods, determination of randomization, allocation concealment mechanisms, and details about implementation, blinding, and statistical methods for any study were not reported. On the contrary, background and objectives, determination of methods and interventions, presentation of outcomes and estimations, and the presentation of the results for each study were provided. A structured summary in the abstract, the trial limitations in discussion, and information about the sources of funding are provided in most of the studies.

Qualitative Synthesis of the Results

For the purpose of the current study, the minimum biofilm inhibition concentration was defined as the concentration of a substance inhibited biofilm growth by 80% as a minimum when compared with controls [65].

Passive Surface Modification

Especially effective proved to be the grafting of DMAE-MA or the covalent bonding and quaternization of DMAEMA and polyethylenimine moieties to the surface of PDMS, leading to reduction of *C. albicans* and *Staphylococcus aureus* biofilm formation by 99 and 92% respectively [29, 46]. Equally effective results achieved the incorporation of nanophase titania in silicone, leading to reduction in the biofilm formation of *S. aureus* by 93% on it [47]. Furthermore, coating PDMS with trimethylsilyl and oxygen at a 1:4 ratio achieved a reduction in *S. aureus* biofilm by 92.7% [50]. Finally, as far as biosurfactants concern, the application of pseudofactin II on silicone rubber surfaces achieved a total growth inhibition of *Staphylococcus epidermis*, but only partial (18–37%) inhi-

Author [Re	f] Country	Prevention method	Species	Test material	Applied in vitro model	Infection-related outcome assessment	Outcome reporting
Lara et al. [58]	USA	AgNPs (1–3 nm in diametra against <i>Candida auris</i> biofilm formation	C. auris 0390	Silicone elastomer sheets (Bentec Medical) (1 cm diameter)	24-well microtiter plates, incubation in an orbital shaker at 37°C (100 rpm) for 24 h	(1) SEM for visualization of the inhibition of biofilm formation and (2) XTT reduction assay for the calculation of the extent of biofilm inhibition compared to the untreated elastomer	More than 50% inhibition of <i>C. auris</i> biofilm formation with concentrations of AgNPs from 2.3 to 0.28 ppm
Vargas- Blanco et al. [53]	USA	Application of filastetin on silicone surfaces to prevent the adhesion of C. albicans	C. albicans SC5314	Silicone coupons (1.2 cm diameter) made out of a mix of PDMS	96-well microtiter plates, incubation for 4 h at 37°C, without agitation and light exposure	(1) AFM for measurement of the adhesion force of <i>C</i> albicans cells attached to surfaces treated with fusiantin: (2) electrochemical impedance spectroscopy for the quantification of the effect of filastatin under microfluide flow conditions; and (3) live-dead assay (Syto9 ⁵ and PI) for the determination of the effect of viability on the cells	(1) 62.7% decrease in adhesion of <i>C</i> albicars on silicone surfaces with chemisorbed filastatin; (2) 87.27% decrease in cell attachment compared to DNS osivent controls by incubation with <i>C</i> albicars cells in presence of 50 µd filastatin; and (3) 6.5-fold decrease in adhesion of <i>C</i> albicars compared to untreated silicone coupons ($p < 0.001$) by incorporation of 25 µd filastatin into the composition of silicone sulticone coupons
Cocuaud et al. [54]	France	Antimetabolic activity of caspofungin against <i>Candida albicans</i> and <i>Candida parapsilosis</i> biofilms	Seven strains (92, 109, 163, 165, 182, 240, and 444) of <i>C.</i> albicans	Calibrated sections of 5 m cut out of 100% silicone entherst (2 mm inside and 3.2 mm outside diameters) obtained from A-M systems (USA)	96-well microtiter plates, incubation for 2, 24, or 48 h	XTT assay for assessment of metabolic activity of yeast included in biofilm	(1) No modification of the metabolic activity of C. <i>albicans</i> by casportingin used at MIC and (2) significant reduction of the metabolism $(p < 0.001)$ of 25% (biofilms of 4b h) to 50% (biofilms of 2 h) of the C. <i>parapsilosis</i> yeasts at the same concentration of caspofungin
Meran et al. [24]	UK	Conting of sultcore facial prostheses with 5 and 50 mg L^{-1} dispersions of either Ag MPs or AgNO ₃ for assessment of their biocompatibility and antifungal properties	C. albicans (NCPF-3179)	Silicone discs (37 mm in diameter) synthesized out of platinum-catalyzed, vinyl-terminated poly (dimethyl siloxane) dastomer (A-2186; Factor II, Lakeside, AZ)	6-well microtiter plates, fibroblast cells grown on the silicone elastomer for 96 h and inoculated with C. <i>albicans</i> in the last 24 h	 SEM and energy dispersive X-ray spectroscopy for coating characterization; human dermal throblasts (Hs68) for human dermal throblasts (Hs68) for heasurnation of the biocompatibility; and measurement of LDH activity, protein content and tissue electrolytes for assessment of the fibroblast viability 	(1) No effects on the LDH activity of fibroblast cell homogenates and (2) decrease in ethanol production 43.3 ± 25 in controls to 3.6μ mol mL ⁻¹ in all the silver treatments
Tran et al. [25]	Australia	Assessment of the effect of coating with selenium nanoparticles on inhibition of bacterial growth	Suphylococus aureus (ATCC, 25923)	Silicone discs (6 mm in diameter and 2 mm in height) cut from silicone tracheostomy tubes (Bivona, number 60PFS30)	24-well microtiter plates, incubation for 8 h in a standard bactaria culture incubator (37°C, 95% humidified air, 5% (0202 environment, non- shaking)	 SEM visualization of bacteria on the uncoated and coated substrates and (2) crystal violet asays for bacteria quantification 	Significant inhibition of bacterial growth on the Se-coated substrates compared to their uncoated counterparts
Tan et al. [26]	Austria	Assessment of the long-term antibiofilm activity of carboxymethyl chitosan on mixed biofilm	C. albicans, Candida tropicalis, Lactobacillus geaseri, Streptococcas edivarius, Rohita dentocariosa, and Raphylooccus epidermidis	Medical-grade silicone plates (Websinger GmbH, Vienna, Austria) (diameter: 8 mm and thickness: 3 mm)	12-well microliter plates daily reseeding, incubation on an orbital shaker at 155 rpm for 24 h	(1) Digital microscopy camera for monitoring of biofilm growth kinetics surveilance of biofilm growth kinetics for assessment of the biofilm surface coverage and (2) SEM for analysis of biofilm architecture	Less than 4% surface coverage on the CM-chilosan-treated plates in the testing period ($p < 0.05$) in comparison with a maximum of 23% biofilm surface in control group
Tan et al. [55]	Austria	Assessment of the inhibition activity of lactobacilli supernatant against fungal-bacterial multispecies biofilms on silicone surface	C. albicans, C. tropicalis, S. salivarius, R. dentocariosa, and S. epidemidis	3-mm-diameter medical- grade silicone platelets (Websinger, Austria)	96-well microtiter plates, incubation at 37°C for 48 h	(1) SEM and CLSM for biofilm characterization and (2) CCK-8 method for assessment of cell viability inside the biofilm	 Reduction higher than >90% of adhesion (90 min) of mixed fungal and bacterial species by lactobacili supermatant; C) reduction up to 72.23 and 58.36% of mixed biofilm (2) reduction and the metabolic activity of the biofilms (3) reduction and the metabolic activity of the biofilms after 24 h of culture with supermatant; and (4) inhibition of <i>Candida</i> yeast-to-hypha transition

