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Abstract
Cardiovascular disease is prevalent in patients with chronic 
kidney disease (CKD) and responsible for approximately half 
of all CKD-related deaths. Unfortunately, the presence of 
CKD can lead to a challenging interpretation of cardiac bio-
markers essential in accurate diagnosis and prompt man-
agement of heart failure and acute coronary syndrome. 
There is growing interest in novel cardiac biomarkers that 
may improve diagnostic accuracy reflecting myocardial in-
jury, inflammation, and remodeling. Interpretation of these 
biomarkers in CKD can be complicated, since elevated levels 
may not reflect myocardial injury or wall tension but rather 
decreased urinary clearance with retention of solutes and/or 
overall CKD-associated chronic inflammation. In this review, 
we discuss the latest data on major and emerging cardiac 
biomarkers including B-type natriuretic peptide, troponin, 

suppression of tumorigenicity 2, growth and differentiation 
factor-15, galectin-3, and matrix gla protein, and their diag-
nostic and prognostic utility in the CKD population.

© 2019 S. Karger AG, Basel

Introduction

The prevalence of cardiovascular disease in patients 
with chronic kidney disease (CKD) is as high as 73% and 
is responsible for approximately half of all CKD-related 
mortalities [1]. Atypical presentations of acute coronary 
syndrome (ACS) such as silent myocardial infarction 
(MI), nonspecific electrocardiogram changes due to co-
morbidities such as left ventricular hypertrophy or elec-
trolyte abnormalities, and absence of accurate cardiac 
biomarkers not affected by kidney function have made 
ACS diagnosis in this patient population quite challeng-
ing [1]. A prospective study of emergency department 
(ED) visits found that CKD patients who presented with 
acute chest pain had non-ST elevation MI (NSTEMI) 
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more than twice as often as patients with normal kidney 
function [2].

Heart failure is another challenging entity as it stems 
from a wide range of disorders and its severity and prog-
nosis can be difficult to determine. Some of the symptoms 
such as dyspnea, orthopnea, and paroxysmal nocturnal 
dyspnea are due to congestion, while other symptoms 
such as weakness and exercise intolerance are due to de-
creased cardiac output. Fatigue due to uremia in CKD can 
confound heart failure symptomology and further delay 
definitive diagnosis and treatment. 

Troponin has long been the gold standard for detect-
ing myocardial ischemia in ACS, while B-type natriuretic 
peptide (BNP) and N-terminal proBNP (NT-proBNP) 
are established biomarkers in heart failure management. 
There is now growing interest in novel biomarkers that 
reflect myocardial injury, inflammation, and remodeling, 
which may improve diagnostic accuracy or predict clini-
cal outcomes. Interpretation of biomarkers in CKD can 
be complicated, since elevated levels may not reflect myo-
cardial injury but instead may be due to decreased urinary 
clearance and/or be a reflection of CKD-associated 
chronic inflammation. In this review, we discuss the di-
agnostic and/or prognostic utility of cardiac biomarkers 
including BNP, troponin, suppression of tumorigenicity 
2 (ST2), growth and differentiation factor-15 (GDF-15), 
galectin-3, and matrix gla protein (MGP) in the CKD 
population (Table 1).

Cardiac Troponin

Diagnostic Utility of Troponin
Cardiac troponin T (cTnT) and I (cTnI) are sensitive 

markers of cardiac injury, particularly when used within 
the diagnostic cutoff of 99th percentile of healthy controls 
[3]. Interpretation of CTns in CKD patients remains con-
troversial. Although the underlying cause of elevated cTn 
in non-ACS CKD patients is not well understood, it has 
been argued that reduced urinary clearance is unlikely to 
be the primary mechanism [4]. Rather, cTn reflects the 
evidence of ongoing myocyte damage [1], clinically silent 
“micro-MI” [5], or left ventricular hypertrophy [6]. Stud-
ies from rats with or without clamped kidney vessels 
showed that at high levels of cTnT similar to those ob-
served after a large MI extrarenal clearance dominates, 
whereby there was no difference in cTnT clearance in rats 
with intact kidney function [7]. However, kidney clear-
ance does play a role in the setting of stable low cTnT lev-
els. Fridén et al. [7] examined 3 heart failure patients un-

dergoing renal vein catheterization and determined the 
extraction index of cTnT to be 8–19%.

