
Dynamic Traceroute Visualization at Multiple
Abstraction Levels�

Massimo Candela, Marco Di Bartolomeo,
Giuseppe Di Battista, and Claudio Squarcella

Dipartimento di Ingegneria, Università Roma Tre, Italy
{candela,dibartolomeo,gdb,squarcel}@dia.uniroma3.it

Abstract. We present a system, called TPLAY, for the visualization of the tracer-
outes performed by the Internet probes deployed by active measurement projects.
These traceroutes are continuously executed towards selected Internet targets.
TPLAY allows to look at traceroutes at different abstraction levels and to animate
the evolution of traceroutes during a selected time interval. The system has been
extensively tested on traceroutes performed by RIPE Atlas [22] Internet probes.

1 Introduction

The traceroute command is one of the most popular computer network diagnostic tools.
It can be used on computers connected to the Internet to compute the path (route) to-
wards a given IP address, also called traceroute path. It is probably the simplest tool to
gain some knowledge on the Internet topology. Because of its simplicity and effective-
ness, it attracted the interest of several researchers that developed services for visualiz-
ing the Internet paths discovered by executing one or more traceroute commands.

Broadly speaking, there are two groups of traceroute visualization systems: tools de-
veloped for local technical debugging purposes and tools that aim at reconstructing and
displaying large portions of the Internet topology. Several tools of the first group visu-
alize a single traceroute on a map, showing the geo-location of the traversed routers.
A few examples follow. Xtraceroute [10] is a graphical version of the traceroute pro-
gram. It displays individual routes on an interactive rotating globe as a series of yellow
lines between sites, shown as small spheres of different colors. GTrace [20] and Visual-
Route [30] are traceroute and network diagnostic tools that provide a 2D geographical
visualization of paths. The latter also features more abstract representations taking into
account other information, e.g. the round-trip time between intermediate hops. In the
second group there are several tools (see e.g. [18,5]) that merge the paths generated by
multiple traceroutes into directed graphs and show them in some type of drawing.

In recent years the visualization of Internet measurements has seen a growing in-
terest. This is mainly due to the existence of several projects that deploy probes in the
Internet. Probes are systems that perform traceroutes and other measurements (e.g. ping,

� Partially supported by the ESF project 10-EuroGIGA-OP-003 GraDR ”Graph Drawings
and Representations” and by the European Community’s Seventh Framework Programme
(FP7/2007-2013) grant no. 317647 (Leone). We thank RIPE NCC for collaborating to the
development of the graph animation framework used in this work.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 496–507, 2013.
c© Springer International Publishing Switzerland 2013

Dynamic Traceroute Visualization at Multiple Abstraction Levels 497

Fig. 1. The main interface of TPLAY

HTTP queries) towards selected targets. They produce a huge amount of data that is dif-
ficult to explore, especially when dealing with the network topology. Some examples
follow. SamKnows [7] is a broadband measurement service for consumers. MisuraInter-
net [4] is an Italian project that measures the quality of broadband access. BISmark [28]
is a platform for measuring the performance of ISPs. RIPE Atlas [22], CAIDA Ark [2],
and M-Lab [3] continuously perform large scale measurements towards several targets.

In this paper we present a system for traceroute visualization called TPLAY, de-
signed for supporting Internet Service Providers (ISPs) and Internet Authorities in the
management and maintenance of the network. The requirements were gathered inter-
acting with several ISPs, within the Leone FP7 EC Project, and with the RIPE Network
Coordination Center (RIPE NCC). The system works as follows. The user selects a set
S of probes of a certain Internet measurement project (all the experiments in this paper
have been conducted using RIPE Atlas [22] probes), a target IP address τ , and a time
interval T , and obtains a visualization of how the traceroutes issued by the probes in S
reach τ during T . TPLAY can be used to study several properties of traceroute paths.
These include assessing the reachability of τ over time, discovering the ISPs that pro-
vide connectivity to reach it, monitoring the length of traceroute paths as a performance
indicator, and inferring how routing policies affect the paths of different probes in S.

A snapshot of TPLAY is in Fig. 1. The routing graph is presented with a radial draw-
ing. The geometric distance between τ and any object reflects the topological distance
of that object in the network. Also, since traceroutes tend to give too many details, the

498 M. Candela et al.

system allows to look at the network at different abstraction levels. Finally, the evolution
of traceroute paths over time is presented by means of geometric animation.