Table 4. Characteristics of the included studies: active surface modification methods

(1) Statistically significant decrease in the number of bacteria (p < 0.1) and the number of yeast (p < 0.001); (2) similar fibroblast proliferation inducibon index between the treated silicome rubber ($20\pm18\%$) samples and untreated silicone rubber ($22\pm4\%$); and (3) no cytotoxicity observed

SEM for the determination of the (1) SEM for the determination (2) CPU per unit valve (1) area for determination of the number of antibacterial and antifungal activities and a (3) cytotoxicity assay with the culture of r human skin fibroblasts PK 84 in RPMI 1640 medium

Modified Robbins device, incubation at 37°C under aerobic conditions for 4 days

"Low-resistance" Groningen button voice prostheses (Medin Instruments and Supplies, Groningen, the Netherlands)

 C. albicans, C. tropicalis, R. dentocariosa, Streptococcus sobritus, S. alivarius, S. epidemidis, Stomatococcus mucilaginosus, and Streptococcus mitis

Assessment of the activity C of colloidal palladium/tin d solution against biofilm so

The Netherlands

Dijk et al. [59] formation

(continued)
4
Ð
9
Ta

	all essential oils alls strains. (2) of sub-MIGs of <i>M. C. optitum</i> trains. (3) alls U71 than mbhtory an of <i>C. Tropicality</i> significantly irropicality tropicality tropical U71 difference in tions of the puficant	by chitosan is by pre- osan cr 1 month, CN-CoAM and	n surfaces and tion on
	t $(p = 0.001)$ effect of t $(p = 0.001)$ effect of t $(p = 0.001)$ effect of t is in comparison with all tested C tropic (1) significantly less (1) significantly less (1) significantly less (2) no significant t of the content no different concentr no different concentr not (5) aut significantly of 0, 2,4, and 8% C. faces ($p = 0.001$)	growth up to 93.98% sulated drug, as well ble with absorbed chi daed drug and (2) aff zus growth by PDMS SPA5, CN-CoAM	of <i>Candida</i> colonies e ed, titanium-coated) of <i>C. albicars</i> coloniza im-coated) surfaces
Outcome reporting	(1) Statistically significan against biolhm formation significantly different bio <i>C</i> verum and <i>C</i> citratus o and <i>C</i> limon oils against o and <i>C</i> limon oils against o other <i>C</i> ropicalis strains, activity of <i>C</i> verum oil ag tropicalis Strain, when more inhibitive against bi and <i>L</i> ropicalis V89 strai biofilm inhibition effects biofilm inhibition effects to state staticone rubber su	 Decrease in bacterial q nanoparticles with encap activated O₂ plasma samp nanoparticles with ember 99.75% decrease in S. ann 67.37% decrease by PDM 	 Inhibition of growth coath homogeneous (gold-coath inhibition of inhomogeneous (aluminu inhomogeneous (aluminu
Infection-related outcome assessment	(1) Crystal violet staining for determination of biofilm formation; (2) determination of biofilm formasuring the absorbance at 560 nm for the quantification of the biofilm; (3) contact angle measurement for the assessment of the hydrophilic or hydropholic characteristics of the surface; and (4) determination of the MIC and MFC of lemongrass oil and the other 3 essential oils	 SEM for the evaluation of surface morphology; (2) XPS spectra for the assessment of the surface of the functionalized silicone material; and (3) CFU determination for the assessment of antimicrobial activity 	SEM for the assessment of infiltration of C. <i>albicans</i> on silicone rubber
Applied in vitro model	24-well microliter plates, incubation for 7 d at 37°C under aerobic conditions	24-well microliter plates, incubation on agar plates at 37°C after 24 h and after 1 month	Vacuum chamber, incubation for 1 week
Test material	Silicone rubber (M511 Maxillofacial Silicone System; Lachnovent Ltd., South Wales, UK) for the preparation of 60×60×1.5 mm sheets	PDMS as a representative silicone material	Provox voice prostheses
Species	C. tropicalis T26. C. tropicalis U71, and C. tropicalis V89	<i>S. aureus</i> strain (DSM 799)	C. albicans
Prevention method	 Investigation of the antifungal and biofilm inihibiory refects of <i>Cymbopogon citratis</i>, <i>Cumitum cymitum</i>, <i>Citrus linnon,</i> and <i>Citrus linnon,</i> and <i>Citrus mon,</i> and <i>citrus mon,</i> and <i>citrus and way</i>, and <i>citrus linnon,</i> an	Encapsulation of co- annoxiclav drug mixture into chitosan nanoparticles. Adsorption of them onto O ₂ plasma-activated tympanostomy silicone tubes	Application of a solid film of gold or titanium metal (layer thickness <100 nm) on silicone voice prosthess by applying an anodic vacuum arc coating
] Country	The Netherland:	Slovenia	Germany
Author [Ref.	Sahal et al. [22]	Ajdnik et al. [57]	Arweiler- Harbeck et al. [16]

AgNPs, silver nanoparticles, SEM, scanning electron microscopy; XTT, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl amino)carbonyl] -2H-tetrazolium hydroxide; AMF, atomic force microscopy; DMSO, dimethyl sulfoxide; MIC, minimum inhibitory concentration; ApNO₃, silver nitrate; CCK-8, cell counting kit-8; CFU, colony-forming units; MFC, minimum fungicidal concentration; PDMS, polydimethylsiloxane; XPS, X-ray photoelectron spectroscopy.

ORL

DOI: 10.1159/000516345

Table 5. Characteristics of the included studies: combined active and passive surface modification

