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Abstract

This work is a geometric study eéducedorder observer design for nonlinear systems. Our reduced order observer design is
applicable for Lyapunov stable nonlinear systems with a linear output equation and is a generalization of Luenberger’s reduce
order observer design for linear systems. We establish the error convergence for the reduced order estimator for nonlinear syste
using the center manifold theory for flows. We illustrate outuged order observer construction for nonlinear systems with a
physical example, namely a nonlinear pendulum without friction.
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1. Introduction

The nonlinear observer design problem was introduced by THaO¥er the past three decades, many significant
works have been carried out on the construction of observers for nonlinear systems in the control systems literature
[2—17. This work is an extension of our recent workd17 on the full order observer design for nonlinear control
systems.

The reduced order observer design for nonlinear systpnesented irthis work is a generalization of the
construction of reduced order observers for linear systems devised by Luend&ger [

To explain the concept of reduced order observers, consider the nonlinear system modelled by the equations

X = f(x)
y = Cx (1)

wherex € R" is thestateandy € RP is theoutputof the nonlinear systerflL). For all practical situationsp < n.
Suppose tha€ has full rank, i.e. rantC) = p. Then wecan make a linear change of coordinates

£ = Eﬂ = Ax = [g] X 2
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whereQ is chosen so that is an invertible matrix. Note thdt, € RP and&, € R"P. Such a boice ofQ is made
possible by the assumption tHathas full rank.
Under the coordinates transformati@), theplant(1) takes he form

[éjm} _ [Fl@m, a.)}

&u Fa(ém, §u) 3)
Y =E&m

where

FE) = f(A41%).

The motivation for the reduced order state estimator or observer stems from the fact that in the plar{Bmodel
the statety, is directly available for measement and hence it suffices to build an observer that estimates only the
unmeasured statg. The order of such an observer will correspond to the dimension of the unmeasured state, namely
n — p < n. This type of observer is called @duced order observefl8] and ithas many important applications in
design problems.

In this work, we present a reduced order exponential observer designed for a Lyapunov stable plant of the form
(3). We establish that the associated estimation error decaysito exponentially using the center manifold theory for
flows [19].

This work is organized as follows. Bection 2we give thgoroblem statement for reduced order observer design. In
Section 3we present our main results, namely reduced order expialeorder design for Lyapunov stable nonlinear
systems. IrBection 4 we illustrate our main results with a physicalarple, namely a nonlinear pendulum without
friction.

2. Problem statement

In this work, we consider nonligar plants of the form

|:>'(mi| _ |:F1(Xm» Xu)i|
Xu | | F2(Xm, Xu) (4)
Y = Xm

wherexm € RP is themeasired statex, € R"P theunmeasurd stae andy € RP the outputof the gdant (4). We
assume that the state vector

is defined in a neighborhoaod of the origin ofR" andF : X — R" is aC?! vector field vanishing at the origin.
We can define theeduced order exponential observdos the plant(4) as follows.

Definition 1. Consider aC* dynamical system defined by
ZU - G(Zu, y) (5)

wherez, € R™P andG : R"P x RP — R"P is a locallyC* mapping withG(0, 0) = 0. Then the syster(b) is
called areduced order exponential observer for the plant(4) if the following conditions are satisfied:

(01) If z4(0) = x4 (0), thenz, (t) = xy(t) forallt > 0. (Basically, this requirement states that if the initial estimation
error is zero, then the estimation error stays zero for all future time.)
(02) For anygivene-bdl, B.(0), of theorigin of R"~P, there eists as-bdl, B;(0), of theorigin of R"~P suchthat

Zy(0) — xy(0) € Bs(0) = z,(t) — xy(t) € B<(0) forallt >0
and, moreover,
[Zu(®) —xu®] <= Mexp(—at)||zu(0) — Xu(0)| forallt >0
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for some positive constantd and«. (Basically, this requirement states that if the initial estimation error is
suficiently small, then the future estimation error can be made to stay in any arbitrarily assigned neighborhooc
of the origin, and in addition, the estimati@ror decays to zero exponentially with time.)

