
The VLDB Journal
https://doi.org/10.1007/s00778-021-00704-2

REGULAR PAPER

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

Renzo Arturo Alva Principe1 · Andrea Maurino1 ·Matteo Palmonari1 ·Michele Ciavotta1 · Blerina Spahiu1

Received: 21 February 2021 / Revised: 15 July 2021 / Accepted: 7 September 2021
© The Author(s) 2021

Abstract
Processing large-scale and highly interconnected Knowledge Graphs (KG) is becoming crucial for many applications such
as recommender systems, question answering, etc. Profiling approaches have been proposed to summarize large KGs with
the aim to produce concise and meaningful representation so that they can be easily managed. However, constructing profiles
and calculating several statistics such as cardinality descriptors or inferences are resource expensive. In this paper, we present
ABSTAT-HD, a highly distributed profiling tool that supports users in profiling and understanding big and complex knowledge
graphs. We demonstrate the impact of the new architecture of ABSTAT-HD by presenting a set of experiments that show its
scalability with respect to three dimensions of the data to be processed: size, complexity and workload. The experimentation
shows that our profiling framework provides informative and concise profiles, and can process and manage very large KGs.

Keywords Knowledge graph · Data management · Data quality · Data profiling · Distributed processing engine

1 Introduction

Knowledge Graphs (KGs) are used to represent relation-
ships between different entities such as people (e.g., Tom
Hanks), places (e.g., Rome), events (Pitchfork Festival), and
so on [24]. They organize knowledge in graph structures
where the meaning of the data is encoded alongside the
data in the graph. RDF is a data model for representing
KGs that come with an ecosystem of languages and pro-
tocols to foster interoperable data management. In RDF,
graph nodes represent entities, identified by URIs, or liter-
als (e.g., strings, numbers, etc.); edges represent relations
between entities or between entities and literals, which are
identified by RDF properties. Entities and literals are associ-
ated with types (classes, e.g., dbo:City or datatypes, e.g.,

B Blerina Spahiu
blerina.spahiu@unimib.it

Renzo Arturo Alva Principe
renzo.alvaprincipe@unimib.it

Andrea Maurino
andrea.maurino@unimib.it

Matteo Palmonari
matteo.palmnonari@unimib.it

Michele Ciavotta
michele.ciavotta@unimib.it

1 Department of Informatics, Systems and Communication,
University of Milano-Bicocca, Viale Sarca, 336, Milan, Italy

xmls:integer). The sets of possible types and properties
are organized into ontologies, which specify the meaning
of the used types and properties through logical axioms.
Intuitively, ontologies provide the schema of the KG, but,
remarkably, data and schema are loosely coupled in KGs,
with potential mismatches and diverging evolution along
time. In addition, KGs are often very large and evolve along
time. The classical example of this evolution is the Linked
Data Cloud12 which has evolved with roughly 1255 datasets
as of February 2021.

KGs support several data-intensive tasks related to data
management, information integration, natural language pro-
cessing, and inference in research and industry [31]. Eventu-
ally, they feed, often in combination with machine learning
methods, an increasing number of downstream applications
such as recommender systems [21] and question answering
interfaces [12]. Existing edges can also be used to train soft
inference models, e.g., based on knowledge graph embed-
dings, so as to predict missing or probable arcs based on
latent features. These models have been used for biomedical
applications [29,30], e.g., to predict drug–target interactions.
For downstream applications, and, especially, for applica-
tions that combine KGs andmachine learning, it is important
to support domain experts with a clear picture of the content,
structure and quality of the input KG. Low-quality or mis-

1 https://www.w3.org/RDF/
2 https://lod-cloud.net/

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00704-2&domain=pdf
http://orcid.org/0000-0002-6958-8215
https://www.w3.org/RDF/
https://lod-cloud.net/

R. A. Alva Principe et al.

interpreted input data may lead to unreliable output models,
as expressed by the well-known colloquial motto “garbage
in–garbage out.”

ABSTAT3 is a data profiling approach [46] and tool [35]
introduced to let users explore the content and structure of
large KGs and also inspect potential quality issues. ABSTAT
takes an RDF dataset, and (optionally) an ontology (used in
the dataset) as input, and computes a semantic profile. The
semantic profile consists of a summary, which provides an
abstract, but complete description of the dataset content, and
some statistics.

The informativeunits ofABSTAT’s summaries areAbstract
Knowledge Patterns (AKPs), named simply patterns in the
following, which have the form (subjectType, pred,
objectType).
Patterns represent the occurrence of triples < sub,

pred, obj> in the data, such that subjectType is the
most specific type of the subject and objectType is the
most specific type of the object [46].

For example, the pattern (dbo:SoccerPlayer,
dbo:team, dbo:SoccerClub) represents the occur-
rence of triples that represent entities of type
dbo:SoccerPlayer linked with entities of type
dbo:SoccerClub through the property dbo:team. The
types dbo:SoccerPlayer and dbo:SoccerClub are
the most specific types for the respective entities, which may
have also more generic types such as dbo:Athlete or
dbo:Person and dbo:SportsClub or
dbo:Organisation.

The most specific type is computed with the help of the
ontology. Such a choice allows ABSTAT to have a compact
but complete summary, by excluding several more generic
redundant patterns using the ontology.

ABSTATprofiles can be explored by users through its web
interface or bymachines usingAPIs. Rich profiles as the ones
computed inABSTATsupport automatic feature selection for
semantic recommender systems [15,36], vocabulary sugges-
tions for data annotation, as in [40], and help in the detection
of quality problems [45,46].

When processing large KGs, as it is often the case for
downstream machine learning tasks, it is critical to reduce
the latency between processing the graph and the availability
of the results. Such latency is often a result of platform start-
up costs (e.g., MapReduce [34]) or the complexity of graph
processing algorithms.

Sometimes the time needed to compute the results may
reach several hours or even days, up to the eventual failure of
the computation. From a recent survey on the challenges of
large graph processing [39], scalability is the most pressing
challenge faced by all participants, who reported problems
in processing very large graphs efficiently. The reported lim-

3 http://abstat.disco.unimib.it/

itations include inefficiencies in loading, updating, and per-
forming computations on large graphs. Processing real-world
graphs often surpasses the capability of single computers.

A solution to these challenges is switching to the dis-
tributed computing paradigm and deploying large graph
processing algorithms on a collection of computing nodes,
whose configuration can fit storage and computing resources
according to the end users’ requirements. However, it has
been reported that many algorithms at the core of the existing
techniques are not ready to be implemented on top of today’s
graph processing infrastructures, which rely on horizon-
tal scalability [37], with many algorithms being inherently
sequential and difficult to parallelize.

Several approaches have been proposed to adapt models
and frameworks for graph processing to the distributed com-
puting paradigm [2,32,33,50].

In the domain of KG management and profiling, Sansa
is the most notable example of a natively distributed solu-
tion. It provides a unified framework for several downstream
tasks such as link prediction, knowledge base completion,
querying, reasoning and, also, profiling [25]. Similarly to
ABSTAT, it has a modular architecture and provides to the
end user 32 RDF statistics (such as the number of triples,
RDF terms, properties per entity, and usage of vocabularies
across datasets), and apply quality assessment in a distributed
manner. However, Sansa profiling is not based on a summa-
rization model; ABSTAT profiling digs deeper into semantic
features of the KG and makes use of ontologies associated
with the data.

Among the several statistics calculated by ABSTAT, one
of the most unique and hardest to compute are cardinal-
ity descriptors. Cardinality descriptors provide information
about the relationships between subjects and objects of the
triples at the pattern level,which reveal valuable information
about the data. For example, cardinality statistics for the pat-
tern (dbo:Company, dbo:keyPerson, owl:Thing)

inDBpedia 2015-10 reveal that 5263 different entities of type
dbo:company are connected with a unique entity of type
owl:Thing through the property dbo:keyPerson [45].

We could identify that such entity is dbr:Chief
_executive_officer which in DBpedia does not have
a type, thus defying purely syntactic vocabulary-based statis-
tics. This generic entity is used as placeholder for 5263
companies with unspecified CEO, including dbr:Kodak,
dbr:Telefónica, dbr:Allianz, and many others.
In semantic-aware ABSTAT profiles, such an entity is asso-
ciated with the default upper type owl:Thing and featured
as outlier in the cardinality estimated for the pattern, leading
to spotting the anomaly.Whatwould have happened ifwehad
trained a link predictor using these triples as positive sam-
ples? For large KGs, cardinality descriptors, which have also
been proved useful in recommender systems [15,36], could

123

http://abstat.disco.unimib.it/

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

be computed only with extremely large execution times or
could not be computed at all.

In this paper, we present ABSTAT-HD, that is,HighlyDis-
tributed ABSTAT. The framework supports the distributed
computation of ontology-based summaries and profiles of
very large KGs, thus overcoming scalability problems of
our previous solution. To the best of our knowledge, this is
the first KG profiling approach that supports summarization
on a distributed computing infrastructure. The framework
supports full ABSTAT profiles that include novel features
such as cardinality descriptors, which were used in previous
work [15] but never properly defined within our model. In
addition, the framework supports property-based minimal-
ization, pattern inference, and instance count statistics, new
features that complete the strategy adopted in ABSTAT to
remove redundant patterns and better count the data repre-
sented by the patterns. In conclusion, we can summarize the
main contributions of this paper with respect to the previous
work as follows:

– A formal and complete definition of the summarization
model which is the backbone of ABSTAT tool.

– A new algorithm based on the relational model for cal-
culating the summary model.

– ABSTAT-HD, a highly distributed and scalable tool for
processing and producing profiles for very large RDF
graphs.

– Aset of experiments that show the scalability ofABSTAT-
HD with respect to the previous version of ABSTAT.

– A report about quality issues found in the very large
Microsoft Academic Knowledge Graph, to provide more
qualitative insights into the informativeness of our pro-
files.

This paper is organized as follows: Sect. 2 formally intro-
duces theABSTATsummarizationmodel,while in Sect. 3we
present the process of profile construction and in Sect. 4 the
architecture of ABSTAT-HD. A large set of experiments over
ABSTAT-HD to evaluate the scalability using existing large
KGs under different controlled hardware configurations are
discussed in Sect. 5. Section 6 discusses the related work of
existing profiling tools for KGs and tools for graph process-
ing while in Sect. 7 we draw conclusions and future work.

2 Profilingmodel

We first introduce some preliminary definitions needed to
explain ABSTAT profiles, then present the summarization
and profiling models used in the paper.

2.1 Preliminaries: datasets, assertions, and
terminologies

ABSTAT is developed to profile RDF data, which natively
represent KGs. In the rest of the paper we define and
use the term “dataset" to be equivalent to “KG." In fact,
our profiling model is formalized to be applicable to
any KG that can be interpreted as a set of triples <

subject, predicate, object >, and where entities (individ-
uals) and literals are associatedwith types.Ontologies,which
formally specify the terminology used to describe the enti-
ties, are leveraged tomake profilesmore compact.Ontologies
for RDF data are usually specified with axioms of the RDFS
and OWL2 languages,4 which are interpreted as Description
Logics (DLs) axioms [47].

We define a dataset (equivalently, a KG) by borrowing the
definition of Knowledge Base in DLs, i.e., as consisting of a
terminology (TBox inDLs—intuitively, the schema) and a set
of assertions about individuals (ABox in DLs— intuitively,
the actual data).

Definition 1 Dataset:A dataset Δ = (T ,A) is a pair, where
T is a set of terminological axioms, and A is a set of asser-
tions.

We define more in detailsA first, being the actual data the
focus of our profiles, and T afterward, which supports the
profiling process. Since DLs are tractable fragments of the
well-known First-Order Logics (FOL), we find more conve-
nient to present our model using a FOL notation for axioms
in A and T .

We use symbols like C , to denote types (unary predicates
in FOL), symbols like P , Q to denote properties (binary pred-
icates in FOL), and symbols a,b to denote named individuals
or literals (constants in FOL).

Assertions in A are of two kinds: typing assertions hav-
ing the form C(a), and relational assertions having the form
P(a, b), where a is a named individual (or, simply, individ-
ual) and b is an individual or a literal. We denote the sets of
typing and relational assertions byAC andAP , respectively.
We consider C(a) ∈ A whenever we find RDF triples of the
form < a,rdf:type,C >, where a and C are URIs, or <

a, P, b∧∧C >, where b is a literal andC its datatype. In addi-
tion, we assign to each untyped individual or literal occurring
in A a default type, that is, respectively, owl:Thing or
rdfs:Literal. A literal occurring in a triple can have
at most one type (because typing is implicitly encoded in
triples like < a, P, b∧∧C >). Conversely, an individual can
have many types. A relational assertion P(a, b) is any triple
< a, P, b > such that P /∈ MP , where MP is a set of predi-
cates that are reserved for modeling purposes. In this set we
include rdf:type and all the predicates used to model the

4 https://www.w3.org/TR/owl2-syntax/

123

https://www.w3.org/TR/owl2-syntax/

R. A. Alva Principe et al.

Fig. 1 A small graph representing a dataset

terminology (e.g., rdfs:subClassOf, rdfs:domain,
any other predicate that is not considered relevant for the
profile).

The terminologyT may contain an arbitrary set of axioms,
but our profiling model uses only axioms specifying that
C is subtype of D (subtype axioms) and P is subproperty
of Q (subproperty axioms), which can be expressed by the
FOL formulas ∀x(C(x) → D(x)) and ∀x, y(P(x, y) →
Q(x, y)), respectively. We apply a completion of T inspired
by OWL2 semantics. We inject the types and properties that
occur in A into T and specify their upper types and proper-
ties: all named classes and datatypes occurring inA are sub-
type, respectively, of owl:Thing and rdfs:Literal;
all the properties that have some object that is an individual
are subproperties of owl:TopObjectProperty and all
the properties that have some object that is a literal are sub-
properties of owl:TopDataProperty. Therefore, if an
ontology is not associated with a dataset to be profiled, we
can still consider default T built from A.