Outcome reporting	(1) No significant inhibition of biofilm formation in the MRD ($p > 0.05$; (2) strong inhibitory effect on C albicans biofilms in the microtiter plate ($p < 0.05$); (3) low reduction with TMS-pystain (< 1.0 big unit; significant difference in biofilm biomass only for the highest concentration, $p < 0.05$); (4) reduction higher highest concentration $p < 0.05$) for microarable, TTO, and zinc pyrithione, with either absent or at best maginal decrease in biomass in the MTD ($< 2\log$ units) for zinc pyrithione-loaded disks	(1) Approximately 3 log CFU reduction of fungal atta diment by LAmB immobilization; (2) no impartment of the surfaces of PDMS with antifungal features with simple adsorption of LAmB; and (3) less roughness and more hydrophilic features with functionalization of surfaces with LAmB	(1) Reduction of <i>C</i> albitants adhesion up to 74% at 1.5 h; (2) reduction of biofilm growth up to 93% at 24 h and 60% at 48 h; (3) EEM and CLSM for the confirmation of the synergistic anti-adhesive and anti-biofilm activity; and (4) no cytotoxicity on eukaryotic cells after exposures to AC7BS concentrations up to 0.5 mg mL ⁻¹	FU, colony-forming units; TMS-nystatin, trimethylsilyl-
Infection-related outcome assessment	(1) Calculation of number of colonies and (2) calculation of CFU for all disks	(1) SEM for analysis of surface morphology of materials; hydrophilic or hydropholic characteristics of the surface; (3) fibroblast cells 373 obtained from ATCC for cytotoxicity evaluation; (4) fluorescence microscopy for interfere with C. <i>abians</i> adhesion and/or viability on the PDMS surfaces; and (5) CFU counting for numeration of the yeakies cells adhered to the surfaces for the nurvestigation of the potential of the modified surfaces to impair biofilm formation.	(1) Viable count method for the evaluation of anti- adhesive and anti-biofilm properties of AC7BS, farnesol, and their combination after 1.5, 24, and 8hi (2) SEM and CLSM for fungal biofilm characterization; and (3) LDH assay for evaluation of cytotoxicity on human cell lines using normal lung fibroblasts (MRC5), according to TOX7 operative procedures	r scanning microscopy; LAmB, liposomal amphotericin B; C
Applied in vitro model	 Microtiter plates and modified Robbins device, incubation at 37°C for 24 h 	48-well microtiter plates, PDMS (kit Sylgard 184; Down Corning, USA) cut into circle pieces with (0.9 circle pieces with (0.9 cm diameter and 0.3 cm thickness)	12-well microliter plates, incubation at 37°C for 24 and 48 h	oscopy; CLSM, confocal lase
Test material	Medical-grade PDMS kit (Q7-4735; Dow Corning Corp., Midland, MI, USA) of 10 mm diameter for use in the microtiter plate, 8 mm diameter for the commercial modified Robbins device and 6.8 mm for the custom-made miniaturized modified Robbins device	PDMS (kit Sylgard 184; Dow Corning, USA) cut into circle pieces with (0.9 cm diameter and with 0.3 cm thickness)	Silicone discs (15 mm diameter, 1.5 mm thickness, TECNOEXTR S.r.L, Italy)	plate; SEM, scanning electron micr
Species	C. albicans SC3314 (ATCC MYA-2876)	C, albicans SC 5314	C. albicans IHEM 2894, C. albicans 40-DSM 29204, and C. albicans 42-DSM 29205	ins device; MTP, microtiter
Prevention method	Incorporation of 5 antimycotics in PDMS, either by admixture or by obsernt-based impregnation for the prevention of hofilm formation by <i>Candida</i> <i>albians</i>	Immobilization of LAmB on PDMS surfaces for prevention of C. albicans colonization	The synergistic effect of a lipopeptide from AC7BS combined with the quorum- sensing moleute farmesol against the formation of C. <i>albicans</i> biofilms	dsiloxane; MRD, modified Robt
Author [Ref] Country	De Prijck et Belgium al. [60]	Alves Portugal et al. [33]	Ceresa Italy et al. [61]	PDMS, polydimethy nystatin.

	Cocuaud et al. [53]	Vargas- Blanco et al. [48]	Contreras- García [52]	Ajdnik et al. [50]	Lara et al. [47]	Xu et al. [46]	Depan et al. [49]	De Prijck et al. [29]	Busscher et al. [60]	Ceresa et al. [19]	Janek et al. [18]	Rodrigues et al. [44]	Taylor et al. [51]	Cochis et al. [20]	Dijk et al. [59]	Everaert et al. [23]	Buijssen et al. [55]
Abstract	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	Yes	No	No	Yes
Background	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Objectives	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Methods intervention	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Outcomes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample size	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Randomization: sequence generation	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Allocation concealment mechanism	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Implementation	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Blinding	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Statistical methods	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Outcomes and estimation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Limitations	Yes	No	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Funding	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Protocol	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No

Table 6. Quality assessment of the included studies (part 1)

Tsikopoulos/Petinaki/Festas/Tsikopoulos/ Meroni/Drago/Skoulakis

ORL DOI: 10.1159/000516345

	Meran et al. [24]	Wannemuehler et al. [62]	Gottenbos et al. [48]	Tan et al. [55]	Rodriguez et al. [42]	Zhou et al. [30]	Tran et al. [25]	Alves et al. [33]	Arweiler- Harbeck et al. [16]	Contreras- García et al. [46]	Everaert et al. [64]	Ceresa et al. [61]	Rodrigues et al. [43]	Fan et al. [26]	De Prijck et al. [60]	Sahal et al. [22] e	Dosterhof et al. [49]
Abstract	No	Yes	No	No	No	Yes	No	No	No	No	No	No	No	Y es	No	Yes	No
Background	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Objectives	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Methods intervention	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Outcomes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample size	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Randomization: sequence generation	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Allocation concealment mechanism	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Implementation	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Blinding	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Statistical methods	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Outcomes and estimation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Limitations	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Funding	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Protocol	No	No	No	No	No	No	No	No	No	No	No	No	No	No No	No	No	No

 Table 7. Quality assessment of the included studies (part 2)