In this work, we consider the problem of finding reduced order exponential observers of thjdomLyapunov
stable nonlinear plants of the forf#).

3. Main results
Linearizing the plant4) atx = 0, we obtain the following:
- [ sz
Xu A1 Azz| | Xu ¥ (Xm, Xu)
=0 o]

whereg, ¥ areC? functions vanishing at the origin together with all their first partial derivatives.
First, we prove a basic lemma.

(6)

Lemma 1. The system linearizen pair of theplant(6) is detecable if, and only if, the paif A12, A2p) is dekctable.

Proof. By the PBH test for detectability2D, p. 286], the system linearization pair of the pl6}is detectable if, and
only if,

e .
rank_)\I _ A:| =n for all A with Re(A) <0
ie.
[ 0
rank| Al — A1 — A2 =n for all A with Re(A) <0
| —Aa Al —Ax
i.e.
rank| . A2 | _p_ p  forall » with Re() < 0
_M — Ao -

i.e. the pair(A1z, Az») is detectable. Thisampletes the proof. O

Our reduced order exponential observer design for the nonlinear sy@tem based o the fdlowing basic
assumptions:

(H1) The equilibriumx = 0 of thesystem(4) is Lyapunov stable.
(H2) The pair(A12, Azp) is detectable.

We can justify the above assumptions as follows. As pointed oullih fthe stability assumption of the plant
dynamics is because of the conceptual problem, namely ddes the existence of a local exponential observer mean
in terms of the nonlinear dynamics of the system to be observed? For example, it must mean that the trajectories c
not have finite escape time, but what does local existence mean for unbounded trajectories? In view of this crucic
factor, we have focused our efforts on treating the local existence of reduced order exponential observers for thos
nonlinear systems which are Lyapunov stable. This justifies the assunfigtiprBy Lemma 1 the asumption(H2)
is equivalent to the assumption that the linearization pair of the sy@gim detectable, which is quite standard in
nonlinear observer design. In fact, detectability is a necessamyition for the existence of local exponential observers
(see [7,14-17).

Like in the full order observer case for local exponential observers presentds],iwg may considethe following
generalization of the Luenberger observer:

Zu = G(zy, y) £ Fa(y, zy) + L[correction term
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wherelL is the observer gain matrix and the correction teey — X, = 0. (Note thatxy, is the measured state.)
Thus, as in the reduced order observer design for linear syste8hsae can construct a suitable correction term
using the derivative of, and the &te equation for the derivative &f,. If the measuremeny is subject tmoise, then
the derivative operation amplifies the noise, and so thisagmgbr may not look very effective. However, in the actual
implementation of the reducextder nonlinear estimator, we can avoid the appearangeroits equation through a
suitable ©iange of coordinates as ihg.

Note that

Y = Xm = F1(Xm, Xu) = A11Xm + A12Xy + ¢ (Xm, Xu).
Hence, it follows that
Y — A11y = A1oXy + ¢ (Xm, Xu)- (7)

Note that in Eq(7), the L.H.S. onsists of terms that are available for measurement. Hence, we mayR)ies
the new output equation, aracordingly, a correction term can be constructed.
Hence, we consider thelfowing candidate observer:

zy = Fa(y, zy) + LIy — Fa(y, zuw)] 8)

or equivalently,

Zy = Ao1y + Aoz + (Y, zy) + LIY — Ar1y — A12zy — ¢ (Y, Zu)] 9

wherez, € R"P and the observer gain matrixis chosen such that,, — L A12 is Hurwitz. (Such a matrit. is
guaranteed to exishiview of asssumptionH2).)
Sincey = X, from the plant dynamics i(6), it follows that

Xu = Az1y + AxoXy + Y (Y, Xu). (10)

The estimation erroe is defired by

ez, — Xy

From(9), (10) and(7), it follows that
é= (A2~ LAe+ ¥y, e+ xu) — ¥ (Y, Xu) — LI (Y, Xu +€) — ¢ (Y, xu)]. (11)

