© by Oldenbourg Wissenschaftsverlag, München

$\label{eq:crystal} Crystal \ structure \ of \ bis(1-phenylimidazolium) \ tetrachlorocuprate(II), \\ (C_9H_9N_2)_2(CuCl_4)$

U. Casellato^I, R. Ettorre^{II} and R. Graziani*,^{II}

^I CNR, Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati, Area della Ricerca, Corso Stati Uniti 4, I-35127 Padua, Italy
^{II} Universita' di Padova, Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Via Marzolo 1, I-35131 Padua, Italy

Received May 9, 2003, accepted and available on-line August 8, 2003; CCDC-No. 1267/1085

C5 C2 C6 C1 N1 C7 C9 N2 C8

Abstract

C₁₈H₁₈Cl₄CuN₄, monoclinic, C121 (No. 5), a = 14.109(3) Å, b = 10.263(2) Å, c = 15.290(3) Å, $\beta = 102.61(3)^{\circ}$, V = 2160.6 Å³, Z = 4, $R_{gt}(F) = 0.040$, $wR_{all}(F^2) = 0.124$, T = 293 K.

Source of material

Crystals of the compound were obtained by slow evaporation of a mixture of $C_9H_8N_2$ and $CuCl_2$ (molar ratio 2 : 1) in concentrated HCl.

Discussion

The $(C_9H_9N_2)_2(CuCl_4)$ compound crystallizes in the monoclinic system and the unit cell of the *C*2 space group contains 4 CuCl₄^{2–} anions and 8 organic cations. The copper atoms lie in special positions on different 2-fold symmetry axes. The structure consists of discrete anions and organic cations involved in a network of N–H···Cl bonds. The metal ions are in a distorted tetrahedral configuration with an average Cl–Cu–Cl *trans* angle of 133° which can be compared with values ranging from 125° and 145° [1] for the bulk of compounds containing isolated CuCl₄^{2–} anions. All Cu–Cl bonds are comprised between 2.235(4) Å and 2.258(3) Å. The torsional angle between the imidazole and the phenyl rings is 31.5° which is significantly smaller than that of 46.5° corresponding to the torsional potential energy minimum calculated for unprotonated 1-phenylimidazole [2]. Table 1. Data collection and handling.

Crystal:	yellow block,
	size $0.222 \times 0.289 \times 0.578$ mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
и:	15.16 cm^{-1}
Diffractometer, scan mode:	Bruker, $\theta/2\theta$
$2\theta_{\max}$:	52°
N(hkl) _{measured} , N(hkl) _{unique} :	1925, 1842
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 4 \sigma(I_{\rm obs}), 1746$
N(param) _{refined} :	222
Programs:	SHELXS-86 [3], SHELXL-93 [4]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Z.	$U_{\rm iso}$
H(2N)	4 <i>c</i>	0.0937(8)	0.272(1)	0.8596(8)	0.092
H(4N)	4c	-0.1022(9)	0.171(1)	-0.368(1)	0.104
H(2)	4c	0.1413(6)	0.7837(8)	0.8372(5)	0.077
H(3)	4c	0.129(1)	0.9569(7)	0.7379(9)	0.101
H(4)	4c	0.109(1)	0.918(1)	0.5855(8)	0.115
H(5)	4c	0.102(1)	0.705(1)	0.5326(4)	0.145
H(6)	4c	0.115(1)	0.5321(8)	0.6319(7)	0.082
H(7)	4c	0.045(1)	0.415(1)	0.7333(8)	0.085

^{*} Correspondence author (e-mail: rodolfo.graziani@unipd.it)

Table 2. Continued.				Table 2. Continued.							
Atom	Site	x	У	z	Uiso	Atom	Site	x	у	z	Uiso
H(8)	4 <i>c</i>	0.202(1)	0.390(1)	0.981(1)	0.082	H(14)	4 <i>c</i>	-0.0994(9)	-0.257(1)	-0.0285(4)	0.111
H(9)	4c	0.2270(9)	0.602(2)	0.9269(8)	0.085	H(15)	4c	-0.112(1)	-0.0881(8)	-0.1310(7)	0.111
H(11)	4c	-0.1446(5)	-0.3476(8)	-0.3321(5)	0.082	H(16)	4c	-0.057(1)	0.059(1)	-0.237(1)	0.084
H(12)	4c	-0.132(1)	-0.5168(6)	-0.230(1)	0.103	H(17)	4c	-0.204(1)	0.058(2)	-0.484(1)	0.104
H(13)	4 <i>c</i>	-0.109(1)	-0.472(1)	-0.0778(8)	0.120	H(18)	4 <i>c</i>	-0.2253(9)	-0.163(1)	-0.415(1)	0.082