In vitro Inhibition of Biofilm Formation on Silicon Rubber Voice Prosthesis

		Experimental					Std. mean difference	Std. mean difference
dy or subgroup Mean SD Total Mean SD Total Weight		Weight	IV, random, 95% Cl	IV, random, 95% Cl				
ion								
2.903	3.342	10	3.623	2.301	10	6.8%	-0.24 [-1.12, 0.64]	4
		10			10	6.8%	-0.24 [-1.12, 0.64]	
p = 0.59)							
tion								
5.722	5.407	4	5.944	2.301	4	5.3%	-0.05 [-1.43, 1.34]	4
4.518	2	12	6.353	1.659	12	6.9%	-0.96 [-1.82, -0.11]	
4.835	1.147	12	6.353	1.659	12	6.8%	-1.03 [-1.89, -0.17]	•
5.576	1.659	12	6.353	1.659	12	7.0%	-0.45 [-1.26, 0.36]	-
4.624	1,218	12	6.353	1.659	12	7.0%	-0.00 [-0.80, 0.80]	4
5.69	0.58	8	6.79	0.48	8	5.7%	-1.95 [-3.21, -0.70]	•
4.784	4.756	4	5.58	2.301	4	5.3%	-0.19 [-1.58, 1.21]	4
4.659	4.625	4	5.58	2.301	4	5.3%	-0.22 [-1.61, 1.17]	1
4.322	2.201	3	5.146	2.301	3	4.7%	-0.29 [-1.92, 1.33]	4
4.561	2.248	3	5.146	2.301	3	4.7%	-0.21 [-1.82, 1.41]	4
6.683	0.232	8	7.338	0.166	8	4.9%	-3.07 [-4.64, -1.50]	*
		82			82	63.6%	-0.73 [-1.21, -0.25]	
9.26, df	= 10 (r	0 = 0.04); $I^2 = 4i$	3%			• • •	
<i>p</i> = 0.00	3)							
nodifica	tion							
1.333	1.6	9	5.333	0.467	9	5.0%	-3.23 [-4.74, -1.72]	-
7.937	0.126	18	8.0696	0.676	18	7.4%	-0.27 [-0.92, 0.39]	4
4.02	0.46	9	6.06	0.61	9	4.7%	-3.60 [-5.22, -1.98]	
5.05	0.22	7	6.06	0.61	7	5.3%	-2.06 [-3.44, -0.68]	
4.05	0.37	3	6.06	0.61	3	1.9%	-3.19 [-6.66, 0.28]	
4.48	0.08	11	6.06	0.61	11	5.3%	-3.49 [-4.91, -2.08]	
		57			57	29.6%	-2.53 [-4.02, -1.03]	*
4.23, df	= 5 (p	< 0.000	01); <i>I</i> ² =	85%				
<i>p</i> = 0.00	09)							
		149			149	100.0%	–1.20 [–1.73, –0.66]	
3.69, df	= 17 (p	< 0.00	001); <i>I</i> 2	= 73%				
p < 0.00	01)						-100	-50 0 50 100
$^{2} = 6.74$. df = 2	(p = 0.	03), <i>I</i> ² =	70.3%			Envours for	vporimontal] Equation [control]
	ion 2.903 p = 0.59 tion 5.722 4.518 4.835 5.576 4.624 5.69 4.784 4.659 4.322 4.561 6.683 9.26, df p = 0.000 todifical 1.333 7.937 4.02 5.05 4.05 4.48 4.23, df p = 0.000 3.69, df p < 0.000 2 = 6.74	ion 2.903 3.342 p = 0.59) tion 5.722 5.407 4.518 2 4.835 1.147 5.576 1.659 4.624 1,218 5.69 0.58 4.784 4.756 4.659 4.625 4.322 2.201 4.561 2.248 6.683 0.232 9.26, df = 10 (p p = 0.003) todification 1.333 1.6 7.937 0.126 4.02 0.46 5.05 0.22 4.05 0.37 4.48 0.08 4.23, df = 5 (p p = 0.0009) 3.69, df = 17 (p p < 0.0001) 2 = 674 df = 2	ion 2.903 3.342 10 10 p = 0.59) tion 5.722 5.407 4 4.518 2 12 4.835 1.147 12 5.576 1.659 12 4.624 1,218 12 5.69 0.58 8 4.784 4.756 4 4.322 2.201 3 4.659 4.625 4 4.322 2.201 3 4.561 2.248 3 6.683 0.232 8 82 9.26, df = 10 ($p = 0.04$ p = 0.003) todification 1.333 1.6 9 7.937 0.126 18 4.02 0.46 9 5.05 0.22 7 4.05 0.37 3 4.48 0.08 11 57 4.23, df = 5 ($p < 0.000$ p = 0.000) 149 3.69, df = 17 ($p < 0.00$ p < 0.0001) 2 6 74 df = 2 ($p = 0$	ion 2.903 3.342 10 3.623 10 p = 0.59) tion 5.722 5.407 4 5.944 4.518 2 12 6.353 4.835 1.147 12 6.353 5.576 1.659 12 6.353 4.624 1,218 12 6.353 5.69 0.58 8 6.79 4.784 4.756 4 5.58 4.322 2.201 3 5.146 4.561 2.248 3 5.146 6.683 0.232 8 7.338 82 9.26, df = 10 ($p = 0.04$); $l^2 = 44$ p = 0.003) todification 1.333 1.6 9 5.333 7.937 0.126 18 8.0696 4.02 0.46 9 6.06 5.05 0.22 7 6.06 4.05 0.37 3 6.06 4.48 0.08 11 6.06 57 4.23, df = 5 ($p < 0.00001$); $l^2 = p$ p = 0.0009) 149 3.69, df = 17 ($p < 0.00001$); $l^2 = p$	ion 2.903 3.342 10 3.623 2.301 10 p = 0.59) tion 5.722 5.407 4 5.944 2.301 4.518 2 12 6.353 1.659 4.835 1.147 12 6.353 1.659 5.576 1.659 12 6.353 1.659 5.69 0.58 8 6.79 0.48 4.784 4.756 4 5.58 2.301 4.629 4.625 4 5.58 2.301 4.322 2.201 3 5.146 2.301 4.561 2.248 3 5.146 2.301 4.561 2.248 3 5.146 2.301 6.683 0.232 8 7.338 0.166 82 9.26, df = 10 ($p = 0.04$); $l^2 = 48\%$ p = 0.003) todification 1.333 1.6 9 5.333 0.467 7.937 0.126 18 8.0696 0.676 4.02 0.46 9 6.06 0.61 5.05 0.22 7 6.06 0.61 4.05 0.37 3 6.06 0.61 4.48 0.08 11 6.06 0.61 57 4.23, df = 5 ($p < 0.00001$); $l^2 = 85\%$ p = 0.0009) 149 3.69, df = 17 ($p < 0.00001$); $l^2 = 73\%$	ion 2.903 3.342 10 3.623 2.301 10 10 10 p = 0.59) tion 5.722 5.407 4 5.944 2.301 4 4.518 2 12 6.353 1.659 12 4.835 1.147 12 6.353 1.659 12 4.624 1,218 12 6.353 1.659 12 4.629 4.625 4 5.58 2.301 4 4.322 2.201 3 5.146 2.301 3 4.561 2.248 3 5.146 2.301 3 4.561 2.248 3 5.146 2.301 3 6.683 0.232 8 7.338 0.166 8 82 82 9.26, df = 10 ($p = 0.04$); $l^2 = 48\%$ p = 0.003) todification 1.333 1.6 9 5.333 0.467 9 7.937 0.126 18 8.0696 0.676 18 4.02 0.46 9 6.06 0.61 9 5.05 0.22 7 6.06 0.61 7 4.05 0.37 3 6.06 0.61 3 4.48 0.08 11 6.06 0.61 11 57 57 4.23, df = 5 ($p < 0.00001$); $l^2 = 73\%$ p = 0.000) 149 149	ion 2.903 3.342 10 3.623 2.301 10 6.8% 10 10 6.8% p = 0.59) tion 5.722 5.407 4 5.944 2.301 4 5.3% 4.518 2 12 6.353 1.659 12 6.9% 4.835 1.147 12 6.353 1.659 12 7.0% 4.624 1,218 12 6.353 1.659 12 7.0% 4.624 1,218 12 6.353 1.659 12 7.0% 5.69 0.58 8 6.79 0.48 8 5.7% 4.784 4.756 4 5.58 2.301 4 5.3% 4.322 2.201 3 5.146 2.301 3 4.7% 4.659 4.625 4 5.58 2.301 4 5.3% 4.322 2.201 3 5.146 2.301 3 4.7% 6.683 0.232 8 7.338 0.166 8 4.9% 82 82 82 63.6% 9.26, df = 10 ($p = 0.04$); $l^2 = 48\%$ p = 0.003) todification 1.333 1.6 9 5.333 0.467 9 5.0% 7.937 0.126 18 8.0696 0.676 18 7.4% 4.02 0.46 9 6.06 0.61 9 4.7% 5.05 0.22 7 6.06 0.61 7 5.3% 4.05 0.37 3 6.06 0.61 3 1.9% 4.48 0.08 11 6.06 0.61 11 5.3% 4.23, df = 5 ($p < 0.00001$); $l^2 = 73\%$ p < 0.0001) 149 149 100.0% 3.69, df = 17 ($p < 0.00001$); $l^2 = 73\%$	ion 2.903 3.342 10 3.623 2.301 10 6.8% -0.24 [-1.12, 0.64] 10 10 6.8% -0.24 [-1.12, 0.64] p = 0.59) tion 5.722 5.407 4 5.944 2.301 4 5.3% -0.05 [-1.43, 1.34] 4.518 2 12 6.353 1.659 12 6.9% -0.96 [-1.82, -0.11] 4.835 1.147 12 6.353 1.659 12 6.8% -1.03 [-1.89, -0.17] 5.576 1.659 12 6.353 1.659 12 7.0% -0.45 [-1.26, 0.36] 4.624 1,218 12 6.353 1.659 12 7.0% -0.00 [-0.80, 0.80] 5.69 0.58 8 6.79 0.48 8 5.7% -1.95 [-3.21, -0.70] 4.784 4.756 4 5.58 2.301 4 5.3% -0.22 [-1.61, 1.17] 4.322 2.201 3 5.146 2.301 3 4.7% -0.29 [-1.92, 1.33] 4.561 2.248 3 5.146 2.301 3 4.7% -0.29 [-1.92, 1.33] 4.561 2.248 3 5.146 2.301 3 4.7% -0.21 [-1.82, 1.41] 6.683 0.232 8 7.338 0.166 8 4.9% -3.07 [-4.64, -1.50] 82 82 63.6% -0.73 [-1.21, -0.25] 9.26, df = 10 ($p = 0.04$); $l^2 = 48\%$ p = 0.003 rodification 1.333 1.6 9 5.333 0.467 9 5.0% -3.23 [-4.74, -1.72] 7.937 0.126 18 8.0696 0.676 18 7.4% -0.27 [-0.92, 0.39] 4.02 0.46 9 6.06 0.61 9 4.7% -3.60 [-5.22, -1.98] 5.05 0.22 7 6.06 0.61 7 5.3% -2.06 [-3.44, -0.68] 4.05 0.37 3 6.06 0.61 3 1.9% -3.19 [-6.66, 0.28] 4.48 0.08 11 6.06 0.61 11 5.3% -3.49 [-4.91, -2.08] 57 57 29.6% -2.53 [-4.02, -1.03] 4.23, df = 5 ($p < 0.00001$); $l^2 = 73\%$ p = 0.0009