Note that by construction, the linearization matfg, — L A12 in the aror dynamicg(11) is Hurwitz, and also
thate = 0 is an invariant manifold for the composite system consisting of the plant dynaf)cand (11). Note
also that by assumptiofH1), x = 0 is aLyapunov stable equilibrium of the plant dynamicq@&). Herce, by an
argument using center manifold theory for flovt®] similar to theproof of Theorem 3 in17), it can be etablished
that the candidatebserver defined b{8) is an exponential observer that estimates the unmeasuredxgtafehe
plant dynamics ir{4).

Next, wenote that the implementation of the reduced order estimator given in the fo(@)uhay pose a problem
as it involves the derivative of the measurement vegtdt is known that diffeentiation amplifies noise, so if is
noisy, the use of is unacceptable. To get around this difficultye define the new estimator state to be

é'u == Zu - Ly
Then it can be easily shown that
tu = Fa(y, Ly + &u) — LFa(y, LY + &)

We may smmarize the above salts in the following main theorem.

Theorem 1. Consider the plan{4) that satidies the assumption($11) and (H2). Linearizing the pant equations in
(4) at the origin, we obtain the equivalent form for the plant giver(®)y Let L beany matrix (observer gain) such
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that A2 — L Agz is Hurwitz. Then a reduced order stagstimator (or observer) for the plarft) is givenby the
estimator dynamicg8) having the estimator statg, avhich can be implemented through the following equations:

tu = Fa(y, &u+ Ly) — LF1(y, ¢u + Ly)

12
z, =¢u+ Ly. (12)

If the pair (A12, A22) is observable, then we naonstruct a reduced order estimator of the fofh2) with the steady-
state errordictated by error poles, which are the eigenvalues of the error matgix-AL A12, and which can be
arbitrarily placed in the complex plane (subject to conjugate symmetry)l

4. An example

In this section, we illustrate the reduced order expdiaknbserver design for nonlinear systems with a physical
example, namely the nonlinear pendulum without friction.
Consider the nonlineaystem described by

X1 = X2
%2 = — sin(w@x1) (13)
y=X1

wherex; is the measured state, arg is the unmeasured state. In other words, we assume that only the angular
velocity of the nonlinear pendulumy = 6 is available for measurement.

In this example, we will illustrate the procedure outlinedTiheorem 1to build an exponential observer that
estimates only the unmeasured stgt®f the nonlinear pendulum.

First, we shall verify that the nonlinear pendulum satisfies the assumgkidysnd(H?2) of Theorem 11t is easy
to see that the nonlinear pendulum satisfies the assumgtiti) as the equilibrium statéx, xo) = (0, 0) is clearly
Lyapunov stable, as we know that the nonlinear penduluimouitfriction will undergo oscillations. In fact, this can
also be seen by considering the total energy function

1 1
VX1, X2) = —[1— coswixa)] + Exg
@o

and noting thaV = 0 dong the trajectories of the pendulum dynamics.
Linearizing the pendulum equations given(ir8) atx = 0, we obtain

A1 A 0 1
C=(1 0 and A= = .
o [Aﬂ Azz] [wS

It is trivial to see that the paifC, A) is observable. By.emma 1 it is equivalent to say that the paiA12, Az)) is
observable. In fact, note that the pair

Ap=1 and Ao =0

is trivially observable. Thus, the assumptigt?) is also satisfied.

Hence, byTheorem 1 we can build a reduced order exponential state estimator of the fb&nfor the given
pendulum with steady-state error dictated by any pre-assigned error pole,Sayb5wo.

Note that the system matrix governing the error dynamics is given by

App— LA;2=0—-L=-L

which has the characteristic equat®s L = 0.
Hence, it is obvious that we should take the observer gain asbwg to meet the design specification.
By Theorem 1the raluced order estimator equation is given by

£p = — sin(w3y) — Swo(¢2 + Swoy)
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and the state estimate is given by

Z2 = {2+ Swoy. O
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