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ABSTRACT
Motivation: All-alpha membrane proteins constitute a
functionally relevant subset of the whole proteome. Their
content ranges from about 10 to 30% of the cell proteins,
based on sequence comparison and specific predictive
methods. Due to the paucity of membrane proteins
solved with atomic resolution, the training/testing sets of
predictive methods for protein topography and topology
routinely include very few well-solved structures mixed with
a hundred proteins known with low resolution. Moreover,
available predictors fail in predicting recently crystallised
membrane proteins (Chen et al., 2002). Presently the
number of well-solved membrane proteins comprises
some 59 chains of low sequence homology. It is therefore
possible to train/test predictors only with the set of
proteins known with atomic resolution and evaluate more
thoroughly the performance of different methods.
Results: We implement a cascade-neural network (NN),
two different hidden Markov models (HMM), and their
ensemble (ENSEMBLE) as a new method. We train and
test in cross validation the three methods and ENSEMBLE
on the 59 well resolved membrane proteins. ENSEMBLE
scores with a per-protein accuracy of 90% for topography
and 71% for topology, outperforming the best single
method of 7 and 5 percentage points, respectively. When
tested on a low resolution set of 151 proteins, with no
homology with the 59 proteins, the per-protein accuracy
of ENSEMBLE is 76% for topography and 68% for
topology. Our results also indicate that the performance
of ENSEMBLE is higher than that of the best predictors
presently available on the Web.
Contact: gigi@biocomp.unibo.it; http://www.biocomp.
unibo.it

INTRODUCTION
Membrane proteins are involved in almost every cell
activity and signal transmission. However their modelling
is generally more difficult than that of globular proteins,
due to the few examples of membrane proteins known
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with atomic resolution. For this reason a 2D model of the
protein is routinely predicted, highlighting those regions
that can interact with the membrane phase. This is done
by predicting first the location of transmembrane segments
along the protein sequence (topography) and then the
location of the N and C terminus with respect to the
lipid bilayer (topology). This last step, depending on the
predictive method, can be computed using different ‘ad
hoc’ rules derived from experiments and/or statistical
analysis (von Heijne, 1999) or using hidden Markov
models (Tusnady and Simon, 1998; Krogh et al., 2001).

Two types of membrane proteins have been charac-
terised: the first includes all-alpha proteins that, to a
different extent, interact with the lipid bilayer of the
cytoplasmic membrane of all cells (White and Wimley,
1999); the second group includes the so called beta-barrel
membrane proteins, which interact with the outer mem-
brane with antiparallel beta-strands forming barrels, with
an even number of segments (Schulz, 2000). Few methods
have been described so far for the prediction of the all-beta
membrane proteins (Jacoboni et al., 2001; Martelli et
al., 2002; Wimley, 2002, and references therein). On the
contrary, several methods have been developed to predict
the location of transmembrane segments in the all-helical
membrane proteins (for detailed reviews see Möller et al.,
2001; Chen et al., 2002).

Routinely, different datasets are used to score the
predictor performance. Basically two sets of proteins are
considered: the first includes high resolution structures,
the second topological models obtained mainly from
experimental data (referred to as the low resolution
set; Möller et al., 2000). A recent thorough analysis
highlights that none of the different advanced methods,
based on machine learning and available on the Web (Web
predictors), when tested on the high resolution structures
of membrane proteins perform consistently best, and that
wrong predictions are different for different predictors
(Chen et al., 2002).

With the purpose of overcoming the blur introduced
by the low resolution training set, we select 59 high-
resolution membrane proteins with low sequence identity
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to train/test our predictors. We implement a neural
network and two HMMs, known to be among the best
performing predictors for the task at hand (Chen et al.,
2002). We also develop their ensemble (ENSEMBLE)
and this is new for the prediction of membrane proteins.
Our strategy allows a more thorough comparison between
different approaches, based on the high resolution set
of membrane proteins, and uses as a blind test the low
resolution set. This is different from what was done
before, since the predictors previously described were
trained on mixed sets of proteins, including also the low
resolution models and did not compare predictors on the
same training/testing set.