Fig. 2. Forest plot of SMDs for the assessment of methods of yeast biofilm inhibition. SMD, standardized mean difference; IV, inverse variance; SD, standard deviation; CI, confidence interval.

bition of other bacteria and 8–9% inhibition of *C. albicans* growth to silicone with the highest concentration tested (0.5 mg/mL) [18]. Biosurfactants obtained from the probiotic bacteria *Lactococcus lactis* 53 and *Streptococcus thermophilus A* decreased the amount of bacteria in the biofilm to 4 and 13% and the amount of fungal organisms to 15 and 26% of the control, respectively [43]. Additionally, the application of sophorolipids on silicone surfaces at concentrations between 0.025 and 0.1% w/v in co-incubation experiments using SLA 0.05% w/v led to 90–95% reduction of *S. aureus* and *C. albicans* biofilm formation [19] (Tables 2, 3).

Active Surface Modification

Only few methods of active surface modification managed to inhibit biofilm growth by 80%. With the exception of encapsulation of co-amoxiclav drug mixture into chitosan nanoparticles, which led to decrease in bacterial growth up to 93.98%, the rest of the methods exhibited weaker antibiofilm activity [57]. The application of lactobacilli supernatant against fungal-bacterial multispecies biofilms on silicone surface achieved a reduction up to 72.23% of mixed biofilm formation. Moreover, the application of silver nanoparticles against *Candida auris* biofilm formation [55] and the application of caspofungin

Color version available online

	Experimental		Control				Std. mean difference Std. mean difference	
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95% Cl IV, random, 95% Cl
1.1.1 Passive surface modification								
Ajdnik 2019 PDMS + CN	4.621	6.792	3	4.751	5.123	3		Not estimable
Ajdnik 2019 PDMS + CN-CoAM	3.593	6.792	3	4.751	5.123	3		Not estimable
Ajdnik 2019 PDMS + PA1, CN	4.407	6.792	3	4.751	5.123	3		Not estimable
Ajdnik 2019 PDMS + PA1, CN-CoAM	3.439	6.792	3	4.751	5.123	3		Not estimable
Ajdnik 2019 PDMS + PA5, CN	5.519	6.792	3	4.751	5.123	3		Not estimable
Ajdnik 2019 PDMS + PA5, CN-CoAM	3.286	6.792	3	4.751	5.123	3		Not estimable
Dijk 2000	4.978	4.623	10	5.196	4.23	10	50.3%	-0.05 [-0.92, 0.83]
Subtotal (95% Cl)			10			10	50.3%	-0.05 [-0.92, -0.83]
Heterogeneity: Not applicable								
Test for overall effect: $Z = 0.11$ ($p = 0$.92)							
1.1.2 Passive surface modification								
Buijssen 2017	7.079	6.792	4	7.301	5.123	4	20.1%	-0.03 [-1.42, 1.35]
Depan 2013 Silicone – 5wt% Titania	5.507	5.037	6	5.984	5.123	6		Not estimable
Oosterhof 2006 Biocidal	5.754	5.827	4	6.322	4.23	4		Not estimable
Oosterhof 2006 QAS	5.879	5.526	4	6.322	4.23	4		Not estimable
Rodriquez 2004 L.lactis	5.428	2.738	3	6.826	5.123	3	14.7%	-0.27 [-1.89, 1.35]
Rodriquez 2004 S.thermo	5.94	3.028	3	6.826	5.123	3	14.9%	-0.17 [-1.78, 1.44]
Subtotal (95% Cl)			10			10	49.7%	-0.14 [-1.03, 0.74]
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.05$, d	f = 2 (p	= 0.98)	$; I^2 = 0^{\circ}$	%				
Test for overall effect: $Z = 0.32$ ($p = 0.32$.75)							
Total (95% Cl)			20			20	100.0%	–1.10 [–0.72, 0.53]
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.07$, d	f = 3 (p	= 0.99);	$; I^2 = 0^{\circ}$	%				
Test for overall effect: $Z = 0.30$ ($p = 0.00$.76)							-100 -50 0 50 100
Test for subgroup differences: $\chi^2 = 0$.	02. df =	1 (p =	0.88), <i>l</i> é	$r^2 = 0\%$				Favours [experimental] Favours [control]

Fig. 3. Forest plot of SMDs for the assessment of methods of bacterial biofilm inhibition. SMD, standardized mean difference; IV, inverse variance; SD, standard deviation; CI, confidence interval.

against *C. albicans* and *Candida parapsilosis* biofilms [54] led to reduction of biofilm formation up to 50% (Table 4).

Combined Active and Passive Surface Modification

Lipopeptide from *B. subtilis* AC7 combined with the quorum-sensing molecule farnesol [61] achieved an effective reduction of fungal biofilm growth up to 93% (Table 5).

Quantitative Synthesis of the Results

Assessment of Methods of Yeast Biofilm Inhibition

For the assessment of yeast biofilm inhibition methods, data from 10 studies investigating 18 different methods were synthesized and based on the surface modification method (active, passive, and active/passive) examined in each study, classified the studies into 3 subgroups. Statistical pooling was possible for 298 disks. There was a statistically significant difference in favor of the intervention group (SMD –1.20; 95% CI [–1.73 to –0.66]; p <0.0001). In these analyses, heterogeneity was considered substantial ($I^2 = 73\%$, p < 0.00001). The larger effect size (SMD = -3.60, 95% CI [-5.22, -1.98]) was in favor of the prevention method with impregnation of miconazole in the study conducted by De Prijck et al. [60]. On the other hand, the smallest effect size (SMD = -0.00, 95% CI [-0.80, 0.80]) was found in the study conducted by Cochis et al. [20] with the precoating with biosurfactants obtained from endophyte biofilms selected from *Robinia pseudoacacia* and from *Nerium oleander*. In the subgroup analysis, we found out that combined active and passive surface modification methods are the most effective in yeast biofilm formation inhibition (SMD = -2.53, 95% CI [-4.02, -1.03], p = 0.0009) (Fig. 2).