An observational cohort study showed similar preva-
lence of increased cTnI and cTnT concentrations (33 and 
43% respectively) in non-dialysis CKD patients [8]. Ad-
vantageous Predictors of ACS Evaluation was a prospec-
tive multicenter ED study in Europe that assessed the di-
agnostic performance of using highly sensitive (hs)-cTnT 
and hs-cTnI at zero and 1 h after presentation to the ED 
[2]. These markers were sensitive in ruling out NSTEMI 
in CKD patients with estimated glomerular filtration rate 
(eGFR) < 60 mL/min/1.73 m2, but the specificity to rule-in 
disease was lower than in patients with normal kidney 
function (88.7 vs. 96.5% for hs-cTnT, 84.4 vs. 91.7% for 
hs-cTnI). The investigators tested slightly higher concen-
trations as the cutoff, but this yielded little improvement 
at the cost of decreased sensitivity in higher risk CKD pa-
tients. They concluded that the higher prevalence of 
NSTEMI in the CKD population drives a higher positive 
predictive value and the same hc-cTn cutoff should be 
used until better diagnostic tools become available [2].

Gunsolus et al. [9] found similar results in a US study of 
1555 adults presenting to the ED with ACS symptoms. Im-
paired kidney function did not significantly affect sensitiv-
ity or negative predictive value of hs-cTnI. Specificity de-
creased with lower eGFR stages, from 93–95% in persons 
with normal kidney function (eGFR ≥90 mL/min/1.73 m2) 
to 57–61% in eGFR < 30 mL/min/1.73 m2) to 40–41% in 
end-stage kidney disease (ESKD) patients on dialysis [9].

Evaluation via temporal cTN trends is recommended 
to guide accurate diagnosis of ACS. The National Acad-
emy of Clinical Biochemistry practice guidelines recom-
mend a change in troponin level > 20% within 6–9 h (with 
≥1 value exceeding the 99th percentile) as diagnostic for 
acute MI among patients with advanced CKD (eGFR < 15 
mL/min/1.73 m2) [10], but the validity of this approach 
in patients with stage 1–4 CKD is still unclear. In sum-
mary, elevated cTN has diagnostic utility in CKD patients 
but is limited by varying estimates of specificity [11].

Prognostic Utility of Troponin
In the study from Gunsolus et al. [9], there was a sig-

nificant difference in 180-day mortality by hs-cTnI tertile 
(0–2.5 ng/L mortality 1.3%; 2.5–10.6 ng/L mortality 6.0%; 
and > 10.6 ng/L mortality 10.4%). In contrast, Lamb et al. 
[8] reported that cTnT concentration, but not cTnI, was 
independently associated with all-cause death. A multieth-
nic cohort study that followed 3,218 patients for 12.5 years 
reported that hs-cTnT was a valid indicator of all-cause 
death and cardiovascular events in CKD patients [12].
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BNP and NT-proBNP

Diagnostic Utility of BNP
The natriuretic peptides are counter-regulatory hor-

mones involved in volume homeostasis and cardiovas-
cular remodeling. BNP is a 32-amino-acid neurohor-
mone that is released from cardiomyocytes in response 
to ventricular dilatation and pressure overload. BNP is 
derived from an intracellular 108-amino-acid precursor 
that is cleaved predominately into 2 fragments, yielding 
a 76-amino-acid N-terminal fragment (NT-proBNP) 
and BNP [13]. Stimulation of the natriuretic peptide re-
ceptor by BNP triggers natriuresis, diuresis, vasodila-
tion, renin and aldosterone inhibition, and inhibition of 
fibrosis. The biological half-life of BNP ranges from 13 
to 20 min and that of NT-proBNP from 25 to 70 min. 
BNP is cleared via clearance receptors (NP receptor-C) 
and to a lesser extent by degradation by neutral endopep-
tidase (EC 3.4.24.11). NT-proBNP is cleared passively by 
organs with high blood flow (e.g., kidneys, liver and mus-
cle). BNP and NT-proBNP are extracted renally by 15–
20% in healthy individuals and this renal clearance is 
maintained in the presence of moderate kidney dysfunc-
tion. However, for reasons that are unclear when eGFR 
falls below 30 mL/min/1.73 m2, NT-proBNP/BNP ratios 
increase [14].