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	У	Z	U_{11}	U ₂₂	U ₃₃	U_{12}	U_{13}	U ₂₃
Cu(1)	2a	0	0.1377	0	0.0459(8)	0.047(1)	0.038(1)	0	0.0052(7)	0
Cl(1)	4c	0.1043(2)	0.0537(5)	-0.0770(2)	0.075(2)	0.071(2)	0.052(2)	0.007(2)	0.013(2)	-0.008(2)
Cl(2)	4c	0.1049(3)	0.2285(4)	0.1146(3)	0.068(2)	0.062(2)	0.059(2)	0.000(2)	0.004(2)	-0.013(2)
Cu(2)	2b	0	-0.6952(1)	1/2	0.082(1)	0.050(1)	0.053(2)	0	0.011(1)	0
Cl(3)	4c	-0.1042(2)	-0.6112(4)	-0.4219(2)	0.078(2)	0.044(2)	0.062(2)	0.013(2)	0.015(2)	-0.006(2)
Cl(4)	4c	0.1060(2)	-0.7851(4)	-0.3846(3)	0.068(2)	0.054(2)	0.057(2)	0.006(2)	0.005(1)	0.013(2)
N(1)	4c	0.1381(7)	0.539(1)	0.8034(8)	0.051(5)	0.045(6)	0.057(6)	-0.020(5)	0.013(4)	-0.014(5)
N(2)	4c	0.1131(8)	0.351(1)	0.8567(8)	0.106(8)	0.052(6)	0.074(8)	-0.041(6)	0.026(7)	0.017(5)
N(3)	4c	-0.1343(8)	-0.096(1)	-0.3048(9)	0.057(5)	0.053(6)	0.059(7)	0.002(5)	0.018(5)	-0.004(6)
N(4)	4c	-0.1206(9)	0.093(1)	-0.363(1)	0.107(9)	0.064(7)	0.09(1)	-0.001(6)	0.027(8)	-0.019(7)
C(2)	4c	0.1335(6)	0.7680(8)	0.7762(5)	0.085(8)	0.034(5)	0.068(8)	0.010(6)	0.009(7)	-0.008(6)
C(3)	4c	0.1261(6)	0.8718(6)	0.7166(6)	0.081(8)	0.09(1)	0.080(9)	0.003(8)	0.007(7)	-0.032(7)
C(4)	4c	0.1143(7)	0.8482(8)	0.6254(6)	0.15(2)	0.07(1)	0.08(1)	0.00(1)	0.03(1)	0.032(9)
C(5)	4c	0.1100(7)	0.7210(9)	0.5936(4)	0.18(2)	0.13(2)	0.057(9)	0.01(1)	0.04(1)	-0.03(1)
C(6)	4c	0.1174(7)	0.6172(7)	0.6532(5)	0.109(9)	0.043(6)	0.053(7)	-0.025(7)	0.020(7)	0.000(6)
C(1)	4c	0.1291(6)	0.6407(7)	0.7444(5)	0.069(7)	0.044(6)	0.077(9)	0.009(7)	0.023(6)	0.009(7)
C(7)	4c	0.090(1)	0.433(1)	0.7864(8)	0.107(9)	0.062(7)	0.043(6)	-0.019(7)	0.020(6)	0.002(5)
C(8)	4c	0.175(1)	0.421(1)	0.924(1)	0.086(9)	0.049(7)	0.066(9)	-0.001(6)	0.007(7)	0.022(6)
C(9)	4c	0.1901(9)	0.535(2)	0.8948(8)	0.072(7)	0.10(1)	0.034(5)	-0.009(7)	-0.006(5)	0.006(6)
C(11)	4c	-0.1356(5)	-0.3295(8)	-0.2713(5)	0.066(7)	0.076(9)	0.066(8)	-0.011(7)	0.021(6)	0.006(7)
C(12)	4c	-0.1278(7)	-0.4309(6)	-0.2098(7)	0.11(1)	0.034(5)	0.12(1)	0.004(6)	0.036(9)	0.034(6)
C(13)	4c	-0.1143(7)	-0.4038(9)	-0.1189(6)	0.11(1)	0.11(2)	0.10(1)	0.01(1)	0.04(1)	0.01(1)
C(14)	4c	-0.1085(6)	-0.275(1)	-0.0894(4)	0.13(1)	0.076(9)	0.076(9)	-0.014(9)	0.036(9)	0.032(8)
C(15)	4c	-0.1162(6)	-0.1740(8)	-0.1508(5)	0.11(1)	0.10(1)	0.07(1)	0.01(1)	0.046(9)	-0.02(1)
C(10)	4c	-0.1298(5)	-0.2011(7)	-0.2417(5)	0.037(4)	0.055(6)	0.045(6)	-0.003(5)	0.008(4)	-0.008(5)
C(16)	4c	-0.095(1)	0.028(1)	-0.291(1)	0.075(7)	0.041(6)	0.09(1)	-0.031(5)	0.015(7)	-0.021(6)
C(17)	4c	-0.177(1)	0.029(2)	-0.427(1)	0.10(1)	0.09(1)	0.07(1)	-0.014(9)	0.022(9)	-0.009(9)
C(18)	4 <i>c</i>	-0.1872(9)	-0.094(1)	-0.387(1)	0.065(7)	0.044(6)	0.09(1)	-0.019(6)	0.006(7)	-0.011(6)

References

- 1. Halvorson, K. E.; Patterson, C.; Willet, R. D.: Structures of bis(4-aminopyridinium) tetrachlorocuprate(II) monohydrate, $(C_5H_7N_2)_2(CuCl_4) + H_2O$, and bis(2-amino-3-hydroxypyridinium) tetrachlorocuprate(II), (C₅H₇N₂O)₂(CuCl₄): correlation of CuCl₄²⁻ geometry with hydrogen
- 3. Sheldrick, G. M.; Kruger, C.; Goddard, R.: SHELXS-85. Crystallographic Computing 3. p. 175. Oxford Univ. Press. London 1985.Sheldrick, G. M.: SHELXL-93. Program for the refinement of crystal
- structures. University of Göttingen, Germany 1993.
- Contractory (1997) Contractory (1997) Contractory (1997) Contractory (1997) Statement of Contractory (1997) State 493-500.