Assessment of Methods of Bacterial Biofilm Inhibition

For the assessment of bacterial biofilm inhibition methods, data from 6 studies investigating 13 different methods were synthesized. Statistical pooling was possible for 104 disks, and based on the surface modification

Color version available online

Fig. 4. Forest plot of SMDs for the assessment of methods of mixed biofilm inhibition. SMD, standardized mean difference; IV, inverse variance; SD, standard deviation; CI, confidence interval.

method, 2 subgroups were created. There was a statistically insignificant difference in favor of prevention methods in comparison with the control group (SMD = -0.09, 95% CI [-1.07, 0.89], p = 1.00). In these analyses, heterogeneity was considered not important ($I^2 = 0\%$, p = 1.00). The larger effect size (SMD = -0.27, 95% CI [-1.89, 1.35]) was in favor of the precoating method with biosurfactants obtained from *L. lactis*. The lower effect size (SMD = -0.02, 95% CI [-1.62, 1.58]) was found in the study conducted by Ajdnik et al. [57], with the use of chitosan and sodium tripolyphosphate nanoparticles only. For this analysis, we detected no significant heterogeneity levels ($I^2 = 0\%$). From the subgroup analysis, there were no notable differences between the different surface modification methods (Fig. 3).

Assessment of Methods of Mixed Biofilm Inhibition

There was a statistically significant difference in favor of prevention methods in comparison with the control group (SMD = -2.59, 95% CI [-7.48, 2.31], p = 0.30). For this analysis, we detected substantial heterogeneity levels ($I^2 = 96\%$, p < 0.00001) (Fig. 4).

Discussion

With a view to reduce microorganism colonization and potentially improve device survivorship, researchers have exerted substantial effort to improve the antifouling properties of silicone rubber voice prostheses over the last decades. Given the high failure rates of silicone rubber voice prostheses due to microbial biofilm development and the paucity of human literature in this field, we felt that a systematic review of in vitro evidence was warranted. Therefore, we sought to explore the efficacy of the applied in vitro prevention methods and to compare their effect on biofilm inhibition where it was possible.

In the present systematic review, we summarized data from 33 published in vitro studies, 12 of which qualified for meta-analysis. To reliably evaluate the efficacy of the presented methods, the cutoff value of 80% was deemed to be a meaningful inhibition threshold when compared with controls [65]. A significant proportion of studies looking at the prevention potential of the passive and combined active and passive surface modification methods reached the above inhibition rate. On the contrary, only one of the included studies utilizing active surface modification methods achieved an equally strong antibiofilm activity [57]. Those results were verified with the overall meta-analysis findings and especially with subgroup analysis results. Consequently, we reached the conclusion that active surface modifications have a limited effect on the inhibition of biofilm formation, whereas the antibacterial ability of passive and especially combined active and passive surface modifications is sufficient enough to allow for predictable biofilm inhibition. Therefore, we advocate that future experimental studies should focus on passive and combined active and passive surface modification methods in order to improve the antifouling properties of silicone rubber.

Furthermore, fungal species are the most commonly isolated microorganisms of voice prostheses, with a prevalence of 72.9% [9]. However, in clinical practice, biofilms isolated from those devices are polymicrobial communities [10]. From the assessment of the efficacy of novel prophylactic techniques against microbial biofilms, the quantitative synthesis proved that the majority of those techniques were especially effective against the formation of yeast and mixed microbial biofilms. Taking into consideration these facts, those results show great promise for application on silicone rubber voice prostheses and must be considered as ideal candidates for the elongation of the lifetime of those devices. The limited existing in vivo studies on laryngectomized humans [66] or rats [67] confirm this hypothesis, since they have demonstrated that coating in human patients resulted in a significant reduction of biofilm formation on silicone rubber voice prostheses.

Strengths and Limitations of the Present Systematic Review

The present study described novel biofilm inhibition methods that have been tested over the last decades and summarized their in vitro influence on biofilm formation on silicone rubber surfaces, which could predict the clinical behavior of those techniques on voice prostheses in vivo. It is worthy of note that sample size was adequate enough to allow us to test our hypothesis. We performed a broad search, and we attempted to maintain low levels of clinical diversity [68] by applying stringent inclusion criteria for meta-analysis to decrease heterogeneity of the data.

However, in the included in vitro studies, many domains were deemed to be at a medium or high risk of bias, since they are not reported correctly in the studies. This finding seems to be usual in systematic reviews of laboratorial studies [69]. The main reason in the current study is the lack of information about sample size calculation methods, randomization, sequence generation, allocation concealment, implementation, and blinding and should be carefully considered in future in vitro studies. On top of that, considering the methodological variability among studies, heterogeneity was unavoidable. As a result, pooled results showed that there were significant statistical heterogeneity levels, especially in the assessment of yeast biofilm inhibition methods. Thus, the intervention effect in this case was significantly affected by the factors that varied across the included studies, and we suggest that the results of the present systematic review be interpreted with caution. To address heterogeneity issues and selection bias, we suggest that future authors utilize a randomized controlled clinical trial study design and consider not only comprehensive registration protocols but also core outcome sets [70].

Another source of potential bias identified in the current study is the lack of reporting of quantifiable data. For transparency and clarity in reporting, we advocate that authors report their results in a more comprehensive and statistically sound manner. To elaborate not only mean/ median values but also measures of variations need to be presented to allow for reliable conclusions to be drawn.

Implications for Future Research

In the current study, we sought to compare the effects of prevention methods on biofilm formation on silicone rubber surfaces exclusively in vitro. Studies executed in vivo on humans [66, 71-73] or animals [67] were excluded. Thus, the in vivo efficacy and long-term effects of these techniques both on host's cells and on bacterial resistance need to be further investigated before clinical applications and market introduction. Many studies have demonstrated that body fluids, proteins, enzymes, electrolytes, and lipids in vivo can potentially corrode biomaterials including silicone elastomers, leading to the roughness of the surface of biomaterials, thus making it more easily for bioactive compounds to attach to the surfaces of the corroded biomaterials [74]. Consequently, highquality clinical studies examining the in vivo efficacy of the tested prevention methods are warranted for their further introduction in the clinical practice and for the extrapolation of our findings to human biology. Our systematic review could be used to better guide these clinical trials.

Conclusion

Great progress has been made in the last decades in the development of novel techniques aiming to protect silicone rubber voice prostheses from bacterial and fungal colonization. The current systematic review and metaanalysis provides an overview of the existing in vitro experimental studies exploring the inhibition of biofilm formation on silicone rubber surfaces. Various prevention methods present efficacy in vitro, and their possible application in clinical practice shows excellent promise. More specifically, the results of the qualitative and quantitative syntheses support evidence that the prevention of yeast and mixed microbial biofilm formation is especially active on silicone rubber surfaces. Should the efficacy and safety of those methods get tested and also approved in vivo, those techniques could extend the lifespan of silicone rubber prostheses, improving the quality of life of laryngectomized patients by reducing the frequent replacements of voice prostheses and decreasing healthcare costs. Finally, since passive and combined active and passive surface modification methods seem to be especially effective for the inhibition of yeast biofilm formation on silicone surfaces, we indicate that future studies should

aim toward this direction, given the high prevalence of *Candida* strains on the colonization of silicone rubber prostheses.