The paper is organized as follows. In Section 2 we detail the use cases, describe the
adopted visualization metaphor, and introduce some formal terminology. In Section 3
we detail the algorithms used to compute the visualization and compare them to the
state-of-the-art. In Section 4 we describe the prototype implementation of our tool and
the technical challenges we faced. Section 5 contains conclusions and future directions.

2 Use Cases and Visualization Metaphor

The main tasks associated with our system are detailed below. Two of them deal with
Autonomous Systems (ASes), i.e. entities representing Internet administrative authori-
ties. Once the input is specified as detailed in Section 1, the user is interested in the
following. Security: knowing what ASes provide connectivity to reach the target over
time. That is interesting from the perspective of security, because some ASes may be
less trusted than others. Policy: seeing how traffic is routed inside a specific AS over
time. That helps discover load balancing issues or differences in the routing applied to
different probes. Distance: knowing the number of hops traversed by each probe over
time. Longer paths are indeed potentially responsible for instability and inefficiency.
Dynamics: seeing how the routing changes at a specific time instant, based on external
key indicators. For example, the user may want to check if the routing has changed after
a noticeable drop in the round-trip delay experienced when reaching the target.

We discarded solutions based on geographic representations for many reasons. First
of all, the fact that a router belongs to a certain ISP or AS is the main piece of infor-
mation for our purposes, whereas geography is only a secondary feature that further
characterizes the nodes in the network. Also, the geo-location data associated with IP
addresses is often wrong or missing, and anycast addresses (i.e., those assigned to more
than one physical device) can not be mapped to a single location. Finally, the use of
landmarks on geographical maps would require special care to avoid geometric clutter-
ing. Motivated by the above, we focused on a topological representation of the data.

The visualization metaphor we adopted is presented below together with supporting
motivations. Graphs are represented with radial layered drawings, where vertices are
placed on concentric circles and targets are in the center. This style of drawing is notably
effective for visualizing sparse hierarchical graphs (see, e.g., [31]); in Section 3 we
show that our application domain meets such requirement. The probes originating the
traceroutes are in the periphery of the drawing. This approach is effective in displaying
topological distances. Moreover, radial drawings have their center as the only focus
point, which avoids giving probes additional importance due to a privileged geometric
position. Finally, the drawing looks like an abstract geography and hence borrows the
typical user experience deriving from cartography and geographical visualization.

The need of visualizing the network at different abstraction levels is met by partition-
ing the set of routers into clusters. In our setting, clusters are in correspondence with
ASes. The user can modify the representation by interacting with any cluster to either
contract or expand it. A contraction causes all the routers in the cluster to be merged
into a single object representing the cluster, while an expansion does the opposite. Col-
lapsing all clusters leads to a high-level, uncluttered view of the graph. On the other

Dynamic Traceroute Visualization at Multiple Abstraction Levels 499

hand, the user can expand all the clusters to see all the traversed routers. In general, the
user can arbitrarily expand any subset of clusters to examine them in detail.

Paths for reaching the target from the probes change over time. A natural way to
show the evolution of traceroutes at different time instants is to present an animation of
the drawing. More precisely, for each instant in a given time interval we show a different
drawing, corresponding to the traceroutes that are available at that instant. We animate
the change from a drawing to a successive one by means of a geometric morph.

Since the visualization is highly interactive and the graph changes over time, pre-
serving the mental map is of paramount importance. Indeed, the user can both ani-
mate the drawing in a specific time interval and expand/contract individual clusters.
We require that the same drawing is visualized for any two sequences of cluster ex-
pansions/contractions that produce the same graph. Also, the graph should be animated
smoothly, even at the expense of traversing drawings that are not aesthetically optimal.

Traceroute paths cannot simply be merged and displayed in an aggregate fashion,
since each of them has its own informative value and can change over time. For this
reason, we represent paths adopting a metro-line metaphor [24] and draw them using
different colors. Further, paths that never change in the selected time interval should
be easily distinguished. In this context we adopt the method described in [14]. Paths
that do not change are partitioned into sets such that each of them determines a tree
on the graph. Each tree is depicted with dashed lines and a distinctive color. This has
the effect of reducing the number of lines in the drawing, while preserving the routing
information for each probe. Paths that change are instead represented by solid lines.

