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Explicit polynomial expansions of regular real functions by
means of even order Bernoulli polynomials and boundary values
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Abstract

For a functionf ∈ C2n+1 ([a, b]) an explicit polynomial interpolant ina and in the even derivatives up to the
order 2n − 1 at the end-points of the interval is derived. Explicit Cauchy and Peano representations and bounds
for the error are given and the analysis of the remainder term allows to find sufficient conditions onf so that
the polynomial approximant converges tof. These results are applied to derive a new summation formula with
application to rectangular quadrature rule. The polynomial interpolant is related to a fairly interesting boundary
value problem for ODEs. We will exhibit solutions for this problem in some special situations.
© 2004 Elsevier B.V. All rights reserved.
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1. Status of the problem

In recent years polynomial expansions for sufficiently smooth real functions in polygonal domains
by means of boundary values have been investigated in several papers. In particular in[6] there is an
expansion in Bernoulli polynomials, i.e., the polynomials of the sequence defined recursively by means
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of relations (see, for example,[12,13])

B0(x) = 1,

B ′
n(x) = nBn−1(x), n�1,∫ 1

0
Bn(x) dx = 0, n�1, (1)

for functions in the classCn([a, a + h]), a ∈ R, h > 0:

f (x)=f (a) +
n∑

k=1

Bk

(
x − a

h

)
− Bk

k! hk−1(f (k−1)(a + h) − f (k−1)(a))

− hn−1

n!
∫ 1

0
f (n)(t)(B∗

n(x − t) + (−1)nBn(t)) dt, (2)

where

B∗
n(x) =

{
Bn(x), 0�x < 1,

B∗
n(x + 1) otherwise

is the periodic Bernoulli function. Formula (2) is a sort of generalized Taylor formula: the polynomial
approximant tends to the Taylor polynomial offwith initial point inawhenh → 0. In [7,8], the previous
formula has been generalized to the bivariate case, when the approximating function is defined and
sufficiently smooth on rectangular or triangular domains. Such kind of expansions join the well-known
two-points univariate expansions, like Taylor or Lidstone one, and its generalizations to multivariate
polygonal domains[5,9,14]. The interest in this topic lies in the fact that these expansions find applications
to several problems of numerical analysis (approximation of solutions of some boundary value problems;
polynomial approximation; construction of splines with application to finite elements; etc.). For this
reason, in this note we give a further contribution to the problem with new expansions for univariate
functions that are, in some sense, symmetric to the Lidstone one.

Let us recall that for functions in the classC2n([0, 1]) the Lidstone approximation formula[2] can be
written as follows:

f (x) =
n−1∑
k=0

f (2k)(0)�k(1 − x) + f (2k)(1)�k(x) +
∫ 1

0
Gn(x, t)f (2n)(t) dt, (3)

where[2]

Gn(x, t) = −




n−1∑
k=0

(1 − t)2(n−k)−1

(2(n − k) − 1)! �k(x), x� t,

n−1∑
k=0

t2(n−k)−1

(2(n − k) − 1)!�k(1 − x), x� t,
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and{�n(x)}n∈N is the sequence of Lidstone polynomials in the interval[0, 1], which can be defined by
means of the recursive relations

�0(x) = x,

�′′
n(x) = �n−1 (x) , n�1,

�n(0) = �n(1) = 0, n�1. (4)

The polynomials�n(x) are related to the odd degree Bernoulli polynomialsB2n+1(x) by the relations
[15]

�n(x) = 22n+1

(2n + 1)! B2n+1

(
x + 1

2

)
, (5)

for eachn ∈ N. Note that both expansions in (2) and (3) give polynomial approximations tof by means
of Bernoulli polynomials using only values of this function and its derivatives at the boundary of the
interval. Moreover, denoting byBn[f ](x) andLn[f ](x) the polynomial approximants, respectively, in
(2) and (3), the following interpolation conditions hold:

Bn[f ](0) = f (0), Bn[f ](k)(1) − Bn[f ](k)(0) = f (k)(1) − f (k)(0) (6)

and

Ln[f ](2k)(0) = f (2k)(0), Ln[f ](2k)(1) = f (2k)(1), (7)

for eachk = 0, 1, . . . , n − 1. Note that conditions (6) include the interpolation of the functionf at the
pointx = 1.