Statement of Ethics

The paper is exempt from Ethical Committee approval because it does not involve experiments with humans and animals.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

- Schuster M, Lohscheller J, Kummer P, Hoppe U, Eysholdt U, Rosanowski F. Quality of life in laryngectomees after prosthetic voice restoration. Folia Phoniatr Logop. 2003;55(5): 211–9.
- 2 Balm AJM, Van Den Brekel MWM, Tan IB, Hilgers FJM. The indwelling voice prosthesis for speech rehabilitation after total laryngectomy: a safe approach. Otolaryngol Pol. 2011; 65(6):402–9.
- 3 Chen H, Brook MA, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials. 2004;25(12):2273–82.
- 4 Neu TR, Verkerke GJ, Herrmann IF, Schutte HK, Mei HCV, Busscher HJ. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. J Appl Bacteriol. 1994;76(5): 521–8.
- 5 Neu TR, Van der Mei HC, Busscher HJ, Dijk F, Verkerke GJ. Biodeterioration of medicalgrade silicone rubber used for voice prostheses: a SEM study. Biomaterials. 1993;14(6): 459-64.
- 6 Attieh AY, Searl J, Shahaltough NH, Wreikat MM, Lundy DS. Voice restoration following total laryngectomy by tracheoesophageal prosthesis: effect on patients' quality of life and voice handicap in Jordan. Health Qual Life Outcomes. 2008;6:1–10.
- 7 Op de Coul BMR, Hilgers FJM, Balm AJM, Tan IB, van den Hoogen FJA, van Tinteren H. A decade of postlaryngectomy vocal rehabilitation in 318 patients: a single institution's experience with consistent application of provox indwelling voice prostheses. Arch Otolaryngol Head Neck Surg. 2000;126(11):1320.
- 8 Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57(4): 609–18.

- 9 Van Weissenbruch R, Albers FWJ, Bouckaert S, Nelis HJ, Criel G, Remon JP, et al. Deterioration of the Provox(TM) silicone tracheoesophageal voice prosthesis: microbial aspects and structural changes. Acta Otolaryngol. 1997;117(3):452–8.
- 10 Elving GJ, Van Der Mei HC, Busscher HJ, Van Weissenbruch R, Albers FWJ. Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol. 2002;111(3):200–3.
- 11 Elving GJ, Van Der Mei HC, Van Weissenbruch R, Albers FWJ, Busscher HJ. Effect of antifungal agents on indwelling voice prosthetic biofilms. Curr Opin Otolaryngol Head Neck Surg. 2000;8(3):165–8.
- 12 Denning DW. Can we prevent azole resistance in fungi? Lancet. 2002;346:454–5.
- 13 Chen J, Qin G, Wang J, Yu J, Shen B, Li S, et al. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms. Biosens Bioelectron. 2013; 44(1):191–7.
- 14 Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants: issues and prevention. Biomed Mater. 2008;3(3):034003.
- 15 Lorite GS, Janissen R, Clerici JH, Rodrigues CM, Tomaz JP, Mizaikoff B, et al. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS One. 2013;8(9):e75247.
- 16 Arweiler-Harbeck D, Sanders A, Held M, Jerman M, Ehrich H, Jahnke K. Does metal coating improve the durability of silicone voice prostheses? Acta Otolaryngol. 2001 Jul 1;121: 643–6.
- 17 Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000;53(5): 495–508.

Funding Sources

The study was not supported by funding sources.

Author Contributions

A.T. is the primary author. The supervisors of this study are E.P., L.D., and C.S., and this systematic review was conducted under their close guidance. K.T. contributed with his knowledge on meta-analysis to the quantitative synthesis as well as conducted a major review on the paper. C.F. assisted the primary author with the data extraction and quality assessment. Finally, G.M. contributed to this study with his guidance in specific scientific issues. All authors read and approved the final manuscript.

- 18 Janek T, Łukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012 Feb 23;12:24.
- 19 Ceresa C, Fracchia L, Williams M, Banat IM, Díaz De Rienzo MA. The effect of sophorolipids against microbial biofilms on medicalgrade silicone. J Biotechnol. 2020;309(September 2019):34–43.
- 20 Cochis A, Fracchia L, Martinotti G. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6): 755–61.
- 21 Rodrigues L, Van Der Mei H, Teixeira JA, Oliveira R. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol. 2004;66(3):306–11.
- 22 Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, Tepper PG, Quax WJ, et al. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. 2020;246:112188.
- 23 Everaert EPJM, Van De Belt-Gritter B, Van Der Mei HC, Busscher HJ, Verkerke GJ, Dijk F, et al. In vitro and in vivo microbial adhesion and growth on argon plasma-treated silicone rubber voice prostheses. J Mater Sci Mater Med. 1998;9(3):147–57.
- 24 Meran Z, Besinis A, De Peralta T, Handy RD. Antifungal properties and biocompatibility of silver nanoparticle coatings on silicone maxillofacial prostheses in vitro. J Biomed Mater Res B Appl Biomater. 2018;106(3):1038–51.
- 25 Tran PA, Webster TJ. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 2013;24(15): 155101.

- 26 Tan Y, Leonhard M, Moser D, Ma S. Longterm antibiofilm activity of carboxymethyl chitosan on mixed biofilm on silicone. 2016 Dec;126(12):E404–9.
- 27 Khorasani MT, Mirzadeh H, Sammes PG. Laser surface modification of polymers to improve biocompatibility: HEMA grafted PDMS, in vitro assay III. Radiat Phys Chem. 1999;55(5–6):685–9.
- 28 Angelova N, Hunkeler D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol. 1999;17(10):409–21.
- 29 De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ. Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. 2010 Oct;170(4):213–21.
- 30 Zhou L, Tong Z, Wu G, Feng Z, Bai S, Dong Y, et al. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch Oral Biol. 2010; 55(6):401–9.
- 31 Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf B Biointerfaces. 2008; 64(2):297–301.
- 32 Hetrick EM, Schoenfisch MH. Reducing implant-related infections: Active release strategies. Chem Soc Rev. 2006;35(9):780–9.
- 33 Alves D, Vaz AT, Grainha T, Rodrigues CF, Pereira MO. Design of an antifungal surface embedding liposomal amphotericin B through a mussel adhesive-inspired coating strategy. Front Chem. 2019;7(June):431–9.
- 34 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRIS-MA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.
- 35 Faggion CM. Guidelines for reporting preclinical in vitro studies on dental materials. J Evid Based Dent Pract. 2012;12(4):182–9.
- 36 Cochrane Collaboration. Review manager. 2011, Version 5.1. Copenhagen: The Nordic Cochrane Centre.
- 37 Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statist Med. 2002;21(11):1539.
- 38 Sterne JAC, Egger M, Moher D. Addressing Reporting Biases.
- 39 Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. Cochrane Handb Syst Rev Interv Cochrane B Ser. 2008:243–96.
- 40 Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10(1):157–11.
- 41 Busscher HJ, Geertsema-Doornbusch GI, Van der Mei HC. Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: influence of salivary conditioning films. J Biomed Mater Res. 1997;34(2):201–9.