The objects to be visualized are formally defined as follows. Consider a time interval
T and a set of probes S. During T each probe periodically issues a traceroute towards a
target IP address τ . A traceroute from probe σ ∈ S produces a simple directed path on
the Internet from σ to τ . If such a path is available in Internet at time t ∈ T , then it is
valid at time t. Each vertex of a traceroute originated from σ ∈ S is either a router or a
computer. Vertices are identified as follows: (1) σ has a unique identifier selected by the
RIPE NCC; (2) vertices with a public IP address are identified by it; (3) vertices with a
private IP address are identified by a pair composed of their address and the identifier
of σ; (4) the remaining vertices are labeled with a “*” (i.e. an unknown IP address).
For the sake of simplicity, consecutive vertices labeled with “*” are merged into one. A
vertex labeled with “*” is identified by the identifiers of its neighbors in the traceroute.

A digraph Gt is defined at each instant t ∈ T as the union of all the paths valid at t
produced by the traceroutes issued by the probes of S. A digraph GT is defined as the
union of all graphs Gt. Each vertex of GT is assigned to a cluster as follows. (1) Each
probe is assigned to the cluster that corresponds to the AS where it is hosted. (2) Each
vertex identified by a public IP address [6] is assigned to a cluster that corresponds to
the AS announcing that address on the Internet. This information is extracted from the
RIPEstat [23] database and may occasionally be missing. (3) Each vertex v that is not
assigned to a cluster after the previous steps is managed as follows. Consider all tracer-
oute paths containing v. For traceroute p let μ (ν) be the cluster assigned to the nearest
predecessor (successor) of v with an assigned cluster. If μ = ν then μ is added to the set

500 M. Candela et al.

of candidate clusters for v. If such set has exactly one cluster, v is assigned to it. If there
is more than one candidate, an inconsistency is detected and the procedure terminates
prematurely. (4) Each remaining vertex is assigned to a corresponding fictitious cluster.
We define Vµ as the set of vertices assigned to cluster μ.

For any t ∈ T Gt can be visualized at different abstraction levels. Namely, the user
can select a set E of clusters that are fully visualized and each cluster that is in the
complement Ē of E is contracted into one vertex. More formally, given the pair Gt, E
the visualized graph Gt,E(V,E) is defined as follows. V is the union of the Vµ for all
clusters μ ∈ E , plus one vertex for each cluster in Ē . E contains the following edges.
Consider edge (u, v) of Gt and clusters μ and ν, with u ∈ μ and v ∈ ν. If μ �= ν,
μ ∈ E , and ν ∈ E , then add edge (u, v). If both μ and ν are in Ē then add edge (μ, ν). If
μ ∈ E (μ ∈ Ē) and ν ∈ Ē (ν ∈ E) then add edge (u, ν) ((μ, v)). We define Gµ,t as the
subgraph of Gt induced by Vµ. Analogously, we define Gµ,T as the subgraph of GT
induced by Vµ. We define GT ,E as the union of the Gt,E for each t ∈ T .

Fig. 1 shows an overview of our prototype implementation. Let t ∈ T be the time
instant selected by the user. Graph Gt,E is represented by a radial drawing centered
in τ . All vertices and clusters that appear in at least one traceroute in T are in the
drawing, including those that are not traversed by any traceroute at time t. Probes in S
are represented as blue circles and labeled with their identifier. Vertices are represented
as white rounded rectangles and labeled with the last byte of their IP address, or with a
“*”. Clusters are represented as annular sectors and labeled with their AS number. Note
that vertices assigned to expanded clusters are enclosed in their sectors, while sectors
of contracted clusters are empty. The light red cluster contains τ . Clusters containing
probes in S are light blue. The remaining clusters are light yellow. Fictitious clusters
are not displayed. Each path from a probe σ ∈ S to τ is represented by a colored curve
from σ to τ passing through all intermediate vertices. Paths are either solid or dashed,
depending on whether they change or not during the time interval T . Concentric circles
in the background represent the increasing topological distance of vertices.

Fig. 2 contains various details on how the interaction with the visualization works.
A graph with static paths and no expanded clusters is presented in Fig. 2(a). It is related
to a target τ , a set of probes S, and a small time interval T ′. Note that some vertices are
not enclosed in any cluster: they belong to fictitious clusters. A graph for τ , S and T ′′

(|T ′′| > |T ′|) is presented in Fig. 2(b). Some dynamic paths are visible. The same graph
is presented in Fig. 2(c) with one expanded cluster. Note how the ordering of clusters
and vertices on the radial layers is preserved. Fig. 2(d) shows the same expanded graph
at a different time instant. The intermediate vertices of two paths are different.