Circulating BNP and NT-proBNP levels rise dramati-
cally in the setting of heart failure. The Breathing Not 
Properly Multinational Study demonstrated that BNP 
values > 100 pg/mL diagnosed acute heart failure with 
high accuracy at 85% [15]. Subsequent studies suggested 
rule-out and rule-in diagnostic thresholds for acute heart 
failure in the setting of normal kidney function (BNP of 
< 100 and > 500 ng/L respectively); when there is kidney 
dysfunction with eGFR < 60 mL/min/1.73 m2, a higher 
rule-out cutoff of < 200–225 ng/L is suggested [16]. Sim-
ilar findings were seen for NT-proBNP in the ProBNP 
Investigation of Dyspnea in the Emergency Department 
(PRIDE) Study in which elevated NT-proBNP concen-
trations were stronger predictors of heart failure than 
clinical judgment [17]. A single NT-proBNP cutoff of 
900 pg/mL provided similar diagnostic performance as 
BNP of 100 pg/mL, but age-stratified cutoff points for 
NT-proBNP (≥450 for ages < 50 years, ≥900 for 50–75 
years and ≥1,800 pg/mL for > 75 years) performed the 
best [18]. If eGFR is < 60 mL/min/1.73 m2, a NT-proBNP 
value > 1,200 ng/L is best for exclusion of heart failure. 
However, exclusion of heart failure by NT-proBNP is 
less accurate in patients with eGFR < 30 mL/min/1.73 m2 
[19]. Of note, consensus on diagnostic thresholds for 

BNP and NT-proBNP remains uncertain due to lack of 
standardization between the several commercially avail-
able assays [14]. 

Non-cardiac conditions including CKD, advanced 
age, stroke, and critical illness can lead to BNP elevation 
independent of heart failure. While elevated BNP in CKD 
patients is partly due to reduced clearance, the prevailing 
evidence suggests that these levels are largely a true-pos-
itive finding and reflect underlying heart disease such as 
left ventricular hypertrophy or coronary atherosclerosis 
[20, 21]. 

Prognostic Utility of BNP
BNP and NT-proBNP are strong predictors of mortal-

ity. In the Acute Decompensated Heart Failure National 
Registry, the highest quartile admission BNP ≥1,730 pg/
mL was associated with 2.23-fold increase in in-hospital 
mortality compared with BNP in the lowest quartile (< 

430 pg/mL) [22]. Similarly, admission NT-proBNP > 986 
pg/mL has been associated with an almost threefold in-
crease in 1-year mortality (adjusted hazard ratio 2.88) 
[23]. As with cTn, serial BNP measurements are useful to 
assess prognosis. In the Valsartan Heart Failure Trial 
(Val-HeFT), a 4-month log-transformed continuous NT-
proBNP value added incremental prognostic value to a 
baseline measurement in a multivariable model for mor-
tality prediction (hazard ratio 1.99) [24].

There is a strong relationship between elevated BNP/
NT-proBNP and cardiovascular mortality/events in 
ESKD [25]. In a multiethnic cohort study that followed 
3,218 patients for 12.5 years, Gregg et al. [12] reported 
that BNP, NT-proBNP, and hs-cTnT were valid indica-
tors of all-cause death and cardiovascular events in 
CKD patients, and associations were equivalent if not 
stronger as compared to non-CKD individuals. The 
prognostic value persisted even after the adjustment for 
eGFR and traditional cardiovascular risk factors [12]. 
However, studies have failed to identify consistent 
thresholds for BNP and NT-proBNP in CKD patients 
with decompensated heart failure that can help clini-
cians differentiate cardiac vs. non-cardiac causes of 
shortness of breath or volume overload. Overall, the op-
timal strategy for biomarker heart failure management 
using BNP/NT-proBNP remains unclear in CKD and 
ESKD patients.

