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Reduced order observer design for nonlinear systems
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Abstract

This work is a geometric study ofreducedorder observer design for nonlinear systems. Our reduced order observer design is
applicable for Lyapunov stable nonlinear systems with a linear output equation and is a generalization of Luenberger’s reduced
order observer design for linear systems. We establish the error convergence for the reduced order estimator for nonlinear systems
using the center manifold theory for flows. We illustrate our reduced order observer construction for nonlinear systems with a
physical example, namely a nonlinear pendulum without friction.
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1. Introduction

The nonlinear observer design problem was introduced by Thau [1]. Over the past three decades, many significant
works have been carried out on the construction of observers for nonlinear systems in the control systems literature
[2–17]. This work is an extension of our recent work [14–17] on the full order observer design for nonlinear control
systems.

The reduced order observer design for nonlinear systems presented inthis work is a generalization of the
construction of reduced order observers for linear systems devised by Luenberger [18].

To explain the concept of reduced order observers, consider the nonlinear system modelled by the equations

ẋ = f (x)

y = Cx
(1)

wherex ∈ R
n is thestateandy ∈ R

p is theoutputof the nonlinear system(1). For all practical situations,p ≤ n.
Suppose thatC has full rank, i.e. rank(C) = p. Then wecan make a linear change of coordinates

ξ =
[
ξm
ξu

]
= Λx =

[
C
Q

]
x (2)
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whereQ is chosen so thatΛ is an invertible matrix. Note thatξm ∈ R
p andξu ∈ R

n−p. Such a choice ofQ is made
possible by the assumption thatC has full rank.

Under the coordinates transformation(2), theplant(1) takes the form[
ξ̇m
ξ̇u

]
=

[
F1(ξm, ξu)

F2(ξm, ξu)

]

y = ξm

(3)

where

F(ξ) = f (Λ−1ξ).

The motivation for the reduced order state estimator or observer stems from the fact that in the plant model(3),
the stateξm is directly available for measurement and hence it suffices to build an observer that estimates only the
unmeasured stateξu. The order of such an observer will correspond to the dimension of the unmeasured state, namely
n − p ≤ n. This type of observer is called areduced order observer[18] and it has many important applications in
design problems.

In this work, we present a reduced order exponential observer designed for a Lyapunov stable plant of the form
(3). We establish that the associated estimation error decays tozero exponentially using the center manifold theory for
flows [19].

This work is organized as follows. InSection 2, we give theproblem statement for reduced order observer design. In
Section 3, we present our main results, namely reduced order exponential order design for Lyapunov stable nonlinear
systems. InSection 4, we illustrate our main results with a physical example, namely a nonlinear pendulum without
friction.

2. Problem statement

In this work, we consider nonlinear plants of the form[
ẋm

ẋu

]
=

[
F1(xm, xu)

F2(xm, xu)

]

y = xm

(4)

wherexm ∈ R
p is themeasured state, xu ∈ R

n−p theunmeasured state andy ∈ R
p theoutputof the plant (4). We

assume that the state vector

x =
[

xm

xu

]

is defined in a neighborhoodX of the origin ofRn andF : X → R
n is aC1 vector field vanishing at the origin.

We can define thereduced order exponential observersfor the plant(4) as follows.

Definition 1. Consider aC1 dynamical system defined by

żu = G(zu, y) (5)

wherezu ∈ R
n−p andG : R

n−p × R
p → R

n−p is a locallyC1 mapping withG(0,0) = 0. Then the system(5) is
called areduced order exponential observer for the plant(4) if the following conditions are satisfied:

(O1) If zu(0) = xu(0), thenzu(t) = xu(t) for all t ≥ 0. (Basically, this requirement states that if the initial estimation
error is zero, then the estimation error stays zero for all future time.)

(O2) For anygivenε-ball, Bε(0), of theorigin of R
n−p, there exists aδ-ball, Bδ(0), of theorigin of R

n−p suchthat

zu(0)− xu(0) ∈ Bδ(0) �⇒ zu(t)− xu(t) ∈ Bε(0) for all t ≥ 0

and, moreover,

‖zu(t)− xu(t)‖ ≤ M exp(−αt)‖zu(0)− xu(0)‖ for all t ≥ 0
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for some positive constantsM andα. (Basically, this requirement states that if the initial estimation error is
sufficiently small, then the future estimation error can be made to stay in any arbitrarily assigned neighborhood
of the origin, and in addition, the estimation error decays to zero exponentially with time.)�

In this work, we consider the problem of finding reduced order exponential observers of the form(5) for Lyapunov
stable nonlinear plants of the form(4).