Fig. 2 also helps us explain how the tasks detailed at the beginning of the section can
be accomplished. The Security task is satisfied in Fig. 2(a): we can see how ASes 1200
and 20965 provide connectivity to reach the target. The Policy and Distance tasks are
addressed in Fig. 2(c), where the length and structure of the paths from each of the three
probes 619, 602, 265 is clearly visible. The Dynamics task is solved in Figg. 2(c)-(d),
where we can see how the paths change for probes 619 and 602 after a routing event.

The user interaction plays a major role in our metaphor. The reader can visit [8] for
an example video of the interaction with TPLAY.

Dynamic Traceroute Visualization at Multiple Abstraction Levels 501

(a) (b)

(c) (d)

Fig. 2. Details of the interactive features of our visualization. (a) A graph GT ′ relative to a target
τ , a set of probes S , and a time interval T ′. All paths in GT ′ are static and all clusters contracted.
(b) A graph GT ′′ relative to τ , S , and T ′′ (|T ′′| > |T ′|). Some paths are dynamic and all clusters
are contracted. (c) GT ′′ with an expanded cluster. (d) GT ′′ at a different time instant.

3 The Algorithms

We started our analysis by computing several statistics on the RIPE Atlas data set that
we used to test the system. It consists of traceroutes executed in one month (July 2012)
by 200 probes. Fig. 3 presents the main results of our analysis. In Fig. 3(a) we plot a
cumulative distribution function of the length of traceroute paths. That gives us a rough
indication on the maximum distance between a probe in S and τ . The plot shows that
traceroutes with more than 15 vertices are rare, confirming the suitability of the radial
metaphor. In Fig. 3(b) we plot the number of vertices and the density (|E|/|V |) of GT as
a function of T . It turns out that GT is quite sparse for time intervals that are compatible
with the application domain. In particular, the density ranges between 1.2 and 1.5 for
time intervals within 24 hours. The number of vertices is in the range of 2000.

As a second step, we performed experiments using spring embedders and hierar-
chical drawing algorithms. Layouts produced by spring embedders [29] are unsuitable
for our metaphor, because the topological distance between vertices is not always rep-
resented and because they produce drawings with not enough regularity. Also, they
tend to introduce crossings that are avoidable, for the expected density of the data set.
For hierarchical drawing, we experimented both basic algorithms [29] and variations
that allow to represent clustered graphs [25,26]. The experiments put in evidence that
crossing-reduction heuristics like those in [25,26] are quite effective. However, in our

502 M. Candela et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

hops

Traceroute lengths

CDF 1400

 1600

 1800

 2000

 2200

 2400

 2600

 5 10 15 20
 0

 0.5

 1

 1.5

 2

ve

rt
ic

es

ed

ge
s

/ #
 v

er
tic

es

length of the considered time interval (hours)

Graph Size and Density

Graph size
Graph density

(a) (b)

Fig. 3. Statistics on the data set. (a) Cumulative distribution function (CDF) of the length of
traceroute paths at July, 1st 2012 at 00:00. CDFs at different instants exhibit similar features. (b)
Plot showing the number of vertices and the density of GT as a function of T . For each day in
the month we set an initial time at 00:00 and grow T from 1 to 24 hours. For each value of T we
plot the average density and number of vertices. We report the standard deviation with error bars.

case most graphs are planar or quasi-planar and hence planarity-based methods are
more attractive. Finally, we discarded upward planar drawings [29]. The main reason
is that they tend to use vertical space to resolve crossings, which may result in large
geometric distances between vertices that are topologically close.

A very high level and informal description of our algorithmic framework is the fol-
lowing. We pre-compute a hierarchical drawing Γ0 of GT that integrates all the tracer-
outes in T . In that drawing all clusters are expanded. The layout is computed in such a
way to have few crossings involving connections between clusters. The quality of the
layout inside the clusters is considered with lower priority. Moreover, the quality of the
drawing of edges that are part of many traceroutes in T is privileged among the edges of
GT . The drawing computed for each cluster is stored and reused in any drawing where
that cluster is expanded. The hierarchical drawing is mapped to a radial drawing with
a suitable coordinate transformation. Changes in the drawing due to an expansion or
contraction of a cluster or a change in traceroutes are visualized with an animation. At
any instant t ∈ T only the traceroutes that are valid in t are displayed.