With our approach, we find that all methods perform
similarly; however the performance is maximal only when
the ensemble of predictors is used, including the neural
network and the two HMMs, all trained on evolutionary
information. Furthermore, when predicting both the high
resolution and low resolution sets of membrane proteins,
ENSEMBLE outperforms the best performing Web pre-
dictors.

ABSTRACT SYSTEM AND METHODS
Datasets
We use three datasets for different purposes. The
first one (S59) is derived from the database of mem-
brane proteins available at http://blanco.biomol.uci.edu
(Jayasinghe et al., 2001). S59 comprises 59 high
resolution membrane proteins, which are used for train-
ing and scoring the predictive methods (available at
http://www.biocomp.unibo.it/gigi/ENSEMBLE). The
second (S151) is a Möller’s database subset (Möller
et al., 2000) containing only low resolution proteins,
whose sequences do not have similarity with those
in S59. The third dataset (S1396) is a non redundant
set of 1396 globular proteins, whose structures are
known and whose sequences are less than 25% similar
(http://www.cbrc.jp/papia/papia.html).

Each predictor is trained using evolutionary information
in the form of sequence profiles after multiple sequence
alignments. Sequence alignments were obtained using
PSI-BLAST (Altschul et al., 1997); three rounds with
threshold equal to 0.001) to search against the non-
redundant database (available at http://www.ncbi.nlm.nih.
gov/BLAST). To train and test the methods a 41-fold
cross validation procedure was adopted, in order to ensure
that no detectable sequence similarity among training and
testing sets were present.

The neural network-based predictor
A feed-forward neural network (NN) is implemented and
trained with the back-propagation algorithm to discrimi-
nate transmembrane (TM) alpha helices from extra mem-
brane regions, similarly to what described elsewhere (Rost

Transmembrane Inner SideOuter Side

× 10
...

....
× 13

.....
× 11

×13
....× 11

...
..

× 10
...
× 10

× 10
...

Transmembrane Inner SideOuter Side

× 2

× 2

× 10
....

× 10
....

....
× 10

...
× 10

HMM 1

HMM 2

Fig. 1. Graphic models of the two HMMs implemented in this paper.
HMM1 models hydrophobic transmembrane helices and HMM2
captures the helix amphipathy. The number of trainable parameters
is 173 and 258 for HMM1 and HMM2, respectively. The states filled
with the same color share the same emission parameters.

et al., 1995). The network architecture basically consists
of a perceptron with one hidden layer containing 15 hid-
den nodes and an input window spanning 17 residues (for
a total of 340 input nodes; each residue is coded with 20
neurons). Two output nodes are considered (TM helices
and loops). The architecture of the predictor is extended
to include a second cascade network to filter out spurious
assignments. This second network consists of 34 inputs
(2*17), 5 hidden and 2 output nodes.

The hidden Markov model-based predictors
We implement two types of hidden Markov models
(HMM) in order to capture different features of TM
helices present in the data base. The first HMM, (HMM1
in Fig. 1), is conceptually similar to that introduced by
Krogh et al. (2001). In HMM1 the TM segments are
modelled by means of two types of states, one for the
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helix core and one for the caps. This model captures
the hydrophobic nature of most TM helices. The second
HMM is used to model also amphipathic TM helices.
HMM2 (Fig. 1) is endowed with a larger number of free
parameters, in order to mimic the periodic pattern of
hydrophobic and hydrophilic residues that characterise
some TM helical segments in S59. This is obtained using
a state-tying repetition each 7 residues. In either model,
the inner and outer loops are described with different
sets of emission parameters, capturing the topological
information. The allowed transitions between the states
describe the grammar of TM proteins and constrain the
minimum length of TM segments to 15 and 16 for HMM1
and HMM2, respectively. The maximal length is unbound
in both models, in order to increase their flexibility.
Differently from previous implementations (Tusnady
and Simon, 1998; Krogh et al., 2001), our HMMs take
advantage of evolutionary information derived from
sequence profile (Martelli et al., 2002). Training and
testing algorithms are described elsewhere (Martelli et al.,
2002).