With V T we refer to the terminology-level vocabulary of
a dataset, which consists of a set NC of types (which always
include owl:Thing and rdfs:Literal) and a set NP

of properties (which always include owl:TopObject
Property and owl:TopDataProperty).

2.2 Ontology-based summarization

Abstract Knowledge Patterns (AKPs), equivalently referred
to as patterns in the rest of the paper, represent schema-
level patterns used to model assertions about individuals in a
given domain. In particular, we consider patterns that model
the existence of entities with certain properties and can be
formalized by existentially quantified formulas in FOL.

Definition 2 Patterns: A pattern is a triple (C, P, D), such
that C and D are types and P is a property, which is inter-
preted by the FOL formula ∃x∃y(C(x) ∧ D(y) ∧ P(x, y)).

Intuitively, an existential pattern, states that there are indi-
viduals of type C that are linked to individuals or literals of
a type D by a predicate P .

Our goal is to summarize a dataset, and, more specifically,
the assertions A, by defining a set of patterns that represent
the full content of A in a compact way. Profiles will add
statistics about the assertions represented by each pattern to
the summaries.

Definition 3 Patterns and represented assertions: A pattern
(C, P, D) represents a relational assertion P(a, b) ∈ A iff
there exist a set {C(a), D(b), P(a, b)} ⊆ A.

We denote with ΠA the set of patterns that represent
all the relational assertions in A. To make summaries com-
pact, we observe that many of the patterns that represent a
relational assertion can be inferred from a small subset of
more specific patterns if we consider constraints between
types and properties specified in the terminology T . Con-
sider the example graph depicted in Fig. 1 where typing
assertions and subclass/subproperty constraints are depicted
as arcs between nodes, and upper level types and proper-
ties are omitted (namely, owl:Thing, rdfs:Literal,
owl:TopObjectProperty and owl:TopData
Property). The assertion P(a, b) is represented by many
different patterns, where ∃x∃y(C(x) ∧ F(y) ∧ P(x, y)) and
∀x(C(x) → A(x)) obviously imply ∃x∃y(A(x) ∧ F(y) ∧
P(x, y)), as well as ∃x∃y(A(x) ∧ D(y) ∧ P(x, y)) and so
forth via subtype axioms. Based on this principle, the model
used in basic ABSTAT summaries and presented in previous
work [46] would consider (C, P, F) as the one most specific
representative pattern for P(a, b).

Here we complete the model by solving the unbalanced
treatment of types and properties, where also properties can
have dependencies specified by subproperty axioms. In the
example, the pattern (C, Q, F) is even more specific than
(C, P, F) because ∀x(Q(x, y) → P(x, y)), which also let
us infer P(a, b) from Q(a, b), i.e., P(a, b) is redundant in
the set of assertions based on the terminology. Therefore, we
need to generalize our previous model by defining a subpat-
tern relation over the patterns to represent that in a pair of
patterns one is more specific than the other.

For simplicity, we introduce a terminology graph GT as a
proxy that represents relations among types/properties spec-
ified by axioms in T . By posing | ∼ as a relation between a
terminology and subtype/subproperty relations derived from
it, we define a terminology graph as follows.

Definition 4 TerminologyGraph: A terminology graph is the
disjoint sum [48] of two posets: a type poset (NC ,	GT

) such
that NC is a set of types and for all C, D ∈ NC , C 	GT

D
iff T | ∼ C 	GT

D; a property poset (NP ,	GT
) such that

NP is a set of properties and for all P, Q ∈ NP , P 	GT
Q

iff T | ∼ P 	GT
Q.

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

To specify the relation | ∼we can rely either on explicit or
on inferred axioms in T . We prefer the first strategy because
of practical reasons: some web ontologies may have unin-
tended inferences that can mess up the intended type and
property hierarchies. Similar reasons also suggest us ignoring
equivalence relations between named classes and properties,
which frequently introduce counter-intuitive inferences (e.g.,
node collapse), like further discussed in previous work [46].5

Now we can transfer the order relation 	GT
from the ter-

minology graph to the patterns, by defining a product partial
order (NC × NP × NC ,	GT

) that can be interpreted as a
subpattern relation as defined below.

Definition 5 Subpatterns: A pattern (C, P, D) is a subpat-
tern of a pattern (C ′, Q, D′) wrt. a terminology graph GT ,
denoted by (C, P, D) 	GT

(C ′, Q, D′) iff C ′ 	GT
C ,

D′ 	GT
D and Q 	GT

P .

Observe that this poset has, by definition, two upper level
patterns: (owl:Thing,owl:TopObjectProperty,

owl:Thing) and (owl:Thing,owl:TopData
Property,rdfs:Literal). The subpattern relation is
eventually used to select, for some input relational assertion,
those patterns that are more specific, i.e., minimal in the sub-
pattern poset, among the patterns that represent it.

We observe that some relational assertions can be inferred
from other relational assertions and the property poset
(NP ,	GT

), e.g., P(a, b) can be inferred from Q(a, b)when-
ever Q 	GT

P .
Let us consider the strict order relations ≺GT

that are
the irreflexive counterparts of the posets induced by 	GT

,
where X ≺GT

Y imply that X �= Y whatever X and Y
are (types, properties or patterns). We say that a relational
assertion P(a, b) ∈ A is redundant (based on GT) if and
only if there exist some relational assertion Q(a, b) ∈ A
such that Q ≺GT

P . Since the property poset is finite, there
are minimal properties that ensure that, given a redundant
assertion P(a, b), we can always define a set of relational
assertions from which P(a, b) can be inferred.6 We refer to
this set of non-redundant assertions from which P(a, b) can
be inferred as the GT -inference base of P(a, b).

Definition 6 Minimal Patterns: A pattern π is aminimal pat-
tern for a relational assertion P(a, b) ∈ A and a terminology
graphGT iff one of the two following conditions applies: 1—
P(a, b) is not redundant and π represents P(a, b) and there

5 It is easy to verify that the model can be easily adapted to work with
equivalence classes of types and properties, rather than individual types
and properties.
6 It is unlikely but not impossible that an assertion P(a, b) can be
inferred from more than one assertions; as an example consider the
case where Q(a, b) ∈ A,R(a, b) ∈ A, Q ≺GT

P ,R ≺GT
P with P

and R disconnected in GT .

does not exist a pattern π ′ that represents P(a, b) such that
π ′ ≺GT

π ; 2—P(a, b) is redundant and π represents some
assertion Q(a, b) such that Q(a, b) is in the GT -inference
base of P(a, b) and there does not exist a pattern π ′ that
represents Q(a, b) such that π ′ ≺GT

π .

Observe that in the first case a minimal pattern will have
the form (C, P, D), while in the second case it will have the
form (C, Q, D) with Q ≺GT

P
In the rest of the paper we use the following expres-

sions: a pattern π minimally represents a relational assertion
P(a, b) ∈ A (under a terminology graph GT), iff π is a
minimal pattern for P(a, b) andGT . Conversely, we say that
P(a, b) is minimally represented (under a terminology graph
GT) by all patterns that minimally represent it. By applying
pattern minimalization to a set of relational assertions (with
an input terminology), we obtain the set of patterns that min-
imally represent all of them, also referred to as its Minimal
Pattern Base (MPB). A summary consist in a terminology
graph and an MPB for an input dataset Δ = (T ,A).

Definition 7 Minimal Pattern Base: A minimal pattern base
for a set of assertions A under a terminology graph GT is a
set of patterns ΠA,T such that π ∈ ΠA,T iff π minimally
represents some φ ∈ AP under GT .

Definition 8 Summary: A summary of a datasetΔ = (A, T)

is a pair Σ = (GT ,ΠA,T) such that: GT is a terminology
graph derived from T , ΠA,T is a minimal pattern base for
A under GT .

Observe that different patterns can be extracted for an
assertion P(a, b) if a and/or b have more than one minimal
type. However, minimalization is capable to exclude many
patterns that can be entailed following the 	GT

relation and
that do not minimally represent any P(a, b).

For example, the MPB for the dataset in Fig. 1, includes
the patterns (E, Q, F), (E, R, T), (C, Q, F), (C, R, T),
that is, only four of the twenty-four patterns that represent
the assertions (in this count we excluded patterns includ-
ing upper types and properties—omitted in the figure). The
MPB excludes patterns like (B, Q, D) and (C, Q, D), but
also (C, P, F), as a result of considering properties in the
minimalization process and extending the relation	GT

over
N P .

Although very few ontologies make use of subproperty
relations intensively, we believe that minimalization wrt both
type and property hierarchy is important to generalize the
model and to provide a more robust summarization mech-
anism for future scenarios. However, to provide users with
flexible configuration choices, minimalization over proper-
ties is optional and can be disabled keeping only type-based
minimalization.

Definition 7 extends the definition of minimal patterns
that considers type-based minimalization [46]. Observe that

123

R. A. Alva Principe et al.

when we minimalize over properties, redundant relational
assertions become irrelevant for including patterns in the
MPB: the patterns that minimally represent redundant rela-
tional assertions are patterns that minimally represent also
some not redundant assertions. A similar approach based on
the identification of redundant assertions can be applied also
to typing assertions, some of which can be inferred from T
andGT and thus considered redundant.We define redundant
typing assertions similarly as we did for redundant relational
assertions. Observe that also for a redundant typing assertion
C(a) it is always possible to track the set of non-redundant
assertions C(a) is inferred from based on GT . The compu-
tation of the minimal pattern base will use this intuition and
prune redundant relational and typing assertions from A so
as to compute the patterns that represent the non-redundant
assertions (we remind that, based on Definition 3, a pat-
tern (C, P, D) represents a relational assertion P(a, b) in an
assertion set A if and only if {C(a), P(a, b), D(b)} ⊆ A).

Let A− be A − {φ | φ ∈ A and is redundant based on
GT }; we refer to A− as to the non redundant counterpart of
A. Then the following equivalence can be proved (see the
Appendix for proof).

Theorem 1 An MPB ΠA,T for a set of assertions A under
a terminology graph GT is equivalent to the set ΠA−

of
patterns that represent every relational assertions in A−.

The above theorem is also useful to better explain how
ABSTAT-HD can be adapted to compute summaries incre-
mentally and deal with changes in the ABox by updating
profiles and statistics locally. The key idea is that if changes
in the ABox concern redundant assertions profiles and statis-
tics do not change; if changes affect new or non-redundant
assertions, the profiles are updated after tracking the asser-
tions that can be inferred from the ones affected by changes
(e.g., some assertionsmay change their status from redundant
to non-redundant or vice versa). However, in this paper we
focus on the implementation andvalidationof batchprofiling,
leaving some additional details about incremental profiling
in the Appendix.

2.3 Profiles and statistics

Aprofile extends a summary of a dataset by associating statis-
tics with its patterns in its vocabulary, referred to as VΣ .

Definition 9 Profile: A profile of a dataset Δ = (A, T) is a
pair (ΣA,T , S) such thatΣA,T is a summarywith aminimal
pattern base ΠA,T , and S is a set of functions s : ΠA,T ∪
VΣ → R.

Pattern statistics are computed on the patterns that are
in the summary (i.e., which minimally represent some rela-
tional assertion in the dataset) by considering the assertions
that theyminimally represent or represent. While some basic

statistics like pattern frequency [46] can be computed by
processing one assertion at a time (yet, with scalability
problems for very large datasets), new statistics like cardinal-
ity descriptors—defined below—require methods to group
assertions by their representative patterns. As a consequence,
they can be hardly computedwithout the distributed profiling
solution described in this paper also for datasets of relatively
smaller size.
Pattern frequency count. The frequency of a pattern π is
defined as the number of non-redundant relational assertions
itminimally represents. Note that the frequency of a pattern is
always a value between one and the number of non-redundant
relational assertions it represents.
Pattern instances count. Let us first define what we mean
with instances of a pattern π :

inst(π) =

⎧
⎪⎨

⎪⎩

{P(a, b) ∈ A−|π represents P(a, b)} if sub(π) = {π}
⋃

∀ρ∈sub(π)

inst(ρ) otherwise

where sub(π) = {ρ ∈ MPB|ρ 	GT
π} is the set of subpat-

terns of π . We therefore define the number of instances for a
pattern π as the number of relational assertions in inst(π),
that is, the number of non-redundant relational assertions
represented by π or its subpatterns.

Values for this statistic are always positive and also ρ ∈
sub(π) implies that the number of instances for π will be
greater than or equal the number of instances for ρ. Please
note that inst is defined ∀π ∈ MPB but it can be easily
extended to ∀π ∈ {NC ×N P ×NC } i.e., the set of every pos-
sible pattern in T . Such extension would admit zero values
as there may exist some pattern ψ whose inst(ψ) is empty
as may be too specific for the dataset. Moreover, extending
this statistic would enable further analysis at many levels of
abstraction (e.g., patterns external to the MPB).
Type occurrence count. The number of occurrences for a type
C is the number of entities a such that C(a) ∈ AC .
Property occurrence count. The number of occurrences for
a concept P is the number of relational assertions P(a, b) ∈
AP .
Pattern cardinality descriptors. Cardinality descriptors are
divided into direct cardinality descriptors and inverse cardi-
nality descriptors. Given a pattern (C, P, D) the maximum
(minimum, average) direct cardinality is the maximum (min-
imum, average) number of distinct entities of type C (in
subject position) linked to a single entity of type D through
the predicate P . Similarly, the maximum (minimum, aver-
age) inverse cardinality is themaximum (minimum, average)
number of distinct entities of type D (in object position)
linked to a single entity of type C through the predicate P .
Intuitively it tells us how the assertions represented by a pat-
tern π = (C, P, D) are balanced in terms of links between

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

individuals in subject position and individuals/literals in
object position for π in both directions through P.

3 Profiling process

In this section, we describe the profiling process. First, we
present the workflow to construct the summary and the
respective statistics for each dataset. Second, we provide the
profile creation using the relational model.