Nesiritide, a recombinant BNP with vasodilatory 
properties, was previously explored as a therapeutic agent 
in heart failure. Nesiritide was approved in 2001 for use 
in acute heart failure patients, but early meta-analyses 
raised concerns about acute kidney injury and worse 
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mortality outcomes. Subsequently, a randomized clinical 
trial of over 7,000 patients published in 2011 found in-
creased rates of hypotension but no effect on mortality, 
rehospitalization, kidney function, or dyspnea [26]; lack 
of clinical benefit led to nesiritide being dropped from 
routine use. 

Suppression of Tumorigenicity 2

Diagnostic Utility of ST2
ST2 is a novel cardiac biomarker that has emerged as 

an excellent prognostic indicator of mortality in ACS 
and heart failure in the general population [27, 28]. The 
ST2 gene encodes 2 isoforms: soluble ST2 (sST2) and 
the membrane bound ST2 receptor (ST2L). These mol-
ecules are part of the interleukin-1 (IL-1) family and 
have important interactions with IL-33 that takes part 
in a complex network of signaling pathways in inflam-
mation and cardiovascular disease. Both sST2 and IL-33 
are upregulated in cardiomyocytes under the biome-
chanical strain [28, 29]. The IL-33 molecule binds to 
ST2L activating mitogen-activated protein kinase-ki-
nases and other intracellular signals, ultimately leading 
to the inhibition of nuclear factor-κB, a master tran-
scription factor regulating inflammation, apoptosis, 
and cell fate. Therefore, the IL-33/ST2L complex 
achieves a cardioprotective effect, attenuating fibrosis 
and apoptosis of cardiomyocytes [30]. The sST2 mole-
cule, on the other hand, antagonizes the actions of the 
IL-33/ST2L interaction by acting as a decoy receptor 
[29], and is thereby proposed to be a negative prognos-
tic indicator of cardiac disease [28]. It is the circulating 
sST2 molecule that is measured as a biomarker of car-
diac disease. Other sources of sST2 during myocardial 
stress include cardiac endothelial cells and fibroblasts, 
and it is unclear how these sites contribute to overall 
sST2 levels in CKD [30].

Increased sST2 levels in CKD patients correlate in-
versely with eGFR and creatinine clearance [28, 31]. It 
remains unclear whether elevated sST2 is a consequence 
of reduced urinary clearance or whether kidney injury 
itself triggers upregulation of sST2 expression. However, 
a recent study showed that sST2, unlike BNP, was not af-
fected by the degree of kidney insufficiency in non-dialy-
sis CKD patients with acute heart failure [32]. In a non-
CKD cohort of 346 patients with acute heart failure, there 
was a significant positive correlation between ST2 and 
BNP [28]. Diagnostic cutoffs for ST2 have not yet been 
defined.

Prognostic Utility of ST2
The data overall suggest an independent and incre-

mental prognostic value of sST2 as a biomarker in the 
CKD population. In a non-CKD cohort of 346 patients 
with acute heart failure BNP did not predict mortality in 
the presence of a low ST2 level, suggesting that sST2 has 
superior biomarker specificity [28]. In a cohort of 883 
participants with mean eGFRe of 49 ± 19 mL/min/1.73 
m2, higher levels of sST2, GDF-15 and galectin-3 each 
were associated with greater mortality risk [33]. In pa-
tients hospitalized for heart failure, 2 separate studies 
showed that sST2 was associated with mortality inde-
pendent of kidney function [34, 35]. In a population of 
423 hemodialysis patients, sST2 was found to have inde-
pendent prognostic value over NT-proBNP in predict-
ing all-cause death and cardiovascular events [36]. The 
molecular mechanisms behind sST2 as a cardiac bio-
marker in the context of acute or CKD needs further 
investigation.