THE ENSEMBLE PREDICTOR
It is possible to take advantage of the disagreement
among different predictors by using an ensemble method
that averages over the different answers (e.g. Sollich
and Krogh, 1996, and references therein). More formally
(following Sollich and Krogh, 1996), for a given input x ,
if 〈ε(x)〉 is the error obtained by averaging the errors of
the single methods separately, the ensemble error e(x) can
be evaluated as

e(x) = 〈ε(x)〉 − 〈a(x)〉 (1)

where 〈a(x)〉 is the average disagreement of the single
methods with respect to the mean ensemble value. Since
both quantities are positive, no improvement is obtained
when using a joint method if there is no disagreement
(〈a(x)〉 ∼= 0). On the contrary, when there is disagreement
among different methods, we can expect an improvement
from Equation (1) if an ensemble method is used. This is
so, provided that single methods perform similarly. Using
this notion, we define a meta-predictor (ENSEMBLE) that
averages the predictive answer over the three methods
(NN, HMM1 and HMM2). Differently from a consensus
method, ENSEMBLE computes the local average of the
three methods for each residue in the sequence. This is
possible, since both NN and HMMs compute the residue
probability of being or not in a TM helix.

More formally, for each sequence position i of a protein
p we can define the difference between the TM helical (H)
and loop (L) probabilities of the neural network outputs as:

�N N (p, i) = N N (H, p, i) − N N (L , p, i) (2)

Then we can define the difference between the a posteriori
probability for each of the two HMMs of being in a TM
helical state (H) and the a posteriori probability of being
in a loop state (inner I or outer O) as:

�H M M(p, i) = AP(H, p, i) − (AP(I, p, i)

+AP(O, p, i)) (3)

The ENSEMBLE predictor computes the average propen-
sity value as:

E(p, i) = (�N N (p, i) + �H M M1(p, i)

+�H M M2(p, i))/3 (4)

In this way, for each sequence position i in a protein
p, ENSEMBLE computes a value in the range of [-1,1],
where positive values indicate that the residue is likely to
be in a TM helix.

Selecting the topographical model
The optimal topographical model is computed by using
the MaxSubSeq algorithm (Fariselli et al., 2003) based
on dynamic programming. MaxSubSeq uses the outputs
of a given predictive method and by model optimisation
locates the TM segments along the protein sequence.
Briefly, a recursive algorithm generates a scoring matrix
for each predicted sequence, by evaluating the total
sum of the output differences along a segment of fixed
length. Minimal and maximal lengths are derived from
the database of selected proteins. A model is selected by
evaluating the optimal score among those satisfying the
observed constraints.

For a given sequence position j and for a given model
i(i is the number of TM helical segments) the scoring
matrix S is computed as:

Si ( j) = max
m=λmin→λmax

{Si ( j −1), Si−1( j −m −1)+ s j
j−m}

(5)
where λmin and λmax are the minimum and maximum
length of a helical TM segment, respectively; s j

j−m is
the score of the segment that spans from the sequence
positions j − m to j .

All the predictions reported for the methods described
in this paper (NN, HMM1, HMM2 and ENSEMBLE) are
filtered using MaxSubSeq.

Assigning the topology
NN predictors code only local information in the input
window. Therefore topology can only be assigned to a
given sequence by means of statistical rules derived from a
data base of known topologies, such as the positive inside
rule (von Heijne, 1999).