For our purposes an interesting reference is [11] that constructs radial drawings adapt-
ing techniques of the Sugiyama Framework, but, unfortunately, it does not deal with clus-
ters. The algorithm in [16], which extends the one described in [15], inspired part of our
work. However, it proposes a clustered planarity testing algorithm, while we rather need
an algorithm for clustered graph planarization, and [16] is not easily extensible for this
purpose (neither is the algorithm in [12] that is not suitable for hierarchical drawings).
For these reasons we devised a new algorithm to produce clustered hierarchical draw-
ings, as a planarization-oriented variation of [16]. In [21] an algorithm is proposed for
the expansion/contraction of clusters of hierarchical drawings, building on [27]. Unfor-
tunately it uses local layering for vertices, while global layering [25,26] is more suitable
for our needs because it produces more compact drawings. Indeed a very common use
case of TPLAY is to expand all clusters along one or more traceroutes. Local layering
would visualize far from τ also vertices in unrelated paths because of the increased
need for vertical space of their layers. For this reason we devised a new algorithm for

Dynamic Traceroute Visualization at Multiple Abstraction Levels 503

expanding/contracting clusters that is based on global layering. Differently from [21]
it is not a local update scheme, i.e. it computes a new drawing for the whole graph
at each interaction. The lower time efficiency is negligible because the graphs com-
monly handled by TPLAY are small. Finally, mental map preservation during expan-
sion/contraction of clusters is addressed by a geometric morph, implemented as an
animation of objects from their initial position to their final position (see, e.g., [14]).

What follows gives more details on our the algorithmic framework. In a preprocess-
ing step several information are computed on GT that will be used for actual drawings.
Given any Gµ,T , a vertex is a source (sink) of Gµ,T if it is the last (first) vertex of
Gµ,T encountered in some traceroute path. Each graph Gµ,T is augmented with extra
vertices and edges so that all the longest paths from a source to a sink have the same
length. The added vertices are called fictitious vertices of μ and ensure that, given an
edge (u, v) ∈ GT , u ∈ μ, v ∈ ν, μ �= ν, clusters μ and ν do not share a layer in any
drawing of Gt,E . Moreover, they force edges that leave a cluster by spanning several
layers to be routed inside that cluster. A μ-drawing is pre-computed for each Gµ,T .
It consists of 1. assigning vertices to layers so that all edges are between consecutive
layers and 2. computing a total order for the vertices of each layer. A partial order ≺ is
computed for clusters, such that for any two clusters μ and ν with μ ≺ ν, the vertices
of μ appear to the left of the vertices of ν for any drawing Γ where μ and ν share one or
more layers. This helps preserve the mental map during expansions/contractions. The
preprocessing step requires to compute a drawing Γ0 of GT with all clusters expanded.
Γ0 gives the information needed to compute a μ-drawing for each cluster and a par-
tial order ≺ for clusters. The algorithm to compute Γ0 is similar to that in [16], where a
PQ-tree [13] is used to order vertices along the layers of the drawing. Our PQ-tree is ini-
tialized with a spanning tree of GT and incrementally updated with the remaining edges
that induce ordering constraints. An edge is added only if it does not produce a crossing
(i.e. the PQ-tree does not return the null tree). A rejected edge will produce crossings in
Γ0. Edges are added with priority given by their aesthetic importance: namely, they are
weighted by the number of traceroutes that traverse them in T . As an implementation
detail, we actually compute a total order for clusters to represent a partial order ≺. Such
an order is produced by a DFS visit of the spanning tree of GT . The tree has an embed-
ding induced by the layer orders produced by the PQ-tree algorithm, and children of a
vertex are visited in clockwise order. Intuitively, we preserve the geometric left-to-right
order for clusters from Γ0, and reuse it to produce a drawing of any Gt,E .

The computation of the drawing ΓT ,E of GT ,E is detailed below. Before that, note
that once ΓT ,E is computed, we display, for any t ∈ T all the vertices of GT ,E but
only the edges of Gt,E . This is done to preserve the mental map of the user, using
ΓT ,E as a “framework” that “hosts” the drawings of each instant. First, a layering of
GT ,E is computed such that for each vertex the distance from τ is minimized. Also,
dummy vertices, called fictitious vertices of GT ,E , are added so that each edge spans
two consecutive layers. Vertices are horizontally ordered on each layer such that: 1. ≺
is enforced; 2. for each cluster μ of E , the orders on the layers of its μ-drawing are
enforced; 3. the fictitious vertices of GT ,E are placed in such a way to have few cross-
ings. In particular, they must not be interleaved with the vertices of any cluster, that is,
the vertices of each cluster must be consecutive on every layer. For this reason, each