Growth and Differentiation Factor 15

Prognostic Utility of GDF-15
GDF-15 is a novel biomarker with unclear diagnostic 

thresholds but has potential utility in prognosticating 
cardiac disease. Part of the transforming growth factor-β 
superfamily protein, GDF-15 has been studied compara-
tively less than ST2. GDF-15 is not constitutively ex-
pressed in adult cardiac tissue but is upregulated when 
cardiomyocytes are under stress such as ischemic injury 
[37]. This enhanced GDF-15 production has been pro-
posed to be a cellular defense program, as GDF-15 sup-
presses apoptosis and myocyte hypertrophy, the latter via 
activation of SMAD proteins [37, 38]. Transgenic mice 
with cardiac-specific overexpression of GDF-15 were re-
sistant to development of left ventricular hypertrophy 
under pressure-overload, and intravenous delivery of 
GDF-15 attenuated ventricular dilation and heart failure 
[38]. 

In patients with heart failure, circulating levels of 
GDF-15 are associated with mortality risk independently 
of established clinical and biochemical risk markers, in-
cluding troponin T or BNP [39, 40]. However, CKD and 
acute kidney injury are also independently associated 
with elevated levels of GDF-15 [39, 40]. In experimental 
animal models, GDF-15 levels are elevated when kidney 
injury is induced [41]. Precise mechanisms have not been 
elucidated, and it is unclear if upregulation of GDF-15 is 
induced by kidney injury, a decreased urinary clearance 
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of GDF-15, or a combination of both, in humans. Never-
theless, GDF-15 was shown to be an independent marker 
of all-cause mortality in a population of patients with 
ESKD undergoing dialysis from the United States and 
Sweden, suggesting that GDF-15 may provide added 
prognostic value, regardless of the established kidney dis-
ease [42]. Further studies are needed to fully understand 
the pathophysiology behind GDF-15 upregulation under 
cardiac stress and how it relates to the prognostic power 
of GDF-15 and specificity as a biomarker in kidney dis-
ease. 

Galectin-3

Diagnostic Utility of Galectin-3
Galectin-3 is a soluble β-galactoside-binding lectin ex-

pressed in macrophages, neutrophils, endothelial cells 
and epithelial cells. It is involved in myofibroblast prolif-
eration, fibrogenesis, tissue repair, and myocardial re-
modeling [43]. Galectin-3 is also associated with kidney 
fibrosis and increased risk of incident CKD [44, 45] 
though our group did not find it to be a consistent bio-
marker for kidney fibrosis in the 5/6 nephrectomy rat 
model [46]. Current guidelines support the use of galec-
tin-3 for additional risk stratification for myocardial in-
jury (Level IA recommendation) and cardiac fibrosis 
(Level IIB recommendation) in heart failure patients [47]. 
However, as discussed in the next paragraph, galectin-3 
is elevated in the setting of advanced CKD and is not a 
useful diagnostic biomarker of cardiac injury in this set-
ting.

Interestingly, urinary clearance of galectin-3 is im-
paired in heart failure patients who have normal kidney 
function. In a study comparing healthy subjects with 
heart failure patients who had normal kidney function, 
urinary galectin-3 was similar in the 2 groups (35.1 vs. 
28.1 ng/mL, p = 0.830; corresponded to galectin-3 frac-
tional excretion of 2.4 vs. 3%) despite elevated plasma 
galectin-3 in heart failure patients (16.6 vs. 9.7 ng/mL, 
p < 0.001) [48]. Galectin-3 levels are significantly ele-
vated in anuric hemodialysis patients without heart fail-
ure (median level 70.6 ng/mL) [48]. In a small cohort 
study, Gopal et al. [49] reported that eGFR but not 
heart failure was a major determinant of galectin-3 lev-
els. Similarly, in a cohort of ambulatory patients with 
heart failure in Spain, galectin-3 levels were significant-
ly and inversely related to eGFR, independent of heart 
failure or left ventricular ejection fraction [50]. Median 
galectin-3 level significantly increased from 12.3 to 24.5 

ng/mL comparing patients with eGFR ≥60 versus 
patients with eGFR < 30 mL/min/1.73 m2 (p < 0.001) 
[50]. 