In Section 2, we introduce the new polynomial expansion, determine the related property of interpola-
tion and study the remainder term. The analysis of the remainder allows us to find sufficient conditions
onf so that the polynomial approximant converges tof. In Section 3 we finally apply previous results to
derive a new summation formula with application to rectangular quadrature rule. The polynomial inter-
polant is related to a fairly interesting boundary value problem for ODEs. We exhibit solutions for this
problem in some special situations.

2. Construction of the expansion

2.1. Preliminary results

Let us consider the polynomial sequence defined recursively by means of relations

v0(x) = 1,

v′
k(x) =

∫ x

0
vk−1(t) dt, k�1,∫ 1

0
vk(x) dx = 0, k�1. (8)
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By definition,vk(x) is a polynomial of degree not greater than 2k and by (8) it is easy to calculate the
first polynomials of the sequence:

v0(x) = 1, v1(x) = x2

2
− 1

6
, v2(x) = x4

24
− x2

12
+ 7

360
, . . . .

The polynomial sequence{vk(x)} is related to the Lidstone polynomials by the following

Proposition 1. For eachk�1we have

v′
k(x) = �k−1(x), (9)

where�k−1(x) is the Lidstone polynomial of degree2k − 1.

Proof. In fact, by (8) we have

v′
1(x) = x,

d2

dx2 v′
k(x) = v′

k−1(x), k > 1,

v′
k(0) = v′

k(1) = 0, k > 1,

and Eq. (9) follows for eachk =1, 2, . . . by the uniqueness of Lidstone polynomial sequence (4)[2]. �

The polynomial sequence (8) is related to Bernoulli polynomials of even degree by the following:

Proposition 2. For eachk�1

vk(x) = 22k

(2k)!B2k

(
1 + x

2

)
. (10)

Proof. By (9) and relations (5) by integration of the second equation in (8) it follows

vk(x)=vk(0) +
∫ x

0
v′

k(t) dt

= vk(0) + 22k−1

(2k − 1)!
∫ x

0
B2k−1

(
1 + t

2

)
dt

= vk(0) + 22k

(2k − 1)!
∫ (1+x)/2

1/2
B2k−1(t) dt

= vk(0) + 22k

(2k)!
(

B2k

(
1 + x

2

)
− B2k

(
1

2

))
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and by the third equation in (8)

0=
∫ 1

0
vk(x) dx

=
∫ 1

0

(
vk(0) + 22k

(2k)!
(

B2k

(
1 + x

2

)
− B2k

(
1

2

)))
dx

= vk(0) + 22k

(2k)!
(∫ 1

0
B2k

(
1 + x

2

)
dx − B2k

(
1

2

))

= vk(0) − 22k

(2k)!B2k

(
1

2

)

since∫ 1

0
B2k

(
1 + x

2

)
dx = 2

(2k + 1)

(
B2k+1(1) − B2k+1

(
1

2

))
= 0

for eachk�1, in force of the following well-known properties of Bernoulli polynomials[1]:

Bn

(1
2

)= −(1 − 21−n)Bn(0), n�1, (11)

Bn = Bn(0) = Bn(1), n�1, (12)

B2n+1(0) = 0, n�1. � (13)

2.2. The main theorem

Now we can prove the following

Theorem 3 (Main theorem). Let us denote by{vk(x)}k=0,1,2,... the polynomial sequence defined recur-
sively by means of relations(8); then for eachf ∈ C2n+1([0, 1]) the following identity holds:

f (x) = P0,n[f ](x) + R0,n(f, x), (14)

whereP0,n[f ](x) is the polynomial defined by

P0,n[f ](x)=f (0) +
n∑

j=1

[f (2j−1)(1)(vj (x) − vj (0))

− f (2j−1)(0)(vj (1 − x) − vj (1))] (15)

and the remainderR0,n(f, x) in its Peano’s and Cauchy’s representation is given respectively by

R0,n(f, x) =
∫ 1

0
f (2n+1)(t)K0,n(x, t) dt (16)
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with

K0,n(x, t) =




−
n∑

j=1
(vj (x) − vj (0))

(1 − t)2n−2j+1

(2n − 2j + 1)! , x� t,

t2n

(2n)! +
n∑

j=1
(vj (1 − x) − vj (1))

t2n−2j+1

(2n − 2j + 1)! , t �x

(17)

and

R0,n(f, x) = Q0,2n+1(x)