504 M. Candela et al.

fictitious vertex is assigned to a new fictitious cluster, which is inserted in the partial
order ≺ in an intermediate position between the endpoints of the edge it belongs to. Fi-
nally, the ordered layers are used to assign geometric coordinates to vertices. The width
of each cluster μ is computed as follows. Consider the layer containing the largest num-
ber of vertices assigned to μ. The cluster is assigned a width proportional to this number.
Vertices of μ are assigned horizontal coordinates such that they can be enclosed by a
rectangle with height proportional to the number of layers assigned to the vertices of μ
and width equal to the width of μ. We avoid intersection between enclosing rectangles
by means of an auxiliary directed acyclic graph where vertices are clusters of GT ,E and
edges are selected from ≺ depending on which pairs of clusters share a layer in the
current layering of GT ,E . Edges are weighted based on the widths of the clusters they
are incident to. The total width of the drawing is given by the longest path in this graph.
The above is applied recursively to compute the horizontal spacing among all clusters.
The vertical coordinate of a vertex is equal to the one assigned to its layer, which is
proportional to the index of that layer in the total order of layers.

Going back to the state-of-the-art, concerning restrictions R1, R2 and R3, described
in [16], that a planar clustered hierarchical drawing must obey, drawings produced by
our algorithm satisfy R1 and R2, while we consider R3 too restrictive for our applica-
tion. R1 is satisfied in the preprocessing step by merging, for each cluster, all sources
into one vertex. The PQ-tree is initialized with a spanning tree that contains all these
new vertices, which has the effect to keep the vertices of each cluster consecutive on
any layer. R2, as shown in [16], is automatically satisfied for the initial drawing Γ0, and
is satisfied for any drawing of Gt,E by exploiting the partial order ≺.

To obtain a radial drawing, the geometric coordinates of vertices so computed are
transformed as follows. Each vertex is placed on the perimeter of a circle centered in
an arbitrary fixed point and having radius equal to the vertical coordinate of the vertex.
Then the horizontal coordinate of the vertex is mapped to a circular coordinate on the
perimeter of that circle. The perimeters of clusters are mapped with a similar radial
transformation. An edge (u, v) is drawn either as a straight segment or a curved arc,
depending on the angle it must sweep to connect vertices u and v. Note that in our
setting each edge connects only vertices in two consecutive layers, hence a curved edge
can be drawn only in the space between these layers.

4 Implementation and Technical Challenges

The implementation of TPLAY is split into three main blocks: 1. a visualization front-
end; 2. a layout engine; and 3. a data back-end.

The visualization front-end is a Web application. It allows the user to specify input
parameters and to visualize and animate interactive graphs. The main interface is pre-
sented in Fig. 1 and additional images are provided at [8]. It is composed of four main
elements: the controller, the graph panel, the info panel, and the timeline panel. We
detail their functionalities below.

The controller is a sliding panel located in the upper right corner. It allows the user to
input queries composed of a target τ , a time interval T , and a set of probes S. Once the
visualization is ready, the controller can be used to animate the graph with the traceroute

Dynamic Traceroute Visualization at Multiple Abstraction Levels 505

paths available during T . The play/pause/stop, repeat-last, step-back, and step-forward
buttons allow for a fine-grained management of the graph animation.

The graph panel displays the interactive graph, initially centered and fitted to the
window. The user can pan and zoom it with the mouse. The animation of the graph
consists of a sequence of morphing steps. Each step transform the graph by applying
the effects of an event involving one or more traceroute paths. Given a probe σ ∈ S,
an event can consist of: (a) the availability of a new traceroute path from σ to τ ; (b) a
change in the sequence of vertices in the traceroute path from σ to τ ; (c) a disconnection
resulting in an empty traceroute path. Events of type (a) are rendered with a gradual
introduction of new paths in the graph. Events of type (b) are rendered with a geometric
morph of curves representing the involved paths. Events of type (c) are rendered with a
blinking effect after which paths disappear. We introduce a delay between each pair of
consecutive animation steps. The delay is proportional to the logarithm of the elapsed
time between the corresponding routing events. This gives an approximate perception
of elapsed time, while limiting the overhead on the total animation time. The elements
of the graph are interactive and show additional information on request. Hovering a
vertex with the mouse for a few seconds highlights all the paths passing through it.
Hovering a path for a few seconds highlights the path and all its vertices.