Prognostic Utility of Galectin-3
In a cohort of ambulatory patients with heart failure in 

Spain, galectin-3 was not significantly associated with 
mortality after adjustment for eGFR [50]. In contrast, 
other studies have noted a significant association between 
elevated galectin-3 and adverse cardiovascular outcomes 
in CKD patients. The Ludwigshafen Risk and Cardiovas-
cular Health (LURIC) and 4D studies analyzed > 3,500 
German patients and reported that galectin-3 concentra-
tions were significantly associated with mortality in pa-
tients with eGFR < 60 mL/min/1.73 m2 after multivariate 
adjustment [51]. In a Japanese cohort of 423 chronic he-
modialysis patients, galectin-3 had independent and in-
cremental prognostic value over NT-proBNP for assess-
ing risk of all-cause death and cardiovascular events dur-
ing a mean follow-up period of 2.1 ± 0.4 years [36]. 
Median galectin-3 levels were 11.2 ng/mL, lower than the 
levels reported in other dialysis cohorts mentioned above. 
Patients in the highest tertile (≥15.2 ng/mL) had a seven-
fold increased risk of death or major cardiovascular 
events compared to patients in the lowest tertile (< 8.1 ng/
mL) [36]. Finally, Tuegel and colleagues recently reported 
observational findings from 883 participants in 2 longi-
tudinal pre-dialysis CKD cohorts: the Seattle Kidney 
Study and C-PROBE (Clinical Phenotyping and Resource 
Biobank Study). Mean eGFR was 49 ± 19 mL/min/1.73 
m2 [33]. On multivariate adjustment, higher quartiles of 
serum galectin-3 were associated with increased mortal-
ity risk. However, there was no association with heart fail-
ure, acute MI, or stroke [33]. 

Overall, the wide tissue distribution of galectin-3 ex-
pression and decreased renal clearance leading to system-
ic accumulation complicates the utility of galectin-3 as a 
cardiac biomarker in CKD patients. However, galectin-3 
may offer an incremental prognostic value for mortality 
as a biomarker in the dialysis population; this requires 
further study.

Matrix Gla Protein

Diagnostic utility of MGP
MGP is a 14 kDa vitamin K-dependent protein that is 

secreted mainly by vascular smooth muscle cells in the 
arterial medial layer and is a powerful inhibitor of vascu-
lar calcification [52]. MGP contains 5 gamma-carboxy-
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glutamic acid (Gla) residues, formed by post-translation-
al modification of glutamic acid by gamma-glutamyl car-
boxylase, which requires active vitamin K (hydroquinone) 
as a coenzyme. There are 3 main vitamin K forms or vi-
tamers: vitamin K1 or phylloquinone, vitamin K2 or 
menaquinones, and vitamin K3 or menadione, a synthet-
ic molecule. These vitamers have different sources: vita-
min K1 is found mostly in green leafy vegetables, while 
vitamin K2 can be found in fermented foods (e.g., Japa-
nese natto) and are produced by intestinal bacterial flora. 
Vitamin K2 is the vitamer that is active in extra-hepatic 
tissues such as bone and arteries, regulating the formation 
of osteocalcin and MGP. MGP is a biomarker of cardio-
vascular health that correlates with the extent of cardio-
vascular calcification and with elevated risk of future car-
diovascular morbidity and mortality [53]. 

MGP inhibits vascular calcification via 2 major mecha-
nisms: direct inhibition of calcium crystal formation (it 
has a high affinity for calcium and hydroxyapatite) and 
indirect inhibition of osteoblastic phenotype change of 
vascular smooth muscle cells through the interaction with 
bone morphogenetic protein 2 [53]. There are several dif-
ferent circulating forms of MGP based on the level of car-
boxylation [53] (Table 1). Functionally active MGP is 
gamma-carboxylated and serine phosphorylated. Phos-
phorylation permits the cellular release of MGP, while 
carboxylation facilitates the binding of calcium ions. 