(2n)! f (2n+1)(�), � ∈ (0, 1), (18)

where we have set

Q0,2n+1(x) = 2

(2n + 1)(2n + 2)

(
B2n+2(x) − B2n+2 − 22n+2

(
B2n+2

(x

2

)
− B2n+2

))
. (19)

In addition, the polynomialP0,n[f ](x) satisfies the following interpolation conditions:

P0,n[f ](0) = f (0),

d2k−1

dx2k−1 P0,n[f ](0) = d2k−1

dx2k−1 f (0), k = 1, . . . , n,

d2k−1

dx2k−1 P0,n[f ](1) = d2k−1

dx2k−1 f (1), k = 1, . . . , n.

(20)

Proof. Let f ∈ C2n+1([0, 1]) be fixed. We start by proving that the polynomial (15) satisfies the interpo-
lation conditions (20): the first of conditions (20) holds trivially; on the other hand for eachj = 0, 1, . . .

andk = 1, 2, . . ., by an iteration of the second equation in (8) we obtain

d2(k−1)

dx2(k−1)
vj (x) =

{
vj−k+1(x), k�j + 1,

0, j �k − 2,

so that

d2k−1

dx2k−1 vj (x) = v′
j−k+1(x) =

∫ x

0
vj−k(t) dt,

d2k−1

dx2k−1 vj (1 − x) = d

dx
vj−k+1(1 − x) = −v′

j−k+1(1 − x) = −
∫ 1−x

0
vj−k(t) dt,

for eachk�j and

d2k−1

dx2k−1 P0,n[f ](x)

∣∣∣∣
x=0

=
n∑

j=k

[
f (2j−1)(1)

∫ 0

0
vj−k(t) dt + f (2j−1)(0)

∫ 1

0
vj−k(t) dt

]
= f (2k−1)(0),
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the third of conditions (20) can be proved by analogy. Let us now prove that the Cauchy’s representation
(18) holds. In fact, according to the interpolation conditions (20), the functionx → R0,n(f, x) = f (x) −
P0,n[f ](x) satisfies

R0,n(f, 0) = 0,

d2k−1

dx2k−1 R0,n(f, x)

∣∣∣∣
x=0

= d2k−1

dx2k−1 R0,n(f, x)

∣∣∣∣
x=1

= 0, k = 1, . . . , n, (21)

and analogue conditions are satisfied, for eachn�1, by the(2n + 1)-degree polynomialQ0,2n+1 as
defined in (19):

Q0,2n+1(0) = 0,

d2k−1

dt2k−1 Q0,2n+1(t)

∣∣∣∣
t=0

= d2k−1

dt2k−1 Q0,2n+1(t)

∣∣∣∣
t=1

= 0, k = 1, . . . , n, (22)

in virtue of (11)–(13). Let nowx ∈ (0, 1) be fixed; by (21), (22) the function

�(�) = R0,n(f, �) − R0,n(f, x)

Q0,2n+1(x)
Q0,2n+1(�) (23)

satisfies the conditions

�(0) = 0,

d2k−1

d�2k−1�(�)

∣∣∣∣
�=0

= d2k−1

d�2k−1 �(�)

∣∣∣∣
�=1

= 0, k = 1, . . . , n,

and, in addition,� vanishes also at� = x, so that by the Rolle’s theorem the first derivative�′(�) must
vanish at a point�1 : 0< �1 < x. The three zeros 0, �1, 1 of �′(�) imply, by a repeated application of
Rolle’s theorem, the existence of a point�2 ∈ (0, 1) s.t.�(3)(�2)=0 and the three zeros 0, �2, 1 of�(3)(�)
imply the existence of a zero�3 ∈ (0, 1) of �(5)(�) and so on. Now, by induction,�(2n+1)(�) must vanish
at a point� ∈ (0, 1), so that differentiating(2n + 1) times the function in (23) we obtain

0 = f (2n+1)(�) − R0,n(f, x)

Q0,2n+1(x)
(2n)!,

that is (18). It remains to prove the Peano’s representation (16). For this, we have to note that, by virtue
of previous results, for each fixedx ∈ [0, 1] the linear functional

f → R0,n(f, x)

is a Peano’s type functional onC2n+1([a, b]), i.e.,

R0,n(p, x) = 0

for eachp in the spaceP2n of the polynomials inx of degree not greater than 2n. By applying the well
known Peano’s kernel theorem[10, p. 70]Eq. (16) is certainly true if

K0,n(x, t) = 1

(2n)! R0,n((x − t)2n+ , x),
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whereR0,n is applied to(x − t)2n+ considered as a function ofx:

(x − t)2n+ =
{

0, x < t,

(x − t)2n, x� t;
on the other hand,

R0,n((x − t)2n+ , x)

(2n)!