In the case of HMMs, when exploiting the Viterbi’s
decoding, or the k-best variant (Tusnady and Simon,
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1998; Krogh et al., 2001), it is possible to automatically
assign the protein topology. As previously demonstrated
when predicting the topology of outer membrane proteins
(Martelli et al., 2002), the a posteriori decoding (Durbin
et al., 1998) performs better. However a drawback of this
approach is that sometimes predictions can be incoherent.
In our application this is particularly relevant with EN-
SEMBLE: we can have loop clashes (for instance, HMM1
may assign inside, while HMM2 may assign outside),
or a helix can be deleted due to the synergic predictions
of the three methods. To overcome this problem we
devise a specific set of topological rules. Given a protein
sequence, with a list of predicted TM segments, we
consider the odd and even loops flanking each TM region.
The maximum number of residues included in a loop is
60 for intra-segment loops and 30 if the loop is located at
the N or C terminus. Finally we compute the topology of
a protein p as

T op(p) =
L∑

k=1

(−1)k(P(p, I, k) − P(p, O, k)) (6)

where L is the loop number, P(p, I, k) and P(p, O, k) are
the loop propensities to be inside or outside the membrane,
respectively.

The sign of Top(p) selects the predicted topology:

• if Top(p) > 0 the predicted protein topology is OUT,

• if Top(p) < 0 the predicted protein topology is IN,

• if Top(p) = 0 the predicted protein topology is
AMBIGOUS.

Depending on the method, P(p, I, k) and P(p, O, k) are
computed from:

Rule1: the von Heijne’s rule, where P(p, I, k) is the
number of positive charges in the k-th loop and
P(p, O, k) is set equal to 0.

Rule 2: the sum of the HMM1 a posteriori propensity
computed over the residues in the k-th loop.

Rule 3: the sum of the HMM2 a posteriori propensity
computed over the residues in the k−th loop.

Rule 4: the sum of the average of the two HMM a
posteriori propensities computed over the residues
in the k-th loop.

Rule 5: (combining Rule 1 and 4) the sum of the average
of the two HMM a posteriori propensities and of the
number of positive charges in the k-th loop.

Scoring the prediction
The most relevant accuracy index is Qok , which computes
the topography accuracy of a set comprising Np proteins,
and is computed as

Qok = 100Pok/N p (7)

following a recent definition (Chen et al., 2002), where
Pok is the number of proteins whose topography is
correctly assigned. For each protein the topography is a
binary measure, since we consider 1 (correct) or 0 (wrong)
depending on the fact that a prediction meets both of the
following conditions

(i) the number of predicted segments equals the
observed one;

(ii) the overlap between the predicted and expected
segments equals at least 9 residues.

This is in agreement with a previous stringent definition
(Chen et al., 2002).

The second most relevant index is QT , which accounts
for the topology predictions and is obtained scoring a
given set of Np proteins

QT = 100PT /N p (8)

where PT is the number of proteins whose topology
is correctly assigned. Since Qok and QT are the two
most critical accuracy measures, we also compute the
error associated with them, assuming that the underlying
distributions are binomial. Both Qok and QT are evaluated
after filtering with MaxSubSeq.

The Sov index computes the overlapping between
the predicted and the expected TM segment (Zemla et
al., 1999). Finally the per-residue performance is also
evaluated using Q2(accuracy), C (correlation coefficient),
Q (coverage) and P (precision) as previously described
(Martelli et al., 2002).

RESULTS AND DISCUSSION
Topography prediction
We want first to compare machine learning approaches
based on evolutionary information on the topography pre-
diction of membrane proteins. With the S59 high resolu-
tion set, we score the NN, the HMMs and the ENSEMBLE
methods. The per-protein and per-residue performances,
evaluated using a cross validation procedure, are listed in
Table 1. Both NN and HMMs, when implemented with
evolutionary information have a comparable performance,
with NN scoring slightly better than HMMs. However the
ensemble of methods (ENSEMBLE) shows a large im-
provement of the Qok accuracy, from 7 to 9 percentage
points.
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Table 1. Performance of different methods in cross-validation on the S59
dataset

NN HMM1 HMM2 ENS

Qok% 83 81 81 90
(correct/total) (49/59) (48/59) (48/59) (53/59)

Q2% 86 84 82 85
Corr 0.714 0.692 0.658 0.708

QT M % 84 89 88 87
QLoop% 87 81 78 84
PT M % 85 80 77 82
PLoop% 87 89 88 88

SOV 0.908 0.896 0.872 0.926

Indexes when indicated are computed as percent value. The correctly
predicted proteins over the total are indicated among brackets. According to
the binomial distribution the associated maximal standard deviation of Qok
is 5%. For the definition of the different indexes see System and Methods.