3.1 Profile creation

The profiling workflow of ABSTAT is depicted in Fig. 2.
In a first preprocessing step, the assertion set is extracted,
the set AC of typing assertions is singled out from the set
of relational assertions AP , and the terminology graph is
created using the input terminology. We then perform three
operations: typeminimalization (overAC) and propertymin-
imalization (over AP), to compute a minimal type set for
each entity and remove property redundancy, and type infer-
ence to infer all the entity types. We extract minimal patterns
and statistics and compute cardinality descriptors. We also
useAP and inferred types to infer patterns along the subpat-
tern relation and compute statistics that require inference.

Core-profiling consists in the preprocessing, type mini-
malization, and pattern calculation steps,
full-profiling includes also all the other steps.
Preprocessing. Preprocessing is explained with an example
in Step 1 of Fig. 3.

Observe that relational assertions are finer-grained classi-
fied based on the type of the object in the assertion.Assertions
with a named entity in the object are called object relational
assertions (e.g., < Cher genre Disco>) while asser-
tions with a literal in the object are called datatype relational
assertions (e.g., < Cher alias "Cher Bono">). The
terminology graph GT is built starting from the
rdfs:subClassOf and rdfs:subPropertyOf rela-
tions specified in the terminology andmanagedwith a library
for managing OWL2 ontologies.

The graph will be then completed with external types,
that is, types asserted in AC and not included in T , when
computing the minimal types.
Type minimalization and property minimalization. For each
individual x , we compute the set Mx of minimal types with
respect to the terminology graphGT as exemplified in Fig. 3.
Given x , we select all the typing assertions C(x) ∈ AC and
form the setAC

x of typing assertions about x . Please refer to
our previous paper in [46] for more details about the algo-
rithm on type minimalization.

In Step 2, ABSTAT performs type minimalization. As
Cher has two types: MusicalArtist and Artist, and
MusicalArtist is the subtype of Artist, only the for-

Input:AC typing assert., AP relational assert, GT terminology graph
Output: the I n f _Patterns

1 I n f _Patterns = ∅;
2 for P(x, y) ∈ AP do
3 I n fx = allInferredTypes(AC

x ,GT);

4 I n fy = allInferredTypes(AC
y ,GT);

5 I n f p = allInferredProperties(P,GT);
6 for C ′ ∈ I n fx do
7 for D′ ∈ I n fy do
8 for Q ∈ I n f p do
9 I n f _Patterns = I n f _Patterns ∪ {(C ′, Q, D′)};

10 return I n f _Patterns;

Algorithm 1: Computation of the pattern inference

mer type is included in the patterns. If minimalization on
properties is enabled, we remove redundancies from AP .

Consider Step 3 in Fig. 3, since alias 	GT

alternativeName, the triple < Cher alternative
Name "Cher Bono"> is considered redundant as <

Cher alias "Cher Bono"> is also present in AP ,
therefore it is removed.
Minimal pattern base. We then iterate over each relational
assertion P(x, y) ∈ AP and get the minimal types sets Mx

and My . Finally, ∀C, D ∈ Mx , My a pattern (C, P, D) is
added to the minimal types pattern base. Step 4 in Fig. 3
takes minimal types and relational assertions as input and
computes the patterns. The MPB for the example in Fig. 3 is
reported in the bottom box.
Pattern inference. ABSTAT computes the subpattern relation
by inferring the patterns that are more generic of the patterns
included in the MPB.

Algorithm 1 presents the pseudocode for computing pat-
tern inference. We start initializing I n fPattenrs to ∅ (line
1), then for each relational assertion P(x, y) we calcu-
late every inferable type for x and y and every inferable
property for P (line 3–5). Notice that at this point I n fx
includesAC

x , I n fy includesAC
y and I n f p includes P . Finally,

∀C ′, D′, Q ∈ I n fx , I n fy, I n f p a pattern (C ′, Q, D′) is
added to I n fPattenrs (lines 6–13). We keep trace of the times
that a pattern is added to the I n f _Patterns set to obtain the
number of instances.

In Fig. 4, Step 5 shows each entity with its inferred types
untilThing (orLiteral for literals) is reached. For exam-
ple Funk passes through Genre and TopicalConcept
before it reaches Thing. Note that, unlike as in type mini-
malization, herewewant to extract all the possible types from
each entity with the support of GT . In Step 6, for each asser-
tion in AP we get the entities’ inferred types and extract
the superproperties for each property using GT to finally
generate the inferred pattern set along with the number of
instances. For example <Cher genre Disco> gener-
ates 5*4*2 patterns (5 types for Cher, 4 types for Disco and
2 properties). Despite the huge number of generated patterns
through pattern inference,we still keep onlyminimal patterns

123

R. A. Alva Principe et al.

relational
assertions

typing
assertions

Preprocessingdataset

relational
assertions

Property
Minimalization

minimal
types

Type
Minimalization

inferred
types

Type
Inference

minimal
patterns
& stats

Pattern
Calculation

Cardinality
Calculation

minimal
patterns

cardinalities

inferred
patterns
& stats

Inferece
Calculation

Terminology Graph

Fig. 2 Profiling workflow

in our summaries but enriching statistics with the number of
instances calculated in this phase.
Cardinality descriptors. Algorithm 2 takes as argument the
set triples_AKPi , which contains the relational assertions
that have AKPi as minimal pattern. We start by creating a
map for the subjects and for the objects that will contain
the counts for each subject and object, respectively (lines 1–
2). Then for each assertion P(x, y) we count subjects and
objects and keep this information on subjects and objects
(lines 3–10). Each entry in subjects tells us the number of
distinct objects associated with the respective key. Similarly
for objects. For direct cardinality descriptors, we calculate
the maximum, minimum, and average values for the values
of the objects map (11–13). For inverse cardinality descrip-
tors, maximum, minimum and average are calculated for the
values of the objects map (lines 14–16). We can think of
cardinality descriptors as grouping AP assertions by their
minimal patterns as depicted in Fig. 4 (Step 7). For each pat-
tern, we can now extract statistics (Step 8) on subjects and
objects and thus obtain the cardinality descriptors.

3.2 Profile creation via relational model

Algorithms for profile creation shown in the previous section
have a linear complexity that makes nearly impossible the
definition of a profile for a very large dataset. For this reason,
we adopt a relational model approach. By using a relational
model approach, it is then possible to implement an algorithm
by means of a high scalable engine such as Spark SQL [4].

Let D(t, s, p, o, d) be the original dataset where each
triple is enriched with two attributes; attribute t that spec-
ifies the type of assertion (typing_assertion, object rela-
tional_assertion, datatype relation_ assertion) and attribute
d that specifies the datatype of a given literal. In the prepro-
cessing phase, we first create three new relations Ta, Oa, Da

Input: tr i ples_AK Pi
Output: the cardinali ties for tr i ples_AK Pi

1 subjects = map();
2 objects = map();
3 for P(x, y) ∈ tr i ples_AK Pi do
4 if not subjects.contains(x) then
5 subjects.put(x, 0);
6 subjects.put(x, subjects.get(x) + 1);
7 if not objects.contains(y) then
8 objects.put(y, 0);
9 objects.put(x, objects.get(y) + 1);

10 cardinali ties = list();
11 cardinali ties.add(max(objects.values()));
12 cardinali ties.add(min(objects.values()));
13 cardinali ties.add(avg(objects.values()));
14 cardinali ties.add(max(subjects.values()));
15 cardinali ties.add(min(subjects.values()));
16 cardinali ties.add(avg(subjects.values()));
17 return cardinali ties;

Algorithm 2: Computation of the pattern cardinality
descriptors

where

Ta = σD.t="t yping"(Πe,t (D))

Oa = σD.t="object"(Πs,p,o(D))

Da = σD.t="datatype"(Πs,p,o,d(D)) (1)

where e, t, s, p, o, d represent entity, type, subject, property,
object and datatype, respectively.

Then, we apply the property minimalization UDF func-
tion PMUDF to both Oa and Da obtaining two new relations
Om
a , Dm

a . The PMUDF function removes redundant asser-
tions as P(x, y) if exists an assertion Q(x, y)with Q 	P P .

The minimize udf MUDF is another UDF function, that
takes as input an entity e along with its types and calcu-
lates the minimal types mt, and generates a new relation
Tm
a (e,mt). The explode UDF function EUDF creates a new

row for each type in the type attribute (see Fig. 5).
Minimal patterns are then calculated. For the sake of

brevity,wedescribe the relational queries for object-relational

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

Fig. 3 From preprocessing to pattern calculation

assertions only, as for datatype relational assertions the
process is similar. The relational query that calculates the
minimal patterns MP relation for the object-relational asser-
tions is defined by the queries in 2 and 3.

q1 = ρst←mt ((Oa ��s=e T
m
a)

q2 = ρot←mt (q1 ��o=e T
m
a))) (2)

In Query 2 the left outer join (��) is applied on the object
relational assertions Oa (subject attribute) with the minimal

types table Tm
a (e attribute). This Cartesian product generates

the new st attribute.
A similar procedure is applied for object attribute. While

we join data, projection is applied by removing the subject
and object attributes. Following,we rename theminimalType
in subjectType as st , and the minimalType in objectType as
ot . This produces a relation where each tuple represents a
pattern with subject type st , predicate p and object type ot .
Certainly this relation will contain duplicates. Observe that
this relation contains already the minimal patterns. Hence,

123

R. A. Alva Principe et al.

Fig. 4 Pattern inference, instances count and cardinality descriptors calculation workflow

Fig. 5 The minimal types calculation

given a tuple, the number of its duplicates corresponds to the
number of assertions it represents.

In Query 3 the group-by operator Γ groups duplicate pat-
terns (same subjectType st , property p and objectType ot)
and then counting is performed. The result is the frequency
freq of a given pattern.

MP = ρfreq←COUNT(st,p,ot)(Πst,p,ot,COUNT(st,p,ot)

(Γst,p,ot (q2)) (3)

Queries 4 and 5 show cardinality descriptors calcula-
tion, where x stands for “MIN," “MAX," “AVG" operators.

Let AKPSO(AKP, s, o) be a relation schema with subject
and object attribute and an AKP attribute. AKP attribute is
obtained by string concatenation of the subject type, predi-
cate and object type fields extracted by MP relation created
in Query 3.

AKPo = ρcount←COUNT(o)(ΠAKP,o,COUNT(o)

(ΓAKP,o(AKPSO)))

AKPox = ρxo←X(count)((ΠAKP,o,X(count)

(ΓAKP(AKP
o)))) (4)

As for direct cardinality descriptors, let us consider a
pattern π and the set AP

π of relational assertions it mini-
mally represents. Please note that every assertion in AP

π has
the same predicate. For each object of AP

π the number of
distinct subjects linked through the same predicate is calcu-
lated, and afterward the max, min and average is computed

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

(AKPsmin,AKP
s
max,AKP

s
avg). In a similar way, the inverse

cardinality is calculated. For these statistics, the groupby
occurs on the subject and counts the number of linked dis-
tinct objects. From this we extract the maximum, minimum
and the average inverse cardinality.

AKPs = ρcount←COUNT(ss)(ΠAKP,s,COUNT(s)

(ΓAKP,s(AKPSO)))

AKPsx = ρxs←X(count)((ΠAKP,s,X(count)

(ΓAK P (AK Ps)))) (5)

Query 6 shows the join operations between the relations
calculated in Queries 4 and 5 that creates the final relation
containing all cardinality descriptors associated with all pat-
terns.

C = AKPsmin �� AKPsmax �� AKPsavg �� AKPomin

�� AKPomax �� AKPoavg (6)

Finally, the pattern inference and instances count step is
very similar to the minimal types and pattern calculation
but instead of making the Cartesian product between mini-
mal types, relational assertions, andminimal types, Cartesian
product is calculated between inferred types, relational asser-
tions and inferred types. A UDF IUDF uses a terminology
graph. Each type encounteredwill become one of the inferred
types including "seed" types. Result of the IUDF function is
then exploded by means of the EUDF producing the I (e, i t)
relationwhere for each entity e the inferred type i t is reported.

q3 = ρst←mt ((Oa ��s=e I)

q4 = ρot←mt (q3 ��o=e I))) (7)

Following the same approach for pattern calculation, we
have Queries 7 and 8 with the difference that the pattern
generated will not be minimal anymore. In this case the fre-
quency statistic that is calculated coincides with the number
of instances statistic.

P I = ρfreq←COUNT(st,p,ot)

(Πst,p,ot,COUNT(st,p,ot)

(Γst,p,ot (q4)) (8)

3.3 Complexity

In this section, we first calculate the time complexity of dif-
ferent stages of the workflow (Fig. 2) and then estimate
the global complexity by considering the contribution of
each stage to the whole workflow. Notice that the follow-
ing assumption holds true that the workflow is implemented
using the standard library Spark SQL provided by theApache

Spark distributed processing engine (more implementation
details are given in Sect. 4.2.3). Consequently, for the com-
plexity of select–project–join operations, we adapt the cost
model described in [6,27] with some simplification due to
the fact that we use a purely cloud-based solution.

The first operation is the creation of relations described
in Query 1 where three selection–projection sub-queries are
performed.Letn be thenumber of triples stored in the relation
D, and w be the number of workers (i.e., agents performing
a the query in distributed fashion), the time complexity of
Query 1 is Θ(n) i.e., the computation time linearly depends
on the number of triples.

MUDF has a time complexity Θ(e) as it needs to populate
the relation Tm

a (e,mt), while EUDF features a complexity
Θ(mt

e) because the function creates a new row if an entity
e has more than one minimal type. Thus, the complexity for
populating the relation Tm

a is equal to Θ(mt).
Query 2 comprises two left outer join queries. Subquery

q1 is implemented in Spark SQL as SortMergeJoin to limit
thememory consumption. According to [27], this join imple-
mentation has a time complexity equals to:

Θ(|Oa |, |tma |) = Θs(|Oa |) ∗ Θs(|tma |)∗
log

(|Oa |
w

)

∗ log

(|tma |
w

)

≈ Θs

(n

w

)
∗ Θs

(
mt

w

)

∗ log
(n

w

)
∗ log

(
mt

w

)

(9)

where Θs is the time complexity of the shuffle operation.
Notice that the cardinality of q2 is the same of q1 (|q1| =
|Oa |); thus, its complexity is (9) as well.