The info panel is in the upper part of the window. It shows all the available informa-
tion about any selected network component represented in the graph. It also displays a
textual description for the latest event that caused an update of the visualized graph.

The timeline panel is in the lower part of the window and contains two timelines
that allow to accurately navigate the traceroute information in T . The first, called con-
trol timeline, provides a fast overview of the trend in the number of events over time.
The second, called selection timeline, shows individual events ordered in time and is
designed for fine-grained analysis. Each block in the selection timeline contains a se-
quence of events happening at the same time, represented with colored rectangles. Dif-
ferent colors are used for different types of events. The elapsed time between any two
consecutive blocks is reported in the area between them. Both timelines feature a red
cursor that points at the current time instant and is continuously updated during the an-
imation. The user can drag the cursors, changing the current instant and updating the
graph accordingly. The selection timeline can only show a limited number of events
due to its constrained area. In case there are more events, the animation causes involved
events to be smoothly translated into the visible part of selection timeline. The user can
scroll horizontally to reveal hidden events. Further, the user can limit the animation to a
particularly interesting period within T by dragging the two green sliders at the top of
the control timeline. The sliders on the selection timeline are updated accordingly.

The implementation of the front-end required to focus on some algorithmic details.
The arrangement of paths in a metro-line fashion is implemented as follows. First of
all, an arbitrary total ordering is computed on the set of visualized paths. For each edge
without bends in the graph, the paths that traverse it are drawn as parallel segments
connecting the two endpoints of the edge. The ordering of such segments reflects the
total ordering of paths to promote consistency between edges. In case the edge con-
tains bends, the drawing is computed in two steps. First, we split the bended edge in a
sequence of intermediate edges e1, . . . , en and compute the path segments for each of

506 M. Candela et al.

them. Second, for each pair of consecutive intermediate edges (ei, ei+1) and for each
path that traverses it, we call (u, v) and (w, z) the two segments computed respectively
for ei and ei+1. If there is an intersection point p between (u, v) and (w, z), we rewrite
the two segments as (u, p) and (p, z). Otherwise, we add a connection (v, w) between
(u, v) and (w, z). Path colors are computed with the algorithm described in [19] to
ensure that they are distinguishable from each other.

The front-end is written in JavaScript and HTML. It is based on the BGPlay.js frame-
work [1] that we developed in collaboration with the RIPE NCC. The objective of the
framework is to simplify the implementation of web-based tools for the representation
of evolving data described in terms of graph components. The framework consists of a
solid implementation of graph domain objects and a set of modules. Modules provide
functionalities and representation of data and can be used to compose ad-hoc tools. We
use Scalable Vector Graphics for the representation and animation of the graph.

The visualization always starts with an overview of the traceroutes. Hence, the layout
engine is invoked to produce a drawing of GT ,∅. When the user expands/contracts a
cluster (a cluster is added/removed from E) the layout engine is invoked again on GT ,E .
In the implementation of the radial drawing we artificially increase the radius of each
layer by an additional offset, such that vertices on dense layers are not overlapped. For
the sake of simplicity, curved segments are uniformly sampled and drawn as polylines.

The layout engine is implemented in Java. We initially designed it to be implemented
as part of the visualization front-end, but later moved to a back-end implementation
in order to make use of already existing libraries. In particular we adopted a PQ-tree
implementation [17] and Apache Commons Graph [9] for general graph models and
algorithms. We optimized the output of the layout engine after the initial layout, so that
only graph elements with new drawing coordinates are included.

The data back-end is mainly responsible of retrieving and preprocessing traceroute
data. The result is then used by the front-end to animate traceroute events and by the
layout engine to compute the drawings.

5 Conclusions and Open Problems

We presented a metaphor for the visualization of traceroute measurements towards spe-
cific targets on the Internet. It consists of a radial drawing of a clustered graph where
vertices are routers or computers and clusters are administrative authorities that control
them. Our metaphor allows the user to interact with the visualization, both exploring
the content of individual clusters and animating the graph to see how traceroute paths
change over a time interval of interest.

In the future we will take into account the DNS resolution of selected targets in the
visualization. That means that some targets may be represented by more than one vertex,
giving rise to an anycast behavior of the target, depending on the policies implemented
at the DNS level. We will also explore the possibility to process streams of incoming
data, adding or removing elements in the visualization incrementally.