Table 2. Blind test of the S151 dataset

NN HMM1 HMM2 ENS

Qok% 68 65 62. 75
(correct/total) (103/151) (98/151) (94/151) (114/151)

Q2% 84 85 83 88
Corr 0.626 0.695 0.663 0.740

QT M % 84 96 97 96
QLoop% 84 82 78 86
PT M % 64 64 60 69
PLoop% 94 98 99 98

SOV 0.870 0.864 0.839 0.894

According to the binomial distribution the associated maximal standard
deviation of Qok is 4%. For the meaning of the indices see System and
Methods.

In Table 2 our methods are tested on the S151 low
resolution set, which comprises 151 protein chains with
sequence identity <25% to those of S59 and is used as
a blind test. In this case, the TM annotation is derived
from low resolution experiments (based on molecular
biology or biochemical methods). Basically a decrease
of the general performance of the predictors is noticed.
Again ENSEMBLE outperforms the single methods. As
previously discussed (Chen et al., 2002), the observed
decrease may reflect that the low resolution set contains
new motifs but also that the low resolution assignment
over- or under-annotates TM helices.

Our predictors, including ENSEMBLE, and others in
the literature, wrongly predict signal peptides as TM
helices. This is the case for a subset of 34 proteins in
S151, containing the signal peptide. We however can take
advantage of well performing predictors of signal peptides
(Nielsen et al., 1999). When a signal peptide is predicted,
this can be excluded and the sequence is then predicted.

Table 3. The prediction of S59 topology using different rules

Method/ QT Number of
Rule ambiguous

NN
Rule 1 56% (33/59) 7
HMM1
Rule 1 56% (33/59) 9
Rule 2 68% (40/59) 0
HMM2
Rule 1 54% (32/59) 10
Rule 3 68% (40/59) 0

ENSEMBLE
Rule 1 61% (36/59) 11
Rule 2 76% (45/59) 0
Rule 3 75% (44/59) 0
Rule 4 76% (45/59) 0
Rule 5 76% (45/59) 0

According to the binomial distribution the associated maximal standard
deviation is 6%. Rules are defined in System and Methods

The data shown in Table 2 are done after deletion of the
signal peptides; 30 out of the 34 proteins are then correctly
predicted.

Topology prediction
With the predictors at hand we can also compare how
the different methods assign the protein topology on the
high resolution set. The results are reported in Table 3.
NN and the positive inside rule (Rule 1, as implemented
by our method) are clearly overcome by both HMM
assignments. Particularly, no ambiguity is detected with
HMMs, whereas the positive inside rule implementation
predicts a significant percentage of ambiguous cases.
ENSEMBLE, that is superior when predicting the protein
topography, reaches a noteworthy 76% accuracy also
when predicting protein topology. This is so, provided
that the HMM-derived information is considered (Rule 2,
3 and 4). No further improvement is detected when the
positive inside rule is used in combination with HMM
information (Rule 5).

Comparison with Web predictors
The performance of ENSEMBLE is compared to that of
other predictors recently scored as the best ones available
(Chen et al., 2002). The results are shown in Table 4.
It should however be noticed that only ENSEMBLE is
scored by adopting a cross validation procedure since
some of the predicted proteins are present in the training
sets of the other methods. When topography and topology
are predicted, it is evident that ENSEMBLE scores higher
than the other Web predictors both on S59 and S151 (for
all predictions signal peptides were excluded)
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Table 4. Performance of ENSEMBLE and other Web methods on the S59
and S151 datasets