As described in Sect. 3.2, minimal patterns computation
is created by means of Query 3 that uses a groupby operator.
Grounding on the analysis of [6], we can assume that its time
complexity is Θ(n

w
).

To calculate patterns cardinality descriptors, we use
Query 4 and 5 that are aggregate and groupby queries over the
relation AKPSO. This relation has the same cardinality as the
relation MP (|MP|). As a consequence, the time complexity

for both queries is Θ(
|MP|

w
).

The final step in the profiling workflow is the com-
putation of inferred patterns and instance count. Query 7
and 8 have a similar structure, thus their complexity is
Θs(

n
w

)Θs(e) log(n
w

) log(e
w

).
When the dataset is very large, that is, when n � mt; n �

e; n � |MP| we can conclude that the complexity of the
overall profiling algorithm is:

Θ
(n

w
log

(n

w

))

123

R. A. Alva Principe et al.

4 ABSTAT: highly distributed

This section presents the architecture of the ABSTAT-HD.
We first describe the logical architecture behind the profil-
ing process and then provide an analysis of the scalability
issues that served as motivation for the distributed version.
Following, we present the new distributed builder and its
deployment.

4.1 Architecture

The diagram reported in Fig. 6 is to be considered a mini-
mal representation of the ABSTAT logical architecture; thus,
inessential components like the ones in charge of authenti-
cation and authorization activities are not reported. ABSTAT
architecture is modular so that it can benefit from the Service
Oriented Architecture model and the main components are:

– Viewer, which provides a graphical user interface to inter-
act withABSTAT functionalities. A configurationwizard
drives the user in the choice/upload of datasets/ontologies
along with a configuration setup for further processing.
Once the execution has ended, the user can explore com-
puted profiles using the interface for constrained queries
(requesting, for instance, the desired subject with or
without a predicate and object) and full-text search. In
addition, controls for the managing of profiles, datasets,
and ontologies are provided.

– Builder, which is the core module that executes the pro-
filing algorithms. It takes as input a dataset (inN3 format)
and possibly an ontology (inOWL format) alongwith the
user’s profile configuration. The configuration received
from theBuilder contains all the user choices aboutwhich
step to execute in the profiling pipeline. Both input and
output profiles are saved in the Data Lake.

– Data Loader, which main task is to feed the storage
engines intended for user consultation. After a seman-
tic profile is computed, the Data Loader reads the profile
from the Data Lake (internal data model) and maps it
in a suitable way for uploading into databases (e.g.,
MongoDB) or indexing into search engines (currently
exploiting Apache Solr). Furthermore, it also creates a
copy of the input datasets into Virtuoso triple-store.

– Explorer, which exposes a collection of APIs to support
profile exploration requests from Viewer or authenti-
cated third-party applications. Examples of such APIs
include the Browse API, which provides a subject (pred-
icate, object) constraint consultation of the profiles, the
Search API for full-text search functionality over pat-
terns, concepts, and properties, theAutocompleteAPI for
concept/predicate suggestion based on our patterns and,
finally, the Validate API, which allows the user to inspect
pattern instances with possible data quality issues.

Fig. 6 ABSTAT architecture

Worker 1

Worker 2

Builder Agent

Worker n

Data Lake

...

Submitter

Data Loader

Big Data Envirioment

Manager

Viewer

Explorer
Builder

App. Master

Client VM

Resource
Manager

Builder Agent

Builder Agent

Fig. 7 ABSTAT-HD: architecture and deployment

Themodularity of this architecture enhances the flexibility
of the components during deployment and theirmaintainabil-
ity, which are central features for further extensions.

4.2 ABSTAT-HD builder

In the following, we first discuss themain issues posed by the
previous centralized architecture; then, we present the new
distributed Builder and the Big Data framework adopted to
support its deployment and execution.

4.2.1 Scalability issues

At this state,ABSTATcan compute profiles for small datasets
and allows users even on commodity hardware to compute
profiles for their confidential data. However, the complexity
of the statistics to be calculated (especially the new ones,
viz. cardinality and inference)makesABSTATunsuitable for
processing complex and large datasets with manymillions of
triples. These considerations, combined with the awareness
that the size and complexity of the LOD Cloud assets are
continuously growing, led us to carry out a redefinition of
the system aimed at seeking horizontal scalability.

By inspecting ABSTAT architecture, we identified two
components that primarily influence the system scalability,

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

namely, the Builder7 and the Data Loader. The former is
involved in creating profiles; the latter writes and reads data
from the Data Lake. The Data Loader scalability issues relate
to the data ingestion process; they are not faced in this work
as there are plenty of production-grade Big Data solutions
for efficiently moving large amounts of data (e.g., Apache
Flume).

As for the Builder and the related computation bottleneck
issue, we worked to overcome the limitations of the central-
ized approach.

The Builder implements the workflow in Fig. 2. Each ele-
ment of this pipeline is implemented separately and in a
multi-threadedmanner (but with centralized synchronization
points); moreover, the code over the years has been opti-
mized as much as possible. We discarded the hypothesis of
reimplementing ABSTAT codebase in a more efficient pro-
gramming language (like C) to reuse as much as possible the
available code.We have also experimentedwith parallelizing
the file scan (dividing it into chunks) to eliminate the bottle-
neck due to sequential disk access. Still, the results were not
satisfactory due to severe disk contention. The use of increas-
ingly powerfulmachines did not solve resource saturation for
larger datasets, either. For this reason, it has been decided to
re-design the Builder component according to the manager–
workers model and execute it in a distributed fashion on a
collection ofmachines,where theworkers perform in parallel
the computation while the manager supervises the execu-
tion. We preferred to use a mature Big Data solution, prized
and actively developed to implement this approach, that
guarantee maintainability, flexibility, security, and high-level
languages to describe the processing pipeline. In particular,
these tools offer an off-the-shelf replicated and distributed
data lake, themanagement of computational resources, seam-
less data shuffling, automatic application deployment, data
locality aware task scheduling, and a workflow optimiza-
tion mechanism. More details on the Big Data environment
underpinning ABSTAT-HD are reported in Sect. 4.2.3

4.2.2 Extended components

ABSTAT-HD (whose general architecture and deployment
are depicted in Fig. 7) addresses and solves the limitations
of the previous version. As aforesaid, we decided to exploit
a Big Data environment to manage a cluster of machines
and run the computation in a distributed fashion. Such an
environment consists of an ecosystem of several interacting
components; for simplicity, we will only mention the Data
Lake, the Resource Manager, and the Application Frame-
work. Data Lake is in charge of partitioning, distributing,
and managing datasets to increase locality and reduce skew-
ness during processing. Resource Manager is responsible

7 https://bitbucket.org/disco_unimib/abstat-distributed

Submitter

Data Loader

Manager

Worker 1

Builder Agent

Resource
Manager

Builder Application
 Master

Worker 2
Worker n

Node Manager
1

2

2

3

4

Task
Driver

DAGScheduler

Cache

Builder Agent

Task

Cache 5 TaskScheduler

Catalyst Optimizer

Fig. 8 An overview of ABSTAT-HD Builder’s internals

for managing, partitioning, and assigning cluster resources
to the applications that require them. Finally, Applica-
tion Framework consists of a set of classes and libraries
to create applications compatible with the particular plat-
form, i.e., communicating with ResourceManager to request
the necessary resources and control the program execution
flow. Consequently, we adapted some components (namely,
Builder and Data Loader) and created a new one (Submit-
ter) to interact with Resource Manager. Other architectural
components, like Viewer and Explorer, are kept unchanged.
Follows a brief description of those components:

– Submitter is a new component. It is a service that imple-
ments the interface of the old Builder. Its job is to receive
requests from Viewer and submit the Builder executable
to the cluster through Resource Manager (green arrow
1 in Fig. 8). Resource Manager distributes the Builder
code to the cluster nodes (green arrows 2 in Fig. 8) and
executes it. Submitter also checks on the Builder status
and exposes it via an API.

– Builder has been completely reworked; it is no longer a
long-running service but a manager–worker distributed
application executing for the time strictly necessary to
calculate the profile of a single dataset. The main com-
ponent of the Builder new architecture (Fig. 8) is the
Application Master, which is in charge of task man-
agement. The worker component, called Agent, in turn
receives and executes tasks on the dataset..More in detail,
the Builder Application Master interacts with Resource
manager (blue lines in Fig. 8) to negotiate the access
to resource containers (RAM and CPU shares) on the
cluster nodes. Within each container, a Builder Agent is
then executed. Each Agent receives from the Applica-
tion Master a set of tasks to perform on specific dataset
chunks; partial and final results are stored in a cache
structure, but they can be spilled on disk if necessary.
As for the Application Master, this consists of a set of
modules, among which the Driver stands out, which is

123

https://bitbucket.org/disco_unimib/abstat-distributed

R. A. Alva Principe et al.

in charge of managing the interface with Resource Man-
ager and Agents. It implements the summarization and
statistics calculation algorithms exploiting a data frame
abstraction and an SQL-like engine over it (both pro-
vided by the Application Framework); thus, a dataset is
view as a relational table that can be manipulated using
relational-algebra operators (Expressions (1) to (8)). A
query optimizer module manipulates relational queries
(using techniques such as filter pushdown, indexes, buck-
eting, join type selection, among others) to execute them
more efficiently. The resulting query is then compiled
into tasks forming a Direct Acyclic Graph (DAG); such
structure is analyzed to identify tasks that can be per-
formed in parallel (stages) and data shuffle operations.
Eventually, groups of tasks are sent to the Builder Agents
by the TaskScheduler module for execution (purple lines
in Fig. 8). A data shuffle operation is performed at the
end of each stage; this is done by sorting local data and
distributing them to the other agents according to a par-
tition key (red lines in Fig. 8). Ultimately, the results
are returned to Builder Application Master or persisted
by Data Lake. Finally, note that the Application Master
is enforced to run in a separate node from those of the
Agents, co-located with Submitter and Data Loader to
reduce skewness.

– Resource Manager is a component provided by the Big
Data environment. It is in charge of managing the avail-
able resources of the underlying cluster, considering
several factors ranging from data locality to cluster-level
load balance. An application running into the cluster has
to interact with this component to access the required
resources.

– Data Loader is made compatible with the distributed
Data Lake (e.g., HDFS) to both write the datasets and
read the profiles to be indexed.

4.2.3 Big data environment

Our choice for the ecosystem/framework to achieve horizon-
tal scalability fell onApacheHadoop8 withApache Spark9 as
processing engine and application framework. The Apache
Hadoop stack enables the distributed processing of large
datasets across computer clusters using high-level program-
ming models. It is designed to detect and handle failures at
the application layer, so delivering a highly available service
on top of a cluster of computers. The data layer of Apache
Hadoop is the Hadoop Distributed File System (HDFS).
HDFS splits files into large blocks anddistributes themacross
the cluster nodes. Hadoop resource manager, YARN, then
transfers the application code to the nodes for parallel exe-

8 https://hadoop.apache.org/
9 https://spark.apache.org/

cution. This approach is data locality aware that is, nodes
mainly manipulate the data they have direct access to.

Apache Spark has been selected as a distributed com-
puting framework since, unlike the default compute engine
Apache MapReduce, it uses node memory better, reducing
disk spill and achieving reduced computation times.

Moreover, since theRDFdatamodel can be easilymapped
onto a relational table (data frame) with columns “subject,”
“predicate,” “object” and optionally “datatype” (as described
in Sect. 3.2), Spark application framework comes in handy
as it allows the application to process a dataset in a (dis-
tributed) relational fashion, simplifying by far the Builder
component development. In particular, a very convenient
component of Spark is the Spark SQL API [4], which offers
an SQL interface over (semi)structured data. The adoption
of a relational-based approach for profile creation enabled
us to implement the Builder logics using nothing else than
SQL expressions (derived from (1) to (8)), which allowed
us to obtain, on the one hand, a robust, compliant with best
practices, maintainable and efficient application (highly opti-
mized code is generated by the Catalyst optimizer [4]) and,
on the other hand, not to have to deal with headaches typical
of distributed data processing systems such as code gen-
eration/optimization, data locality aware task distribution,
skewness, and resilience management.

5 Evaluation

This section presents the experiments to evaluate ABSTAT-
HD performance. Firstly, the experimental setup constituted
by the datasets, the environment for the experiments and the
workload are introduced. Secondly, we present the perfor-
mance analysis considering different configurations of the
experimental setup and, finally, we discuss the results for
each configuration along with a detailed report on the poten-
tial errors detected in the Microsoft Academic Knowledge
Graph.

5.1 Experimental setup

The experimental setup of ABSTAT-HD is in line with the
setup used in the only other approach proposed in the state-
of-the-art to distribute the computation of knowledge graph
profiling, namely, DistLODStat [43], where the scalability of
the distributed and centralized version of the same systems
are compared.

5.1.1 Datasets

For our experiments we use two very large and famous
datasets: DBpedia and Microsoft Academic Knowledge
Graph. DBpedia is one of the most important datasets of

123

https://hadoop.apache.org/
https://spark.apache.org/

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

Table 1 Evaluation datasets

Dataset Size (GB) Size (triples) #Types/entity

dbp-201547M 62 46.963.783 1250

dbp-2014566M 123 566.056.062 2619

makg2.11B 253 2.110.667.729 1000

makg2.39B 340 2.395.989.657 1639

dbp-20162.75B 538 2.749.621.319 1235

makg6.36B 882 6.367.278.909 1219

makg7.74B 1.031 7.747.475.306 1219

makg8.19B 1.183 8.194.742.011 1219

the Semantic Web community as it contains real, large-scale
data and is complex enough with 760 types and 2865 proper-
ties. It has a documented schemawhichmight be downloaded
easily.10 For DBpedia we consider three versions with differ-
ent size: dbp-2014566M 11 (full dataset), dbp-201547M 12 (the
following chunks: types, mapping-based literals, objects and
properties about person data only), and dbp-20162.75B13 (all
available chunks except for those with the label *sorted).