Data on renal clearance of MGP are scarce. Decreased 
urinary clearance of MGP has been noted in CKD as well 
as in elderly non-CKD patients with other comorbidities 
[54]. In a cohort of patients with stable cardiovascular 
disease, both lower creatinine-eGFR and higher cystatin 
C were associated with lower undercarboxylated MGP 
(ucMGP) levels, even after adjustment for age, sex, race, 
body mass index, blood pressure, smoking, hypertension, 
diabetes, serum albumin, calcium, phosphorus, and fe-
tuin-A levels [55]. However, a more stringent assessment 
of MGP clearance by Rennenberg et al. [56] found no re-
lationship to kidney function. This study measured MGP 
levels in renal arterial and renal venous blood in humans 
with moderate to severe hypertension undergoing renal 
angiography. Patients had a wide eGFR range of 26–154 
mL/min/1.73 m2, and calculated average renal fractional 
extraction of MGP was 12.8%. This was not significantly 
related to the kidney function.

Vitamin K deficiency in CKD patients is common and 
this contributes to deficient levels of functional MGP 
[53]. ucMGP and dephosphorylated ucMGP (dp-uc-
MGP) have been proposed as biomarkers of vascular cal-
cification and other cardiovascular diseases such as coro-

nary artery disease and aortic stenosis [57]. In ESKD pa-
tients, ucMGP levels are lower, while dp-ucMGP levels 
are higher than levels in the general population [57]. 

Another group of patients where ucMPG levels are re-
duced are those affected by calciphylaxis or calcific ure-
mic arteriolopathy [57, 58], which is characterized by the 
calcification of cutaneous arterioles leading to skin le-
sions (e.g., livedo reticularis, skin ulceration and tissue 
necrosis) associated with severe pain. Calcific uremic ar-
teriolopathy has been mainly described in ESKD patients 
but also occurs in non-CKD obese patients and in pa-
tients treated with corticosteroids or anticoagulant vita-
min K antagonists. Long-term warfarin use is associated 
with reduced MGP activity and higher levels of cardiovas-
cular calcification [58]. 

Prognostic Utility of MGP
Dp-ucMGP has been associated with increased mor-

tality in ESKD patients and in patients with chronic stable 
ischemic vascular disease [57]. Observational studies 
have noted an association between warfarin therapy 
(which is associated with reduced MGP activity as noted 
above) with increased risk of MI and mortality [58, 59]. 
Of note, MGP may have a role as a therapeutic biomarker; 
Vitamin K2 treatment is being explored as a means to re-
store functional MGP levels and thus prevent cardiovas-
cular damage [60].

Summary

There are robust data attesting to the diagnostic and 
prognostic value of troponins T and I in ACS and of na-
triuretic peptides in heart failure. Available data suggest 
that the prognostic power of these biomarkers holds true 
for CKD patients with heart disease, especially if levels are 
trended over time. Data on emerging biomarkers such as 
sST2, GDF-15, galectin-3 and MGP are limited. Each is 
distinct in its pathophysiological profile, with sST2 and 
galectin-3 being markers of myocardial fibrosis, GDF-15 
representing an anti-apoptotic defense response, and 
MGP correlating with extent of vascular calcification. 
Studies to date have failed to identify diagnostic thresh-
olds to improve the specificity of these cardiac biomark-
ers in the high-risk CKD population. There is conflicting 
evidence in regards to prognostic value of these biomark-
ers for cardiovascular mortality risk in CKD and their 
utility in guiding medical care. Overall, sST2 holds the 
most promise as a novel biomarker that offers incremen-
tal prognostic value when used with BNP to estimate 
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mortality risk. More extensive pre-clinical and large-scale 
clinical investigations are needed to clarify the role of car-
diac biomarkers including troponin, BNP, sST2, GDF-15, 
galectin-3, and MGP in the management of CKD patients 
with cardiovascular disease.
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