3. Main results

Linearizing the plant(4) at x = 0, we obtain the following:[
ẋm

ẋu

]
=

[
A11 A12
A21 A22

] [
xm

xu

]
+

[
φ(xm, xu)

ψ(xm, xu)

]

y = [
I 0

] [
xm

xu

] (6)

whereφ,ψ areC1 functions vanishing at the origin together with all their first partial derivatives.
First, we prove a basic lemma.

Lemma 1. The system linearization pair of theplant (6) is detectable if, and only if, the pair(A12, A22) is detectable.

Proof. By the PBH test for detectability [20, p. 286], the system linearization pair of the plant(6) is detectable if, and
only if,

rank

[
C

λI − A

]
= n for all λ with Re(λ) ≤ 0

i.e.

rank


 I 0
λI − A11 −A12

−A21 λI − A22


 = n for all λ with Re(λ) ≤ 0

i.e.

rank

[ −A12
λI − A22

]
= n − p for all λ with Re(λ) ≤ 0

i.e. the pair(A12, A22) is detectable. This completes the proof. �

Our reduced order exponential observer design for the nonlinear system(4) is based on the following basic
assumptions:

(H1) The equilibriumx = 0 of thesystem(4) is Lyapunov stable.
(H2) The pair(A12, A22) is detectable.

We can justify the above assumptions as follows. As pointed out in [15], the stability assumption of the plant
dynamics is because of the conceptual problem, namely what does the existence of a local exponential observer mean
in terms of the nonlinear dynamics of the system to be observed? For example, it must mean that the trajectories do
not have finite escape time, but what does local existence mean for unbounded trajectories? In view of this crucial
factor, we have focused our efforts on treating the local existence of reduced order exponential observers for those
nonlinear systems which are Lyapunov stable. This justifies the assumption(H1). By Lemma 1, the assumption(H2)
is equivalent to the assumption that the linearization pair of the system(6) is detectable, which is quite standard in
nonlinear observer design. In fact, detectability is a necessarycondition for the existence of local exponential observers
(see [7,14–17]).

Like in the full order observer case for local exponential observers presented in [15], we may considerthe following
generalization of the Luenberger observer:

żu = G(zu, y) � F2(y, zu)+ L[correction term]
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whereL is the observer gain matrix and the correction term= y − xm = 0. (Note thatxm is the measured state.)
Thus, as in the reduced order observer design for linear systems [18], we can construct a suitable correction term
using the derivative ofy, and the state equation for the derivative ofxm. If the measurementy is subject tonoise, then
the derivative operation amplifies the noise, and so this approach may not look very effective. However, in the actual
implementation of the reducedorder nonlinear estimator, we can avoid the appearance ofẏ in its equation through a
suitable change of coordinates as in [18].

Note that

ẏ = ẋm = F1(xm, xu) = A11xm + A12xu + φ(xm, xu).

Hence, it follows that

ẏ − A11y = A12xu + φ(xm, xu). (7)

Note that in Eq.(7), the L.H.S. consists of terms that are available for measurement. Hence, we may view(7) as
the new output equation, andaccordingly, a correction term can be constructed.

Hence, we consider the following candidate observer:

żu = F2(y, zu)+ L[ẏ − F1(y, zu)] (8)

or equivalently,

żu = A21y + A22zu + ψ(y, zu)+ L[ẏ − A11y − A12zu − φ(y, zu)] (9)

wherezu ∈ R
n−p and the observer gain matrixL is chosen such thatA22 − L A12 is Hurwitz. (Such a matrixL is

guaranteed to exist in view of assumption(H2).)
Sincey = xm, from the plant dynamics in(6), it follows that

ẋu = A21y + A22xu + ψ(y, xu). (10)

The estimation errore is defined by

e � zu − xu.