The second dataset is Microsoft Academic Knowledge
Graph14 (makg in the following).We considered such dataset
as it a very large KG, containing information about scientific
publications and related entities, such as authors, institu-
tions, journals, and fields of study. It contains 8 types and
57 properties, thus its schema is not as complex as DBpe-
dia. In order to have datasets with different size but same
complexity, we created the following samples: makg2.11B
(including the following chunks: Authors and Paper Authors
Affiliations), makg2.39B (including only Papers), makg6.36B
(all chunks except of Abstracts, URLs and Paper References)
and makg7.74B (all chunks except of Abstracts and URLs).
Finally makg8.19B represents the full dataset.

The list of used datasets and their respective statistics
about size in terms of GB and number of triples and number
of types/entities is shown in Table 1.

5.1.2 Experimental setting

The experiments reported in this paper have been performed
by deploying the ABSTAT-HD Builder component on a
Microsoft Azure Virtual Machine (VM) cluster. In particu-
lar, the cluster consists of Standard_D13_v2 VMs featuring
8 virtual CPUs and 56GiB of RAM; one VM (replicated
for availability) acts as a manager node while the number

10 https://wiki.dbpedia.org/services-resources/ontology
11 Available at http://downloads.dbpedia.org/2014/en/.
12 Downloaded from http://downloads.dbpedia.org/2015-10/core-
i18n/en/.
13 Available at http://downloads.dbpedia.org/2016-10/core-i18n/en/.
14 http://ma-graph.org/rdf-dumps/

of worker nodes is varied from 1 to 5 (with autoscale dis-
abled). The cluster runs the Azure HDInsight15 platform,
based onApache Hadoop 3.1 and Apache Spark 2.4. Regard-
ing the data store, the cluster uses Azure Blob Store, which
also implements the HDFS API. The resource manager is
Apache YARN, which has been configured to run a single
queue of jobs to execute; in this way, a job can use all clus-
ter resources. Every other configuration has been left with
default values. In addition aVMwith Standard_D13_v2 con-
figuration and 1TB HDD was used for comparisons with the
original ABSTAT builder.

The campaign of experiments aimed to prove ABSTAT-
HD scalability has been carried out considering all datasets,
the two workload (core-profiling and full-profiling) and
varying the worker nodes in the set {1, 2, 4, 5}. Each experi-
ment, identified by the triple (# nodes, core/full-profiling and
dataset) has been repeated three times and the average time
calculated.

Besides proving the scalability of the newBuilder, we also
show the importance of the pattern minimalization on type
and properties. To achieve this, we compare a full-profiling
process and a full-profiling process with no minimalization
in terms of execution time and the number of patterns gen-
erated. Furthermore, a short experiment has been carried out
on the original ABSTAT Builder implementation to assess
the scalability.

5.1.3 Workload

Our experiments aim to evaluate the ABSTAT-HD per-
formances in three main orthogonal dimensions: (i) size,
complexity, and profiling types.

The dataset size is considered a critical property in deter-
mining the performance of any profiling tool. Typically, large
datasets need more time to be processed and small datasets
may need less time. Despite the continuous debates and
efforts, there is still no agreed definition of what constitutes
a small dataset. In this paper, we do not give a definition
about the dataset size (i.e., we do not categorize datasets as
small, medium, and large) but consider dataset with increas-
ing number of triples. The smallest dataset with respect to the
number of triples is a subset of DBpedia 2015 having only
∼ 47M triples while the biggest dataset is the full version of
makg having ∼ 8.2B triples (Table 1).

The second dimension considered in our experiments is
the complexity of the dataset. For the purpose of the summa-
rization approach, the complexity of a dataset is measured in
terms of different features that affect different phases of the
generation of the profile. For this dimension we consider: (i)
the number of distinct entities which affects the cardinality
descriptors computation, (ii) the number of types per entity

15 https://docs.microsoft.com/en-us/azure/hdinsight/

123

https://wiki.dbpedia.org/services-resources/ontology
http://downloads.dbpedia.org/2014/en/
http://downloads.dbpedia.org/2015-10/core-i18n/en/
http://downloads.dbpedia.org/2015-10/core-i18n/en/
http://downloads.dbpedia.org/2016-10/core-i18n/en/
http://ma-graph.org/rdf-dumps/
https://docs.microsoft.com/en-us/azure/hdinsight/

R. A. Alva Principe et al.

Table 2 Evaluation ontologies

Ontology Props. Types Subclass Subprop.

dbp-2014 2795 683 745 965

dbp-2015-10 2833 739 739 941

dbp-2016-10 2865 760 760 948

ma-graph 57 8 0 0

which affects the number of theminimal pattern base, and (iii)
the ontology features like the number of types (subclass) and
properties (subproperties) relations which affect the minimal
types calculation and inference calculation. Table 2 outlines
the above dimension for all datasets.

Notice that the number of types per entity for each dataset
is very useful to evaluate the performance of ABSTAT-HD
with respect to the complexity of the dataset that is being
profiled. Observe that versions of DBpedia are more com-
plex than makg ones. The terminology graph of DBpedia
has more types, properties and the average length of its tax-
onomy branches is greater than makg terminology graph. In
fact, makg ontology has no subtype and subproperty rela-
tions. Moreover, the overall number of types and properties
is almost 40 times smaller formakg. Therefore, all above rea-
sonsmakeDBpedia datasets more complex. Finally, the third
dimension considers the processing load which is addressed
by including different set of profiling features to compute.
The whole profiling pipeline is presented in Fig. 2. We con-
sider two profiling configurations: (i) core-profiling which
includes features such as minimalization on types and fre-
quency statistics for types, predicates and patterns and (ii)
full-profiling (the whole set of features). In this way, we cre-
ated two processing loads that require different efforts.

5.2 Performance analysis

In this section, we analyze how the scalability of ABSTAT-
HD is affected by the three considered dimensions (size,
complexity, and profiling type).

Figures 9 and 10 show how the size of the dataset affects
the scalability. In both figures each curve corresponds to a
different sample of the two selected KGs. The figures show
how ABSTAT-HD performance changes as a function of the
number of worker nodes. It is clear that the time required
to complete the computation halves if the number of worker
nodes doubles. In Fig. 9 the dbp-2014 requires ∼ 963 min
to be profiled using one worker node, ∼ 47 min on 2 worker
nodes, ∼ 253 min on 4 worker nodes and, finally, ∼ 20 min
on 5 worker nodes. This behavior is maintained regard-
less of the type of profiling selected and the complexity of
the dataset. The same trend is shown in both core-profiling
(Fig. 10) and full-profiling (Fig. 11) plots for both DBpedia

Fig. 9 Scalability on worker nodes for DBPedia (core-profiling)

Fig. 10 Scalability on worker nodes for MAKG (core-profiling)

and makg. These experimental results confirm the complex-
ity analysis shown in Sect. 3.3.

The comparison of the performance of the same sample
of makg considering the two different types of profiling is
shown in Fig. 12; it is evident that the full-profiling requires
more time than the core one. This behavior can be explained
by considering that in the full-profiling a bigger set of statis-
tics is calculated for each minimal pattern according to
Queries 5 and 8.

To assess the scalability of ABSTAT-HD in function
of the dataset complexity, we consider dbp-20162.75B and
makg2.39B . These two samples have approximately the
same number of triples but have very different complexity
(Table 2). Figure 13 reports the scalability of two datasets
in function of the number of worker nodes. Notice that the
complexity of dataset effects the slope of the curve: the more
complex the dataset the worse the performance, but in any
case curve still shows a good scalability. As a last remark,
for big and complex dataset such as DBpedia it is impossible
to compute any type of profile in a non-distributed way. Our

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

Fig. 11 Scalability on worker nodes for MAKG (full-profiling)

Fig. 12 Difference of profiling types

experiments show that to profile such type of datasets at least
4 worker nodes are needed.

Figure 14 shows the performance of ABSTAT-HD with
respect to the size of the datasets on core-profiling com-
puted on 5 worker nodes. The time has a linear behavior with
respect to the size dimension. However, despite the complex-
ity of DBpedia (the blue curve) the time needed is similarly
linear to the makg. This means that the complexity relevance
declines while working on many nodes as already defined in
Sect. 3.3

To conclude, the analysis about the scalability shows that
ABSTAT-HD scales well considering all three dimensions
(size, complexity, and type of summarization).

Another important question to answer for a better com-
prehension of ABSTAT-HD is to identify what are, among
the three dimensions, the ones that are more time consuming
in the summarization process. By analyzing results reported
in Figs. 9 and 10 it is possible to confirm that:

Fig. 13 Complexity of datasets and scalability

Fig. 14 Size scalability for DBPedia and makg (core-profiling)

1. Concerning the size of the dataset, given a fixed number
of worker nodes (e.g., 4 or 5) there is a linear correla-
tion between the number of triples to analyze and the
requested time to process them.

2. The complexity of the dataset seems to not impact the
performance. In fact, by considering the sample ma-
graph2.39B and dbp-2016-10 (see Table 2), despite the
fact that the later has an ontology that is 40 times bigger,
the time needed for the full-profiling with 5worker nodes
is only about two times greater than the corresponding
time of ma-graph2.39B .

3. Independently from the size and complexity dimensions,
the full-profiling of a given dataset requires up to 3 times
more time than the core-profiling. This is due to the fact
that, for the full-profiling a greater set of statistics is com-
puted (Queries 5 and 8).

123

R. A. Alva Principe et al.

5.3 ABSTAT-HD versus related work

This section analyzes the impact of minimalization on exe-
cution time and number of generated patterns. To this end,
we compare ABSTAT-HD and ABSTAT over selected tasks
and datasets.

The main hypothesis behind the introduction of minimal-
ization is that, when the input KG includes several assertions
inferred fromdeephierarchies of types and properties defined
in the ontology, minimalization reduces significantly the
number of patterns.We test this hypothesis by executing full-
profiling with and without type and property minimalization
on the dbp-2014566M KG; in the first case, the number of
generated patterns is 1.636.629 and the time required for the
process to complete is 71.3 min while in the second scenario
we get 2.919.869 patterns calculated in 94.4 min. Thus, it
appears evident that minimalization has a significant impact,
halving the number of generated patterns and speeding up
the workflow by a 31%.

Table 3 reports the results of another experiment in which
we have runABSTAT-HDandABSTAT in a single node clus-
ter. Results shows that in the same conditions, ABSTAT-HD
presents a significantly better performance than ABSTAT.

The average ratio between time elapsed for full-profiling
and core-profiling in ABSTAT-HD is roughly 3×, while for
ABSTAT is about 42×. Furthermore, we can see that for
core-profiling ABSTAT-HD can be up to∼ 9× faster and for
full-profiling can be up to ∼ 35× faster than ABSTAT.

We have further compared ABSTAT-HD with state-of-
the-art approaches for which similar settings were used in
the original papers. In fact, the experimental settings of
ABSTAT-HD are in line with those used in the only other
approaches, namely, DistLODStat [43]. Even though Dist-
LODStat and ABSTAT-HD have different scopes (the final
output does not provide the same information) and cannot
be directly compared, we provide a comparison in terms of
size of the datasets that are processed in the experiments. The
largest dataset handled by ABSTAT-HD (makg—1.183 GB)
ismuch larger than the datasets considered by the approaches
proposed in the literature. In particular, according towhat has
been reported in [43], it is approximately 6 times larger than
the more significant dataset processed by DistLODStat (i.e.,
200 GB). Other profiling approaches, such as [20], exper-
imented with real and synthetic graphs of up to 36.5 GB
(approx 32 times smaller than makg), while [17] is evaluated
on 6 datasets where the biggest one has the size of 56 MB
(approx 21.125 times smaller than makg).

5.4 Discussion on the results

Despite the lack of some data points for the heaviest compu-
tations is still clearly visible in Figs. 10, 11 and 14 that the
trend of the performance is a linear function of the dataset

Table 3 Performance comparison between ABSTAT and ABSTAT-HD
(1 node). Time is expressed in minutes

Dataset dbp-201547M dbp-2014566M makg2.11B

ABSTAT(core) 20.5 713,6 1735

ABSTAT-HD(core) 8,6 96,3 2003

ABSTAT(full) 834 > 4320 –

ABSTAT-HD(full) 24 384 634

number of triples (dataset dimension). Nonetheless, there
are some interesting highlights. First, the rapidly increasing
slope curve once over 8 billions of triples in core-profiling
(Fig. 10) and full-profiling (Fig. 11) indicates that we have
reached the limit of the cluster capabilities for any number of
nodes. In particular, during the summarization, ABSTAT-HD
performs large joins. Especially when such joins are per-
formed on tens of billions of triples, Spark workers write
intermediate data on the disk as it shuffles. In case the disk
space is not enough it throws an error. This is reflected on
dbp-20162.75B dataset in Fig. 9 on which it was not possi-
ble to compute core-profiling with only one worker node.
Instead, for the makg6.36B dataset even though the number
of triples doubles but its terminology graph is more simple,
this is possible. Also in this case, the join cost makes the dif-
ference: in DBpedia dataset, joins are more expensive since
an ontology with many types, in general, leads to more min-
imal types of entities. The effect of the dataset complexity
can be furthermore noticed by the slope gap trend in Fig. 13.
DBpedia takes more time to be processed and this is more
evident as the processing load dimension increases. In fact,
for all datasets, the slope gap in pairs of curves is higher on
full-profiling. In conclusion, when regarding performance,
dataset complexity is not a concern if the disk space is big
enough to support a large number of joins.