METHOD S59 S151

Qok QT Qok QT
ENSEMBLE* 90% 76% 75% 68%

(Rule 4) (53/59) (45/59) (114/151) (103/151)
TMHMM 2.0+ 71% 54% 72% 63%

(42/59) (32/59) (109/151) (95/151)
MEMSAT◦ 71% 55% 73% 58%

(35/49) (27/49) (107/146) (85/146)
PHD§ 73% 49% 68% 62%

(43/59) (29/59) (103/151) (94/151)
HMMTOP# 76% 66% 72% 64%

(45/59) (39/59) (108/151) (97/151)

*ENSEMBLE is used adopting a cross validation procedure. Web
predictors contain some of the tested proteins in the training set. +Krogh et
al., 2001; ◦MEMSAT does not predict chains without PSI-BLAST
alignment (Jones et al., 1994); §(Rost et al., 1996); #(Tusnady and Simon,
1998). For the definition of the different indexes see System and Methods.

Predicting globular proteins
When assigning membrane proteins in a large-scale
genome analysis, it is important to know the rate of
missing membrane proteins (false negatives) and the rate
of false positive globular proteins. To evaluate this, we
compare the average propensity values predicted with
ENSEMBLE both for S59 and S1396, a set containing
1396 non redundant globular proteins. The classification
error rate of the two sets is plotted as a function of the
maximal peak value found among all the putative TM
helices in each sequence (Fig. 2). From this plot it is clear
that by rejecting propensity values �0.92, about 3% of
membrane proteins are missed (rate of false negatives)
and about 3% of globular proteins are wrongly classified
(rate of false positives). These error rates are in the range
of those reported for the best methods available (Chen et
al., 2002).

The length distribution of TM segments
A crucial question in predicting TM helices is how the
predicted length compares to that expected in the high
resolution set of membrane proteins. Routinely, predictive
methods assign the majority of segment length to one
extreme of their minimal or maximal allowed value (Chen
and Rost, 2002). Minimal and maximal TM segment
lengths are implemented as direct constraints in the
dynamic programming filter (Jones et al., 1994; Rost et
al., 1996), or in the HMM grammars (Tusnady and Simon,
1998; Krogh et al., 2001).

We overcome this problem using MaxSubSeq and
filtering the ENSEMBLE outputs. We allow minimal and
maximal lengths of 15 and 40 residues, respectively. These
limits are derived from the dataset (S59). Interestingly, and

0

2

4

6

8

10

12

14

16

0.
7

0.
72

0.
74

0.
76

0.
78 0.

8

0.
82

0.
84

0.
86

0.
88 0.

9

0.
92

0.
94

0.
96

0.
98

TM propensity (per-protein maximum peak value)

E
rr

o
r  

ra
te

 o
f p

ro
te

in
 c

la
ss

if
ic

at
io

n
 (%

) Globular

Membrane

Fig. 2. Error rate of membrane and globular protein classification.

0

10

20

30

40

50

60

70

80

90

14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4142 43

length of TM helix (residues)

D
is

tr
ib

u
ti
o

n
 (

%
)

S59

HMMTOP

MEMSAT

PHD

TMHMM2.0

ENSEMBLE

Fig. 3. The TM length distribution of S59 as compared to that
predicted with different methods.

differently from other predictors, the length distribution of
the TM helices predicted with ENSEMBLE is comparable
to that derived from S59 (Fig. 3). This indicates that our
constraints are more suited than others to partially overlap
the expected length distribution.

CONCLUSIONS
In this paper we implement three machine learning
systems, and their ENSEMBLE, as a new method. We
show that this new approach highly performs on a cross
validated data set of high resolution proteins (S59), and
scores higher than the best performing methods both on
the set of high resolution and low resolution proteins
(S151). This is noteworthy, if we consider that our results
are obtained using a cross validation procedure and
are compared to performances of other Web predictors
containing some of the tested proteins in the training set
(Chen et al., 2002). We have also introduced different
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types of rules for protein topology prediction, verifying
that the best performing one must contain the information
extracted by the HMM systems. Moreover the ensemble
predictor is quite efficient in discriminating membrane
from globular proteins. Overall these results suggest
that ENSEMBLE, when coupled with a signal peptide
predictor, can be used for large-scale annotation of all-
alpha membrane proteins.
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