=




−
n∑

j=1
(vj (x) − vj (0))

(1 − t)2n−2j+1

(2n − 2j + 1)! , x < t,

(x − t)2n

(2n)! −
n∑

j=1
(vj (x) − vj (0))

(1 − t)2n−2j+1

(2n − 2j + 1)! , x� t,

=




−
n∑

j=1
(vj (x) − vj (0))

(1 − t)2n−2j+1

(2n − 2j + 1)! , x < t,

t2n

(2n)! +
n∑

j=1
(vj (1 − x) − vj (1))

t2n−2j+1

(2n − 2j + 1)! , x� t,

(24)

that is Eq. (16) holds true. The last equation in (24) is obtained using the expansion

(x − t)2n

(2n)! =(−t)2n

(2n)! +
n∑

j=1

[
(1 − t)2n−2j+1

(2n − 2j + 1)!(vj (x) − vj (0))

− (−t)2n−2j+1

(2n − 2j + 1)!(vj (1 − x) − vj (1))

]
,

which holds since(x − t)2n/(2n)!, considered as a function ofx, is a polynomial of degree 2n, and hence
it must coincide with its polynomial expansion (15).�

Remark 4. For eachf ∈ C2n+1([0, 1]) a symmetric expansion (with respect to axisx = 1
2) to that in

Theorem 3 is also possible; in particular, for eachx ∈ [0, 1] the following identity holds:

f (x) = P1,n[f ](x) + R1,n(f, x), (25)

whereP1,n[f ](x) is the polynomial defined by

P1,n[f ](x)=f (1) +
n∑

j=1

[f (2j−1)(1)(vj (x) − vj (1))

− f (2j−1)(0)(vj (1 − x) − vj (0))];
for the remainderR1,n(f, x) there are the following representations:

(1) Peano’s representation of the error:

R1,n(f, x) =
∫ 1

0
f (2n+1)(t)K1,n(x, t) dt,
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where

K1,n(x, t) =




−(1 − t)2n

(2n)! −
n∑

j=1
(vj (x) − vj (1))

(1 − t)2n−2j+1

(2n − 2j + 1)! , x� t,

n∑
j=1

(vj (1 − x) − vj (0))
t2n−2j+1

(2n − 2j + 1)! , t �x.

(2) Cauchy representation of the error: for eachx ∈ (0, 1) there exists� ∈ (0, 1) s.t.

R1,n(f, x) = Q1,2n+1(x)

(2n)! f (2n+1)(�),

where we have set

Q1,2n+1(x)= 2

(2n + 1)(2n + 2)

(
B2n+2(x) − B2n+2

−22n+2
(

B2n+2

(x

2

)
− B2n+2

(
1

2

)))
.

The polynomialP1,n[f ](x) satisfies the following interpolation conditions:

P1,n[f ](1) = f (1),

d2k−1

dx2k−1 P1,n[f ](0) = d2k−1

dx2k−1f (0), k = 1, . . . , n,

d2k−1

dx2k−1 P1,n[f ](1) = d2k−1

dx2k−1f (1), k = 1, . . . , n.

These results follow by analogy from (14)–(20) after the change of variablex → 1 − x.

Remark 5. If f ∈ C2n+1([a, b]) similar expansions to (14), (25) on[a, b] can be obtained by means of
a linear transformation of the variable; in particular, if we seth = (b − a) we get from (14), (15), (18)

f (x)=f (a) +
n∑

j=1

[
h2j−1f (2j−1)(b)

(
vj

(
x − a

h

)
− vj (0)

)

−h2j−1f (2j−1)(a)

(
vj

(
b − x

h

)
− vj (1)

)]

+ h2n+1
Q0,2n+1

(
x − a

h

)
(2n)! f (2n+1)(�), (26)

where the point� ∈ (a, b) in the reminder term depends onx. The remainder, in its Peano’s representation,
is given by

R0,n(f, x) = h2n+1
∫ 1

0
f (2n+1)(a + th)K0,n

(
x − a

h
, t

)
dt, (27)

with K0,n(x, t) as defined in (17).
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The Cauchy’s representation of the error stated in Theorem 3 allows us to derive bounds for the
remainder; consequently, we can give sufficient conditions onf so that the polynomial approximant (15)
converges tof.