We can obtain useful observations by using the results
plots in a more practical way. Let’s consider two use cases:
(i) A user has already deployed ABSTAT-HD in a n-nodes

cluster and wants to know its performance if the input
dataset increases. Figures 10 and 11 show how the time
needed to profile datasets changes with respect to the
dataset size for a given configuration and processing load.

(ii) A user has already deployed ABSTAT-HD in n-nodes
clusters and wants to profile datasets that have similar
size. She/he wants to know how the computation per-
formance changes with respect to the number of nodes.
Figures 10 and 11 show that despite the size of the dataset,
the cluster would perform t for one node (n = 1), while
t/n for n nodes. Therefore, t(s,n) = (t(s,1)/n) where s is
the dataset size and n is the number of nodes.

Concerning the impact of minimalization, experiments
on dbp-2014566M demonstrate that including the minimal-

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

ization within the overall profiling process leads to a better
MPB compression and a reduction in computation time.
Minimalization is very effective in pruning the pattern space
when the terminology graph GT is rich in types, proper-
ties, and subclass/subproperty relations, and when entities
have multiple types, many of which are redundant. Further-
more, reducing the number of minimal patterns for which
frequency and cardinality descriptors are computed reduces
also the execution time and memory usage for computing
these statistics. Queries (2) and (4) show the relation tables
for frequency and cardinality calculation where table dimen-
sions depend on the number of patterns, types, and types per
entity, thus in cases where a cluster has reached its maximum
in memory capacity by executing full-profiling, minimaliza-
tion can undoubtedly help to reduce the number of patterns
and make the whole computation more suitable. Therefore,
we can conclude that minimalization reaches the maximum
effect on KGs that include the transitive closure of types on
typing assertions and the transitive closure on properties on
relational assertions (thus having multiple redundant rela-
tional assertions), and use rich ontologies.

As reported in Table 3, the large gap in execution time
between core-profiling and full-profiling for ABSTAT is
caused by intense I/O, sorting, and bucketing operations
for instance count and cardinality calculation (which are
present only in the full-profiling workload). It is also evi-
dent that ABSTAT-HD is much faster than ABSTAT in
both workloads, arguably due to the in-memory distributed
computation and query optimization offered by the Spark
Framework.

5.5 Potential errors detected in theMAKG

This section summarizes someof the potential errors detected
in the makg exploring the profile produced by ABSTAT. As
from Table 1, such KG has 57 properties and 8 types defined
within the ontology of makg.16 Moreover, it uses 5 exter-
nal types from the fabio ontology17 (Book, BookChapter,
ConferencePaper, JournalArticle, and PatentDocument) and
25 external properties (from ontologies fabio, purl,18 cito,19

dbpedia, etc.). The Microsoft Academic Knowledge Graph
maintainers have published also the schema20 as an eas-
ier way to visualize relations among types and datatypes.
From this schema, a user can easily notice that the KG
makes use of two owl:equivalentClass: one between
makg:FieldOfStudy andfabio:SubjectDiscipline
and the other between makg:Paper and fabio:Work.

16 http://ma-graph.org/ontology.owl
17 https://sparontologies.github.io/fabio/current/fabio.html
18 http://purl.org/dc/terms/
19 http://purl.org/spar/cito
20 http://ma-graph.org/schema-linked-dataset-descriptions/

However, both relations are present only in the schema
depicted in their website, but they are both missing in the
owl ontology. All the external types used in the dataset
from fabio ontology (Book, BookChapter, ConferencePa-
per, JournalArticle, and PatentDocument) are subtypes of
the class fabio:Expressions. Intuitively, such types
refer to subtypes of Paper, that in the fabio ontology are
under fabio:Expressions not under fabio:Work.
Thus, we can deduce that there is a wrong equivalent rela-
tion betweenmakg:Paper andfabio:Work. Instead, the
equivalent relation should be between makg:Paper and
fabio:Expressions.

A second problem that clearly emerged thanks to the pat-
terns produced by ABSTAT is related to the domain and
range restrictions. The predicate makg:citationCount
has as defined domain in the ontology the type Author
while as range an integer. However, its usage in the dataset
does not respect such definition. Indeed, there are 12
patterns in the data that have makg:citationCount
as predicate. Such patterns take in the subject position
types such as makg:Author, makg:Affiliation,
makg:ConferenceInstance,
makg:ConferenceSeries, makg:FieldOfStudy,
makg:Journal, makg:Paper, makg:Book,
makg:BookChapter,fabio:ConferencePaper,
fabio:JournalArticle and
fabio:PatentDocument. Even though, such predicate
should be used in the data only with the type Author as stated
in the ontology, it is used also with other types that are not
in a subtype relation with the type Author, e.g., Affiliation.
There is no subtype relationship between affiliation, author,
conference instances, conference series, field of study, jour-
nal and paper. So here, we can deduce that either a concept
that is superconcept of all the above ones is missing or the
domain for this property should be better defined in the ontol-
ogy. The similar potential error is also identified for the
predicates makg:bookTitle, makg:paperCount and
makg:rank.

The third problem is related to the cardinality values for
some predicates. With ABSTAT, we were able to identify
several patterns for which the cardinality values seem to
identify possible errors in the data. For instance, the pattern
makg:Paper purl:creator makg:Author occurs
549, 142, 397 times in the data and has the maximum
subject–objects cardinality equal to 6760. This means that
at least one paper has as creators 6760 different authors. This
number exceeds the usual number of authors per paper, thus it
might indicate a potential error in the data. Similarly, the pat-
tern makg:Paper cito:cites makg:Paper has as
maximum subject-objects cardinality equal to 27, 036. This
means that a given paper cites up to 27, 036 different papers.
Although we can not say that this is an error, in practice,
papers cite up to 100 other papers. Moreover, as we can see

123

http://ma-graph.org/ontology.owl
https://sparontologies.github.io/fabio/current/fabio.html
http://purl.org/dc/terms/
http://purl.org/spar/cito
http://ma-graph.org/schema-linked-dataset-descriptions/

R. A. Alva Principe et al.

from the statistics that ABSTAT produces, the average num-
ber of cited paper for such pattern is equal to 20, thus having a
cardinality with value greater than 27 thousand may indicate
an error in the data. Other patterns that might indicate quality
errors in the data are: papers that have 21 different languages
(makg:Paper purl:language xmls:language),
journal papers that have 17 different disciplines
(makg:JournalPaper fabio:hasDiscipline
makg:FieldOfStudy), journal papers that have up to 329
different URLs (makg:JournalPaper purl:hasURL
owl:Thing), 5 different affiliations have the same home-
page (of type owl:Thing), etc.

6 Related work

This section gives an overview of state-of-the-art approaches
that summarizeKnowledgeGraphs (Sect. 6.1) and approaches
that have adapted distributed technologies to improve the
scalability of processing graphs (Sect. 6.2).

6.1 Knowledge graph profiling

RDFgraphprofiling has been intensively studied, andvarious
approaches and techniques have been proposed to provide
a concise and meaningful representation of the RDF KGs.
There are different recent surveys that discuss some of the
approaches to profile knowledge graphs such as [9,44,54].
Most of the work on KGs profiling has been done in the
field of KG summarization, which has been extensively sur-
veyed in [9]. However, the related work discussed in this
section are different as we focus not only on the summariza-
tion approaches but also on profiling ones.

Loupe [28] is the approach most similar to ABSTAT. It
extracts patterns that describe relations among types, along
with a rich set of statistics about their use within the dataset.
The triple inspection functionality provides information
about triple patterns (of the form< subjectT ype, property,
objectT ype >) that appear in the dataset and their fre-
quency. Loupe extracts also other information such as the
namespace used in the dataset. Differently from ABSTAT,
Loupe does not adopt a minimalization technique, thus,
Loupe’s profiles contain many more patterns and conse-
quently they are not as compact as ABSTAT profiles.

A data graph summary that assists users in formulating
queries across multiple data sources by considering vocabu-
lary usage is proposed in [8]. This approach extracts clusters
called “node collections” to group a set of similar concepts
and properties. The final aim of the paper is to help users into
efficiently formulating complex SPARQL queries. For this
reason a component calledAssisted SPARQLEditor is devel-
oped. Similarly, ABSTAT patterns also help users formulate
SPARQL queries as they encode useful information to under-

stand the structure of the data [46].Differently,ABSTATdoes
not group nodes with similar characteristics and does not
have an interface to help users formulate SPARQL queries
(for this task, users can use the endpoint of the dataset itself,
e.g., http://dbpedia.org/sparql).

In [13] structural summaries are constructed by using
bisimilarity to group nodes of a dataset as the notion of
equivalence with the aim to provide users a summary-based
exploration. Such is the backbone of S+EPPS where sum-
maries are constructed of blocks and each block represents
a non-overlapping subset of the original dataset. Blocks are
connected by edges that summarize the relationships between
dataset nodes across blocks (e.g., :person, :city, :location,
etc.). ABSTAT does not use bisimilarity and does not extract
summaries blocks but instead uses minimal type patterns to
construct its summaries.

Structural equivalence is considered in [41] to provide
users a summary that has a reduced size with respect to the
KGs itself. This approach summarizes structural similar sub-
graphs by considering them to be bisimilar if they cannot be
distinguished by their outgoing paths. Additionally, ASGG,
proposed in [52], uses structural similarity for summarizing
knowledge graphs. ASSG’ summary is constructed by con-
sidering equivalence classes by bisimulation relations and it
has the adaptive ability to adjust its structure according to
different query graphs. Similarly to the above approaches,
ABSTAT profiles are compact with respect to the size of the
KGs but differently, it does not consider the structural simi-
larity of graphs.

The semi-structured data summarization approach pro-
posed in [10] is query-oriented and it has a very high
computational complexity. The summary enables static anal-
ysis and helps formulate and optimize queries. The scope is
to reflect whether the query has some answers on this graph,
or to find a simpler way to formulate the query. Similar to
ABSTAT, information that can be easily inferred is excluded
from the summary.

Other approaches consider pattern mining to summarize
KGs [3,10,38,44]. Summarizing entities considering their
neighborhood similarity up to a distance d is the aim of
[44]. Users might specify a bound k as the maximum number
of the desired patterns to be included in the summary. The
k d-summaries/patterns are chosen to satisfy and maximize
informativeness (the total amount of information; entities and
their relationships in a kg) and diversity (cover diverse con-
cepts with informative summaries).

A weighted summary composed of supernodes connected
by superedges as a result of the partitioning of the original
set of vertices in the graph is proposed in [38]. Edge den-
sities between vertices in the corresponding supernodes are
considered as weights. A reconstruction error is proposed to
introduce the error for the dissimilarity between the graph

123

http://dbpedia.org/sparql

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

and the summary. ABSTAT approach does not consider edge
densities.

RDF graphs might be more comprehensible by reducing
their size as proposed by [3]. Size reduction is a result of
bisimulation and agglomerative clustering (one of the most
common types of hierarchical clustering) which discovers
subgraphs that are similar with respect to their structure.
ABSTATdoes not use clustering but instead reduces the num-
ber of patterns to be explored by adopting a minimalization
technique.

There is a bunch of work that summaries KGs quanti-
tatively to represent the content of the RDF graph such as
[5,7,16,18,19,26].

SPADE allows exploring summaries through the prism
of interesting aggregate statistics [16]. It uses OLAP-style
aggregation to provide users with meaningful content of an
RDF graph. Users may refine a given aggregate, by select-
ing and exploring its subclasses. The aggregation is centered
arounda set of facts,which are nodes of theRDFgraph.LOD-
Sight [18] is a web-based tool that displays a summary based
on type-property and datatype-property paths. The tool visu-
alizes classes, datatypes and predicates used in the dataset
with the aim to help users to quickly and easily find out what
kind of data the dataset contains. It also shows how vocabu-
laries are used in the dataset. This tool is similar to ABSTAT
but it does not extract minimal types and is not maintained
any more.

LODOP is a framework for executing, optimizing, and
benchmarking profiling tasks in Linked Data [19]. These
tasks include the calculation of: number of triples, average
number of triples per resources/ per object URI, number of
properties, average number of property values, inverse prop-
erties, etc.

Thirty-two different statistical criteria for RDF datasets
can be obtained by LODStats profiling tool [5]. These statis-
tics describe the dataset and its schema and include statistics
about the number of triples, triples with blank nodes, labeled
subjects, number of owl:sameAs links, class and property
usage, class hierarchy depth, cardinality descriptors, etc.
These statistics are then represented using Vocabulary of
Interlinked Datasets (VOID) and Data Cube Vocabulary.21

Several algorithms to compute different profiling, min-
ing, or cleansing tasks [1] are implemented in a web browser
tool called ProLOD++. The profiling task includes the cal-
culation of: frequencies and distribution of distinct subjects,
predicates and objects, range of predicates, etc. ProLOD++
can also identify predicates combinations that contain only
unique values as key candidates to identify entities distinctly.

RDFStats generates statistics for datasets behindSPARQL
endpoint [26]. These statistics include the number of anony-
mous subjects and different types of histograms; URIHis-

21 http://www.w3.org/TR/vocab-data-cube/

togram for URI subject, and histograms for each property
and the associated range(s). It also provides the total number
of instances for a given class or a set of classes and methods
to obtain the URIs.

Differently from the above approaches, ABSTAT does not
use aggregation methods for different summary resolution.
Instead, it uses a terminology graph to extract only those
patterns that describe relationships between instances of the
most specific types.

6.2 Scalable graph processing

Graph processing approaches can be divided into two major
categories: (1) centralized (storing the KG as a single node)
and (2) distributed (distributing the KG among multiple
cluster nodes). In this section, we focus only on the sec-
ond category. Scalable graph processing has been reviewed
recently by [2,32,33,50]. Most of the approaches might be
categorized by their main purpose such as; data storage,
indexing, query languages and query execution. These pur-
poses are orthogonal, thus, a work may be classified in
multiple categories.