References

1. BGPlayJS, http://www.dia.uniroma3.it/ compunet/www/
view/tool.php?id=bgplayjs

2. CAIDA Ark, http://www.caida.org/projects/ark/

http://www.dia.uniroma3.it/~compunet/www/view/tool.php?id=bgplayjs
http://www.dia.uniroma3.it/~compunet/www/view/tool.php?id=bgplayjs
http://www.caida.org/projects/ark/

Dynamic Traceroute Visualization at Multiple Abstraction Levels 507

3. Measurement Lab, http://www.measurementlab.net/
4. MisuraInternet, https://www.misurainternet.it/
5. Monitor Scout Traceroute, http://tools.monitorscout.com/traceroute/
6. RFC 1918, address allocation for private internets,

http://www.ietf.org/rfc/rfc1918.txt
7. SamKnows, http://www.samknows.com/broadband/
8. TPlay, http://www.dia.uniroma3.it/˜compunet/projects/tplay
9. Apache Software Foundation. Apache Commons Graph,

http://commons.apache.org
10. Augustsson, B.: Xtraceroute,

http://www.dtek.chalmers.se/˜d3august/xt/index.html
11. Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing hierarchical

information. IEEE Trans. on Visualization and Computer Graphics 13(3), 583–594 (2007)
12. Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs. In: Mutzel,

P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74. Springer, Heidelberg
(2002)

13. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and
graph planarity using pq-tree algorithms. JCSS 13(3), 335–379 (1976)

14. Colitti, L., Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: BGPlay: A System
for Visualizing the Interdomain Routing Evolution. In: Liotta, G. (ed.) GD 2003. LNCS,
vol. 2912, pp. 295–306. Springer, Heidelberg (2004)

15. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems,
Man and Cybernetics 18(6), 1035–1046 (1988)

16. Forster, M., Bachmaier, C.: Clustered level planarity. In: Van Emde Boas, P., Pokorný, J.,
Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 218–228. Springer,
Heidelberg (2004)

17. Harris, J.: A graphical Java implementation of PQ-Trees, http://www.jharris.ca
18. Hokstad, V.: Traceviz: Visualizing traceroute output with graphviz,

http://www.hokstad.com
19. Kistner, G.: Generating visually distinct colors,

http://phrogz.net/css/distinct-colors.html
20. Periakaruppan, R., Nemeth, E.: Gtrace - a graphical traceroute tool. In: Proc. 13th USENIX

Conference on System Administration, pp. 69–78. USENIX Association (1999)
21. Raitner, M.: Visual navigation of compound graphs. In: Pach, J. (ed.) GD 2004. LNCS,

vol. 3383, pp. 403–413. Springer, Heidelberg (2005)
22. RIPE NCC. RIPE Atlas, http://atlas.ripe.net/
23. RIPE NCC. RIPEstat, https://stat.ripe.net/
24. Roberts, M.J.: Underground Maps Unravelled - Explorations in Information Design (2012)
25. Sander, G.: Layout of compound directed graphs. Technical report, FB Informatik, Universi-

tat Des Saarlandes (1996)
26. Sander, G.: Graph layout for applications in compiler construction. Theoretical Computer

Science 217(2), 175–214 (1999)
27. Sugiyama, K., Misue, K.: Visualization of structural information: automatic drawing of com-

pound digraphs. IEEE Trans. on Systems, Man and Cybernetics 21(4), 876–892 (1991)
28. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broad-

band internet performance: A view from the gateway. In: Proc. SIGCOMM (2011)
29. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall (1998)
30. Visualware. VisualRoute, http://www.visualroute.com/
31. Yee, K.-P., Fisher, D., Dhamija, R., Hearst, M.: Animated exploration of dynamic graphs

with radial layout. In: Proc. INFOVIS 2001. IEEE Computer Society (2001)

http://www.measurementlab.net/
https://www.misurainternet.it/
http://tools.monitorscout.com/traceroute/
http://www.ietf.org/rfc/rfc1918.txt
http://www.samknows.com/broadband/
http://www.dia.uniroma3.it/~compunet/projects/tplay
http://commons.apache.org
http://www.dtek.chalmers.se/~d3august/xt/index.html
http://www.jharris.ca
http://www.hokstad.com
http://phrogz.net/css/distinct-colors.html
http://atlas.ripe.net/
https://stat.ripe.net/
http://www.visualroute.com/

	Dynamic Traceroute Visualization at Multiple
Abstraction Levels
	1 Introduction
	2 Use Cases and Visualization Metaphor
	3 The Algorithms
	4 Implementation and Technical Challenges
	5 Conclusions and Open Problems
	References