From(9), (10)and(7), it follows that

ė = (A22 − L A12)e+ ψ(y,e+ xu)− ψ(y, xu)− L[φ(y, xu + e)− φ(y, xu)]. (11)

Note that by construction, the linearization matrixA22 − L A12 in the error dynamics(11) is Hurwitz, and also
that e = 0 is an invariant manifold for the composite system consisting of the plant dynamics(6) and(11). Note
also that by assumption(H1), x = 0 is aLyapunov stable equilibrium of the plant dynamics in(6). Hence, by an
argument using center manifold theory for flows [19] similar to theproof of Theorem 3 in [17], it can be established
that the candidateobserver defined by(8) is an exponential observer that estimates the unmeasured statexu of the
plant dynamics in(4).

Next, wenote that the implementation of the reduced order estimator given in the formula(8) may pose a problem
as it involves the derivative of the measurement vectory. It is known that differentiation amplifies noise, so ify is
noisy, the use oḟy is unacceptable. To get around this difficulty, we define the new estimator state to be

ζu = zu − Ly.

Then it can be easily shown that

ζ̇u = F2(y, Ly + ζu)− L F1(y, Ly + ζu).

We may summarize the above results in the following main theorem.

Theorem 1. Consider the plant(4) that satisfies the assumptions(H1) and (H2). Linearizing the plant equations in
(4) at the origin, we obtain the equivalent form for the plant given by(6). Let L beany matrix (observer gain) such
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that A12 − L A22 is Hurwitz. Then a reduced order stateestimator (or observer) for the plant(4) is givenby the
estimator dynamics(8) having the estimator state zu which can be implemented through the following equations:

ζ̇u = F2(y, ζu + Ly)− L F1(y, ζu + Ly)

zu = ζu + Ly.
(12)

If the pair (A12, A22) is observable, then we can construct a reduced order estimator of the form(12)with the steady-
state errordictated by error poles, which are the eigenvalues of the error matrix A22 − L A12, and which can be
arbitrarily placed in the complex plane (subject to conjugate symmetry).�

4. An example

In this section, we illustrate the reduced order exponential observer design for nonlinear systems with a physical
example, namely the nonlinear pendulum without friction.

Consider the nonlinearsystem described by

ẋ1 = x2

ẋ2 = − sin(ω2
0x1)

y = x1

(13)

wherex1 is the measured state, andx2 is the unmeasured state. In other words, we assume that only the angular
velocity of the nonlinear pendulumx1 = θ is available for measurement.

In this example, we will illustrate the procedure outlined inTheorem 1to build an exponential observer that
estimates only the unmeasured statex2 of the nonlinear pendulum.

First, we shall verify that the nonlinear pendulum satisfies the assumptions(H1) and(H2) of Theorem 1. It is easy
to see that the nonlinear pendulum satisfies the assumption(H1) as the equilibrium state(x1, x2) = (0,0) is clearly
Lyapunov stable, as we know that the nonlinear pendulum without friction will undergo oscillations. In fact, this can
also be seen by considering the total energy function

V(x1, x2) = 1

ω2
0

[1 − cos(ω2
0x1)] + 1

2
x2

2

and noting thatV̇ ≡ 0 along the trajectories of the pendulum dynamics.
Linearizing the pendulum equations given in(13)at x = 0, we obtain

C = [
1 0

]
and A =

[
A11 A12
A21 A22

]
=

[
0 1
ω2

0 0

]
.

It is trivial to see that the pair(C, A) is observable. ByLemma 1, it is equivalent to say that the pair(A12, A22) is
observable. In fact, note that the pair

A12 = 1 and A22 = 0

is trivially observable. Thus, the assumption(H2) is also satisfied.
Hence, byTheorem 1, we can build a reduced order exponential state estimator of the form(12) for the given

pendulum with steady-state error dictated by any pre-assigned error pole, say,λ = −5ω0.
Note that the system matrix governing the error dynamics is given by

A22 − L A12 = 0 − L = −L

which has the characteristic equations + L = 0.
Hence, it is obvious that we should take the observer gain asL = 5ω0 to meet the design specification.
By Theorem 1, the reduced order estimator equation is given by

ζ̇2 = − sin(ω2
0y)− 5ω0(ζ2 + 5ω0y)
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and the state estimate is given by

z2 = ζ2 + 5ω0y. �
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