Proposition 6 (Bound for remainder). If f ∈ C2n+1([0, 1]), then for the error functionR0,n(f, x)

it holds

|R0,n(f, x)|�4
(22n+2 − 1)

(2n + 2)! |B2n+2| max
x∈[0,1] |f

(2n+1)(x)|. (28)

Proof. We have

|Q0,2n+1(x)|= 2

(2n + 1)(2n + 2)

∣∣∣B2n+2(x) − B2n+2

−22n+2
(
B2n+2

(x

2

)
− B2n+2

)∣∣∣
�

2

(2n + 1)(2n + 2)

(
(22n+2 − 1)|B2n+2|

+
∣∣∣B2n+2(x) − 22n+2B2n+2

(x

2

)∣∣∣)
�

4

(2n + 1)(2n + 2)
(22n+2 − 1)|B2n+2|

since by (11)–(13) the functionB2n+2(x) − 22n+2B2n+2

(x

2

)
assumes its maximum modulus at the

boundary of[0, 1]. The thesis follows from (18). �

Corollary 7. Letf ∈ C∞([0, 1]) and suppose that there exist a positive constantp < � and an integer
� > 0 s.t.

f (2n+1)(x) = O(p2n+1) for all n��, x ∈ [0, 1],
then the polynomial sequence{P0,n[f ](x)}n absolutely and uniformly converges tof (x) in [0, 1].
Proof. In fact by the Euler’s formula[11, p. 5]

B2n = (−1)n+1 2(2n)!
(2�)2n

∞∑
k=1

k−2n, n�1,

it follows that

|B2n+2|� 2(2n + 2)!
(2�)2n+2 , n�0,

so that the right member of (28) is bounded from above by 8(1/�)2n+2 maxx∈[0,1] |f (2n+1)(x)|. The thesis
follows. �
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Example 8. For each|p| < � the expansion

cospx = 1 +
∞∑

j=1

(−1)jp2j−1 sinp(vj (x) − vj (0)) (29)

holds and the right member of (29) absolutely and uniformly converges to cospx in [0, 1]. If
p = ±� the convergence of the related series to cos�x fails. For eachp : |p| > � it can be proved
that series in the second member of (29) does not converge absolutely in[0, 1].

3. Applications

3.1. Summation formula and its application to numerical quadrature

For eachl ∈ N set in (26) with remainder (27)a = l, b = l + 1, � = �l ; by integrating froml to l + 1
and using relations (10), (1), (11)–(13) to compute integrals at the right member we obtain

∫ l+1

l

f (x) dx=f (l) +
n∑

j=1

[
f (2j−1)(l + 1)

(
− 22j

(2j)! B2j

(
1

2

))

−f (2j−1)(l)

(
− 22j

(2j)! B2j (1)

)]

+
∫ l+1

l

∫ 1

0
f (2n+1)(l + t)K0,n(x − l, t) dt dx,

hence by summing froml = 0 to m − 1 and inverting the order of summation at the right member it
follows that

m−1∑
l=0

f (l)=
∫ m

0
f (x) dx −

n∑
j=1

f (2j−1)(0)
22j

(2j)! B2j

−
n∑

j=1

m−2∑
l=1

f (2j−1)(l)2
22j − 1

(2j)! B2j −
n∑

j=1

f (2j−1)(m)
22j − 2

(2j)! B2j

−
m−1∑
l=0

∫ l+1

l

∫ 1

0
f (2n+1)(l + t)K0,n(x − l, t) dt dx.