- 42 Rodrigues L, Van Der Mei H, Banat IM, Teixeira J, Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol. 2006;46(1): 107–12.
- 43 Rodrigues L, van der Mei HC, Teixeira J, Oliveira R. Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol. 2004;70(7):4408–10.
- 44 Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol. 2006;100:470–80.
- 45 Buijssen KJDA, Oosterhof JJH, Basil L, Waters M, Duits MA, Busscher HJ, et al. Influence of surface roughness on silicone rubber voice prostheses on in vitro biofilm formation and clinical lifetime in laryngectomised patients. Clin Otolaryngol. 2017;42(6):1235–40.
- 46 Contreras-García A, Bucioa E, Brackmanc G, Coenyec T, Concheirob A, Alvarez-Lorenzob C. Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling. 2011;27(2):123–35.
- 47 Depan D, Misra RDK. On the determining role of network structure titania in silicone against bacterial colonization : mechanism and disruption of bio fi lm. 2014;34:221–8.
- 48 Gottenbos B, Van Der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials. 2002;23(6): 1417–23.
- 49 Oosterhof JJ, Buijssen KJ, Busscher HJ, van der Laan BF, van der Mei HC. Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses. Appl Environ Microbiol. 2006;72(5):3673–7.
- 50 Xu Y, Jones JE, Yu H, Yu Q, Christensen GD, Chen M, et al. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm. Antimicrob Agents Chemother. 2015;59(12):7308–15.
- 51 Everaert EPJM, van der Mei HC, Busscher HJ. Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber. Colloids Surf B Biointerfaces. 1998; 10(4):179–90.
- 52 Taylor RL, Liauw CM, Maryan C, Building JD, Street C. The effect of resin/crosslinker ratio on the mechanical properties and fungal deterioration of a maxillofacial silicone elastomer. J Mater Sci Mater Med. 2003;14:497– 502.
- 53 Vargas-Blanco D, Lynn A, Rosch J, Noreldin R, Salerni A, Lambert C, et al. A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Ann Clin Microbiol Antimicrob. 2017;16(1):41–12.

- 54 Cocuaud C, Rodier MH, Daniault G, Imbert C. Anti-metabolic activity of caspofungin against Candida albicans and Candida parapsilosis biofilms. J Antimicrob Chemother. 2005;56(3):507–12.
- 55 Tan Y, Leonhard M, Moser D, Schneiderstickler B. Inhibition activity of Lactobacilli supernatant against fungal-bacterial multispecies biofilms on silicone. Microb Pathog. 2017;113(September):197–201.
- 56 Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Long-term antibiofilm activity of carboxymethyl chitosan on mixed biofilm on silicone. Laryngoscope. 2016;126(12): E404–8.
- 57 Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of silicone by drug-embedded chitosan nanoparticles for potential applications in otorhinolaryngology. Materials (Basel). 2019;16(6):1–20.
- 58 Lara HH, Ixtepan-turrent L, Yacaman MJ, Lopez-ribot J. Inhibition of Candida auris biofilm formation on medical and environmental surfaces by silver nanoparticles. ACS Appl Mater Interfaces. 2020 May 13;12(19): 21183–91.
- 59 Dijk F, Westerhof M, Busscher HJ, van Luyn MJA, van der Mei HC. In vitro formation of oropharyngeal biofilms on silicone rubber treated with a palladium/tin salt mixture. J Biomed Mater Res. 2000 Sep 5;51(3):408–12.
- 60 De Prijck K, De Smet N, Honraet K, Christiaen S, Coenye T, Schacht E, et al. Inhibition of Candida albicans biofilm formation by antimycotics released from modified polydimethyl siloxane. Mycopathologia. 2010;169(3): 167–74.
- 61 Ceresa C, Tessarolo F, Maniglio D, Caola I, Nollo G. Inhibition of Candida albicans biofilm by lipopeptide AC7 coated medicalgrade silicone in combination with farnesol. 2018;5(June):192–208.
- 62 Wannemuehler TJ, Lobo BC, Johnson JD, Deig CR, Ting JY, Gregory RL. Vibratory stimulus reduces in vitro biofilm formation on tracheoesophageal voice prostheses. Laryngoscope. 2016;126:2752–7.
- 63 Lilly DM, Stillwell RH. Probiotics: growthpromoting factors produced by microorganisms. Science. 1965;147(3659):747–8.
- 64 Everaert EPJM, Van Der Mei HC, Busscher HJ. Adhesion of yeasts and bacteria to fluoroalkylsiloxane layers chemisorbed on silicone rubber. Colloids Surf B Biointerfaces. 1998; 10(4):179–90.
- 65 Opperman TJ, Kwasny SM, Williams JD, Khan AR, Peet NP, Moir DT, et al. Aryl rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicrob Agents Chemother. 2009;53(10):4357– 67.
- 66 Everaert EP, Mahieu HF, van de Belt-Gritter B, Peeters AJ, Verkerke GJ, van der Mei HC, et al. Biofilm formation in vivo on perfluoroalkylsiloxane-modified voice prostheses. Arch Otolaryngol Head Neck Surg. 2000; 125(12):1329–32.

- 67 Schultz P, Vautier D, Richert L, Jessel N, Haikel Y, Schaaf P, et al. Polyelectrolyte multilayers functionalized by a synthetic analogue of an anti-inflammatory peptide, alpha-MSH, for coating a tracheal prosthesis. Biomaterials. 2005;26(15):2621–30.
- 68 Higgins JPT, Green S. Cochrane Handbook for Systematic Review of Interventions Version 20 5.1.0 11. 2011. Available form: http:// handbook.cochrane.org.
- 69 Montagner AF, Sarkis-Onofre R, Pereira-Cenci T, Cenci MS. MMP inhibitors on dentin stability: a systematic review and metaanalysis. J Dent Res. 2014;93(8):733-43.
- 70 Clarke M, Williamson PR. Core outcome sets and systematic reviews. Syst Rev. 2016;5(1): 11–8.
- 71 Van Weissenbruch R, Nelis HJ, Bouckaert S, Aerts R, Remon JP, Albers FWJ. Chemoprophylaxis of fungal deterioration of the provox silicone tracheoesophageal prosthesis in postlaryngectomy patients. Ann Otol Rhinol Laryngol. 1997;106(4):329– 37.
- 72 Holmes AR, Chong K, Rodrigues E, Cannon RD, Carpenter E, Ruske DR, et al. Yeast colonization of voice prostheses: Pilot study investigating effect of a bovine milk product

containing anti-Candida albicans immunoglobulin A antibodies on yeast colonization and valve leakage. Ann Otol Rhinol Laryngol. 2012;121(1):61–6.

- 73 Danic Hadzibegovic A, Kozmar A, Hadzibegovic I, Prgomet D, Danic D. Influence of proton pump inhibitor therapy on occurrence of voice prosthesis complications. Eur Arch Otorhinolaryngol. 2020;277(4):1177-84.
- 74 Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization. 2002;49(1):73–9.