SANSA is a graph processing tool that has adopted
distributed technologies to enhance scalability [25]. It pro-
vides a unified framework for several applications such
as link prediction, knowledge base completion, querying,
and reasoning. It is built upon general-purpose processing
engines such as Apache Spark and Apache Flink. Similar
to ABSTAT, the architecture of SANSA is also modular
where each component has its own functionality. Among the
main functionalities of SANSA are: read and write native
RDF or OWL data from HDFS; supports different RDF and
OWL serializations; provides different partitioning strategies
(semantic-based, vertical, and graph-based partitioning); it
computes several RDF statistics (such as the number of
triples, RDF terms, properties per entity, and usage of vocab-
ularies across datasets), and apply quality assessment in a
distributed manner.

Entity Aware Graph compression technique (EAGRE)
[53] proposes a new representation of RDF data on Cloud
platforms with the aim to efficiently evaluate SPARQL with
sequence modifiers such as projection, order by, etc., as
quickly as possible. Such approach stores RDF data in HDFS
in a (key, value) form. Entity graph is partitioned among
worker machines using an indexing structure that adopts
a space-filling curve technique used to index high dimen-
sional data. The minimization of the input and output costs
for SPARQL query processing is achieved by efficiently dis-
tributing schedules. The scope of this approach is to reduce
the reading of data blocks which should be read for query
evaluation.

Trinity.RDF [51] is a distributed in-memory RDF system
that stores RDF data in its native graph form (i.e., represent-

123

http://www.w3.org/TR/vocab-data-cube/

R. A. Alva Principe et al.

ing entities as graph nodes, and relationships as graph edges).
Each entity is stored giving a unique id as a key and as a
value an adjacency list with incoming and outgoing edges.
Such values contain predicate and node id of the connected
nodes. Representing the graph in this way leads to optimiza-
tion for SPARQL query processing, but also supports more
advanced graph analytics onRDFdata. Trinity.RDFuses effi-
cient in-memory graph exploration instead of join operations
for SPARQL processing. A SPARQL query is decomposed
into a set of triple patterns, where for each pattern firstly
matches are found, and then starting from these matches
graph is explored. The exploration-based approach allows
to perform exploration in parallel, thus saving time.

Similarly to [51] also Triple Asynchronous and Dis-
tributed (TriAD) [23] uses graph-exploration strategies based
on Message Passing. It adds a multi-threading layer for the
paths of a query plan that allows the execution in parallel.
TriAD produces a summary graph using bisimulation (where
only the predicates of the query triple patterns are labeled
with constants) and locality-based summaries (where nodes
that share some neighbors are spread across the partitions).
This has the aim to index compact synopses of the data graph.
A SPARQL query usually involves finding and connecting
different parts of a graph, thus such approach works as it
prunes. Since SPARQL typically involves finding connected
components of the data graph, locality-based approaches are
particularly effective in pruning part of triple patterns are
labeled with constants.

SparkRDF is an RDF graph processing engine that imple-
ments SPARQL query on Spark that has the aim to reduce
the high I/O and communication cost [11]. The graph is
divided into multi-layer elastic subgraphs based on classes
and relations. Spark APIs are employed and an iterative join
operations with distributed memory, to minimize the cost of
intermediate results to perform subgraph matching by triple
patterns.

SemStore uses a Rooted Sub-Graph as the partition unit to
partition and store the data with the aim to efficiently localize
the four common types of SPARQL queries (SELECT, ASK,
DESCRIBE, and CONSTRUCT) [49]. A k-mean partition
algorithm is used to avoid redundancy and localize better the
query types to a cluster nodes. The architecture of SemStore
is master-slave where queries are submitted to the master
while the slaves contain local indexes and statistics that will
be used during join processing.

S2RDF partition RDF data by using ExtVP (Extended
Vertical Partitioning) that uses a semi-join-based preprocess-
ing, similar to the Join Indices in relational databases, to
efficiently minimize the query input size regardless of its
triple patterns [42]. Such partitioning considers the position
of a joint variable that occurs in both triple patterns to deter-
mine the columns on which tables must be joined. In terms
of updates, insertions and deletions, the first two are per-

formed quickly by appending new triples to ExtVP tables
while deletion are a bit more complicated and not so quick.

PRoST [14] (PartitionedRDFonSparkTables) is a system
that stores RDF data in a graph form using hash partitioning.
It combines the Vertical Partitioning (VP) approach with the
Property Table (PT), to translate SPARQL queries into Spark
execution plans. The Vertical Partitioning is used to create a
table for each distinct predicate of the input graph, containing
all tuples (subject, object) that are connected by that predi-
cate. ThePropertyTable consists of a unique tablewhere each
row contains a distinct subject and all object values for that
subject, stored in columns identified by the property to which
they belong. For the query optimization, it uses Join Trees
guided by simple statistics to translate SPARQL queries. The
triple patterns that have the same subject are grouped together
as a node and a special label is assigned to it (using Property
Table), while all other groups with a single triple pattern are
translated to nodes (using Vertical Partitioning).

Leon [22] is a distributed RDF system, which mitigates
the multi-query problem. It uses a partitioning scheme based
on characteristic sets that aims to capture the structure of
the dataset and detects common sub-structure efficiently and
effectively in a batch of SPARQL queries. The initial cost of
such partitioning is very low. RDF strings are encoded into
numerical IDs and a bi-directional dictionary is built which
stores the ids of characteristic set and subjects. This dictio-
nary is used afterward as an index for optimizing queries.

7 Conclusions

Processing and profiling big knowledge graphs can be a com-
plex and challenging task but it is becoming increasingly
importantwhenKGs are used formachine learning activities.
In this paper, we present ABSTAT-HD a minimalization-
based profiling tool able to provide a profile for very large
knowledge graphs. The modular architecture of ABSTAT
allows to benefit from the advantages of distributed comput-
ing. Given the limitations on the previous version, ABSTAT-
HD scales horizontally by adopting technologies such as
Apache Hadoop and Spark that allow the distribution of the
processing load of large datasets across clusters of comput-
ers using simple programming models. Thanks to the ability
to detect and handle failures at the application layer, Apache
Hadoop delivers a highly available service on top of a cluster
of computers. Moreover, Apache Spark is a distributed com-
puting framework that, unlike the default compute engine
Apache MapReduce, runs in memory.

To evaluate the scalability performance of ABSTAT-HD
we profile several datasets that have different complex-
ity such as DBpedia and Microsoft Academic Knowledge
Graph. Three orthogonal dimensions were considered dur-
ing profiling process: the size of the dataset, its complexity

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

with respect to the number of types and predicates and onto-
logical features, and the profiling type which considers the
overall workload of the profiling process. Experiments show
that given a fixed number of worker nodes, there is a lin-
ear correlation between the size of the dataset (in terms of
number of triples) and the time needed to profile it. More-
over, when regarding the complexity, experiments show that
it does not impact the performance. ABSTAT-HD is able to
compute the profile for the core-profiling or full-profiling
even for complex datasets. ABSTAT-HD is able to process
very largeKGs such asDBpedia andMAKGfor both the core
and full-profiling. Clearly, the performance on full-profiling
is lower with respect to the core-profiling, as for the latter a
greater set of statistics is computed. Finally, despite the size
and the complexity of the dataset, full-profiling needs up to
3 times the time for the core-profiling.

Moreover, we have shown that minimalization has an
impact also in pruning the pattern space and the execution
time. In fact, minimalization halves the number of generated
patterns (dbp-2014566M) and speeds up the workflow execu-
tion by a 31%. Furthermore, we proved that for core-profiling
ABSTAT-HD can be up to ∼ 9× faster and for full-profiling
can be up to∼ 35× faster than the previous ABSTAT imple-
mentation.

Future works include the enrichment of ABSTAT profiles
with other statistics about the data. Moreover, we plan to
represent profiles based on exiting vocabulary in order to
increase the automatic analysis of profile in the exploratory
data analysis phase of any machine learning task based on a
KG. Furthermore, we want to use ABSTAT-HD to profile a
set of KGs in specific field such as biology, geography and so
on, with the aim to offer to the community complete, precise
and ready to use data based on FAIR principles.

Funding Open access funding provided by Università degli Studi di
Milano - Bicocca within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

8 Appendix

8.1 Proof of Theorem 1

Before proving the equivalence about minimal pattern bases
(MPBs) stated in Theorem 1 in the two directions (respec-
tively, → and ←), we prove a lemma that will be used in the
proof. In the following we use instance to refer to either an
individual or a literal.

Lemma 1 If a pattern π = (C, P, D) is in the minimal pat-
tern baseΠA,T for a set of assertionsA under a terminology
graph GT , there must exist a pair of instances a and b such
that P(a, b) ∈ A is non-redundant and π minimally repre-
sents P(a, b).

The condition for a pattern to be part of the minimal pat-
tern base forA is that the pattern minimally represents some
relational assertion of A. Relational assertions are either
redundant or not redundant. If a pattern minimally repre-
sents a redundant relational assertion φ, there must be some
assertionψ , from which φ can be inferred, such that it is part
of the GT -inference base of φ and not redundant. Therefore,
there must exist some pair of instances a and b such that
φ = P(a, b) to comply with the condition for which a pat-
tern π = (C, P, D) represents a non-redundant relational
assertion iff there exists a set {C(a), D(b), P(a, b)} ⊆ A.

Theorem 1 (→ direction) if a pattern π is in theMPBΠA,T

for a set of assertionsA under a terminology graph GT , then
it is also in the set ΠA−

of patterns that represent all the
relational assertions in A−.

Proof If a patternπ = (C, P, D) is in anMPBΠA,T , then it
must also represent some non-redundant relational assertion
P(a, b) ∈ A for Lemma 1 and {C(a), P(a, b), D(b)} ⊆ A.
We show that {C(a), P(a, b), D(b)} ⊆ A− also holds. Since
π in minimal then it does not exist a pattern π ′ ≺GT

π such
thatπ ′ represents P(a, b). Since P 	GT

P , the latter implies
that there does not exist a type C ′ such that C ′(a) ∈ A,
and C ′ ≺GT

C and a type D′ such that D′(a) ∈ A and
D′ ≺GT

D. P(a, b) ∈ A− because it is not redundant by
hypothesis. C(a) ∈ A− because otherwise it would have
been removed because redundant in favor of some asser-
tion C ′(a) ∈ A− with C ′ 	GT

C , which would make
(C ′, P, D) a strict subpattern of (C, P, D) thus contradict-
ing the hypothesis that (C, P, D) is a minimal pattern for
P(a, b) under GT . The same argument clearly applies also
to D(a). ��
Theorem 1 (← direction) if a pattern π is in the set ΠA−

of
patterns, which represent every relational assertions in A−,
then it is also in the minimal pattern base ΠA,T for the set
of assertions A under a terminology graph GT .

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

R. A. Alva Principe et al.

Proof If π ∈ ΠA−
, then, for π = (C, P, D), {C(a),

P(a, b), D(b)} ⊆ A− ⊆ A. Because of how A− is defined,
we know that all these assertions are not redundant, which
implies that there cannot be any other pattern π ′ ≺GT π and
π is therefore minimal and thus in the minimal pattern base.

��

8.2 Profile updating

Although optimizing and testing incremental updates is out
of the scope of this paper, we discuss, in this section, how
profiles could be updated upon changes in a KG without
recomputing them from scratch. We consider updates to the
set of assertions A of a KG, which is expected to change
more frequently than its terminology. Updatesmay affect two
different kinds of assertions in the KG, relational and typing
assertions, and consist of two basic operations: addition and
delete of an assertionφ (a change in one triple can bemodeled
as a sequence of removal and addition operations), yielding
to four cases.
A relational assertion φ is deleted. In this case, the profile
is updated as follows: (1) if φ is redundant (i.e., if the GT -
inference base of φ is not empty), stop here; otherwise, (2)
calculateΠφ,T , i.e., the minimal pattern base for φ (which is
equivalent to applying the profiling algorithm to a relational
assertion set {φ}), and (3) update statistics for all π ∈ Πφ,T

as follows:

(a) decrease the frequency by one;
(b) calculate the inferred patterns, and, for each inferred pat-

tern decrease its instances by one;
(c) recompute cardinality descriptors.

(4) check whether removing φ makes some relational asser-
tion ψ in A not redundant anymore; if not, stop here;
otherwise, (5) calculate the minimal patterns for each no
longer redundant assertion ψ ∈ A, and (6) update the statis-
tics as follows:

(a) increase the frequency by one;
(b) calculate the inferred patterns, and increase the number

of instances by one;
(c) recompute cardinality descriptors.

A relational assertionφ is added. In this case, ifφ = P(a, b),
the profile is updated with the following procedure: (1) if φ is
redundant, stop here; otherwise, (2) check if φ makes some
assertion in A redundant, delete them from A, and update
the profiles following the procedure for deleted relational
assertions; (3) compute Πφ,T , i.e., the minimal patterns for
φ, and add them to the profiles; (4) update the statistics,which
is performed similarly as described for the above deletion
case, but increasing instead of decreasing the values.

A typing assertion φ is deleted. In this case, if φ = C(a),
we proceed as follows: (1) if φ is redundant, stop here; oth-
erwise, (2) let be facts(a) the set of relational assertions in
A having a in subject/object position, calculate Π facts(a),T

(the set of minimal patterns for f acts(a)) and twomore sets:
mp+(a) and mp−(a), which are, respectively, the subset of
novel patterns for facts(a) and the set of patterns that are
no longer minimal patterns for facts(a) as a consequence of
removing φ, (3) update statistics as follows:

(a) for all π ∈ mp+(a), increase frequency by one and for
all π ∈ mp−(a) decrease the frequency by one

(b) for all π inferred from mp−(a) excluding those that can
be also inferred fromΠ facts(a),T , decrease the number of
instances by one.