If we are working under the hypothesis thatf (2n+1)(x) is continuous in[0, ∞) we can change the order
of integration in the last term of previous equation, and after some calculation we thus obtain
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Theorem 9. Let f be a function defined forx�0having2n+1continuous derivatives. Then the following
identity holds form = 1, 2, . . .

m−1∑
l=0

f (l)=
∫ m

0
f (x) dx −

n∑
j=1

f (2j−1)(0)
22j

(2j)! B2j

−
n∑

j=1

m−2∑
l=1

f (2j−1)(l)2
22j − 1

(2j)! B2j −
n∑

j=1

f (2j−1)(m)
22j − 2

(2j)! B2j

−
∫ 1

0

(∫ 1

0

m−1∑
l=0

f (2n+1)(l + t)

)
K0,n(s, t) ds dt, (30)

whereK0,n(s, t) is defined as in(17).

Example 10. Let g be a(2n + 1) times continuously differentiable function on[0, 1]. We apply the
summation formula (30) to

f (x) = g(hx),

whereh = 1
m

. Writing xl = lh, l = 0, 1, . . . , m, there results

h

m−1∑
l=0

g(xl)=
∫ 1

0
g(x) dx −

n∑
j=1

h2j g(2j−1)(0)
22j

(2j)! B2j

−
n∑

j=1

m−2∑
l=1

h2j g(2j−1)(xl)2
22j − 1

(2j)! B2j −
n∑

j=1

h2j g(2j−1)(1)
22j − 2

(2j)! B2j

− h2n+2
∫ 1

0

(∫ 1

0

m−1∑
l=0

g(2n+1)(h(l + t))

)
K0,n(s, t) ds dt

and inverting the order of summation at the right member

h

m−1∑
l=0

g(xl)=
∫ 1

0
g(x) dx −

n∑
j=1

h2j

(
g(2j−1)(0)

22j

(2j)!B2j (31)

−
m−2∑
l=1

g(2j−1)(xl)2
22j − 1

(2j)! B2j − g(2j−1)(1)
22j − 2

(2j)! B2j

)
(32)

− h2n+2
∫ 1

0

∫ 1

0

(
m−1∑
l=0

g(2n+1)(h(l + t))

)
K0,n(s, t) ds dt. (33)

The left side of the above equation is the result of the numerical integration
∫ 1

0 g(x) dx by applying the
rectangular rule tomequal subintervals. The previous formula exhibits the error of this approximation.
The remainder term in the second member clearly is O(h2n+2). If g has derivatives of all orders, formula
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(33) holds true forn = 1, 2, . . . and thus it expresses the fact that the rectangular procedure admits the
asymptotic expansion

h

m−1∑
l=0

g(xl) ≈
∫ 1

0
g(x) dx −

n∑
j=1

h2j

(
g(2j−1)(0)

22j

(2j)! B2j

−
m−2∑
l=1

g(2j−1)(xl)2
22j − 1

(2j)! B2j − g(2j−1)(1)
22j − 2

(2j)! B2j

)

ash → 0,h > 0. Then it is possible, using the derivatives ofg, to increase the accuracy of the rectangular
procedure by evaluating some terms of this expansion.

Remark 11. In the papers[3,4] there are investigated generalizations of the Euler–MacLaurin formula
that involve even-order instead of odd-order derivatives of the function to be integrated; in these formulas
the coefficients multiplying the derivatives are connected with Appell polynomials instead of Bernoulli
numbers.

3.2. A related boundary value problem

For each fixedn�1 let us consider the(2n + 1)th order differential equation

y(2n+1)(x) = �(x, y(x), y′(x), . . . , y(k)(x)), 0�k�2n − 1, (34)

with the boundary conditions

y(0) = �,

y(2i−1)(0) = �i , y(2i−1)(1) = 	i , i = 1, . . . , n, (35)

where� is continuous at least in the domain of interest and�, �i , 	i are real numbers. If�=0 it follows
by Theorem 3 that problem (34), (35) has a unique solutiony(x) = P0,n[f ](x); another result related to
problem (34), (35) in the particular case when�=�(x) is also a direct consequence of the main theorem:
If � = �(x) is a real continuous function on[0, 1] then the problem

y(2n+1)(x) = �(x),

y(0) = 0,

y(2i−1)(0) = 0, y(2i−1)(1) = 0, i = 1, . . . , n

has a unique solution given by

y(x) =
∫ 1

0
f (2n+1)(t)K0,n(x, t) dt,

whereK0,n(x, t) is defined as(17).
In our opinion the general boundary value problem (34), (35) is fairly interesting and for this reason the

problem of the existence and finding approximated solutions, when they exist, can be studied separately
in a successive paper.
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