(c) for all π ∈ mp+(a)∪mp−(a) revise cardinality descrip-
tors

A typing assertion φ is added. In this case, if φ = C(a), we
proceed as follows: (1) if φ is redundant, stop here; (2) check
if φ make some triple in A redundant and eventually delete
them fromA and update the profiles following the procedure
for deleted typing assertions; (3) compute the set mp+(a)

of novel minimal patterns for facts(a) as a consequence of
adding φ, (4) update statistics as follows:

(a) for all π ∈ mp+(a) increase frequency by one
(b) for all π inferred from mp+(a) increase the number of

patterns by one
(c) for all π ∈ mp+(a) revise cardinality descriptors

We make a few observations about the cost of key oper-
ations that are part of the update procedure. The update of
pattern count statistics (e.g., steps 3.a and 3.b in the delete
of a relational assertion) operates only over the (smaller set
of) patterns, while the update of cardinality descriptors (e.g.,
3.c) in the delete of a relational assertion) must retrieve every
relational assertionminimally represented byΠφ,T . Anopen
issue is how to optimize the efficiency of the latter operation,
whether by persisting the table that is used in memory to
associate patterns (adding I/O disk overhead) and relational
assertions, or by submitting queries on-the-fly. Empirically
answering to this question is out of the scope of this paper
and is left for future work. A second observation concerns
the search for potentially redundant relational and typing
assertions in several steps of the update procedure. Although
frequent, these searches are local in the sense that inference-
related dependencies between relational assertions can occur
only between assertions having the same subject and object
(e.g., P(a, b) and Q(a, b)). Similarly, dependencies between
typing assertions can be found only between assertions hav-
ing the same subject (e.g., C(a) and D(a)).

123

ABSTAT-HD: a scalable tool for profiling very large knowledge graphs

References

1. Abedjan, Z., Grütze, T., Jentzsch, A., Naumann, F.: Profiling and
mining RDF data with prolod++. In: 2014 IEEE 30th International
Conference on Data Engineering, pp. 1198–1201. IEEE (2014)

2. Ali,W., Saleem,M., Yao, B., Hogan, A., Ngomo, A.-C.N.: Storage,
indexing, query processing, and benchmarking in centralized and
distributed RDF engines: a survey. arXiv:2009.10331 (2020)

3. Alzogbi, A., Lausen, G.: Similar structures inside RDF-graphs.
LDOW 996 (2013)

4. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K.,
Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.:
Spark SQL: relational data processing in spark. In: SIGMOD 15,
pp. 1383–1394. Association for Computing Machinery (2015)

5. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODSTATS–an
extensible framework for high-performance dataset analytics. In:
International Conference on Knowledge Engineering and Knowl-
edge Management, pp. 353–362. Springer (2012)

6. Baldacci, L., Golfarelli, M.: A cost model for spark SQL. IEEE
Trans. Knowl. Data Eng. 31(5), 819–832 (2019)

7. Böhm, C., Naumann, F., Abedjan, Z., Fenz, D., Grütze, T., Hefen-
brock, D., Pohl,M., Sonnabend, D.: Profiling linked open data with
prolod. In: 2010 IEEE 26th International Conference onData Engi-
neering Workshops (ICDEW 2010), pp. 175–178. IEEE (2010)

8. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello,
G.: Introducing RDF graph summary with application to assisted
SPARQL formulation. In: 2012 23rd International Workshop on
Database and Expert Systems Applications (DEXA), pp. 261–266.
IEEE (2012)

9. Čebirić, Š, Goasdoué, F., Kondylakis, H., Kotzinos, D.,Manolescu,
I., Troullinou, G.: Summarizing semantic graphs: a survey. VLDB
J. 28(3), 295–327 (2019)

10. Čebirić, Š, Goasdoué, F., Manolescu, I.: Query-oriented summa-
rization of RDF graphs. Proc. VLDB Endow. 8(12), 2012–2015
(2015)

11. Chen, X., Chen, H., Zhang, N., Zhang, S.: SPARKRDF: elastic
discreted RDF graph processing engine with distributed memory.
In: 2015 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp.
292–300. IEEE (2015)

12. Christmann, P., Roy, R.S., Abujabal, A., Singh, J., Weikum, G.:
Look before you hop: Conversational question answering over
knowledge graphs using judicious context expansion. In: Proceed-
ings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 19, pp. 729–738. Association for
Computing Machinery, New York (2019)

13. Consens, M.P., Fionda, V., Khatchadourian, S., Pirro, G.: S+ epps:
construct and explore bisimulation summaries, plus optimize nav-
igational queries; all on existing SPARQL systems. Proc. VLDB
Endow. 8(12), 2028–2031 (2015)

14. Cossu, M., Färber, M., Lausen, G.: Prost: distributed execu-
tion of SPARQL queries using mixed partitioning strategies.
arXiv:1802.05898 (2018)

15. di Noia, T., Maurino, A., Magarelli, C., Palmonari, M., Rula, A.:
Using ontology-based data summarization to develop semantics-
aware recommender systems. In: TheSemanticWeb—ESWC2018
Satellite Events, Heraklion, Crete, Greece, June 3–7, 2018 (2018)

16. Diao, Y., Guzewicz, P., Manolescu, I., Mazuran, M.: Spade: a mod-
ular framework for analytical exploration of RDF graphs (2019)

17. Diao, Y., Guzewicz, P., Manolescu, I., Mazuran, M.: Effi-
cient exploration of interesting aggregates in RDF graphs.
arXiv:2103.17178 (2021)

18. Dudáš, M., Svátek, V., Mynarz, J.: Dataset summary visualization
with lodsight. In: European Semantic Web Conference, pp. 36–40.
Springer (2015)

19. Forchhammer, B., Jentzsch,A.,Naumann, F.: LODOP-multi-query
optimization for linked data profiling queries. In: PROFILES@
ESWC (2014)

20. Goasdoué, F., Guzewicz, P., Manolescu, I.: RDF graph summariza-
tion for first-sight structure discovery. VLDB J. 29(5), 1191–1218
(2020)

21. Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.:
A survey on knowledge graph-based recommender systems. IEEE
Trans. Knowl. Data Eng. p. 1 (2020)

22. Guo, X., Gao, H., Zou, Z.: Leon: A distributed RDF engine for
multi-query processing. In: International Conference on Database
Systems for Advanced Applications, pp. 742–759. Springer (2019)

23. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: Triad: a
distributed shared-nothing RDF engine based on asynchronous
message passing. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, pp. 289–300
(2014)

24. Hogan, A., Blomqvist, E., Cochez, M., dAmato, C., de Melo,
G., Gutierrez, C., Gayo, J.E.L., Kirrane, S., Neumaier, S.,
Polleres, A., Navigli, R., Ngomo, A.-C.N., Rashid, S.M., Rula,
A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.:
Knowledge graphs (2020)

25. Jabeen, H., Graux, D., Sejdiu, G.: Scalable knowledge graph
processing using SANSA. In: Knowledge Graphs and Big Data
Processing, pp. 105–121. Springer (2020)

26. Langegger, A., Woss,W.: RDFSTATS-an extensible RDF statistics
generator and library. In: 2009 20th International Workshop on
Database and Expert SystemsApplication, pp. 79–83. IEEE (2009)

27. Lian, X., Zhang, T.: The optimization of cost-model for join opera-
tor on spark SQL platform. MATECWeb Conf. 173, 01015 (2018)

28. Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R.,
Gómez-Pérez, A.: Loupe-an online tool for inspecting datasets in
the linked data cloud. In: International Semantic Web Conference
(Posters and Demos) (2015)

29. Mohamed, S.K., Novácek, V., Nounu, A.: Discovering protein drug
targets using knowledge graph embeddings. Bioinformatics 36(2),
603–610 (2020)

30. Myklebust, E.B., Jiménez-Ruiz, E., Chen, J., Wolf, R., Tollef-
sen, K.E.: Knowledge graph embedding for ecotoxicological effect
prediction. In: The Semantic Web—ISWC, Proceedings, Part II,
volume 11779 of Lecture Notes in Computer Science, pp. 490–
506. Springer (2019)

31. Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Tay-
lor, J.: Industry-scale knowledge graphs: lessons and challenges.
Commun. ACM 62(8), 36–43 (2019)

32. Özsu, M.T.: A survey of RDF data management systems. Front.
Comp. Sci. 10(3), 418–432 (2016)

33. Pan, Z., Zhu, T., Liu, H., Ning, H.: A survey of RDF management
technologies and benchmark datasets. J. Ambient. Intell. Humaniz.
Comput. 9(5), 1693–1704 (2018)

34. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Mad-
den, S., Stonebraker,M.:Acomparisonof approaches to large-scale
data analysis. In: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data, pp. 165–178 (2009)

35. Principe, R.A.A., Spahiu, B., Palmonari, M., Rula, A., De Paoli,
F., Maurino, A.: Abstat 1.0: compute, manage and share semantic
profiles of RDF knowledge graphs. In: European Semantic Web
Conference, pp. 170–175. Springer (2018)

36. Ragone, A., Tomeo, P., Magarelli, C., Di Noia, T., Palmonari,
M., Maurino, A., Di Sciascio, E.: Schema-summarization in
linked-data-based feature selection for recommender systems. In:
Proceedings of the Symposium onApplied Computing, SAC 2017,
Marrakech, Morocco, April 3–7, 2017, pp. 330–335 (2017)

37. Reza, T., Halawa, H., Ripeanu, M., Sanders, G., Pearce, R.: Scal-
able pattern matching in metadata graphs via constraint checking.
arXiv:1912.08453 (2019)

123

http://arxiv.org/abs/2009.10331
http://arxiv.org/abs/1802.05898
http://arxiv.org/abs/2103.17178
http://arxiv.org/abs/1912.08453

R. A. Alva Principe et al.

38. Riondato, M., García-Soriano, D., Francesco, B.: Graph summa-
rization with quality guarantees. Data Min. Knowl. Disc. 31(2),
314–349 (2017)

39. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiq-
uity of large graphs and surprising challenges of graph processing:
extended survey. VLDB J. 1–24 (2019)

40. Schaible, J., Gottron, T., Scherp,A.: Termpicker: enabling the reuse
of vocabulary terms by exploiting data from the linked open data
cloud. In: International Semantic Web Conference, pp. 101–117.
Springer (2016)

41. Schätzle, A., Neu, A., Lausen, G., Przyjaciel-Zablocki, M.: Large-
scale bisimulation of RDF graphs. In: Proceedings of the Fifth
Workshop on Semantic Web Information Management, p. 1. ACM
(2013)

42. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.:
S2rdf: RDF queryingwith SPARQL on spark. Proc. VLDBEndow.
9(10) (2016)

43. Sejdiu, G., Ermilov, I., Lehmann, J., Mami M.N.: DISTLOD-
STATS: distributed computation of RDF dataset statistics. In:
International Semantic Web Conference, pp. 206–222. Springer
(2018)

44. Song, Q., Yinghui, W., Lin, P., Dong, L.X., Sun, H.: Mining sum-
maries for knowledge graph search. IEEE Trans. Knowl. Data Eng.
30(10), 1887–1900 (2018)

45. Spahiu, B., Maurino, A., Palmonari, M.: Towards improving the
quality of knowledge graphs with data-driven ontology patterns
and SHACL. In: ISWCBestWorkshop Papers, pp. 103–117 (2018)

46. Spahiu, B., Porrini, R., Palmonari, M., Rula, A., Maurino, A.:
ABSTAT: ontology-driven linked data summarieswith patternmin-
imalization. In: European SemanticWebConference, pp. 381–395.
Springer (2016)

47. Staab, S., Studer, R.: Handbook on Ontologies. Springer Science
and Business Media, Singapore (2010)

48. Trotter, W.T.: Partially ordered sets. Handb. Comb. 1, 433–480
(1995)

49. Wu, B., Zhou, Y., Yuan, P., Jin, H., Liu, L.: SEMSTORE: A
semantic-preserving distributed RDF triple store. In: Proceedings
of the 23rdACM International Conference onConference on Infor-
mation and Knowledge Management, pp. 509–518 (2014)

50. Wylot, M., Hauswirth, M., Cudré-Mauroux, P., Sakr, S.: RDF data
storage and query processing schemes: a survey. ACM Comput.
Surv. (CSUR) 51(4), 1–36 (2018)

51. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed
graph engine for web scale RDF data. Proc. VLDB Endow. 6(4),
265–276 (2013)

52. Zhang, H., Duan, Y., Yuan, X., Zhang, Y.: ASSG: Adaptive struc-
tural summary for RDF graph data. In: International SemanticWeb
Conference (Posters and Demos), pp 233–236. Citeseer (2014)

53. Zhang,X., Chen, L., Tong,Y.,Wang,M.: EAGRE: towards scalable
i/o efficient SPARQL query evaluation on the cloud. In: 2013 IEEE
29th International Conference on Data Engineering (ICDE), pp.
565–576. IEEE (2013)

54. Zneika, M., Vodislav, D., Kotzinos, D.: Quality metrics for RDF
graph summarization. Semantic Web (Preprint):1–30 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	ABSTAT-HD: a scalable tool for profiling very large knowledge graphs
	Abstract
	1 Introduction
	2 Profiling model
	2.1 Preliminaries: datasets, assertions, and terminologies
	2.2 Ontology-based summarization
	2.3 Profiles and statistics

	3 Profiling process
	3.1 Profile creation
	3.2 Profile creation via relational model
	3.3 Complexity

	4 ABSTAT: highly distributed
	4.1 Architecture
	4.2 ABSTAT-HD builder
	4.2.1 Scalability issues
	4.2.2 Extended components
	4.2.3 Big data environment

	5 Evaluation
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Experimental setting
	5.1.3 Workload

	5.2 Performance analysis
	5.3 ABSTAT-HD versus related work
	5.4 Discussion on the results
	5.5 Potential errors detected in the MAKG

	6 Related work
	6.1 Knowledge graph profiling
	6.2 Scalable graph processing

	7 Conclusions
	8 Appendix
	8.1 Proof of Theorem 1
	8.2 Profile updating

	References

